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Glossary 
Anaerobic digestion (AD): wastewater treatment in which microorganisms convert 

biodegradable material into methane in the absence of oxygen. 

Anode: electrode of an electrochemical system at which an oxidation reaction takes place. 

Biocathode (BC): cathode of a BES in which reduction reactions are catalysed by 

microorganisms. 

Bioelectrochemical System (BES): electrochemical bioreactor in which active microorganisms 

catalyse oxidation and/or reduction reactions at an electrode surface. 

Biofilm: community of microorganisms growing embedded within a self-produced matrix of 

extracellular polymeric substances on a solid support. 

Complementary DNA (cDNA): double-stranded DNA synthesised from a single stranded RNA 

(e.g., messenger RNA (mRNA))   

Coulombic efficiency (CE): amount of coulombs captured in electrical current generation 

relative to the maximum possible assuming complete oxidation of the substrate.   

Cathode: electrode of an electrochemical system at which reduction reaction takes place. 

Cationic exchange membrane (CEM): type of membrane that is selectively permeable to 

cations. 

Chemical oxygen demand (COD): measure of the amount of organic compounds in water. 

Corresponds with the amount of oxygen needed to completely oxidise the organic compounds 

to carbon oxide.  

Counter electrode: electrode that serves as a source or sink for electrons so that current can 

be passed from the external circuit through the cell. 

Cyclic voltammetry (CV): electrochemical technique used to characterise electron transfer 

processes in which a cyclic potential sweep is imposed on the working electrode, while 

monitoring the response of the system in terms of current intensity. 

Diffusion: net movement of a substrate by gradient of concentration. 

Electromotive force (EMF): difference between the cathodic and the anodic potentials, which 

is positive for spontaneous processes and negative for nonspontaneous processes. 
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Extracellular electron transfer: process in which electrons derived from the oxidation of 

electron donors are transferred out of the cell to reduce an electron acceptor.   

Electrogenic bacteria: microorganisms which are capable of either donating electrons to or 

accepting electrons from an electrode. 

Intermediate alkalinity (IA): measure of the concentration of VFA of a sample, obtained with 

the titration from pH 5.75 to 4.3. 

Microbial fuel cell (MFC): bioelectrochemical system in which the chemic energy stored in 

organic compounds is directly converted into electrical energy.    

Microbial electrolysis cell (MEC): bioelectrochemical system in which value-added products 

can be generated by applying an electric voltage.      

Migration: motion of charged species as a result of an electric field. 

Nanowire: electrically conductive appendages that electrogenic bacteria use for extracellular 

electron transfer. 

Messenger RNA (mRNA): RNA molecule that convey genetic information from DNA to the 

ribosome, where they specify the amino acid sequence of the protein products of gene 

expression   

Partial alkalinity (PA): measure of bicarbonate concentration, obtained with the titration from 

the original pH of a sample to pH 5.75. 

Potentiostat: electronic hardware required to set a specific potential for an electrode, control a 

three electrode cell and run most electroanalytical experiments. 

Reference electrode: electrode with a stable and well-known electrode potential. 

Standard hydrogen electrode (SHE): redox electrode which forms the basis of the 

thermodynamic scale of oxidation-reduction potentials. By convention, it is zero at all 

temperatures to allow the comparison with all other electrode reactions.   

Total alkalinity (TA): alkalinity which corresponds to partial alkalinity (PA) plus intermediate 

alkalinity (IA).    

Two-chamber cell BES: bioelectrochemical system with a membrane that separates the anode 

and the cathode chambers. 

Working electrode: electrode in an electrochemical system on which the reaction of interest is 

occurring. 
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List of abbreviations 
16S rRNA Small subunit of the ribosomal RNA 

A  Ampere 

ABT  Anaerobic biodegradability test 

AD  Anaerobic digestion 
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Summary 
 
Anaerobic digestion (AD) is a widespread technology for treating high strength waste 

streams, such as livestock manure. Faced with its many advantages, such as energy recovery 

in the form of biogas, the AD has some limitations: i) high nutrient concentrations in effluents 

(especially nitrogen and phosphorus); ii) process instability against organic or nitrogen 

overloads, or the presence of inhibitors; and iii) the need for pre-processing of biogas to 

increase its methane content for using it as renewable energy for certain uses, such as injection 

into the natural gas grid or being used as fuel for transport. Therefore, it is necessary to 

implement strategies to keep the AD process and effluent quality under control, and increase 

the amount of energy recovered in the system. 

Bioelectrochemical systems (BES) have the versatility to be combined with AD for its 

optimisation. They are bioreactors in which the oxidation and/or reduction reactions are 

catalysed by microorganisms on the surface of an electrode and generally produced in two 

compartments separated by an ion exchange membrane. 

In this Thesis the combination of AD-BES technology has been studied with the aim of 

increasing energy recovery and recover nitrogen from a complex waste stream such as pig 

slurry. Two-chambered cells with cation exchange membrane operated both in microbial fuel 

cell (MFC) and microbial electrolysis cell mode (MEC) have been used. 

In the first part of the Thesis integration of BES technology with AD was studied to 

improve system stability, the quality of the effluent and recovery of nitrogen. Firstly, batch tests 

were performed using an MFC and a MEC to compare the operation with fresh and digested pig 

slurry in both systems regarding the reduction of organic load and ammonium recovery for its 

reuse. Subsequently, both cells were operated continuously with digestate and their ability to 

absorb specific organic overloads was checked by simulating a malfunction of the AD by 

performing volatile fatty acids pulses in the anode chambers. Next, a lab-scale AD was 

connected in series with both cells and was subjected to an organic and nitrogen overload, 

which caused inhibition process. The MEC and MFC functioned as suitable systems for 

maintaining the quality of the effluent, reducing the residual organic load of the digestate and 

recovering ammonium. In addition, a recirculation loop between the AD and the MEC allowed 

stabilising the inhibited AD. Afterwards, the effectiveness of the recirculation loop for 

maintaining the operation of the AD was checked by its temporary interruption and subsequent 

reconnection. Total and active microbial populations of the reactors were analysed during the 

different phases to study their evolution during periods of inhibition and recirculation. 

In the second part of the Thesis the implementation of the MEC technology for the 

enrichment of the biogas produced in the AD, through the establishment of a biofilm on the 
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cathode of the MEC capable of converting CO2 to methane, was studied to increase energy 

recovery of the system. First, an up-flow anaerobic sludge blanket reactor (UASB) was operated 

with the objective of obtaining biomass enriched in methanogenic archaea to be inoculated into 

the cathode of a MEC. Two MECs were set up to compare their operation with two different 

inocula (biomass enriched in the UASB and anaerobic granular biomass) and the evolution of 

the microbial population. Finally, AD-MEC-biocathode technology was integrated into a system 

where the digestate was refined in the anode chamber of the MEC and recirculated to control 

AD inhibition by organic and nitrogen overload; ammonia was recovered from the digestate 

thanks to its transfer to the cathode chamber; and CO2 introduced into the cathode chamber 

was transformed into methane to increase the calorific value of biogas. 

The work developed in this Thesis has revealed at lab-scale that BES systems have the 

versatility to be combined with the AD and improve its operation, the effluent quality and energy 

recovery and nitrogen. 
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Resumen 
 

La digestión anaerobia (DA) es una tecnología ampliamente extendida para el 

tratamiento de corrientes residuales de alta carga orgánica, como pueden ser los residuos 

ganaderos. Frente a sus múltiples ventajas, como la recuperación de energía en forma de 

biogás, la DA presenta algunas limitaciones: i)  elevadas concentraciones de nutrientes en los 

efluentes (especialmente nitrógeno y fósforo); ii) inestabilidad del proceso frente a sobrecargas 

orgánicas o nitrogenadas, o la presencia de productos inhibidores; y iii) necesidad de un 

procesado previo del biogás para aumentar su contenido en metano para su aprovechamiento 

como energía renovable para determinados usos, como su inyección en la red de gas natural o 

la utilización como combustible para el transporte. Por lo tanto, será necesario implementar 

estrategias que permitan mantener el proceso de DA y la calidad de los efluentes bajo control, 

y aumentar la cantidad de energía recuperada en el sistema.  

Los sistemas bioelectroquímicos (BES) presentan una gran versatilidad para ser 

combinados con la DA para su optimización. Se trata de bioreactores en los que las reacciones 

de oxidación y/o reducción están catalizadas por microorganismos sobre la superficie de un 

electrodo y generalmente producidas en dos compartimentos separados por una membrana de 

intercambio iónico.  

En esta Tesis se ha estudiado la combinación de DA con la tecnología BES con el 

objetivo de aumentar la recuperación de energía y recuperar nitrógeno de una corriente 

residual compleja como son los purines porcinos. Se han utilizado celdas de doble 

compartimento con membrana de intercambio catiónico operadas tanto en modo de celda de 

combustible microbiana (microbial fuel cell, MFC) como en modo celda de electrólisis 

microbiana (microbial electrolysis cell, MEC).  

En la primera parte de la Tesis se estudió la integración de la tecnología BES con la DA 

para mejorar la estabilidad del sistema, la calidad del efluente y la recuperación de nitrógeno. 

En primer lugar se realizaron ensayos en discontinuo con una MFC y una MEC para comparar 

la operación con purín de cerdo fresco y digerido en ambos sistemas respecto a la reducción 

de carga orgánica y recuperación de amonio para su posterior reutilización. Posteriormente, 

ambas celdas fueron operadas en continuo con digerido y se comprobó su capacidad para 

absorber sobrecargas orgánicas puntuales, simulando un mal funcionamiento del DA mediante 

pulsos de ácidos grasos volátiles  en las cámaras anódicas. A continuación, un DA a escala de 

laboratorio fue conectado en serie con ambas celdas y fue sometido a una sobrecarga orgánica 

y nitrogenada que provocó la inhibición del proceso. La MFC y la MEC funcionaron como 

sistemas adecuados para mantener la calidad del efluente, reduciendo la carga orgánica 

residual del digerido y recuperando amonio. Además, un circuito de recirculación entre el DA y 
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la MEC permitió estabilizar el DA inhibido. Finalmente, la efectividad del circuito de 

recirculación para el mantenimiento de la operación del DA fue comprobada, mediante su 

interrupción temporal y posterior reconexión. La población microbiana total y activa de los 

reactores fue analizada durante las diferentes fases para estudiar su evolución durante los 

períodos de inhibición y recirculación.  

En la segunda parte de la Tesis se estudió la aplicación de la tecnología MEC para el 

enriquecimiento del biogás producido en la DA, gracias al establecimiento de un biofilm en el 

cátodo de la MEC capaz de convertir CO2 en metano, aumentando la recuperación de energía 

del sistema. En primer lugar se operó un reactor anaerobio de lecho fluidificado ascendente 

(up-flow anaerobic sludge blanket, UASB) con el objetivo de obtener biomasa enriquecida en 

archaeas metanogénicas, para posteriormente ser inoculada en el cátodo de una MEC. Se 

pusieron en marcha dos celdas MEC para comparar su operación con dos inóculos diferentes 

(biomasa enriquecida en el UASB y biomasa granular anaerobia) y la evolución de la población 

microbiana. Finalmente, la tecnología DA-MEC-biocátodo fue integrada en un sistema en el 

que el digerido era refinado en la cámara anódica de la MEC y recirculado al DA para controlar 

la inhibición por sobrecarga orgánica y nitrogenada; el amonio era recuperado del digerido por 

transferencia a la cámara catódica; y el CO2 introducido en la cámara catódica era 

transformado en metano para aumentar el poder calorífico del biogás. 

El trabajo desarrollado en esta Tesis ha permitido comprobar a escala de laboratorio 

que los sistemas BES presentan una gran versatilidad para ser combinados con la DA y 

mejorar su operación, la calidad del efluente y la recuperación de energía y nitrógeno. 
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Resum 
 
La digestió anaeròbia (DA) és una tecnologia àmpliament estesa per al tractament de 

corrents residuals d'alta càrrega orgànica, com poden ser els residus ramaders. Davant els 

seus múltiples avantatges, com la recuperació d'energia en forma de biogàs, la DA presenta 

algunes limitacions: i) elevades concentracions de nutrients en els efluents (especialment 

nitrogen i fòsfor); ii) inestabilitat del procés enfront de sobrecàrregues orgàniques o 

nitrogenades, o la presència de productes inhibidors; i iii) necessitat d'un processament previ 

del biogàs per augmentar el seu contingut en metà per al seu aprofitament com a energia 

renovable per a determinats usos, com la injecció a la xarxa de gas natural o la utilització com a 

combustible per al transport. Per tant, caldrà implementar estratègies que permetin mantenir el 

procés de DA i la qualitat dels efluents sota control, i augmentar la quantitat d'energia 

recuperada en el sistema. 

Els sistemes bioelectroquímics (BES) presenten una gran versatilitat per ser combinats 

amb la DA per a la seva optimització. Es tracta de bioreactors en què les reaccions d'oxidació 

i/o reducció estan catalitzades per microorganismes sobre la superfície d'un elèctrode i 

generalment produïdes en dos compartiments separats per una membrana d'intercanvi iònic. 

En aquesta tesi s'ha estudiat la combinació de DA amb la tecnologia BES amb l'objectiu 

d'augmentar la recuperació d'energia i recuperar nitrogen d'un corrent residual complex com 

són els purins porcins. S'han utilitzat cel·les de doble compartiment amb membrana d'intercanvi 

catiònic operades tant en mode de cel·la de combustible microbiana (microbial fuel cell, MFC) 

com en mode cel·la d'electròlisi microbiana (microbial electrolysis cell, MEC). 

A la primera part de la tesi es va estudiar la integració de la tecnologia BES amb la DA 

per millorar l'estabilitat del sistema, la qualitat de l'efluent i la recuperació de nitrogen. En primer 

lloc es van realitzar assajos en discontinu amb una MFC i una MEC per comparar l'operació 

amb purí de porc fresc i digerit en els dos sistemes pel que fa a la reducció de càrrega orgànica 

i recuperació l'amoni per a la seva posterior reutilització. Posteriorment, ambdues cel·les van 

ser operades en continu amb digerit i es va comprovar la seva capacitat per absorbir 

sobrecàrregues orgàniques puntuals, simulant un mal funcionament del DA mitjançant polsos 

d'àcids grassos volàtils en les càmeres anòdiques. Després, un DA a escala de laboratori va 

ser connectat en sèrie amb les dues cel·les i va ser sotmès a una sobrecàrrega orgànica i 

nitrogenada que va provocar la inhibició del procés. La MFC i la MEC van funcionar com a 

sistemes adequats per mantenir la qualitat de l'efluent, reduint la càrrega orgànica residual del 

digerit i recuperant amoni. A més, un circuit de recirculació entre el DA i la MEC va permetre 

estabilitzar el DA inhibit. Finalment, l'efectivitat del circuit de recirculació per al manteniment de 

l'operació del DA va ser comprovada, mitjançant la seva interrupció temporal i posterior 



 

x 

 

reconnexió. La població microbiana total i activa dels reactors va ser analitzada durant les 

diferents fases per estudiar la seva evolució durant els períodes d'inhibició i recirculació. 

A la segona part de la tesi es va estudiar l'aplicació de la tecnologia MEC per a 

l'enriquiment del biogàs produït en la DA, gràcies a l'establiment d'un biofilm en el càtode de la 

MEC capaç de convertir CO2 en metà, augmentant la recuperació d'energia del sistema. En 

primer lloc es va operar un reactor anaerobi de llit fluïdificat ascendent (up-flow anaerobic 

sludge blanket, UASB) amb l'objectiu d'obtenir biomassa enriquida en archaees 

metanogèniques, per posteriorment ser inoculada en el càtode d'una MEC. Es van posar en 

marxa dues cel·les MEC per comparar la seva operació amb dos inòculs diferents (biomassa 

enriquida en el UASB i biomassa granular anaeròbia) i l'evolució de la població microbiana. 

Finalment, la tecnologia DA-MEC-biocàtode va ser integrada en un sistema en què el digerit 

era refinat a la cambra anòdica de la MEC i recirculat al DA per controlar la inhibició per 

sobrecàrrega orgànica i nitrogenada; l'amoni era recuperat del digerit per transferència a la 

càmera catòdica; i el CO2 introduït a la cambra catòdica era transformat en metà per augmentar 

el poder calorífic del biogàs. 

El treball desenvolupat en aquesta tesi ha permès comprovar a escala de laboratori que 

els sistemes BES presenten una gran versatilitat per ser combinats amb la DA i millorar la seva 

operació, la qualitat de l'efluent i la recuperació d'energia i nitrogen. 
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1.1 Waste management and energy and products recovery 

Fossil fuels cover around 80% of the world energy demand, while 7% is covered by 

nuclear energy and 13% by renewable sources (Goldemberg and Johansson, 2004). The 

increasing global demand for fossil fuels, their tendency to be scarcer, and the need to control 

the greenhouse gas emissions when using them are demanding new strategies for energy 

production (Schiermeier et al., 2008). Renewable energy production can be achieved through 

different ways, such as biomass, solar, wind or hydroelectric energies, all of them alternatives to 

fossil fuels. 

An alternative to conventional refineries for clean and renewable energy production is 

the biorefinery. Biorefineries can recover nutrients and other products of interest from energetic 

crops, organic wastes and other waste fluxes (Schiermeier et al., 2008).  This concept goes 

beyond the philosophy of petrochemical refineries, including sustainable management practices 

and closed cycle processes whenever possible. The goal is to mimic the natural carbon cycle, 

of global scale. But there are also natural cycles for water and, at local scale, for minerals, 

especially nitrogen, phosphorus and potassium, all essential nutrients for agriculture.  

Wastes, whether domestic, industrial, agricultural or from livestock are a great 

opportunity to recover water, energy, chemical products and nutrients, and have a big potential 

for application in biorefineries (Foster-Carneiro et al., 2013). Therefore it is necessary to 

develop technologies capable of recovering the energy and resources contained in waste 

fluxes. To reduce the energy investment and to avoid depletion of natural resources, there is a 

need to recover the resources available in the wastewater and to transform in the coming years 

present wastewater treatment plants to resource recovery facilities and waste biorefineries 

(Nancharaiah et al., 2016).  

1.2 Anaerobic digestion for wastes management 

 Anaerobic digestion (AD), which consists in the microorganism catalysed conversion of 

organic substrates into a mixture of gases (biogas) –mainly methane and carbon dioxide- under 

anoxic conditions is a well-established energy recovering technology in terms of performance 

and economic feasibility and one of the most attractive technologies to produce sustainable 

energy from wastes (Kleerebezem and van Loosdrecht, 2007). However, this technology does 

not modify the total content of N in the digestates, and thus needs to be combined with other 

processes for N removal or recovery (Foresti et al., 2006). The combination of the AD process 

with ammonia stripping with its subsequent absorption in an acid solution (Bonmatí and Flotats, 

2003a; Laureni et al., 2013), thermal concentration of the digestate (Bonmatí and Flotats, 

2003b) or chemical precipitation of ammonium and phosphate as struvite (Cerrillo et al., 2015) 



General introduction 

4 

 

has previously been studied, but despite these combined processes being feasible, few full 

scale applications exist so far. 

On the other hand, the AD process, especially when it is performed at thermophilic 

range, can be sensitive to several substances that may be present in the waste stream, such as 

ammonia (Yenigün and Demirel, 2013), long chain fatty acids (Palatsi et al., 2009), sulphide, 

light metal ions (Na, K, Mg, Ca and Al), heavy metals and organic compounds such as 

chlorophenols or halogenated aliphatics (Chen et al., 2008; Kroeker et al., 1979). In case of 

inhibition of the AD, an increase of volatile fatty acids (VFA) content in the effluent will take 

place, and an additional system to maintain the effluent quality will be needed. 

1.2.1 Metabolic steps and microbial populations involved in AD 

Methane production in anaerobic digesters is the final step in a series of biochemical 

reactions (Figure 1.1) which can be grouped in six different processes (Anderson et al., 2003): 
 

1. Hydrolysis of biopolymers 

2. Fermentation of amino acids and sugars. 

3. Anaerobic oxidation of alcohols and long chain fatty acids. 

4. Anaerobic oxidation of intermediary products, such as volatile acids, except acetate. 

5. Conversion of acetate to methane. 

6. Conversion of hydrogen to methane. 
 

 
Figure 1.1 Schematic representation of the process of anaerobic digestion (adapted from Villano et al., 2012). SAO: 

Syntrophic acetate oxidation. 
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Each step is catalysed by different groups of microorganisms, each with a specific role in 

the overall process. The bacterial consortium involved in the anaerobic digestion process and 

the relationships between the groups are described below. 

The first bacterial group is composed by hydrolytic bacteria that break down lipids, 

complex polymeric molecules (such as proteins and carbohydrates) and particulate organic 

matter into simpler soluble components such as short chain fatty acids, glycerol, peptides, 

amino acids, oligosaccharides and sugars. 

The second group is designated as acid-forming bacteria and is divided into acidogenic 

(organic acid forming) and acetogenic (acetate forming) bacteria. These bacteria convert the 

end-products of the first group into the key substrates of methanogenesis (acetate, hydrogen, 

carbon dioxide) and a number of intermediary products such as formate, propionate, butyrate, 

etc. Syntrophic acetate oxidising bacteria (SAO) can oxidise acetate to produce hydrogen and 

CO2 only when their products are subsequently utilised by the hydrogen-scavenging 

methanogens (Schnürer et al., 1999). 

The sequence is completed with a third group of microorganisms, methanogenic 

archaea, which consume the end-products of the second group of bacteria and convert them 

into methane and carbon dioxide. Methanogenic archaea include two main different groups, 

called acetoclastic methanogenic archaea and hydrogenotrophic methanogenic archaea. A third 

group is composed by methylotrophic methanogenic archaea, which can dismutate 

methylamines and methanol for growth but cannot catabolise acetate, dimethylsulphide, H2/CO2 

or formate. Methanogenic archaea are strict anaerobes and form methane as an end product of 

their metabolism. In the anaerobic process methane production is considered the slowest step. 

In addition, since methanogens are more active in the pH range of 6.5-8.0, they are very 

sensitive to low buffered environments against acidification caused by the products of 

acetogenic and acidogenic bacteria. Although methane production in the digesters from acetate 

represents 70%, only two genera of methanogens include species that are capable of using 

acetate, Methanosaeta and Methanosarcina. Besides acetate, Methanosarcina spp. is also able 

to utilise methanol, methylamine and sometimes CO2 and H2 as growth substrates. These two 

genera have different physiology of growth; Methanosaeta is a filamentous organism, while 

Methanosarcina generally grows in aggregates that consist of many individual cells, each 

surrounded by a thick wall (Anderson et al., 2003). 

A significant amount of methane produced in anaerobic digesters, up to 30% of the total, 

is produced by hydrogenotrophic and methylotrophic archaea. These methanogens reduce 

carbon dioxide, formate, methanol and methylamine using hydrogen produced by fermentation 

by bacteria and hydrolytic acidogenics in earlier stages of anaerobic digestion (Anderson et al., 

2003). 
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1.2.2 Temperature range, pH and inhibitory substances 

Usually anaerobic digestion is performed in two different ranges of temperature, defined 

as mesophilic, with optimal temperature of 30-37 °C; and thermophilic, with optimal temperature 

of 55-60 °C. The thermophilic temperature regime has advantages such as a higher production 

rate of methane than in mesophilic regime, the possibility of using higher organic loadings and 

lower sludge production. However, it has some disadvantages such as less stability than 

mesophilic reactors, higher energy requirement for heating the reactor and increased production 

of VFA in the effluent (Angelidaki and Ahring, 1994). 

The optimal pH range is between 6.5 and 7.8. The pH of the reactor may be affected by 

the consumption and production of ammonia and VFA, production of sulphur from the reduction 

of sulphate or sulphite, and the conversion of organic carbon to methane and carbon dioxide. 

The presence of compounds such as metals, VFA, oxygen, sulphur or ammonia can also 

produce toxicity or inhibition in anaerobic reactors. In the case of inhibition by high 

concentrations of ammonium, very frequent in the treatment of high strength waste such as 

livestock manure, significant differences in what the inhibitory concentration is have been 

reported (Siles et al., 2010). Some methanogenic strains are inhibited at 4.2 gN-NH4+ L-1, while 

others are resistant to ammonia levels above 10 gN-NH4+ L-1 (Jarrell et al., 1987). Hashimoto 

(1986) found ammonia inhibition of about 2.5 gN-NH4+ L-1 for both mesophilic and thermophilic 

digesters, when the reactors were not previously acclimated to high ammonia content. In fact, 

AD process is very complex, harbouring different mechanisms such as antagonism, synergy, 

acclimatisation and complexion that can significantly affect the methanogenesis inhibition 

phenomenon (Chen et al., 2008). It may also be attributable to differences in substrates and 

concentrations of inoculum, environmental conditions such as temperature and pH, and periods 

of acclimatisation (Angelidaki and Ahring, 1994). 

1.2.3 Treatment of complex substrates 

Anaerobic digestion of complex substrates, such as organic waste, stands out as a 

strategy for bio-energy recovery. But the AD of protein rich waste, such as livestock manure, 

waste from fish processing, fermentation industry waste or sludge is often affected by the 

accumulation of acid and ammonium (Lü et al., 2013). When anaerobic digesters are inhibited 

by VFA accumulation it is difficult to restore the process because methanogens are highly 

sensitive to the presence of high VFA concentrations and low pH. The concentration of VFA is 

recognised as a mechanism of selective pressure that strongly influences the structure of the 

community, by promoting for example the methanogenic activity of Methanosarcina, and even 

can lead to a change in the metabolic pathway. The transformation of acetate, as the dominant 
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intermediary in the AD of organic matter, into methane can occur in two ways. The first one is 

acetoclastic methanogenesis, which is carried out by Methanosarcinaceae or 

Methanosaetaceae. The second process includes two reactions, syntrophic acetate oxidation 

(SAO organisms) to H2 and CO2 and the subsequent conversion of these products to methane 

by hydrogenotrophic methanogenic specific populations. Although globally it is assumed that 

most (up 67%) of produced methane comes directly from acetate, acetoclastic methanogens 

are more sensitive than hydrogenotrophic methanogens to compounds such as ammonia and 

heavy metals, and recent studies have found that the SAO metabolic pathway is significant 

under thermophilic conditions or stress due to high ammonia or VFA concentrations (Schnürer 

et al., 1999; Hao et al., 2011). 

Given the high variability of substrates that can be used in AD, and the different 

problems that may arise in the operation, it is interesting to find mechanisms to keep the 

process under control, to increase the resilience mechanisms, and optimise the production of 

biogas. The AD treatment is a key treatment for complex wastes since it provides many benefits 

when combined with a process for nutrients recovering such as stripping, composting or 

membrane filtration, etc., and/or recover the residual energy, such as the combination with a 

microbial fuel cell (Min and Angelidaki, 2008). 

1.3 Bioelectrochemical systems for the treatment of waste streams 

Bioelectrochemical Systems (BES) use microorganisms attached to one or both 

bioelectrode(s) to catalyse the oxidation and/or reduction reactions (Figure 1.2). A BES is called 

microbial fuel cell (MFC) when electrical energy from the oxidation of organic matter is obtained, 

and microbial electrolysis cell (MEC) when electric power is supplied externally to promote non 

thermodynamically spontaneous reactions (Hamelers et al., 2010). These systems have 

emerged as a highly versatile technology that allows to join the treatment of wastewater to the 

generation of chemicals and energy carriers (Pant et al., 2012). 

In the anodic compartment of an MFC, the organic matter is oxidised by microbial 

populations, including exoelectrogenic populations, which are electrochemically active. The 

electrons generated in this oxidation are not transferred to a soluble terminal acceptor of 

electrons (O2, NO3
-, SO4

2-, Fe3+, CO2), but are derived to the anode (insoluble electron acceptor 

external from microbe cells). This transfer can occur both through components associated with 

the membrane and through soluble electron mediators or nanowires of microbial origin (Gorby 

et al., 2006; Kim, Chae et al., 2008). From the anode, electrons are conducted through an 

external circuit, which is connected to an external resistance, to the cathode, where they are 

consumed during the reduction of molecular oxygen to form water. The balance of charge 

between the two compartments is maintained because there is a simultaneous transport of ions 
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(cations such as H+, Na+, K+, and other anions such as Cl-) through the ion exchange 

membrane. The voltage difference between the two compartments is the electromotive force 

(emf) that allows the flow of electrons. This process is not totally efficient, since in the microbial 

community the processes of respiration and fermentation of microorganisms compete for the 

electrons of the substrate. The efficiency of an MFC is largely determined by the energy losses 

of the reactions expressed as overpotentials, and to which degree the electrons produced are 

derived to the desired product, expressed as coulombic efficiency (Hamelers et al., 2010). But 

in addition to energy production, another objective of these systems can also be the treatment 

or recovery of contaminants such as nitrates, sulphides and sulphates. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2 Schematic representation of an MFC (left) and a MEC (right) (Villano et al., 2012). 

 

In a MEC, in the same way as in an MFC, electro-active microorganisms use a solid 

anode as terminal electron acceptor for the oxidation of organic substrates up to carbon dioxide 

while simultaneously releasing protons to the solution. The electrons flow from the anode to the 

cathode through an external circuit while the protons diffuse to the cathode compartment 

through a membrane separating the two compartments. At the cathode, in the presence of a 

suitable (bio)catalyst, the electrons combine with a soluble electron acceptor (Figure 1.3), 

generating a target product (Rabaey and Rozendal, 2010). The main difference with an MFC is 

that the MEC requires an external power supply to ensure that the cathode reaction is 

thermodynamically favourable. In the case of MEC systems, the main objective is to generate 

products of interest such as hydrogen or methane, which in this particular case are produced in 

the cathodic compartment. 

So far various substrates have been studied as potential energy sources to generate 

electricity in MFCs, including carbohydrates (e.g. glucose, sucrose, starch and cellulose), 

volatile fatty acids (e.g. formate, acetate and butyrate), alcohols (e.g. methanol and ethanol), 
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amino acids and proteins. The use of organic wastewater is an attractive alternative to the use 

of pure compounds, allowing the treatment of residual flows while generating renewable energy. 

It has been demonstrated the ability to use a wide range of complex substrates to maintain the 

production of electricity in MFCs, such as oxalate (Bonmatí et al., 2013), domestic wastewater 

(Liu et al., 2004), swine wastewater (Min et al., 2005), wastewater from paper recycling or the 

production of beer, or the effluent of anaerobic digesters, as reviewed by Pant et al. (2010). This 

compatibility between the influent of BESs and the effluent of conventional anaerobic digesters 

makes MFCs suitable as a polishing treatment after the AD; or methane producing MECs to be 

a promising technology to extract additional energy (in the form of methane) of the residual 

organic matter contained in the effluent of AD systems. 

 
Figure 1.3 Schematic representation of the reaction produced in a biocathode (Villano et al., 2012). 

 

Different from manure treatment in AD, an MFC generates electric current directly, and a 

gas containing mainly carbon dioxide and traces of CH4. The MFCs have potential advantages 

of performance and operation over other technologies currently used for the production of 

electricity from organic matter. First, the direct conversion of electrical energy contained in the 

substrate theoretically allows high conversion efficiencies. Secondly, the MFCs operate 

efficiently at room temperature and even lower and can treat low organic matter content fluxes. 

And thirdly, an MFC does not require a subsequent combustion of biogas because it is rich in 

carbon dioxide and not in methane or molecular hydrogen and it usually has no useful energy 

content (Rabaey and Verstraete, 2005). 

Although initially the main interest of BESs was the ability to produce electricity with 

MFCs, the attention of the scientific community is now focusing on other options a priori more 

attractive. In recent years BESs are standing for their complementary role to anaerobic 

digestion system, since the coupling of the two systems may allow recovering and/or producing 

products of interest. 

Electro-active microorganism 

SOX,RED: Oxidised and reduced form of the 
substrate 
MedOX,RED: Oxidised and reduced form of the 
soluble redox mediator 



General introduction 

10 

 

1.3.1 Fundamentals of voltage generation in MFCs 

In an MFC electricity is generated only if the overall reaction is thermodynamically 

favourable. The reaction can be evaluated in terms of Gibbs free energy expressed in Joules 

(J), which is a measure of the maximum amount of work that can be derived from a reaction, 

calculated as: 

 ΔG୰  =  ΔG୰୭  +  RTln(II) (1.1) 

where ΔGr (J) is the Gibbs free energy for specific conditions, ΔGo
r is the Gibbs free energy 

under standard conditions normally defined as 298.15 K, 1 bar pressure and a concentration of 

1 M for all species, R (8.31447 J mol-1 K-1) is the gas universal constant, T (K) is the absolute 

temperature and II (no units) is the reaction quotient calculated as the product activity divided by 

that of the reagents. The Gibbs standard free energy is calculated from the tabulated energies 

of formation for different organic compounds in water (Logan et al., 2006). 

For MFC calculations, it is more appropriate to assess the reaction in terms of 

electromotive force of the cell (emf) Eemf (V), defined as the difference of potential between the 

cathode and the anode. This is related with the work, W (J), produced by the cell: 

 W =  Eୣ୫୤ Q =  − ΔG୰ (1.2) 

where Q = nF is the load transferred in the reaction expressed in Coulombs (C), which is 

determined by the number of electrons exchanged in the reaction, n is the number of electrons 

per reacted mol, and F is the Faraday constant (9.64853 x 104 C mol-1). Combining these two 

equations it gives: 

 Eୣ୫୤  =  − ΔG୰/(nF) (1.3) 

If all the reactions are evaluated in standard conditions, II = 1, then: 

 Eୣ୫୤
୭ =  − ΔG୰୭/(nF) (1.4) 

where Eo
emf (V) is the standard electromotive force of the cell. Then we can use the above 

equations to express the overall reaction in terms of potentials: 

୫୤ୣܧ  =  Eୣ୫୤
୭ + (RT/nF)ln (II) (1.5) 

The advantage of Eq. 1.5 (Nernst equation) is that it is positive for a favourable reaction, 

and directly produces a value of the emf of the reaction. The calculated emf provides an upper 

limit for the voltage of the cell; the real potential derived from the MFC will be lower due to the 

different potential losses that occur (Section 1.3.2). 
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1.3.2 Overpotentials 

The maximum voltage that can be achieved in an MFC (emf) is of the order of 1.1 V 

(Logan et al., 2006). The measured voltages, however, are considerably lower due to various 

losses. The difference between the voltage measured at the cell and the emf is called 

overpotential and it is the sum of the anode and cathode overpotentials and the ohmic losses of 

the system. 

௖௘௟௟ܧ  =  E௘௠௙– [∑ηୟ  + ห∑ηୡห  +  IRΩ] (1.6) 

where Σηa and Σηc are the anode and cathode overpotentials, respectively, IRΩ is the sum of all 

the ohmic losses, which are proportional to the intensity of current generated (I) and the ohmic 

resistance of the system (RΩ). The overpotentials of the electrodes are generally dependent on 

the current and in an MFC can be divided as follows: (i) activation loss; (ii) microbial metabolic 

losses; and (iii) mass transport or concentration losses. 

In an MFC the measured voltage in the cell is normally a linear function of the intensity, 

and can be described as: 

௖௘௟௟ܧ  =  OCV −  IR୧୬୲ (1.7) 

where IRint is the sum of all the internal losses of the MFC and OCV is the voltage of the cell in 

the open circuit. 

These are the different mentioned overpotentials: 

Ohmic losses. The ohmic resistance is the opposition that ions and electrons 

experiment when they move through an electrochemical system. The more current density and 

ohmic resistance, the more relevant will ohmic losses in a system be. The two most important 

kinds of ohmic losses in BESs are: ohmic losses due to the electrolyte and ion exchange 

membrane (if any) and ohmic losses due to the electrode. The first ones refer to the voltage 

loss caused by the movement of ions through the anodic and cathodic electrolyte and the 

membrane, and the second ones refer to the movement of electrons through the electrode and 

the electrical wiring of a BES. 

Ohmic losses can be reduced by minimising the distance between electrodes, using a 

membrane with low resistance, checking electrical connections and increasing the conductivity 

of the solution at the maximum tolerated by microorganisms (if feasible). In the case of waste 

water with low conductivity, electrolyte ohmic losses can be considerable. 

Activation losses. Due to the activation energy necessary to produce an 

oxidation/reduction reaction, activation losses occur during the transfer of electrons from/to a 

compound that reacts on the surface of the electrode. This compound can be found on the 

surface of the microorganism, as a mediator in the solution, or as a terminal electron acceptor 
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reacting at the cathode. Activation losses typically show a strong increase at low current 

intensities and a steady growth when the current density increases. Low losses can be 

achieved by increasing the activation of the electrode surface, improving the catalysis of the 

electrode, increasing the operating temperature, and favouring the establishment of an 

exoelectrogenic microbial biofilm on the electrode(s). 

Bacterial metabolism losses. To generate metabolic energy, bacteria carry electrons 

from a substrate with low potential (such as acetate, 0.187 V) through the electron transport 

chain to a terminal electron acceptor (such as oxygen or nitrate) with higher potential (1.23 and 

0.80 V, respectively). In an MFC, the anode is the terminal electron acceptor and its potential 

determines the energy gain of bacteria. The higher the difference between the redox potential of 

the substrate and the potential of the anode, the higher the possible metabolic energy gain by 

the bacteria, but the lower the maximum voltage that can be achieved in the MFC. The potential 

of the anode, however, is affected by the potential of the cathode; this potential difference 

favours electron transport from the biofilm to the anode and later to the cathode. In order to 

maximise the voltage of the MFC, the potential of the anode should be kept as low (negative) as 

possible. But if the potential of the anode is too low, the electron transport will be inhibited and 

microorganisms will get more energy if the fermentation of the substrate can be carried out. 

Concentration losses. Concentration losses occur when the rate of mass transport of a 

species to or from the electrode limits current production. Concentration losses occur mainly in 

high current densities due to a limited mass transfer by diffusion of chemical species to the 

surface of the electrode. The anode concentration losses are caused by a limited discharge of 

oxidised species from the surface of the electrode or a limited supply of reduced species to the 

electrode. This increases the ratio of oxidised and reduced species at the electrode surface, 

which can cause an increase in the potential of the electrode. At the cathode the opposite effect 

can take place, causing a drop of potential. In poorly agitated systems, diffusion gradients in the 

liquid can occur (Logan et al., 2006). 

The Butler-Volmer equation can be used to predict the current intensity resulting from 

overpotential when there are not mass transfer limitations: 

 ݅ = ݅଴ ൣ݁ିఈ௙ఎ −  ݁(ଵିఈ)௙ఎ൧ (1.8) 

where i is the current (A), η is the overpotential (V), the coefficient f = F / (RT), F is the Faraday 

constant, R is the gas constant and T is the temperature (K), and the transfer coefficient α is a 

dimensionless parameter with values between 0 and 1, often estimated as 0.5; i0 (A) is the 

current exchanged, which can be written as: 
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 ݅଴ = ଴ܥ଴݇ܣܨ
∗(ଵିఈ)ܥோ∗ఈ (1.9) 

where CR and C0 are the oxidised and reduced compounds concentrations (mol cm-3), 

respectively, A is the area of the electrode (cm2) and k0 is the standard heterogeneous rate 

constant (cm sec -1). 

1.3.3 Microbial mechanisms for external transfer of electrons 

In order to optimise the different applications of BESs it is necessary to understand how 

microorganisms exchange electrons with the electrode surface. So far two main methods for 

extracellular electron transfer (EET) have been identified: direct electron transfer from bacteria 

physically attached to an electrode, and indirect transfer of electrons from bacteria that are not 

physically attached to the electrode (Rabaey et al., 2007) (Figure 1.4). These processes are not 

mutually exclusive, and microorganisms may be able to use several of these mechanisms 

simultaneously. 

Regarding the direct transfer between bacteria and electrode, it can occur in two ways. 

First, it can be caused by physical contact between the structures of the outer membrane of the 

microbial cell and the surface of the electrode. These external structures are also attached to 

the internal structures of the organism, allowing the electrons to be transported from the interior 

of the cell through the cell wall directly to the electrode. And secondly, the electrons can be 

transferred between the electrode and the microorganism through appendages of 10 nm 

diameter and up to several thousand nanometres in length (nanowires) extending from the outer 

membrane of the microorganisms and attached to the electrode (Franks et al., 2010). Since the 

nanowires can extend tens of microns, microorganisms which are placed far from the electrode 

can maintain direct contact with it or with other cells. The direct electron transfer was first 

proposed as a transfer mechanism for Shewanella putrefaciens MR-1 (Kim et al., 1999), but 

later it was also demonstrated the use of indirect electron transfer with mediators (Marsili et al., 

2008). Other microorganisms which are believed  to transfer electrons directly to the surface of 

the anode include Shewanella spp., Aeromonas hydrophila, Clostridium spp., Rhodoferax 

ferrireducens, Desulfobulbus propionicus and Geobacter spp. Geobacter spp and Shewanella 

spp would also be capable of producing nanowires (Franks et al., 2010). Direct interspecies 

electron transfer (DIET) between different bacteria and archaea has also recently been 

described (Summers et al., 2010). 

Indirect electron transfer between the electrode and the microorganism is produced 

through long range electron shuttles or mediator compounds that can be naturally present in the 

environment (waste water, for example), or be produced by bacteria. The electrons are 

transported first to the surface of the bacterial cell and mediators or shuttle compounds collect 
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and transport them to the electrode. Some mediators producing bacteria are Shewanella spp., 

Pseudomonas spp and Geothrix fermentans (Franks et al., 2010). 

It is essential to continue to deepen the knowledge of the biology of extracellular transfer 

of electrons and direct interspecies electron transfer (DIET) mechanisms for future 

developments in the field of BESs technology (both bioanodes and biocathodes). 

 

 
Figure 1.4 Representation of different kinds of bacteria in an anodic biofilm including exoelectrogens that transfer 

electrons by direct contact (green), produce nanowires (purple) and use endogenous mediators (blue). Other non-

exoelectrogenic bacteria that live from the products generated by other bacteria (brown) or possibly use nanowires or 

mediators produced by other microorganisms may be also present (Logan, 2009). 

 

1.3.4 The microbial communities in BES 

There are a wide variety of microorganisms that can be found in association with 

electrodes in a BES, depending on operating conditions such as inoculum and the type of 

substrate used (Sotres et al., 2015b; 2016b; Logan and Regan, 2006; Pant et al., 2010). The 

generation of electricity has been demonstrated in four of the five classes of Proteobacteria (α-, 

β-, γ- or δ-proteobacteria), as well as Firmicutes and Acidobacteria phyla (Logan, 2009; Logan 

and Regan, 2006). The most active electrochemical species described in BESs biofilms are 

iron-reducing bacteria such as Shewanella and Geobacter (Yang et al., 2012), but the diversity 

of microbial communities present in exoelectrogenic processes seems to be much more 

complex. 

It is likely that not all the microorganisms that are associated to the anode biofilm interact 

directly with it, but interaction may be indirectly through other electrode community members 

(Franks and Nevin, 2010). For example, Brevibacillus spp. PTH1 was detected as an abundant 

member of a community in an MFC, but its electricity production was low unless co-cultured with 

Pseudomonas spp or the supernatant of an MFC (Pham et al. 2008).  
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Most known exoelectrogenic bacteria can only extract electrons from simple organic 

substrates such as volatile fatty acids (VFAs) and alcohols to produce current, so they require 

the cooperation of polymer-degrading bacteria (fermenters) to firstly break down the complex 

polymers such as cellulose and protein to simple and usable organics. Figure 1.5 shows three 

main routes of syntrophic interactions in MECs, and they include (A) interactions between the 

aforementioned fermentative bacteria and exoelectrogens, with the first group converting 

complex substrates into simpler organics for the second group to generate current; (B) 

interactions among fermentative bacteria, homoacetogens, and exoelectrogens. H2 derived from 

fermentation or electrolysis is used to reduce CO2 by homoacetogens to acetate (HCO3
- + 2H2 + 

0.5H+     0.5CH3COO- + 2H2O), which then can be oxidised by exoelectrogens; and (C) 

interactions between fermentative bacteria and methanogens. Fermentation products, acetate 

or H2 can be used by methanogens for CH4 production (Lu and Ren, 2016). 

 

 
Figure 1.5 Schematic representation of the three main routes (A, B and C) of syntrophic interactions in MECs (Lu and 

Ren, 2016). 

 

The higher power densities were achieved by inoculating the MFC's anode with a rich 

and diverse source of bacteria, such as wastewater or sewage sludge. However, the power 

densities achieved are typically more dependent on the specific architecture of the reactor, the 

ion exchange membrane materials used (Sotres et al., 2015b), the distance between the 

electrodes and the conductivity of the MFC solution, rather than on the specific microbial 

populations (Logan et al., 2006). 

Regarding microbial community assessment of complex biofilms attached to BES 

electrodes (bioanode and biocathode), high throughput sequencing (454-pyrosequencing, 

MiSeq and Ion Torrent platforms) of massive gene libraries of 16S rRNA are arising as 
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emerging techniques to cope with the low sensitivity of former culture-independent techniques 

such as DGGE or cloning libraries, enabling the identification of less abundant members of the 

community, while eliminating the cloning bias, but not this of the previous step of PCR (Yates et 

al., 2012). 

In addition more efforts focused on RNA-based studies are needed to distinguish active 

microbial key players from total community composition to gain insight on main microbial 

mechanisms that are taking place on the BES biofilms. New emerging techniques such as 

metatranscriptomic and metagenomics can provide valuable information about the active 

pathways and gene expression, as well as identifying those key genes and microbial species to 

be further monitored in the future. 

1.3.5 BES as systems to recover nitrogen 

A phenomenon described in MFCs equipped with cation exchange membranes is the 

diffusion of cations, such as ammonium, to maintain the balance of charges between the anode 

compartment, where protons are produced, and the cathode compartment, where they are 

consumed (even against a concentration gradient). Because the MFC anolyte always contains 

mineral salts and buffer in concentrations several times higher than that of protons (typically 105 

times), these ions are the predominant species in maintaining the charge balance in detriment 

of protons, resulting in a pH gradient between anolyte and catholyte (Rozendal et al., 2006; 

2008). 

Several studies have been conducted to determine how the nitrogen is transported 

through the membrane of the MFC. Kim, Zuo et al. (2008) examined the balance of nitrogen 

during pig wastewater treatment with a single and two-chambered MFC. For the cathode-air 

system, the results suggested that N losses were increased due to volatilisation of ammonia as 

a result of a high pH near the cathode. In the two-chambered MFC, the nitrogen losses in the 

anode compartment were mainly due to the diffusion of ions through the membrane and 

subsequent stripping due to the injection of air into the cathode compartment. The transport 

through the membrane increased with the increased electricity generation. 

Taking advantage of this phenomenon, Cord-Ruwisch et al. (2011) developed a strategy 

for using ammonium as a proton shuttle between the anode and cathode compartments, 

trapping and recovering ammonia volatilised by stripping of ammonium transferred to the 

catholyte from the anode compartment and subsequent absorption in an acid solution. This 

mechanism avoided having to add reagents to maintain the pH of the anode at suitable levels 

for biological activity. Later, Cheng et al. (2013) modified this ammonium recycling system using 

the hydrogen generated in the cell to perform the stripping. Kuntke et al. (2011) worked with 

synthetic water and measured the transport of cations to the cathode of an MFC in order to 
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recover the ammonia and determined that the high ammonium transport through the cation 

exchange membrane achieved was motivated by the charges exchange process. Ammonium 

was transferred to the cathode compartment through both diffusion flux (which allows the 

transport until it achieves a balance of ammonium concentrations between the anode and 

cathode compartments) and migration flux (caused by charge production). Later, Kuntke et al. 

(2012) showed that the same process could be done with wastewater with high nitrogen load, 

such as urine. In addition, they found a linear relationship between charge and ammonium 

transport produced in the experiments. Regardless of the concentration of ammonium, 30% of 

the produced charge was used to for the transport of ammonium to the cathode compartment. 

Desloover et al. (2012) studied the flux of ammonium between the anode and cathode 

compartment using an electrochemical cell applying voltage to the system and determined that 

under optimum conditions and working with synthetic solution the ammonium transfer efficiency 

was of 96%. Working with digestate the achieved efficiency was of 41%. The ammonium 

dissolved in the cathode could be recovered later by stripping and absorption, with a 100% 

efficiency. Later, Sotres et al. (2015a) found that the diffusion of ammonium between both 

chambers of an MFC fed in continuous mode was independent of the concentration of N-NH4
+ 

of the influent and that the operation of the MFC was not affected by the high concentration of 

ammonium used in the feed. It was also reported that the recovery of ammonia in an MFC fed 

with liquid fraction of manure through stripping was feasible. Haddadi et al. (2013) studied the 

effect of ammonium diffusion and the behaviour of the anode pH on the recovery of ammonia in 

a MEC. In this study, the transport of ammonium through a cation exchange membrane 

represented approximately 61% of the coulombs produced, since there were other cations in 

the medium. Deducing ammonium transported by diffusion, ammonium transported due to 

migration to ensure the electroneutrality represented 34% of the total balance of charge. Zhang, 

Zhu et al. (2013) worked in batch with an MFC with three compartments, to study the transport 

of ammonium to the cathode compartment. It was reported that the increase in the voltage of 

the cell increased the speed of migration of ammonium. The efficiency of ammonium migration 

stood at 97.0±2%. The diffusion of ammonium through the membrane when voltage was not 

applied was of 30±2%. The diffused ammonium was later removed from the cathode 

compartment by simultaneous nitrification and denitrification. Clauwaert et al. (2007) reported 

the removal of nitrate by denitrificant microorganisms in the cathode of an MFC operated with 

acetate, without the need for external power. Subsequent results showed that the removal of 

nitrogen may be combined with MFC technology with simultaneous production of energy (Virdis 

et al. 2008). Sotres et al. (2016) worked with a dual-compartment MFC with synthetic feed, 

noting that 24% of ammonium migrated through the cation exchange membrane and was 

subsequently nitrificated at the cathode compartment. The prevalence of concomitant 
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phylotypes belonging to nitrifying (Nitrosomonas) and denitrifying bacteria in the cathode 

chamber was determined, which could explain the presence of active processes of nitrification 

and denitrification and the loss of nitrogen detected in the overall balance of the MFC. Finally, it 

was showed that it was feasible to conduct a sequentially nitrification-denitrification process 

using intermittent aeration in the cathode chamber. 

These latter systems seek to achieve the removal of nitrogen from the waste water 

stream, and there are many articles published about it (Kelly and He, 2014), while the MFC 

coupling to a stripping system allows for the more environmentally suitable tool of nitrogen 

recovery for subsequent reuse as fertiliser, for example, also avoiding the potential production 

of nitrogen oxides during the process of denitrification. Fertiliser nitrogen is chiefly obtained by 

converting atmospheric nitrogen to ammonia nitrogen in industry by the Haber–Bosch process 

(Fowler et al., 2013). It combines nitrogen and hydrogen at high temperature (400–600 ºC) and 

high pressure (20–40 MPa) using an iron catalyst. This process is so energy intensive that it 

consumes between 1% and 2% of the energy generated per year globally. Moreover, hydrogen 

required for this reaction is processed from natural gas and carbon dioxide is the by-product 

(Nancharaiah et al., 2016). 

In this frame, BESs emerge as interesting systems to be coupled to an anaerobic 

digestion process, since ammonia is not removed in the conventional anaerobic digestion 

treatment, but generated from organic nitrogen, making it necessary to find a complementary 

system that allows recovering or removing the nitrogen content in the effluent.  

1.3.6 Methane potential as renewable energy source 

In the context of energy sources scarcity and the need of finding alternatives to fossil 

fuels to produce energy without releasing new carbon to the atmosphere, actual investigation 

lines are focused in more sustainable methods for obtaining energy, and in renewable fuels 

which could be stored and used for transport, heating or chemical synthesis (Cheng et al., 

2009). Renewable energy carriers with no carbon or neutral in their release of carbon to the 

atmosphere (they do not contribute with new CO2) are of especial interest. Although renewable 

energy production based on actual technology is still not economically competitive in 

comparison with the fossil fuel based production, there is a decrease in costs in the last 

decades due to technological development. In this sense, biotechnological processes catalysed 

by microorganisms (such as microbial electrolysis cells reactors) are of increasing interest for 

their use for the production of liquid and gaseous renewable biofuels. Among the latter, 

biomethane and biohydrogen have a great potential because they are energy carriers and can 

be stored and have diverse applications such as transport, heating, electricity or even chemical 

products production (Villano et al., 2012). 
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Although hydrogen has as advantage that it can be used directly in fuel cells to produce 

electricity, obtaining water as the only waste, storage systems and adequate infrastructures still 

have to be developed in the coming decades to allow its use in transport and decentralised 

electricity production. Instead, methane needs a pre-treatment in order to be used but can be 

stored and distributed with the existing natural gas infrastructure. Furthermore, its use for 

energy production and heat is a mature technology, since it has been produced in anaerobic 

digestion processes for decades. Using methane as transport fuel has also a significant 

potential, since NOx emissions, particles and other emissions related with fossil fuels utilisation 

would be reduced. 

1.3.7 BES as systems for obtaining methane 

In conventional BESs, a biocathalysed anode is combined with an abiotic cathode 

containing a catalyst suitable to carry out the objective reaction. Recently BESs with microbial 

biocathodes are emerging as a way to achieve low cost cathode catalysts and provide more 

opportunities for commercial applications (Franks and Nevin, 2010). 

So far there have been very few studies that have investigated the application of MEC 

technology for methane production. A methane producing MEC consists of a compartment 

where anodic oxidation reaction takes place, producing CO2, protons and electrons (Figure 1.6). 

The electrons are driven to the anode and flow through an external electrical circuit to the 

cathode while the protons and ions migrate through the membrane to the cathode compartment 

to keep electroneutrality. At the cathode, CO2, protons and electrons are used to produce 

methane. The cathode reaction is catalysed by electrochemically active microorganisms, the 

hydrogenotrophic methanogens (Cheng et al., 2009). The reaction is thermodynamically 

unfavourable, so power is needed to make it possible. 

 
Figure 1.6 Schematic representation of a methane producing MEC (Villano et al., 2010). 

CO2 
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The ability of microorganisms to produce methane from CO2 reduction using an 

electrode as a direct donor of electrons has been demonstrated for the first time a few years 

ago (Cheng et al., 2009), so microorganisms can be used at the cathode of a MEC to produce 

methane gas from electricity at much higher speeds than those that can be obtained via 

evolution of hydrogen gas in a non-catalysed electrode. The hydrogenotrophic methanogens 

can catalyse the production of methane from CO2 in MECs by two mechanisms of extracellular 

electron transfer: direct (electrons are taken directly from the electrode and are used to reduce 

CO2 to methane) or indirect (with intermediate hydrogen production (Cheng et al., 2009; Villano 

et al., 2010)). The equations corresponding to both processes are shown in Eq. 1.10 (Cheng et 

al., 2009) and Eq. 1.10 (Logan et al., 2008) and 1.11 (Van Eerten et al., 2012), respectively. 

 

CO2 + 8 H+ + 8 e-  CH4 + 2 H2O  (Ecat = -0.24 V vs. NHE)  (1.10) 

2 H+ + 2 e-  H2  (Ecat = -0.41 V vs. NHE)  (1.11)        

CO2 + 4 H2  CH4 + 2 H2O  (1.12)            

 

In standard conditions, the reaction of Eq. 1.10 requires a theoretical voltage of -0.244 V 

(vs. standard hydrogen electrode, SHE) at pH 7, but it is usually affected by quite high 

overpotentials that can be reduced using a microbial biocathode. Villano et al. (2010) found that 

methane production in a BES with mineral medium in batch could be achieved with simple 

carbon cathodes polarised at potential more negative than -650 mV vs. SHE in the presence of 

a hydrogenotrophic methanogenic culture. They showed that at cathode potentials in the 

investigated range (-650 to -900 mV), only part of the methane was produced via extracellular 

electron transfer processes; the rest was produced biologically through hydrogenotrophic 

methanogenesis. This study revealed that the extracellular electron transfer rate was heavily 

dependent on the potential of the cathode. The results of Clauwaert and Verstraete (2009) with 

a membraneless MEC indicated that it could be used as a viable treatment for AD effluent, 

since methane was produced with a low organic load and at environment temperature. In a later 

study, Villano et al. (2011) described the batch operation of a MEC at room temperature with 

mineral medium, consisting of a bioanode enriched with Geobacter sulfurreducens and a 

methane producing biocathode. The MEC was successfully started up by sequentially 

controlling the potential of the anode and the cathode in values that favoured the establishment 

of an active methanogenic biocathode (-850 mV vs SHE) and an acetate oxidant bioanode (500 

mV vs SHE), respectively. 
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Cheng et al. (2011) worked with a new design of MEC, called bioelectrochemical rotative 

contactor, which through regular 180º rotation made the anode work as a cathode and vice 

versa. This operation favoured the growth of a biofilm that could catalyse both the anodic 

oxidation of acetate and the methanogenesis conducted by the cathode. 

Recently, Jiang et al. (2013) studied a BES constructed to produce simultaneously CH4 

and CH3COOH through direct and indirect extracellular electron transfer with CO2 as the only 

carbon source. They showed that methane production grew almost linearly as the cathode 

potential became more negative, between -850 and -950 mV. At more negative potential, 

CH3COOH began to accumulate. 

1.4 Combination of AD/BES for organic wastes valorisation 

Anaerobic digestion is limited, among other factors, by the susceptibility of 

methanogenic microorganisms to toxic compounds, the necessity of operating at temperatures 

generally above 35 ºC, the permanence of nutrients in the effluent and the difficulty in removing 

organic substrates at low residual concentrations (Pham et al., 2006). For this last reason, and 

with the objective of meeting discharge limits, AD systems require a polishing post-treatment 

step. Typically this step was performed with active sludge systems, energy consuming and with 

the concomitant production of considerable amounts of sludge (Villano et al., 2013). 

On the other hand, the economic viability of the AD for the treatment of livestock manure 

depends, among other factors, on the specific methane production per unit of waste. Different 

strategies have been proposed and developed in order to increase the production of biogas, 

such as pre-treatments (Bonmatí et al., 2001), the co-digestion with other organic waste 

(Angelidaki and Ellegaard, 2003), the use of a more efficient configuration of the reactor (Sakar 

et al., 2009) and operating at thermophilic temperature range (Angelidaki and Ahring, 1994). 

Operating at thermophilic temperature range has a positive effect on the anaerobic 

process, because the growth rates of thermophilic bacteria are 2-3 times larger than their 

mesophilic counterparts, but otherwise they are more sensitive to the presence of inhibitory 

substances. The total ammonia nitrogen (TAN) has been described as the main inhibitor in the 

anaerobic treatment of livestock wastewater. The concentration of non-ionised ammonia (NH3), 

which depends on the TAN, pH and temperature, is the active compound that causes inhibition 

(Angelidaki and Ahring, 1993). Different techniques for removing nitrogen in AD systems have 

been investigated, such as ion exchange with zeolite (Wang et al., 2011; Tada et al., 2005), 

stripping (Bonmatí and Flotats, 2003a; Zhang and Jahng, 2010) and co-digestion with carbon-

rich substrates (Yen and Brune, 2007), among others. Taking advantage of the phenomenon of 

transport of ammonium across the cationic membrane, the combination of an AD-BES system 

that favours this process can be an interesting alternative to reduce ammonia inhibition of AD. 
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Integration of biological and bioelectrochemical treatment systems in waste biorefinery concepts 

has a great promise to fully recover and reuse nutrients from waste streams (Nancharaiah et al., 

2016). 

There are different ways to integrate synergistically AD and BES technologies. MFCs 

can be used to refine the effluent from the AD in order to produce additional power. This second 

phase of treatment could also act as a buffer in case of malfunction of the AD and could help to 

eliminate toxic compounds contained in the anaerobic effluent. Despite these promising 

opportunities, little attention has been given to hybrid AD/BES systems. The idea of using an 

integrated configuration of BES and AD technologies for a more efficient bioconversion in waste 

treatment has been proposed by several authors (Pham et al., 2006; Hawkes at al., 2010; 

Rosenbaum et al. 2010; Ge et al., 2013; Higgins et al., 2013; Premier et al., 2013), and in 

recent years BESs are strengthening due to their applications in integrative waste biorefineries 

(Li et al. 2014; Nancharaiah et al. 2016; Lu and Ren, 2016; Venkata Mohan et al., 2016). 

1.4.1 System stability and robustness  

Regardless of the dynamics of microbial community in a constant environment, a stable 

system should have the ability to maintain the stability of the process in response to 

disturbances. A system with more routes to produce methane, for example, will be functionally 

more stable than one that is based on a series of interdependent metabolic events. It has been 

reported that the diversity of the population alone does not lead to the stability of a system. 

There is a positive relationship between the presence of multiple paths towards the obtaining of 

a product (parallel processing of a substrate) and theoretical concepts of functional stability in 

an increased environmental organisation (Briones and Raskin, 2003). The stability of an 

ecosystem is not the result of the diversity of the population per se, but of the functional 

redundancy, which ensures the presence of a reservoir of species able to perform the same 

ecological function (Briones and Raskin, 2003). 

Hashsham et al. (2000) showed that methanogenic communities in a bioreactor that had 

a parallel processing of the substrate were functionally more stable in response to a disturbance 

produced by glucose than communities that processed the substrate predominantly in series. 

Methanogenic systems are good examples of networks were a number of fermentative, 

syntrophic and methanogenic populations work together as a community to convert organic 

substrates into methane. 

The functional stability of a system in response to a disturbance can be measured with 

two main parameters: resistance and resilience (Figure 1.7). The resistance of a community 

against a product is defined as the maximum accumulation of the product. It is a measure of the 
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buffer capacity of the community regarding this product. Resilience is defined as the time 

required for the accumulated product to return to its reference level. 

 

Figure 1.7 Ecological parameters of functional stability (Hashsham et al., 2000). 

 

The notion of stability and robustness in anaerobic reactors is still quite unclear. The 

robustness can be defined as the capacity of the treatment systems to achieve stable operation 

under certain environmental and operational conditions. But stability can also be defined in 

terms of variability of the final product of the process, in this case the effluent. The stability may 

also be defined as the ability of a system to cope with severe environmental and operational 

variations (Leitão et al., 2006). 

Despite the variety of existing studies on the effect of various parameters on the 

anaerobic digestion process, there are still aspects unclear on how to improve its stability and 

reliability in extreme situations. The combination of AD/BES can increase the stability and 

robustness of the system, diversifying the routes to treat various compounds of waste streams. 

1.4.2 AD/MFC reactors configurations 

So far, there have been several works studying different AD/MFC configurations. Min 

and Angelidaki (2008) reported a hybrid AD/MFC system, where the MFC was submerged in 

the AD reactor, and demonstrated that it could produce energy from domestic wastewaters. 

Jeong et al. (2008) reported that VFA removal in the AD of organic wastes could accelerate 

their decomposition to CO2 and H2O with an MFC. Zhang et al. (2009) combined an UASB with 

an MFC and an aerobic filter (BAF) in continuous operation to treat molasses wastewater with 
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simultaneous obtaining of energy. De Schamphelaire and Verstraete (2009) reported a lab-

scale system which conducted the effluent of an AD treating algae biomass to the anode 

compartment of an MFC. More recently, Weld and Singh (2011) proposed and hybrid AD/MFC 

that worked in series, with the objective of improving the stability against organic overloads of a 

thermophilic AD. Higgins et al. (2013) operated an MFC fed with the effluent of an AD working 

with wastewater, and applying an electric potential to favour the development of exoelectrogenic 

bacteria. This way, alternative routes to degrade substrates were favoured, such as 

electrogenic bacteria in case the AD suffered a perturbation that inhibited methanogenesis. Xie 

et al. (2014) operated an MFC introduced in an anaerobic-anoxic-oxic wastewater treatment, 

with an increased removal of chemical oxygen demand (COD), nitrogen and phosphorus.  

Furthermore, with the connexion of an AD fed with filamentous cyanobacteria biomass to 

an MFC and its recirculation, it was reported that methane production increased with respect to 

the AD without recirculation (Inglesby and Fischer, 2012). The improvement in the biogas 

production achieved in this work was due to the migration of ammonium ions from the digester 

to the cathodic compartment of the MFC, conducted by the energy production. This 

phenomenon had been previously demonstrated (Kim, Zuo et al., 2008), as VFA removal in an 

MFC. And finally, a recent work with synthetic wastewater focused on ammonium recovery with 

a desalination cell to overcome AD inhibition achieved a 40.8% recovery of ammonium and 

helped to gradually increase methane productivity back to 83%, compared to the control, 55 

days after the inhibition of the AD (Zhang and Angelidaki, 2015).  

1.4.3 AD/MEC reactors configurations 

Regarding AD/MEC combination, Zhang and Angelidaki (2012) described recently a 

hybrid system connected to an MFC that produced the required energy for the hydrogen 

obtaining reaction, where MEC and MFC were submerged in an AD working with synthetic 

medium. Later, Zhang et al. (2013a, 2013b) studied the effect of Fe3+ addition in an AD-MEC to 

improve VFA removal and achieve an improved AD process. Guo et al. (2013) used a 

membraneless single chamber MEC to increase hydrogen and methane production in an AD. 

The integration of the AD process with BESs seems to be especially interesting when 

the AD is combined with a methanogenic MEC (Pham et al., 2006; Clauwaert et al., 2008; 

Villano et al., 2010, 2011). Introducing the biogas produced by an AD in the cathode 

compartment of a MEC would increase the value of the biogas, which is typically composed of 

carbon dioxide (25-45 vol.%) and methane (75-55 vol.%), converting the carbon dioxide in 

additional content of methane. Conventionally, CO2 is removed when biogas is purified with an 

aqueous solution which contents chemical products (hydroxide, ammines, etc.). Instead, a 
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methane producing MEC not only reduces CO2 content of the biogas, but also converts the CO2 

into additional methane (Van Eerten-Jansen et al., 2012). 

So far, the combination of MEC with AD for methane production has been poorly 

investigated. Villano et al. (2013) operated a methane producing MEC fed with synthetic 

solution in continuous mode. The cathode compartment was bubbled with a gas mixture 

containing carbon dioxide, simulating the biogas obtained in the AD. These findings suggest 

that MEC can be used to treat low organic load wastewater, with good energy efficiency and 

reduced sludge production. Therefore, further research is needed on the applicability of the 

MEC system for the enrichment of the biogas generated by the AD. 

 

In spite of all the studies performed so far regarding BESs applications, further 

assessment of the combination with AD as a strategy to recover ammonium, increase the 

quality of the effluent and the stability of the system, and optimise energy recovery has to be 

undertaken. Furthermore, it is necessary to increase the knowledge on microbial communities 

present and metabolically active on BESs electrodes and AD rectors under different conditions, 

in order to understand their performance and stability.  
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2.1 Objectives 

The main objective of the present PhD Thesis is to study the integration of AD and BES 

in order to optimise energy production and nitrogen recovery, as well as the resilience of the 

combined process, during the treatment of a complex waste stream (pig slurry). This objective is 

divided in the following specific goals: 

 

1. To optimise the energy production of an integrated AD-BES system with ammonia 

recovery by a stripping and absorption system, both in MFC and MEC mode operation. 

1.1 To assess COD removal and ammonia recovery from raw and digested pig slurry both 

in MFC and MEC mode in batch operation, and analyse changes in microbial population 

that take place in each system. 

1.2 To evaluate the performance, microbial evolution and robustness of the integrated AD-

MFC system in series operation, against different instability events (VFA, organic and 

nitrogen overload). 

1.3 To analyse the performance and robustness of the integrated AD-MEC system in series 

operation, against different instability events. 

1.4 To study the effect of applying different recirculation rates in the integrated AD-

MEC/AbsNH3 system, as a strategy to reduce inhibition phenomena by an organic and 

nitrogen overload in the thermophilic AD. 

1.5 To assess the effect over active biomass of different operational strategies in an 

integrated AD-MEC system. 

2. To study the conversion of CO2 into CH4 by means of an electromethanogenic process 

operating a MEC with a biocathode in combination with AD. 

2.1 To assess the enrichment process of methanogenic archaea in a UASB reactor. 

2.2 To study the start-up and biomass evolution of two methanogenic MECs using different 

biocathode inocula. 

2.3 To evaluate the performance and the microbial communities of an integrated AD-

MEC/Biocathode for ammonia recovery, biogas upgrading and AD stabilisation. 
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2.2 Research chronology and scope of the Thesis 

The activities of this PhD Thesis were carried out within the framework of the Spanish 

Ministry of Economy and Competitiveness project (INIA project RTA2012-00096-00-00). The 

research work was developed at the GIRO group (Integral Management of Organic Waste), 

from the Institute for Agri-Food Research and Technology (IRTA), under the supervision of Dr. 

August Bonmatí Blasi and Dr. Marc Viñas Canals. The Thesis was developed within the 

doctoral program on “Environmental Engineering” at the Universitat Politècnica de Catalunya, 

Barcelona TECH (UPC) and was financially supported by the Secretariat for Universities and 

Research of the Ministry of Economy and Knowledge of the Catalan Government with an FI 

PhD grant (2013FI_B 00014). 

The GIRO programme develops new knowledge and technologies in the field of 

sustainable management of organic wastes produced by the different activity sectors 

(agricultural, farming, industrial and urban), in an integrated focus of the problematic and 

transversal technological and management solutions. 

In 2010 the research line on Bioelectrochemical Systems (BES) was born aiming to 

develop a BES technology for the treatment of high strength wastewater, such as pig slurries, 

focusing in electricity production from organic matter and its simultaneous nitrogen reduction 

(MICINN project CTM2009-12632). From that work, the first PhD Thesis on bioelectrochemical 

systems research line was completed in the GIRO group. The research continued with the start 

of this second PhD Thesis in 2013, focused on the integration of bioelectrochemical systems 

with anaerobic digestion.  
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2.3 Thesis outline 

This Thesis is divided into twelve chapters. Chapter 1 comprises a general introduction 

to the topic of waste management, energy and products recovery, focusing in anaerobic 

digestion, bioelectrochemical systems and the possibilities that arise from the integration of both 

systems. Chapter 2 presents the main objectives of the Thesis, the research chronology and its 

scope. In Chapter 3, the reactors setups, and the analytical, electrochemical and microbial 

community assessment by means of molecular biology techniques followed in this work are 

described.  

The experiments performed and the main results obtained in order to meet the 

objectives of the Thesis are presented in Chapters 4 to 11. The first part of the Thesis, from 

Chapter 4 to 8, describes the assays that were carried out with the general objective of 

optimising the energy production of an integrated AD-BES system with ammonia recovery, both 

in MFC and MEC mode operation. The second part of the Thesis comprehends Chapters 9, 10 

and 11, and describes the experiments performed with the objective of studying the 

electromethanogenic process (CO2 conversion into CH4) operating a MEC with a biocathode in 

combination with AD. Figure 2.1 presents a graphical abstract of the different assays carried out 

and the reactors involved in each chapter.  

In Chapter 4, batch assays in MFC and MEC mode are described to compare raw and 

digested pig slurry treatment in BES, regarding COD removal and nitrogen recovery. 

Furthermore, charge production, its relation with cation transport through the membrane and the 

influence of the other cations on the ammonium migration flux are also assessed. Finally, the 

evolution of microbial populations (total eubacteria and archaea) on the anode biofilm, both 

under MFC and MEC operation mode, are studied to identify potential key players involved in 

electric current production. 

Chapter 5 assesses the stability and robustness of continuous MFC operation to treat 

digested pig slurry when the AD is submitted to an organic and nitrogen overload, and its 

feasibility as a strategy to recover ammonia. Changes in the microbial composition of the MFC 

anode will be evaluated. 

In Chapter 6 the stability and robustness of continuous MEC operation in combination 

with AD, and its feasibility as a strategy to recover ammonia is assessed. VFA pulses were 

performed in the anode compartment of the MEC in order to simulate AD failure and evaluate 

the MEC response to punctual and sustained organic overloads.  

Chapter 7 describes a strategy to overcome organic and nitrogen overload in 

thermophilic AD by coupling a MEC, either to polish the effluent and to stabilise the AD by 

establishing a loop configuration to recirculate the effluent. A stripping and absorption unit is 
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connected to the system in order to recover ammonia. Microbial community dynamics have 

been assessed in both reactors (AD and anode from MEC) to understand the reactor set-up 

effects, as well as microbial resilience at different operational conditions, even under an 

inhibited AD operation.  

In Chapter 8 the effect of suppressing the recirculation loop in a stable integrated AD-

MEC system is evaluated. The microbial population evolution of the AD-MEC integrated system 

is analysed, under inhibited and stable operation of the AD, regarding presence of predominant 

eubacteria and archaea in the biomass, but also regarding the metabolically active populations 

by means of using simultaneous DNA and RNA-based methods.  

Chapter 9 details the operation of an upflow anaerobic sludge blanket reactor (USAB) 

fed with methanol with the main objective of enriching the biomass in methanogenic archaea, in 

order to obtain inoculum for the biocathodes operated in the following Chapters. The evolution 

of the microbial community is evaluated in terms of composition (DNA) and activity (RNA) by 

using quantitative PCR (qPCR) and high throughput sequencing (MiSeq) of 16S rDNA and 16S 

rRNA, besides specific methanogenic activity batch tests.  

Chapter 10 assesses the performance of the biocathode of two lab-scale MECs to 

convert CO2 into CH4 as a technology for upgrading the biogas produced in anaerobic digesters, 

comparing two different inocula: i) a mixture of biomass from the anode of a MEC and 

anaerobic granular sludge; ii) biomass enriched in the methanol-fed UASB operated in Chapter 

9. The evolution of total and active microbial population harboured on the biocathodes is 

analysed quantitatively and qualitatively with the techniques used in the previous chapters. 

Chapter 11 presents the combination of AD and electromethanogenic MEC as an 

integrated system to increase thermophilic AD stability under an organic and nitrogen overload, 

recover ammonia and increase the methane content of the biogas produced by the AD. The 

evolution of total and active microbial community of the AD and the MEC bioelectrodes (both 

the anode and the cathode) is evaluated. 

Finally, Chapter 12 summarises the main conclusions drawn from this work and outlines 

some directions for future research. 



 

 

 

 

F
ig

u
re

 2
.1

 G
ra

p
h
ic

a
l 
a
b
s
tr

a
c
t 

o
f 
th

e
 a

s
s
a
y
s
 p

e
rf

o
rm

e
d
 i
n
 e

a
c
h
 C

h
a
p
te

r.

R
aw

 P
ig

 
Sl

u
rr

y

M
EC M

EC
B

C
1

M
EC B
C

M
EC

B
C

2

R
aw

 P
ig

 
Sl

u
rr

y

D
ig

e
st

e
d

 P
ig

 
Sl

u
rr

y
N

aC
l0

.1
 g

 L
-1

B
u

ff
e

r 
p

h
o

sp
h

at
e

R
aw

 P
ig

 
Sl

u
rr

y

D
ig

e
st

e
d

 P
ig

 
Sl

u
rr

y

Sy
n

th
e

ti
c 

w
as

te
w

at
e

r

Sy
n

th
e

ti
c 

w
as

te
w

at
e

r

G
ra

n
u

la
r 

sl
ud

ge

A
D

D
ig

e
st

e
d

 P
ig

 
Sl

u
rr

y
N

aC
l0

.1
 g

 L
-1

M
FC

B
u

ff
e

r 
p

h
o

sp
h

at
e

D
ig

e
st

e
d

 P
ig

 
Sl

u
rr

y

R
aw

 P
ig

 
Sl

u
rr

y
A

D
D

ig
e

st
e

d
 P

ig
 

Sl
u

rr
y

M
EC

N
aC

l0
.1

 g
 L

-1

St
ri

p
p

in
g 

ab
so

rp
ti

o
n

 
N

H
3

R
aw

 P
ig

 
Sl

u
rr

y
A

D
D

ig
e

st
e

d
 P

ig
 

Sl
u

rr
y

R
e

ci
rc

u
la

ti
o

n
 lo

o
p

V
FA

 p
u

ls
e

s

M
EC

B
u

ff
e

r 
p

h
o

sp
h

at
e

C
h

a
p

te
r 9

U
A

SB

C
h

a
p

te
r 1

0

C
h

a
p

te
r 4

C
h

a
p

te
r 1

1
R

e
ci

rc
u

la
ti

o
n

 lo
o

p

C
h

a
p

te
r 6

D
ig

e
st

e
d

 P
ig

 
Sl

u
rr

y

C
h

a
p

te
r 7

 &
 8

C
h

a
p

te
r 5

C
O

2

C
H

4

C
O

2

C
H

4

C
O

2

C
H

4

M
e

th
an

o
l

N
H

4
+

N
H

4
+

N
H

4
+

N
H

4
+

N
H

4
+

M
FC

N
H

4
+

M
FC

N
H

4
+

V
FA

 p
u

ls
e

s

En
ri

ch
ed

gr
an

u
la

r 
sl

u
d

ge

39 



Objectives and Thesis outline 
 

40 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 
 
Materials and methods  
  



Materials and methods 

42 

 

  



CHAPTER 3 

43 

 

This Chapter describes the materials and methods used for the development of the 

Thesis, organised in five Sections: 3.1 Reactor configuration; 3.2 Analytical methods; 3.3 

Electrochemical calculations and techniques; 3.4 System performance calculations and indices; 

and 3.5 Microbial community analysis. The specific methodology of the different experiments 

will be described in each Chapter. 

3.1 Reactor configuration 

Reactors with different configurations have been used in this Thesis. BESs operated in 

MFC (Chapters 4 and 5) and MEC mode (Chapters 4, 6, 7 and 8) are described in Section 

3.1.1. MECs with a biocathode, described in Section 3.1.2, have been used in Chapters 10 and 

11.  The anaerobic digester (AD) operated in Chapters 5, 7, 8 and 11 is described in Section 

3.1.3. The stripping and absorption unit used in Chapter 7 is described in Section 3.1.4. Finally, 

the main characteristics of the UASB operated in Chapter 9 are described in Section 3.1.5.  

3.1.1 MFC and MEC 

A pair of identical two chambered cells were constructed in methacrylate (Figure 3.1a), 

with the anode and cathode compartments (0.14 x 0.12 x 0.03 m3) separated by a cation 

exchange membrane (CEM) (dimensions: 14 x 12 cm; Ultrex CMI-7000, Membranes 

International Inc., Ringwood, NJ, USA; Figure 3.1b). A carbon felt was used as anode 

(dimensions: 14 x 12 cm; thickness: 3.18 mm; Alfa Aesar GmbH & Co KG, Karlsruhe, Germany; 

Figure 3.1c); and a 304 stainless steel mesh was used as cathode (dimensions: 14 x 12 cm; 

mesh width: 150 μm; wire thickness: 112 μm; Feval Filtros, Spain). An A304 stainless steel 

mesh was used as electron collector in each compartment (dimensions: 14 x 12 cm; mesh 

width: 6 x 6 mm; wire thickness: 1 mm; Feval Filtros, S.L., Barcelona, Spain; Figure 3.1d). Prior 

to its use, and in order to remove all impurities from the carbon felt, it was sequentially soaked 

in acetone and nitric acid for 3 h and later rinsed in deionised water, as elsewhere described 

(Zhu et al., 2011). An Ag/AgCl reference electrode (Bioanalytical Systems, Inc., USA) was 

inserted in the anode compartment (+197 mV vs. SHE (all potential values hereafter in this 

Thesis are referred to SHE)). 

One of the BESs was operated in MFC mode (Chapters 4 and 5; Figure 3.2), and the 

other one was operated in MEC mode (Chapters 4, 6, 7 and 8; Figure 3.3). The anode of each 

cell was connected to the cathode through a potentiostat (VSP, Bio-Logic, Grenoble, France; 

Figure 3.3c) in a three-electrode mode for data monitoring and poising of the anode potential 

(working electrode) when operating in MEC mode. The potentiostat was connected to a 

personal computer which recorded electrode potentials and current densities every 5 minutes 

using EC-Lab software V10.32 (Bio-Logic, Grenoble, France). 



Materials and methods 

44 

 

The anodic chamber of each cell was inoculated with a 30 mL (volatile suspended solids 

content of 2 g L-1) resuspension of an MFC anode biofilm which had been operated with raw pig 

slurry (Sotres et al., 2015) and was stored submerged in pig slurry at +4 ºC for 2 months. The 

resuspension was done by vortex mixing during 10 minutes in a 50 mL tube containing 10 cm2 

of the carbon felt used as anode and 35 mL of Ringer 1/4 sterilised solution. The feeding 

solution for the MFC cathode chamber contained (per litre of deionised water): KH2PO4, 3 g; 

and Na2HPO4, 6 g. Aerobic conditions were maintained in the cathode (MFC) supplying air at a 

flow rate of 2 L min-1. The catholyte for the MEC consisted of NaCl 0.1 g L-1. Both the anode and 

the cathode compartment solutions were mixed continuously recirculating them with an external 

pump.  

 

  
Figure 3.1 Pictures of the materials for BES construction: a) methacrylate frames; b) cation exchange membrane 

(CEM); c) carbon felt; d) stainless steel mesh. 

 

       
Figure 3.2 Pictures of the MFC. 

a)                                          b) 

 

 

 

 
 

 

c)                                     d) 
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Figure 3.3 a) Scheme and b) picture of the MEC; c) picture of the potentiostat. 

3.1.2 MEC with a methanogenic biocathode 

Three MECs with methanogenic biocathode have been operated in this Thesis. All of 

them were identical two chamber cell (0.5 L each compartment) constructed using 

methacrylate, with the anode and cathode compartments (0.14 x 0.12 x 0.03 m3) separated by a 

CEM as described in Section 3.1.1.  

Two of the MECs (BC1 and BC2) were operated, both the anode and the cathode 

compartment, with synthetic medium (Chapter 10). In this case, each chamber was filled with 

Carbon felt (anode)
Cationic Exchange Membrane
Stainless steel mesh (cathode)

Effluent 
tank

Digested Pig 
Slurry

Effluent 
tank

Catholyte

Potentiostata) 

b)      c) 
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granular graphite with diameter ranging from 1 to 5 mm (Typ 00514, enViro-cell Umwelttechnik 

GmbH, Oberursel, Germany; Figure 3.4) to act as electrodes (anode and cathode), remaining 

265 mL of net volume in each compartment. Prior to being used, in order to remove metals and 

organic residues, granular graphite was sequentially submerged in HCl (37%) and NaOH (1M) 

each for 24 hours, and then rinsed in deionised water and dried at 100 ºC (Sotres et al., 2016).  

The third methanogenic MEC was operated with digested pig slurry in the anode 

compartment (Chapter 11). The MEC described in Section 3.1.1 was modified in order to 

convert it in a MEC with a methanogenic biocathode. The anode electrode, a carbon felt, was 

used as it was from the previous operation, while the cathode chamber was filled with granular 

graphite with diameter ranging from 1 to 5 mm as described for BC1 and BC2. The electrodes 

inoculation procedures are described in each Chapter. 

An A304 stainless steel mesh was used as electron collector in each compartment for all 

the cells, and the anode of each cell was connected to the cathode through a potentiostat with a 

personal computer as described in Section 3.1.1.  

The cathode potential (working electrode) was poised at -800 mV vs SHE, being the 

anode the counter electrode. An Ag/AgCl reference electrode (+197 mV vs. SHE; Bioanalytical 

Systems, Inc., USA) was inserted in the cathode compartment.  

In BC1 and BC2 the anode compartment feeding solutions contained (per litre of 

deionised water): 2.9 g L-1 of CH3COONa; NH4Cl, 0.87 g; CaCl2, 14.7 mg; KH2PO4, 3 g; 

Na2HPO4, 6 g; MgSO4, 0.246 g; and 1 mL L-1 of a trace elements solution. As stated above, the 

third MEC was operated with digested pig slurry in the anode compartment The cathode 

compartment feeding solution of the three MECs had the same composition as the BC1 and 

BC2 anode solution, but replacing the carbon source (CH3COONa) with 5 g L-1 of NaHCO3 (as 

CO2 is mainly present as HCO3
- at pH 7). The solution of trace mineral contained (per litre of 

deionised water): FeCl3•H2O, 1.50 g; H3BO3, 0.15 g; CuSO4•5H2O, 0.03 g; KI, 0.18 g; 

MnCl2•4H2O, 0.12 g; Na2MoO4•2H2O, 0.06 g; ZnSO4•7H2O, 0.12 g; CoCl2•6H2O, 0.15 g; 

NiCl2•6H2O, 0.023 g; EDTA, 10 g.  

  
Figure 3.4 Picture of the granular graphite used as anode and cathode in the MEC BC1 and BC2. 



CHAPTER 3 

47 

 

3.1.3 Anaerobic digester (AD) 

A lab-scale continuous stirred tank reactor (CSTR) was used to study its performance 

when treating pig slurry at a thermophilic temperature range (Chapters 5 to 8 and 11). The 

anaerobic digester (AD) consisted of a cylindrical glass reactor (25 cm diameter) with a 4 L 

working volume (Figure 3.5). The digester was fitted with a heat jacket with hot water circulating 

to keep the temperature at 55 ºC. Thermophilic conditions were chosen since AD is more 

sensitive to the presence of inhibitors such as ammonia at this range of temperature. A 

temperature probe was fitted into de reactor lid for temperature monitoring. Continuous mixing 

was also supplied using an overhead stirrer. A gas counter was used to measure biogas 

production (µFlow, Bioprocess Control AB, Sweden). The digester was initially inoculated with 

2,550 mL (64% of the AD volume) of the effluent of another lab scale thermophilic AD fed with 

sewage sludge from a wastewater treatment plant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 a) Scheme and b) picture of the anaerobic digester. 
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3.1.4 Stripping and absorption system 

A stripping and absorption system was used to recover the ammonium transferred from 

the anode to the cathode compartment (Chapter 7; Figure 3.6). It consisted of two glass 

columns (70 cm height; 7 cm Øexternal; 5.5 cm Øinternal) filled with glass rings (5-7 mm length). The 

cathode effluent was initially conducted to the top of the stripping column, and later circulated 

through the filling towards the bottom while air was pumped in the opposite direction. The air 

leaving the top of the column was directed to the absorption column, which was filled with an 

acidic solution (H2SO4, 10% v/v).   
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Figure 3.6 a) Scheme and b) picture of the stripping and absorption system connected to the MEC (right side). 
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3.1.5 Upflow anaerobic sludge blanket reactor (UASB) 

A lab-scale UASB reactor with a working volume of 0.5 L was used in Chapter 9 (Figure 

3.7). The reactor was constructed with glass and equipped with a water jacket to maintain the 

temperature at mesophilic conditions (35 ºC). Peristaltic pumps were used to control the influent 

feed rate and the recirculation rate. The reactor was inoculated with 100 mL of anaerobic 

granular sludge (volatile suspended solids content, VSS, of 59.60 g kg-1) taken from a full-scale 

UASB reactor processing fruit juice wastewater (Mollerussa, Spain), which had been stored at 4 

ºC until its utilisation in this study.   

 

 

                

 
Figure 3.7 a) Scheme and b) picture of the UASB; c) detail of the granular biomass. 
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3.2 Analytical methods  

3.2.1 pH 

The pH of the bulk solution in each experiment was measured using a Crison 2000 

pHmeter. 

3.2.2 Alkalinity 

Total alkalinity (TA) was determined according to standard methods (APHA, 2005) 

through titration to pH 4.3 with H2SO4 0.5 N. Partial alkalinity (PA, titration from the original pH 

sample to pH 5.75, an alkalinity which corresponds roughly to bicarbonate alkalinity) was 

determined to obtain intermediate alkalinity (IA, titration from 5.75 to 4.3, approximately the VFA 

alkalinity) (Ripley et al., 1986).  

Alkalinity is expressed in calcium carbonate units according to the following equations:  

TA (mgCaCO3 L-1) = 50·
·

423.4

sample

SOH

V
NV

  (3.1) 

 

PA (mgCaCO3 L-1) = 50·
·

4275.5

sample

SOH

V
NV

   (3.2) 

 
IA (mgCaCO3 L-1) = TA – PA   (3.3) 

  

where V4.3, V5.75, and Vsample correspond to the volume of acid consumed for the titration to pH 

4.3 and 5.75 and the sample volume, respectively; and N the acid normality.  

The IA:TA ratio was used as a tool to monitor anaerobic digestion, considering that the 

process was stable when the IA:TA was below 0.3. 

3.2.3 Total and volatile solids 

Total (TS) and volatile solids (VS) were determined according to standard methods 

(APHA, 2005). TS were obtained drying a well homogenised sample in a stove at 105 ºC for 24 

h to constant weight, and are calculated with the following equation: 

 

100·100(%)
TW

WWTS
w

dw




    (3.4) 

 
Next, the sample is calcined at 550 ºC in the muffle during 3.5 hours and weighed. The 

weight difference between the TS and the obtained ashes is the VS content. 
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100·100(%)
TW

WWVS
d

ad




    (3.5) 

 
where Ww, Wd, Wa and T are the weight (g) of the wet sample, the dry sample, the ashes and 
the capsule, respectively. 

3.2.4 Chemical oxygen demand 

Chemical oxygen demand (COD) was analysed according to an optimised standard 

method (Noguerol et al., 2012). The sample was oxidised with 1.5 mL of digestion reagent 

(potassium dichromate, 0.5 N, mercury sulphate and sulphuric acid 95-97%) and 1.5 mL of 

catalyst (silver sulphate 1%, and sulphuric acid 95-97%) and digested at 150 ºC for 2 h in a 

digester (Hach Lange LT 200). Dichromate concentration was measured colorimetrically 

(spectrophotometer Hach Lange DR 2800). For soluble COD measurement the samples were 

previously filtered through a 0.45 μm pore diameter Nylon syringe filter (Scharlau, S.L.). 

3.2.5 Ammonium nitrogen 

Ammonium (N-NH4
+) was analysed according to standard methods (APHA, 2005) with a 

Büchi B-324 distiller (Büchi Labortechnic AG, Switzerland) and a Metrohm 702 SM autotitrator 

(Metrohm, Switzerland). 

The analysis is based on the transformation, in liquid medium, of the ammonium ion 

(NH4
+) into ammonia (NH3), in the presence of a base such as sodium hydroxide (NaOH, 40%). 

NH3 is distilled, and recovered latter as NH4
+ in a known volume of boric acid (2%), obtaining 

ammonium borate. Finally, the solution was titrated with HCl 0.1N. NH4
+ in the sample is 

quantified with the following equation: 

 

w

HCl
W W

NVVkgmgNHN
w

·1000·14)·(
·)( 011

4


    (3.6) 

 
where V1 and V0 are the volumes of HCl consumed in sample and control titration (mL), 

respectively; NHCl is the normality of the HCl used for the titration; and Ww is the sample wet 

weight (g). 
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3.2.6 Total kjeldahl nitrogen 

Total kjeldahl nitrogen (NTK) was determined according to standard methods (APHA, 

2005). The sample was digested in a 300 mL glass Kjeldahl tube with 10 mL of sulphuric acid 

(96%) and a catalyst (Kjeltab) in a Büchi K-437 block digester at 180 ºC for 60 min and at 350 

ºC for 60 min. Afterwards, the sample was distilled and titrated as described for ammonium 

nitrogen determination (Section 3.2.5). 

NTK in the sample is quantified with the following equation: 

 

w

HCl
W W

NVVkgmgNTK
w

·1000·14)·(
·)( 011 


   (3.7) 

 
where V1 and V0 are the volumes of HCl consumed in sample and control titration (mL), 

respectively; NHCl is the normality of the HCl used for the titration; and Ww is the sample wet 

weight (g). 

Free ammonia concentration was calculated from the equilibrium relationship: 

[ଷܪܰ]     = [்ିேுయ]

൬ଵାಹ
శ

ೖೌ
൰

   (3.8) 

 

where [NH3] and [T-NH3] are respectively the free and the total ammonia (NTK) concentrations, 

and ka the dissociation constant with a value of 38.3·10-10 at 55 °C. 

3.2.7 Volatile fatty acids 

Volatile fatty acids (VFAs) -acetic, propionic, iso and n-butyric, iso and n-valeric, iso and 

n-caproic and heptanoic acids- were quantified with a VARIAN CP-3800 (Varian, USA) gas 

chromatograph equipped with a TRB-FFAP (free fatty acids phase) column and a flame 

ionisation detector (FID). A sample of 1 µL was automatically injected (autosampler VARIAN 

CP-8400) by means of a gas tight syringe (10 µL Hamilton 701 N) at a temperature of 250 ºC 

under split conditions. The carrier gas was helium with a split ratio of 1/30, and a flux of 40 mL 

min-1. The column temperature was set to 40 ºC for 1 min, followed by a first increase of 25 ºC 

min-1 until a stable value of 95 ºC was reached, then 10 ºC min-1 up to 125 ºC and finally 30 ºC 

min-1 up to 215 ºC. The oven and detector temperatures were set at 40 and 300 ºC, 

respectively, with 300 mL min-1 air and 30 mL min-1 hydrogen gas supplied. The run time was 

9.5 min. 
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3.2.8 Anions and cations determination  

Anion concentration (Cl-, NO3
-, NO2

-, PO4
3-, SO4

2-) was measured by ionic 

chromatography (IC) with a 861 Advanced Compact IC (Metrohm, Switzerland) using a 

Metrosep A Supp 4-250 (Metrohm, Switzerland) column and a CO2 suppressor. The eluent 

consisted of 1.8 mmol NaCO3 L-1 and 1.7 mmol NaHCO3 L-1.  

Cations (Na+, K+, Ca+2, Mg+2) were measured with a 790 Personal IC (Metrohm, 

Switzerland) and Metrosep C2 column (Metrohm, Switzerland), using as eluent 4 mmol C4H6O6 

L-1 (tartaric acid) and 0.75 mmol pyridine-2,6-dicarboxylic acid L-1. 

Prior to the IC analysis, samples were diluted and filtrated with nylon (0.45 mm) and 

BonElut JR C18 micro filters (Varian, USA). Samples were injected automatically (863 Compact 

Autosampler, Metrohm, Switzerland). 

3.2.9 Biogas composition 

Methane in the samples was determined using a VARIAN CP-3800 (Varian, USA) gas 

chromatograph equipped with a Hayesep® Q packed column (matrix 80/100) and a thermal 

conductivity detector (TCD). A sample of 200 µL was manually injected by means of a gas tight 

syringe (500 µL Hamilton Sampleblock Syringe) at a temperature of 180 ºC. The carrier gas was 

helium, with a flux of 45 mL min-1. The oven and detector temperatures were set at 90 and 180 

ºC, respectively.  

3.2.10 Dissolved methane 

Methane production in the BES was calculated through the determination of dissolved 

methane in solution (Alberto et al. 2000). Around 2.5 mL anolyte samples were collected with a 

5 mL syringe and injected with a needle in a 5 mL vacutainer. The vacutainers were shaken 

vigorously for 30 s and then allowed to stand for 1 h. Headspace gas was analysed for CH4 

using a VARIAN CP-3800 (Varian, USA) gas chromatograph (Section 3.2.9). Dissolved CH4 

was computed using the equation: 

  

  ܺ௅ =  ஼಴ಹర ·ெ௏಴ಹర·ெௐ಴ಹర·(௏೅ି௏ಽା∝௏ಽ)·ଵ଴଴଴
௏ಽ

   (3.9) 

where XL is the concentration of CH4 (mg L-1) in the solution, CCH4 is the concentration of CH4 

(%) in the headspace 1 h after shaking, MVCH4 is the molar volume of CH4 at 25 ºC (0.041 mol L-

1), MWCH4 is the molecular weight of CH4 (16 g mol-1), VT is the volume (mL) of the vacutainer, 

VL is the volume (mL) of the solution, and α is the water:air partition coefficient at 25 ºC (0.03). 
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3.2.11 Anaerobic biodegradability tests (ABT) 

In order to know the biodegradability of the remaining organic matter of the digestates 

used as feed solution for the BES or the pig slurry used to feed the AD, anaerobic 

biodegradability tests (ABT) of the substrates were performed. ABT were performed in serum 

bottles (120 mL) in duplicate according to Soto et al. (1993) and Angelidaki et al. (2009). The 

serum bottles were filled with 50 g of a solution composed of the inoculum (5 gVSS L-1), substrate 

(5 gCOD L-1), macronutrients and micronutrients and bicarbonate (1 gNaHCO3- gCODadded
-1). Digested 

sludge from a mesophilic lab-scale anaerobic digester was used as inoculum. A control, in 

duplicate without digestate substrate was included in the setup. The bottles were sealed with 

rubber stoppers and capped with aluminium crimp caps. The headspace was purged with N2 for 

5 min in order to remove O2. The bottles were incubated at 37±2 ºC for 40 days. Methane 

production was monitored by periodically taking a gas sample (0.2 mL) from the head space 

with a gas-tight syringe and analysing the gas composition by gas chromatography equipped 

with a TCD detector (Section 3.2.9).  

3.2.12 Specific methanogenic activity (SMA) 

The SMA of the anaerobic granular sludge of the UASB (figure 3.8) was evaluated at 36 

ºC in serum bottles (120 mL) in duplicate (Angelidaki et al. 2009; Silvestre et al. 2015; Soto et 

al. 1993). Acetate, a VFA mix (acetate/propionate/butyrate, 70/20/10), methanol and H2 were 

used as substrates. The serum bottles were filled with 50 mL of a solution composed of the 

granular sludge (5 gVSS L-1), substrate (5 gCOD L-1), macronutrients, micronutrients and 

bicarbonate (1 gNaHCO3- gCODadded
-1). A control duplicate without medium was included in the 

setup. The bottles were sealed with rubber stoppers and capped with aluminium crimp caps. 

The headspace was purged during 5 min with N2 in order to remove O2. Methane production 

was monitored by periodically taking a gas sample (0.2 mL) from the head space with a gas-

tight syringe and analysing the gas composition by gas chromatography (Section 3.2.9). The 

SMA was calculated from the linear increase in the CH4 concentration in the beginning of the 

experiments, when no lag phase was observed, divided by the amount of VSS. 

 
Figure 3.8 Picture of the serum bottles used for SMA test. 
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3.3 Electrochemical calculations and techniques  

The current density (A m-2) of the MECs was calculated as the quotient between the 

intensity recorded by the potentiostat (A) and the area of the anode (m2). In the case of BC1 

and BC2 (Chapter 10), current density was normalised to the net volume of the anode 

compartment (A m-3). For the MFC, current density was obtained according to I=V/(R·a), where 

V (V) is the cell voltage, R (Ω) is the resistance and a (m2) is the area of the anode in contact 

with the anode bulk solution. 

Cyclic voltammetries (CV) in turnover conditions, i.e. in the presence of substrate, were 

performed using a potentiostat (VSP, Bio-Logic, Grenoble, France) at different times of 

operation of the biocathodes, in order to study the electroactive microbial biofilms developed on 

the cathodes. The same three-electrode configuration used for the MECs operation was 

maintained for the set up of the CV. The start (Ei) and vertex (Ef) potentials were -800 and +400 

mV vs SHE, respectively, and the scan rate was set at 1 mV s-1.   

3.4 System performance calculations and indices 

3.4.1 Removal efficiencies 

In batch assays (Chapter 4), ammonium and COD removal efficiency were calculated as 

the ratio of the difference between initial and final concentrations in the bulk solution in each 

assay and its initial concentration. The flux of N-NH4
+ from the anode to the cathode (g N-NH4

+ 

d-1 m-2) was calculated as the difference between the initial and final concentration, divided by 

the volume of the anode compartment, the time of the batch (day) and the surface of the 

cationic exchange membrane (m2).  

Ammonium and COD removal efficiencies in the BESs in continuous operation were 

calculated as the ratio of the difference between the anode influent and effluent concentrations 

and the influent concentration. 

3.4.2 Charge transport 

When calculating charge, Q, in the batch assays of Chapter 4 a distinction was made 

between transport of negative charges in the form of electrons through the electric circuit, Q-, 

and transport of positive charges in the form of the dominantly present cation species in the 

system (Na+, K+, NH4
+, Ca2+, and Mg2+), through the membrane, Q+. Total charge production, Q-

, expressed in coulombs (C) was determined by integrating current over time. Transport of 

positive charges in the form of cation species in the system through the membrane, Q+, 

expressed in coulombs (C) was determined as follows: 
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Q+ = ∑cat ((xcat,t - xcat,0) VzcatF)   (3.10) 

with xcat,t the molar concentration of the cation species at the end of an experimental run 

expressed in mol L-1 (M), xcat,0 the molar concentration of the cation species at the start of an 

experimental run expressed in mol L-1 (M), V the cathode chamber liquid volume expressed in 

litres (L), zcat the valence of the cation species, and F the Faraday constant (96485 C mol-1).  

3.4.3 Electrochemical efficiencies 

The Coulombic efficiency (CE), or the fraction of electrons obtained from the 

consumption of COD that are available for current generation or methane production at the 

biocathodes (Equation 3.11), the energy efficiency relative to electrical input recovered as 

methane (EEe, Equation 3.12), the energy efficiency relative to the energy content of the 

substrate (EEs, Equation 3.13) and the energy efficiency with respect to the energy input and 

the energy in the substrate (EEe+s, Equation 3.14) were calculated as: 

 

     CE =
୑ ∫ ୍ ୢ୲౪

బ
୊ ୠ ୯ ∆େ୓ୈ

     (3.11) 

 

     EEୣ = ୬ిౄర  ୼ୋిౄర
∫ ୍ ୉౗౦ୢ୲
౪
బ

   (3.12) 

  

     EEୱ = ୬ిౄర  ୼ୋిౄర
୬౏ ୼ୋ౏

   (3.13) 

 

     EEୣାୱ = ୬ిౄర  ୼ୋిౄర
∫ ୍ ୉౗౦ୢ୲
౪
బ ା ୬౏ ୼ୋ౏

  (3.14) 

 

where M is the molecular weight of the final electron acceptor, I is the current (A), F is Faraday’s 

constant, b is the number of electrons transferred per mole of O2, q is the volumetric influent 

flow rate (L d-1), ΔCOD is the difference in the influent and effluent COD (g L-1), nCH4 are the 

moles of produced methane, ΔGCH4 is the molar Gibbs free energy of CH4 oxidation by oxygen 

to carbon dioxide (-817.97 kJ mol-1), Eap is the applied voltage calculated as the difference 

between the cathode and anode potentials (V), nS are the moles of acetate consumed and ΔGS 

is the molar Gibbs free energy of acetate oxidation to carbon dioxide (-844.61 kJ mol-1). 
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Finally, the cathodic methane recovery efficiency (Rcat), defined as the fraction of 

electrons reaching the cathode that are recovered as methane, was calculated as: 

 

      Rୡୟ୲ = ଼ ୊ ୬ిౄర
∫ ୍ ୢ୲౪
బ

   (3.15) 

 

CH4 production efficiency was calculated as the ratio between the COD contained in the 

CH4 and the total removed COD.  

3.5 Statistical analysis 

Data were analysed using one-way analysis of variance (ANOVA). Whenever significant 

differences of means were found, the Tukey test at a 5% significance level was performed for 

separation of means. Statistical analysis was performed using the R software package (R 

project for statistical computing, http://www.r-project.org). 

3.6 Microbial community analysis 

3.6.1 Total DNA extraction 

Total DNA was extracted in triplicate from known weights of each sample (mainly 

graphite granule, carbon felt and AD sludge/granule) following a bead-beating protocol by 

means of the PowerSoil® DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA, USA), 

according to the manufacturer’s instructions. 

3.6.2 Simultaneous total DNA and RNA extraction and complementary DNA 

(cDNA) synthesis 

Simultaneous total genomic DNA and RNA (including rRNA) were extracted in triplicate 

from known weights of each sample with the PowerMicrobiomeTM RNA Isolation Kit (MoBio 

Laboratories Inc., Carlsbad, CA, USA), according to manufacturer’s instructions. Purified mRNA 

and rRNA were obtained by removal of co-extracted DNA with DNase I incubation (provided in 

the kit) at 25 ºC for 10 min and inactivation of DNase I with EDTA 50 mM (Thermo Scientific 

Fermentas, USA) at 75 ºC during 5 min. Reverse transcription step PCR (RT-PCR) for cDNA 

synthesis from the obtained RNA was performed by using PrimeScriptTM RT Reagent Kit 

(Takara Bio Inc., Japan). The reaction was carried out in a final volume of 30 μL which 

contained 15 μL of purified RNA, 6 μL of PrimeScriptTM buffer, 1.5 μL of retrotranscriptase mix, 

1.5 μL of Random 6 mers and 6 μL of RNase Free dH2O. Henceforth, the term cDNA or 16S 

rRNA is used to refer to the extracted RNA or 16S rRNA gene amplicons from cDNA as a 
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measure of gene expression and microbial activity, whereas DNA or 16S rDNA terms are used 

referring to the extracted genomic DNA and 16S rRNA gene amplicons from DNA. 

3.6.3 Quantitative PCR assay (qPCR) 

Total and expressed gene copy numbers of eubacterial 16S rRNA gene and mcrA gene 

(methanogenic archaeal methyl coenzyme-M reductase) were quantified by means of 

quantitative real-time PCR (qPCR). Each sample was analysed in triplicate by means of the 

three independent DNA extracts. The analysis was carried out by using Brilliant II SYBR Green 

qPCR Master Mix (Stratagene, La Jolla, CA, USA) in a Real-Time PCR System Mx3000P 

(Stratagene) operated with the following protocol: 10 min at 95 ºC, followed by 40 cycles of 

denaturation at 95 ºC for 30 s, annealing for 30 s at 55 ºC and 54 ºC (for 16S rRNA and mcrA 

gene, respectively), extension at 72 ºC for 45 s, and fluorescence capture at 80 ºC for 30 s and 

15 s (for 16S rRNA and mcrA gene, respectively). The specificity of PCR amplification was 

determined by observations on a melting curve and gel electrophoresis profile. A melting curve 

analysis, to detect the presence of primer dimmers, was performed after the final extension, 

increasing the temperature from 55 to 95 ºC at heating rates of 0.5 ºC each 10 s. Image capture 

was performed at 80 ºC to exclude fluorescence from the amplification of primer dimmers. Each 

reaction was performed in 10 μL volumes containing 1 μL of DNA template, 200 nmol L−1 of 

each 16S rRNA primer, 600 nmol L−1 of each mcrA primer, 5 μL of the ready reaction mix, and 

30 nmol L−1 of ROX reference dye. The primer set for eubacterial population was 341F (5′-

CCTACGGGAGGCAGCAG-3′) and 518R (5′-ATTACCGCGGCTGCTGG-3′). The primer set for 

archaeal mcrA gene was ME1F (5′-GCMATGCARATHGGWATGTC-3′) and ME3R (5′-

TGTGTGAASCCKACDCCACC-3′); both primer pairs were purified by HPLC. The standard 

curves were performed with the following reference genes: a 16S rRNA gene from Desulfovibrio 

vulgaris ssp. vulgaris ATCC 29579, and a mcrA gene fragment obtained from Methanosarcina 

barkeri DSM 800, both inserted in a TOPO TA vector (Invitrogen Ltd, Paisley, UK). All reference 

genes were quantified by NanoDrop 1000 (Thermo Scientific). Ten-fold serial dilutions of known 

copy numbers of the plasmid DNA, in the range of 102 to 109 copies for 16S rRNA gene and in 

the range of 10 to 108 copies for mcrA gene, were subjected to a qPCR assay in duplicate to 

generate the standard curves. All results were processed by MxPro QPCR Software 

(Stratagene).  

3.6.4 High Throughput Sequencing (454-Pyrosequencing) of total eubacterial and 

archaeal community 

The specific steps for 16S-based eubacteria and archaea 454-Pyrosequencing analysis 

were carried out as follows: sequencing step of massive bar-coded 16S rRNA gene libraries, 
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targeting eubacterial region V1-V3 16S rRNA and archaeal region V3-V4, was performed at MR 

DNA (www.mrdnalab.com, Shallowater, TX, USA) on a 454 FLX Titanium (Roche Diagnostics, 

Branford, CT, USA) equipment.  In summary, diluted DNA extracts (1:10) were used as a 

template for PCR. Each DNA (two independent total DNA extracts per sample) was amplified 

separately with both the eubacteria and archaea 16S rRNA set of primers containing unique 

multiplex identifier (MID) tags recommended by Roche Diagnostics (Roche Diagnostics, 2009). 

For eubacteria libraries the primer sets were 27F (5’-AGRGTTTGATCMTGGCTCAG–3’) and 

519R (5’-GTNTTACNGCGGCKGCTG-3’), while the archaeal sets of primers were 349F (5’-

GYGCASCAGKCGMGAAW-3’) and 806R (5’–GGACTACVSGGGTATCTAAT-3’).  

The obtained reads were compiled in FASTq files for further bioinformatics processing. 

Trimming of the 16S rRNA barcoded sequences into libraries was carried out using QIIME 

software version 1.8.0 (Caporaso et al., 2010b). Quality filtering of the reads was performed at 

Q25 quality, prior to grouping into Operational Taxonomic Units (OTUs) at a 97% sequence 

homology cutoff. The following steps were performed using QIIME: Denoising, using a Denoiser 

(Reeder and Knight, 2010). Reference sequences for each OTU (OTU picking up) were 

obtained via the first method of UCLUST algorithm (Edgar, 2010). PyNAST was used for 

sequence alignment (Caporaso et al., 2010a) and ChimeraSlayer for chimera detection (Haas 

et al., 2011). OTUs were then taxonomically assigned using the Ribosomal Database Project 

(RDP training set 14) Naïve Bayesian Classifier (http://rdp.cme.msu.edu) and compiled into 

each taxonomic level with a bootstrap cutoff value of 80% (Cole et al. 2009; Wang et al., 2007). 

Data obtained from pyrosequencing datasets were deposited in the Sequence Read Archive of 

the National Centre for Biotechnology Information (NCBI, USA). The accession numbers for 

each study are specified in the corresponding Chapters. 

3.6.5 High throughput sequencing (MiSeq, Illumina) of total eubacteria and 

archaeal community 

The specific steps followed during MiSeq analysis of massive libraries of 16S rDNA and 

16S rRNA both for eubacteria and archaea were carried out as follows. Massive bar-coded 16S 

rRNA gene libraries (16S rDNA and 16S rRNA) targeting eubacterial region V1-V3 16S rRNA 

and archaeal region V3-V4 were sequenced utilising MiSeq equipment (Illumina, San Diego, 

CT, USA). Each DNA or cDNA was amplified separately (16S rDNA and 16S rRNA respectively) 

with both 16S-based eubacteria and archaea sets of primers. For eubacteria libraries the primer 

sets were 27F (5’-AGRGTTTGATCMTGGCTCAG–3’) and 519R (5’-

GTNTTACNGCGGCKGCTG-3’), while the archaeal sets of primers were 349F (5’-

GYGCASCAGKCGMGAAW-3’) and 806R (5’–GGACTACVSGGGTATCTAAT-3’). Sequencing 

step was performed at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) on a MiSeq 



CHAPTER 3 

61 

 

instrument following the manufacturer’s guidelines. The obtained reads were compiled in 

FASTq files for further bioinformatics processing, following the steps described in Section 3.6.4. 

All data obtained from sequencing datasets were submitted to the Sequence Read Archive of 

the National Center for Biotechnology Information (NCBI, USA). The accession numbers for 

each study are specified in the corresponding Chapters. 

3.6.6 Biodiversity evaluation and statistical analyses 

To evaluate the diversity of the samples, the number of OTUs, the inverted Simpson 

index, Shannon index, Goods coverage and Chao1 richness estimator were calculated using 

Mothur software v.1.34.4 (http://www.mothur.org) (Schloss et al., 2009). All estimators were 

normalised to the lower number of reads among the different samples. Statistical multivariate 

analyses (covariance-based Principal Component Analyses (PCA) and correspondence 

analysis (CA)) on the OTUs abundance matrix of Eubacterial and Archaeal OTUs distribution 

were performed. The obtained samples and OTUs scores were depicted in a 2D biplot, which 

represented the phylogenetic assignment of the predominant OTUs (relative abundance above 

1%). Statistical multivariate correspondence analysis (CA) of 454-Pyrosequencing or MiSeq 

OTU relative distribution data was performed by means XLSTAT 2014 software (Addinsoft, 

Paris, France). 
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Abstract 

Both raw and anaerobically digested pig slurries were investigated in 

batch assays in two chambered bioelectrochemical systems (BES) 

run in Microbial Fuel Cell (MFC) and Microbial Electrolysis Cell (MEC) 

mode. Chemical Oxygen Demand (COD) removal, nitrogen recovery, 

cation transport and anode microbial population evolution were 

assessed. The Anaerobic Digestion-MEC (AD-MEC) integrated 

system achieved the highest COD removal (60% in 48h); while the 

maximum NH4
+ removal efficiency (40%, with an ammonia flux of 8.86 

g N-NH4
+ d-1 m-2) was achieved in MFC mode fed with digested pig 

slurry in 24 h. On the other hand, the high pH (12.1) achieved in MEC 

mode (NaCl solution as catholyte), could favour ammonium recovery 

in a subsequent stripping and absorption process. Ammonia was the 

main cation involved in maintaining the electroneutrality between both 

compartments. Regarding microbial population, 

Desulfuromonadaceae, a known family of exoelectrogenic bacteria, 

was enriched under MEC mode, whereas hydrogenotrophic and 

methylotrophic methanogen phylotypes belonging to 

Thermoplasmatales were also favoured against acetotrophic 

Methanosaetaceae. From these results, the integration of anaerobic 

digestion in BES seems to be an interesting alternative for the 

treatment of complex substrates, since a polished effluent can be 

obtained and ammonium can be simultaneously recovered for further 

reuse as fertiliser. 
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4.1 Introduction 

The increasing global demand for fossil fuels, their tendency to be scarcer, and the need 

to control the greenhouse effect gases produced when using them, are demanding new 

strategies for energy production. Biorefineries aiming to obtain clean and renewable energy 

recovering nutrients and other products of interest from energetic cultures, organic wastes and 

other waste fluxes are an alternative to conventional refineries (Schiermeier et al., 2008).  

Anaerobic digestion (AD), which consists in the microorganism catalysed conversion of organic 

substrates into a mixture of gases (biogas) –mainly methane and carbon dioxide- is a well-

established energy recovering technology in terms of performance and economic feasibility and 

one of the most attractive technologies to produce sustainable energy from wastes 

(Kleerebezem and van Loosdrecht, 2007). However, this technology does not modify the total 

content of N in the digestates, and thus needs to be combined with other processes for N 

removal or recovery. The combination of the AD process with ammonia stripping with its 

subsequent absorption in an acid solution (Bonmatí and Flotats, 2003a; Laureni et al., 2013), 

thermal concentration of the digestate (Bonmatí et al., 2003; Bonmatí and Flotats, 2003b) or 

chemical precipitation of ammonium and phosphate as struvite (Cerrillo et al., 2015) has 

previously been studied, but despite these combined processes being feasible, few full scale 

applications exist nowadays.  

Bioelectrochemical systems (BES) operated in microbial fuel cell (MFC) mode, or 

microbial electrolysis cell (MEC) mode -when electric energy is produced or energy is supplied 

to promote nonspontaneous reactions, respectively- can also be coupled to AD in order to 

improve its performance and the quality of the effluent (Hamelers et al., 2010). These systems 

have revealed themselves to be a highly versatile technology allowing for the coupling of 

wastewater treatments to the production of chemical compounds and energy carriers (Pant et 

al., 2012). 

A wide range of complex substrates have been studied as possible energy sources for 

BES, such as domestic (Liu et al., 2004), slaughterhouse (Katuri et al., 2012), or swine (Min et 

al., 2005) wastewater, or anaerobic digester sludge (Ge et al., 2013). The compatibility between 

the influent of a BES and the AD effluent makes both MFC and MEC operation suitable as a 

polishing step once the AD process has ended, or as a system to absorb organic compound 

peaks should any operational problems in the AD reactor arise. 

In a two chamber BES with a cation exchange membrane configuration, electrons 

produced during the oxidation of organic matter in the anode chamber are conducted through 

an external circuit to the cathode; as a result, and in order to maintain charge electroneutrality 

between both compartments, protons produced in the anode as a result of organic matter 
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oxidation diffuse through the cation exchange membrane to the cathode compartment, where, 

for instance, they are combined with oxygen to produce molecular water. However, other 

cations, such as ammonia, are usually present in the anode compartment in a higher 

concentration than protons (typically 105 times) and are the predominant species involved in 

maintaining the charge balance, resulting in a pH gradient between anolyte and catholyte 

(Rozendal et al., 2008). This fact can be exploited to remove or recover nutrients, such as 

ammonium, from waste flux. There are some experiences focused on removing ammonia from 

the cathode compartment using different configurations (Zhang et al., 2013), and even 

simultaneous nitrification and denitrification processes through intermittent aeration of the 

cathode have been achieved (Sotres et al., 2016). The possibility of recovering ammonium from 

the cathode compartment adding a subsequent step of stripping and absorption (Cord-Ruwisch 

et al., 2011; Kim et al., 2008; Kuntke et al., 2012; Sotres et al., 2015a) to later reuse it as a 

cleaner fertiliser, is especially interesting since nutrient recovery is favoured instead of nutrient 

removal and fertiliser production from raw materials. 

Despite this previous work, performed in a synthetic medium, swine wastewater or urine, 

there is a lack of comprehensive studies focused on chemical oxygen demand (COD) and 

ammonia removal from complex waste flux in BES when treating digestates compared with the 

treatment of the raw substrates, to be able to evaluate if the AD-BES combination is a suitable 

treatment strategy. Furthermore, an analysis of the microbial population that develops in the 

anode of the BES is also needed to better understand its performance when working with 

digestates in different operational modes (MFC and MEC).  

In the present Chapter, BES operation in combination with AD was investigated in batch 

assays in order to improve COD removal and nitrogen recovery from a complex waste substrate 

such as pig slurry, compared to raw pig slurry treatment in BES. Furthermore, charge 

production, its relation with cation transport through the membrane and the influence of the 

other cations on the ammonium migration flux was also assessed. Finally, the evolution of 

microbial populations (total eubacteria and archaea) on the anode biofilm, both under MFC and 

MEC operation mode, was studied to identify potential key players involved in electric current 

production. 
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4.2 Materials and methods  

4.2.1 Experimental set-up 

A pair of identical two chambered cells described in Section 3.1.1 were used, one of 

them operated in MFC mode and the second one in MEC mode. Two feedings were used in the 

anode compartment: i) raw pig slurry, and ii) digested pig slurry obtained from a thermophilic 

(55 ºC) 2 L lab-scale continuous stirred tank reactor. Both the raw pig slurry and the effluent of 

the AD were sieved to remove particles larger than 125 μm previous to being used as feed for 

the BES (Table 4.1). 

4.2.2 Reactors operation 

The AD was fed in continuous mode with the raw pig slurries previously specified (Table 

4.1) with a hydraulic retention time (HRT) fixed at 5 d, and an organic loading rate (OLR) of 2.26 

g COD L-1 d-1. The reactor ran for 3 months and, once the steady state of operation regarding 

COD removal and biogas production was achieved, the effluent of the AD was collected during 

3 weeks and homogenised in order to be used as substrate for the BES (hereafter referred to as 

digested pig slurry). The digested pig slurry was stored at -20 ºC for further utilisation. Samples 

of the BES substrate were taken in every experimental run to assure that its characteristics 

remained stable. 

The MFC was operated under six different conditions (Table 4.2). In the first three 

assays, raw pig slurry was used as feeding, and the MFC was operated using two different 

external resistances (100 Ω and 500 Ω) and in open circuit to investigate diffusion driven 

processes. In the second set of assays, digested pig slurry was used as feeding. The MEC was 

operated under eight different conditions (Table 4.2), fixing the anode potential at -200, -100 

and 0 mV vs. SHE, and in open circuit, using raw pig slurry in the first stage, and later repeating 

the same conditions with digested pig slurry. Both cells were operated at room temperature (~ 

23-25 ºC). 

Prior to every experimental run, the anode and the cathode compartment of each cell 

were filled with 0.5 L of the correspondent solution and emptied completely at the end of each 

run; repeating this procedure every 24 h and 48 h in the MFC and the MEC (according to the 

duration of the current density peaks in each mode), respectively, in order to perform three 

batches for every condition. Samples were taken from the anode and the cathode compartment 

at different times during the run -three samples for the MFC experiments, and four samples for 

the MEC experiments.  
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Table 4.1 Characterisation of raw and digested pig slurry used as feedings in the AD and the BES. Abbreviations: 

MFC: microbial fuel cell, MEC: microbial electrolysis cell, AD: anaerobic digestion, COD: chemical oxygen demand, 

N-NH4+: ammonium nitrogen, TS: total solids, VS: volatile solids. 

Parameter 
AD Reactor feeding MEC/MFC feeding 

Raw pig slurry Raw pig slurry 
(sieved 125 µm) 

Digested pig slurry 
(sieved 125 µm) 

pH (-) 7.98 7.98 8.12  

Alkalinity (gCaCO3 L-1) 3.5 3.5 3.6  

COD (mgO2 kg-1) 14 585 6 512 7 951  

N-NH4
+ (mg L-1) 997 857 872  

TS (%) 1.74 0.78 0.83  

VS (%) 1.04 0.37 0.42  

NH4
+ (mg L-1)  1 102 1 121  

NH4
+ (mM)  61.2 62.3  

Na+ (mg L-1)  359 383  

Na+ (mM)  15.6 16.7  

Mg2+ (mg L-1)  14 9  

Mg2+ (mM)  0.6 0.4  

Ca2+ (mg L-1)  3 272 3 219  

Ca2+ (mM)  81.8 80.5  

K+ (mg L-1)  1 093 1 045  

K+ (mM)  28.0 26.8  

PO4
3- (mg L-1)  9 713 8 315  

PO4
3- (mM)  102.2 87.5  
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Table 4.2 Conditions tested in MFC and MEC operation modes. Abbreviations: MFC: microbial fuel cell, MEC: 

microbial electrolysis cell, OCV: open circuit voltage; Rext (external resistance); Eanode (anode potential). 

Operation 
mode 

Catholyte Feeding 
Rext (Ω) (MFC mode) 

Eanode (mV) (MEC mode) 

MFC 
Phosphate buffer 

solution 

Raw Pig 

Slurry 

100 
500 

OCV 

Digested Pig 

Slurry 

100 

500 

OCV 

MEC 
NaCl solution 

Raw Pig 

Slurry 

-200 
-100 

0 

OCV 

Digested Pig 

Slurry 

-200 
-100 

0 

 OCV 

 

4.2.3 Analyses and calculations 

Samples of the feeding solutions and the anode effluent were characterised for chemical 

oxygen demand (COD), total and volatile solids (TS and VS), alkalinity, volatile fatty acids 

(VFA), ammonium N-NH4
+, pH and anion and cation concentrations, besides dissolved methane 

in the anode effluent. Cathode samples were characterised for ammonium N-NH4
+, pH and 

anion and cation concentrations. All the analyses were performed following the methods 

described in Section 3.2. 

Current density, coulombic efficiency (CE), CH4 production efficiency, COD and 

ammonium removal efficiencies, ammonium flux, transport of negative (Q-) and positive charges 

(Q+) were determined as described in Section 3.4. 

To determine the effect the shift from MFC to MEC mode had on the microbial 

population (total eubacteria and archaea) harboured on the anode, bacterial communities 

present in the feedings (raw and digested pig slurry) and attached to the anode under MFC and 

MEC mode at the end of the experiments (after 2 and 4 months of operation, respectively) were 

analysed by 454-Pyrosequencing. Total DNA extraction and 454-Pyrosequencing were 

performed following the methods described in Section 3.6.1 and 3.6.4, respectively. Data 

obtained from pyrosequencing datasets were deposited in the Sequence Read Archive of the 
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National Center for Biotechnology Information (NCBI) under study accession number 

SRP062261, for eubacterial and archaeal populations. 

The evaluation of the diversity of the samples and statistical multivariate analyses were 

performed following Section 3.6.6. 

4.3 Results and discussion  

4.3.1 Performance of the BES 

4.3.1.1 Current density and removal efficiencies of the MFC batch experiments 

The profiles of the current density generated, and the COD and ammonium removal 

efficiencies corresponding to the three batches performed in MFC mode with an external 

resistance of 100 Ω are shown in Figures 4.1a and 4.1b. As it can be seen, the response of the 

three batches is very similar, achieving 250 mA m-2 and 225 mA m-2 peak current densities, 

when respectively fed with raw and digested pig slurry. Similar results were obtained using an 

external resistance of 500 Ω (data not shown); although in this case the maximum current 

densities were 70 and 60 mA m-2, respectively. These current densities are in the same range 

as in other studies that also used swine wastewater in a MFC (Min et al., 2005). As expected, 

the current density decreased with respect to the increasing external resistance according to 

Ohm’s law. Interestingly, although COD removal started in the first hours and continued for 

more than 24 hours, current generation became minimal 10 hours after fresh substrate addition, 

since less biodegradable organic matter may be available. This behaviour was also observed 

when studying COD removals in a single chamber MFC treating domestic wastewater with a 

soluble COD of 223 mg L-1 (Zhang et al., 2015). In that study, graphite fibre brush was used as 

anode, and the applied external resistances were 1000 Ω and 100 Ω.  

Results of the MFC operation (Figure 4.2a and 4.2b) showed that there were no 

statistically significant differences in COD removal when working with an open or closed circuit 

(17-21% and 7-12% with raw and digested pig slurry, respectively). These data indicate that 

microorganisms attached to the anode or in suspension may be using final electron acceptors 

present in the medium. Lower COD removals when using digested pig slurry can be expected, 

since organic matter present in the effluent of an AD can be less biodegradable. A decrease in 

COD removal was also reported when changing from raw to digested primary sludge (Ge et al., 

2013). Nevertheless, if the integrated AD-MFC system is taken into account, the overall COD 

removal efficiency would be of around 50% (final average COD of 7160 mg O2 kg-1). 

Furthermore, almost all ammonium transport produced in this MFC is promoted by diffusion, 

probably due to the low current densities achieved, with removal efficiencies of 32-35% and 32-
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40% for raw and digested pig slurry, respectively. This behaviour was also observed by Kuntke 

et al. (2012), who reported that, at low current densities, ammonia diffusion was the dominant 

ammonium transport mechanism. Zhang et al. (2013) also reported high ammonium diffusion in 

their system in batch mode when no voltage was applied, achieving 30% when working with a 

synthetic solution. 

Initial pH of the raw pig slurry was in a range of 7.9-8.1, a result which is very similar to 

the final pH range of 7.8-8.2. In the case of the catholyte, the initial pH of 7.1 was maintained at 

the end of each batch. For digested pig slurry, the initial pH of 8.1-8.2 remained in a range of 

7.9-8.3 at the end of the assays. Regarding the catholyte, it remained around 7.3. These stable 

values are explained because a buffer phosphate was being used as a catholyte. 

 

 
Figure 4.1 Current density (j) and COD and ammonium removals obtained in the three experimental runs of MFC 

operation mode with an external resistance of 100 Ω and fed with (a) raw and (b) digested pig slurry, and in MEC 

operation mode poising the anode at -200 mV vs. SHE fed with (c) raw and (d) digested pig slurry. ▲COD removal, 

 Ammonium removal,  Current density. 
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Figure 4.2 (a) COD and (b) ammonium removal efficiency for MFC operation mode after 24 h with the different 

external resistances (Rext) assayed and (c) COD and (d) ammonium removal efficiency for MEC operation mode after 

48 h poising the anode at the different potentials (Eanode) assayed. Raw pig slurry in black, digested pig slurry in light 

grey and AD-MFC or AD-MEC integrated system in dark grey. Significance of the differences among values in the 

same resistance/potential is represented by lowercase; and among different resistance/potential with the same 

feeding solution, by uppercase.  

4.3.1.2 Current density and removal efficiencies of the MEC batch experiments 

The profiles of the generated current density and COD and ammonium removal 

efficiencies corresponding to the three sequential batches performed in MEC mode poising the 

anode at -200 mV vs. SHE, using raw and digested pig slurry are shown in Figures 4.1c and 

4.1d, respectively. The MEC showed maximum current densities of 600, 750 and 700 mA m-2 

poising the anode at -200, -100 and 0 mV vs. SHE, respectively, when it was fed with raw pig 

slurry; similar results for the three sequential batches were achieved when it was fed with 

digested pig slurry (data not shown). There were no statistically significant differences in COD 

removal when working with an open or closed circuit, neither when feeding with raw nor 

digested pig slurry (29-35% and 17-25% respectively), but an overall COD removal of nearly 

60% was achieved in combination with the AD (final average COD of 6080 mg O2 kg-1) (Figure 

4.2c). Ammonium removal was maximum when feeding with raw pig slurry and poising the 

anode potential at 0 mV vs. SHE (31%, with a final N-NH4
+ of 606 mg L-1), two-fold higher than 
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the ammonium transferred from the anode to the cathode compartment in an open circuit mode 

(16%) (Figure 4.2d). Ammonia diffusion values in an open circuit are similar to those obtained in 

other studies, with a 13% achieved in batch assays lasting 120 h with a synthetic solution 

(Haddadi et al., 2013). The same study achieved a 2.5 fold increase when the anode potential 

was fixed at -0.2 V vs. SHE. Also around 30% of ammonia was recovered in continuous assays 

fed with urine (Kuntke et al., 2014) and 29% of ammonia was recovered in 56 h batch assays 

using pig slurry as anolyte and a NaCl solution in the cathode when applying 0.6 V to an abiotic 

two-chamber cell (Sotres et al., 2015a). The same study showed that ammonia recovering was 

improved by using a NaCl solution instead of a buffer in the cathode, even in an open circuit, 

reaching removal efficiencies of 50%.  

Contrary to the behaviour observed in MFC mode, pH evolution in the assays fed with 

raw pig slurry showed a decreasing tendency during the assay, achieving a final pH in the range 

of 7.0-7.3, except in the open circuit assays, were pH was maintained around 8. In the case of 

the catholyte, pH increased from 9.1 to around 10.8-12.1 at the end of the batches, and 

remained under 10 in open circuit assays, since a NaCl instead of a buffer solution was used. 

For digested pig slurry, the final pH in the anode and cathode compartments showed similar 

values to the ones obtained with raw pig slurry, both in a closed and open circuit. In spite of 

anodic acidification due to cation transport to the cathode compartment and proton 

accumulation in the anode, pH was still suitable for microorganism growth, thanks to the 

buffering capacity of the pig slurry. On the other hand, the high pH achieved in the cathode 

compartment is highly convenient for ammonia recovering, since it can drive ammonium to 

ammonia gas favouring a subsequent stripping and absorption process (Sotres et al., 2015a).  

To sum up, the results revealed that COD removal was improved by integrating AD and 

BES technologies and, furthermore, ammonia content of the AD effluent can be recovered and 

could maybe be reused as an alternative fertiliser, integrating a stripping and absorption unit in 

the system.  

4.3.1.3 Coulombic efficiency and methane production  

Coulombic and methane production efficiencies are shown in Table 4.3. Assays in MEC 

mode presented higher CE than in MFC mode, with a maximum of 18.2% and, in both operation 

modes, the highest CEs were achieved when digested pig slurry was used. Furthermore, in 

MFC mode, higher CEs were achieved when the lowest external resistance was applied. Other 

studies have reported that, in general, CE was a function of substrate concentration and circuit 

resistance, and an increasing circuit resistance or substrate concentration results in a decrease 

in CE, because it is difficult to recover electrons from substrates with higher external resistances 

(Zhang et al., 2015). The thus obtained CEs are quite low, but this is to be expected as the 
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feedings are complex substrates and other electron acceptors may be present. Other studies 

have shown similar CEs with complex substrates, reporting a CE range of 3-12% using local 

domestic wastewater as substrate (Liu et al., 2004), 8% using swine wastewater in a single 

chambered MFC (Min et al., 2005), or a range of 12-18% using digestate from grass silage in a 

MFC (Catal et al., 2011). Interestingly, the MFC displayed a higher methane production than the 

MEC, and accumulated methane, though it only accounted for 1% of COD removal in MEC 

mode, this being lower than data previously described (Gao et al., 2014). The percentage of 

COD removal converted to methane increased up to 3-7% in MFC mode. The highest methane 

production in MFC mode may be related to the lower potentials of the anode in the MFC (<-300 

mV) with respect to the MEC, as a previous study found that the lower the anode potential the 

higher the methane production (Bonmatí et al., 2013). Furthermore, methane production slightly 

increased in the MEC mode as the fixed anode potential was decreased, although the 

differences found were not statistically significant. 

 
Table 4.3 Coulombic Efficiency and CH4 production efficiency obtained in the different assays. Abbreviations: CE: 

coulombic efficiency, MFC: microbial fuel cell, MEC: microbial electrolysis cell, Rext (external resistance), Eanode 

(anode potential). 

Operation 
mode 

Feeding 
Rext (Ω) (MFC mode) 

Eanode (mV) (MEC mode) 
CE (%) 

CH4 production 
efficiency (%) 

MFC 

Raw Pig 

Slurry 

100 2.2±0.4% 7±3% 
500 1.1±0.6% 7±1% 

Digested 

Pig Slurry 

100 4±3% 3±2% 
500 1.3±0.3% 4.2±0.4% 

MEC 

Raw Pig 

Slurry 

-200 8.0±0.2% 0.7±0.2% 
-100 9±2% 0.3±0.1% 

0 7±2% 0.2±0.1% 

Digested 

Pig Slurry 

-200 12±3% 1.0±0.1% 
-100 18±8% 0.9±0.0% 

0 11±3% 0.9±0.2% 

 

4.3.1.4 Charge and cation transfer  

It is well known that the flux through a membrane can be the result of diffusion (caused 

by a concentration gradient) or migration (caused by the charge transport and balance) (Kuntke 

et al., 2011; Rozendal et al., 2008). Comparison of the total charge production in the form of 

electrons relative to the transport of charge in the form of cations through the cationic 

membrane of each condition assayed is shown in Figure 4.3. In the case of the MFC operation 

(Figure 4.3a and 4.3b), since that the intensities produced were quite low, the amount of 
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electrons transferred was negligible with respect to positive charges, thus achieving 

approximately the same cation transport both in an open or closed circuit. Sodium was the most 

transferred cation, despite it being initially found in a lower concentration in the anode than in 

the buffer solution of the cathode. In this study the most abundant cation was calcium (3200 mg 

L-1), followed by ammonium (1100 mg L-1) and potassium (1090 mg L-1), being sodium the one 

found in less concentration (360 mg L-1). These results differ from the obtained by Kuntke et al. 

(2011), who reported that in an MFC the order in which cations were transported corresponded 

to the concentration of the ions in the anode compartment (NH4
+ ≥ Na+ > K+ > Ca2+ >> Mg2+). 

These differences can be due to the fact that a synthetic solution was used for the anode in that 

study and the use of different catholytes. Regarding MEC operation, Figures 4.3c and 4.3d 

show a clear increase in cation transport through the membrane when applying different 

potentials to the system with respect to the open circuit assay. Although in the latter case there 

is already some cation transport, it improves in parallel to the negative charge increase, being 

ammonia the predominant cation involved in maintaining electroneutrality. As an example, when 

using digested pig slurry in MEC mode, ammonia accounted for 64, 55 and 45% of the total 

amount of cations transferred when the anode was fixed at 0, -100 and -200 mV, respectively. 

When the amount of cations transferred in an open circuit assay was subtracted, results 

showed that ammonia accounted for 63, 67 and 53% of the migrated positive charge when the 

anode was respectively fixed at 0, -100 and -200 mV. Other studies have obtained similar 

results, reporting that 30-50% of the charge transferred was neutralised by ammonium 

migration when using synthetic wastewater and real urine (Haddadi et al., 2013). Sodium and 

potassium cations accounted for nearly the rest charge transferred when using fresh pig slurry, 

while calcium was favoured with respect to sodium when using the digested one. The obtained 

results are the consequence of the coordinated effect of a variety of driving forces. Apart from 

gradient concentration between both compartments, the different mobility of each cation when 

subjected to an electric field may have also had an impact in the obtained results. Mobility 

depends on the hydrodynamic radius of the ion (taking into account the hydrating water 

molecules it carries when moving), its charge and the viscosity of the medium. This way, NH4
+ 

and K+ have the same ionic mobility (7.62·10-8 m2 s-1 V-1 in water at 298 K), while Na+, Mg2+ or 

Ca2+ have lower ones (5.19·10-8, 5.50·10-8 and 6.17·10-8 m2 s-1 V-1, respectively) (Atkins and de 

Paula, 2013). Finally, the organic matter and solids content of the raw and digested pig slurry, 

as well as the presence of other cations, may affect the migration patterns that have been 

observed with synthetic solutions. Diffusion numbers in the MFC also differ from those obtained 

in the MEC because of the use of different catholytes, a phosphate buffer and a NaCl solution, 

respectively. Although a higher flux was expected in MEC mode due to the concentration 
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gradient (only 39 mg L-1 of sodium was present at the beginning of the batch in the cathode 

compartment), it was finally lower than the obtained in MFC mode using a phosphate buffer.  

In summary, the results obtained show that diffusion flux was predominant in the MFC 

operation because of the low generated intensities while migration promoted by electron 

transport was the main phenomenon driving the cation flux through the membrane in MEC. The 

differences between both systems, as observed in an open circuit, could be explained by the 

difference in the catholytes used in each one. 

 
Figure 4.3 Comparison of the total charge production (Q-) to the transport of charge in the form of specific ions 

transferred to the cathode compartment in MFC mode after 24 h with the different external resistances (Rext) assayed 

and using (a) raw pig slurry and (b) digested pig slurry, and in MEC operation mode after 48 h poising the anode at 

the different potentials (Eanode) assayed using (c) raw pig slurry and (d) digested pig slurry. Q-, in dotted bars; Na+, in 

black bars; K+, in light grey; NH4
+, in striped bars; Ca2+, in dark grey bars; and Mg2+, in white bars. 

4.3.2 Microbial community assessment  

The microbial community structure of the inoculum and the samples taken from the 

carbon felt of the MEC and MFC reactors at the end of the assays was characterised by pyrotag 

16SrRNA gene-based pyrosequencing analysis focused on the total eubacterial and archaeal 

16S rRNA gene. 3089, 2115 and 3223 reads and coverage of 0.97, 0.96 and 0.96 were 

obtained for eubacterial in the inoculum, MFC and MEC anode samples, respectively (Table 

4.4). Regarding archaeal community, 1985, 8469 and 4598 reads were obtained for the 

inoculum, MFC and MEC anode samples, respectively, and coverage of 0.98 for all three 
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samples. Figure 4.4 shows the rarefaction curves, with all samples closer to approaching a 

plateau when plotting OTUs vs. the number of 16S rRNA.   

 
Figure 4.4 Rarefaction curves for MFC and MEC anode and raw and digested pig slurry samples regarding (a) 

Eubacterial and (b) Archaeal community. Inoculum, dark blue; MFC, red; Raw pig slurry, green; Digested pig slurry, 

purple; and MEC, light blue. 
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Table 4.4 Diversity index for Eubacterial and Archaeal community of the inoculum, MFC and MEC mode and raw and 

digested pig slurry. Data normalised to the sample with the lowest number of reads (2115 and 867 for eubacterial and 

archaeal, respectively). Abbreviations: OTU: operational taxonomic unit, MFC: microbial fuel cell, MEC: microbial 

electrolysis cell, SD: standard deviation. (mean±SD). 

 
Reads Coverage OTUs 

Inverted 
Simpson 

Shannon Chao 

Eubacteria 

Inoculum 3089 0.97±0.00 291.18±4.03 31.31±1.12 4.57±0.02 329.40±10.90 

MFC 2115 0.96±0.00 379.00±0.00 99.96±0.00 5.31±0.00 448.05±0.00 

MEC 3223 0.96±0.00 371.43±4.71 43.54±2.05 5.00±0.02 421.11±13.42 

Pig slurry 3068 0.96±0.00 331.60±4.42 58.09±1.73 4.89±0.02 378.63±12.31 

Digested pig slurry 3713 0.97±0.00 232.65±4.02 28.73±0.93 4.29±0.02 263.78±10.86 

Archaea       

Inoculum 1985 0.98±0.00 60.91±2.84 5.48±0.22 2.48±0.04 78.48±10.74 

MFC 8469 0.98±0.00 49.62±3.51 3.67±0.19 2.10±0.05 74.57±16.06 

MEC 4598 0.98±0.00 52.43±3.33 3.57±0.16 2.00±0.06 73.05±13.66 

Pig slurry 867 0.99±0.00 41.00±0.00 3.65±0.00 2.07±0.00 57.50±0.00 

Digested pig slurry 7605 0.98±0.00 47.74±3.84 4.14±0.18 1.99±0.05 73.81±17.37 

 

Figure 4.5 and Table 4.5 show that the three dominant eubacterial phyla identified in the 

inoculum sample, Proteobacteria, Bacteroidetes and Firmicutes, were also the dominant ones in 

both the MEC and MFC anodes, although in the MFC mode an enrichment in Bacteroidetes 

took place. Proteobacteria and Firmicutes are the predominant phyla found on the anode in 

several MFC systems regardless of MFC configuration, inoculums or substrate (Bonmatí et al., 

2013; Sotres et al., 2015a; Sotres et al., 2015b). Delta-Proteobacteria members were present, 

although the well known electrogenic Geobacter sulfurreducens was not detected. A recent 

study on a MFC working with pig slurry identified G. sulfurreducens on the anode by means of 

fluorescence in situ hybridisation (FISH), although it was not detected by polymerase chain 

reaction–denaturing gradient gel electrophoresis (PCR–DGGE) (Vilajeliu-Pons et al., 2015). 

When complex organic compounds serve as fuel in BES, it is expected that microorganisms 

fermenting these substrates into simpler molecules to be also present in the anode microbial 

community (Jung and Regan, 2007). Although these fermentative microorganisms may have 

little or no capacity for electron transfer to the anode, their metabolism has a key role to power 

BES. At the family level, results in Figure 4.5b and Table 4.5 revealed the dominance of 

Desulfuromonadaceae, Clostridiaceae and Porphyromonadaceae in MFC and MEC samples, 

with a clear enrichment of 2 OTUs belonging to the Desulfuromonadaceae family (8 and 18 % 
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of relative predominance, respectively) with respect to the inoculum, where they were not 

detected.  

 

 
Figure 4.5 Taxonomic assignment by means RDP Bayesian classifier of 454-pyrosequencing reads from massive 

16SrRNA libraries of Eubacteria in the inoculum, and anode under MFC and MEC mode at the a) phylum b) family 

levels. Relative abundance was defined as the number of reads (sequences) affiliated with any given taxon divided 

by the total number of reads per sample. Phylogenetic groups with a relative abundance lower that 1% were 

categorised as “others”. 
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Regarding microbial diversity, the inverted Simpson, Shannon and Chao1 indices 

showed that the sample of the anode in MFC was the most diverse one (99.96, 5.31 and 448.05 

respectively), even if the anode potential was lower (<-300 mV) than the different potentials 

assayed in the MEC. A higher diversity is expected with higher anode potentials, as only those 

microorganisms capable of utilising minimal energy for growth, respiring at low anode potentials 

efficiently with minimal energy loss, can live at low potentials (Torres et al., 2009). However, the 

specific conditions applied in our study could have promoted more syntrophic metabolic 

interactions that could explain a higher diversity at lower potentials. MEC sample indices were 

43.54, 5.00 and 421.11, respectively; while for the inoculum they were 31.31, 4.57 and 329.40, 

thus displaying enrichment in diversity during the BES operation (Table 4.4). In order to know 

the background populations that could have been provided by the feedings, samples from both 

the raw and the digested pig slurry were also analysed. The dominant phyla in raw pig slurry 

were Bacteroidetes (33%) and Firmicutes (46%), while in digested pig slurry Proteobacteria 

represented 44% of the eubacterial population and Firmicutes did 46%. At family level, 

Clostridiaceae accounted for 26 and 15% for the population of raw and digested pig slurry, 

respectively, followed by Porphyromonadaceae in raw (7%) and Pseudomonadaceae in 

digested pig slurry (39%) (Figure 4.6). Indeed, a low relative predominance of OTUs belonging 

to Desulfuromonadaceae (below 0.11% in digested slurry) was revealed in the feedings.  

Correspondence multivariate analysis performed on OTUs’ relative distribution among 

samples indicated that biofilms from the MEC and MFC anodes clustered together, and close to 

the raw pig slurry sample, while the inoculum and the digested pig slurry samples were clearly 

separated, indicating that the BESs had been enriched in certain groups such as 

Desulfuromondaceae, with a special relevance of one OTU (13), due to the operation conditions 

(Figure 4.7a).  
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Figure 4.6 Taxonomic assignment by means RDP Bayesian classifier of 454-pyrosequencing reads from massive 

16SrRNA libraries of Eubacteria of raw and digested pig slurry at the a) phylum b) family levels. Relative abundance 

was defined as the number of reads (sequences) affiliated with any given taxon divided by the total number of reads 

per sample. Phylogenetic groups with a relative abundance lower that 1% were categorised as “others”. 
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Figure 4.7 Correspondence Analysis for inoculum, MFC and MEC anode samples regarding (a) Eubacterial and (b) 

Archaeal community. 
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Regarding archaeal population, Figure 4.8 and Table 4.6 show an important enrichment 

in the Thermoplasmatales family on the anode of both BES reactors with respect to the 

inoculum, representing 83, 61 and 41%, respectively. Thermoplasmata is a novel group of 

methylotrofic methanogenic archaea that has so far been scarcely described, and which 

reduces methanol with hydrogen (Paul et al., 2012) and might also use methylamines as 

methanogenic substrate (Borrel et al., 2014). It has been described in anaerobic digesters 

(Nelson et al., 2011), in pig slurry (Petersen et al., 2014) and in MFC anodes in previous studies 

(Sotres et al., 2015a; Sotres et al., 2015b). It has been found that this group was enriched in an 

UASB with high NH4
+ concentrations when de OLR was increased (Chen et al., 2014), which 

also agrees with the rich ammonia substrates used in this study. The acetotrophic 

Methanosaetaceae decreased its relative abundance from 41% in the inoculum down to 11 and 

13% in MFC and MEC anode, respectively, which may reflect the importance of acetate as an 

anodic substrate. Recently it has been reported that also methanogenic archaea can accept 

electrons from a solid donor or through direct interspecies electron transfer to reduce carbon 

dioxide to methane (Cheng et al., 2009; Rotaru et al., 2014) though its role in BES processes 

still needs to be studied in depth. Furthermore, Methanosaetaceae has been described as a 

more sensitive microorganism to high ammonia concentrations (Zhang et al., 2014). This can 

explain the shift towards the Thermoplasmatales family, although in a previous study the 

Methanosaetaceae family has been detected with a relative abundance of over 50% at the 

anodes of BESs working in MEC and MFC mode with pig slurries with high ammonium 

concentrations (Sotres et al., 2015a). Regarding archaea composition, raw and digested pig 

slurries were richer in Methanosaetaceae, representing 56 and 54%, respectively (Figure 4.9). 

Regarding microbial diversity, the sample of the inoculum was the most diverse one (5.48 

(inverted Simpson), 2.48 (Shannon) and 78 (Chao-1)) when compared to the anode biofilm from 

MFC and MEC mode (Table 4.4). Correspondence analysis for archaeal population indicated 

that biofilms from the MEC and MFC anodes clustered together, as in the case of eubacterial 

population, but in this case they were close to the inoculum sample, while the raw and the 

digested pig slurry samples were clearly separated (Figure 4.7b). OTU 4, related to 

Thermoplasmatales, was the predominant one, since it was enriched both in MFC and MEC. 
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Figure 4.8 Taxonomic assignment by means of RDP Bayesian classifier of 454-pyrosequencing reads from massive 

16SrRNA libraries of Archaea in the inoculum, and anode from MFC and MEC mode at family levels. Relative 

abundance was defined as the number of reads (sequences) affiliated with any given taxon divided by the total 

number of reads per sample. Phylogenetic groups with a relative abundance lower that 1% were categorised as 

“others”. 

 

 

 

 

Figure 4.9 Taxonomic assignment by means of RDP Bayesian classifier of 454-pyrosequencing reads from massive 

16SrRNA libraries of Archaea of raw and digested pig slurry at family levels. Relative abundance was defined as the 

number of reads (sequences) affiliated with any given taxon divided by the total number of reads per sample. 

Phylogenetic groups with a relative abundance lower that 1% were categorised as “others”. 
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4.4 Conclusions  

Batch assays performed with raw and digested pig slurry in MEC and MFC showed that, 

although COD removals were higher when feeding with raw slurry, NH4
+ removal efficiencies 

increased when feeding with digested pig slurry. The AD-MEC integrated system achieved the 

highest COD removal (60%) and the maximum NH4
+ removal efficiency obtained was 40% (in 

MFC mode fed with digested pig slurry). The high pH achieved under MEC mode (>10), using a 

NaCl solution as catholyte, could favour ammonium recovering in a subsequent stripping and 

absorption process. In the positive charge transport through the cation exchange membrane, 

ammonia was the main cation involved in maintaining electroneutrality between the two 

compartments. Finally, the microbial community assessment revealed that 

Desulfuromonadaceae was highly enriched in MEC mode, and that phylotypes belonging to the 

potential methylotrofic-hydrogenotrophic methanogen Thermoplasmatales were also favoured 

against acetotrophic Methanosaetaceae. Consequently, it can be concluded that BES operation 

in combination with anaerobic digestion is an interesting alternative for the treatment of complex 

substrates, since a polished effluent can be obtained and ammonium can be recovered for its 

reuse as fertiliser. 
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Anaerobic digestion instability by organic 
and nitrogen overloads: digestate polishing 
by coupling a microbial fuel cell  
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Abstract 

Bioelectrochemical systems have been recently proposed as a 

polishing step of anaerobic digestion (AD). They can also be useful to 

overcome AD instability in case of anaerobic digestion inhibition and 

volatile fatty acids (VFA) accumulation, while recovering ammonia. 

Continuous assays with a microbial fuel cell (MFC) fed with digested 

pig slurry were performed to evaluate its operation during malfunction 

periods of the AD reactor and its feasibility as a strategy to recover 

ammonia, either by introducing VFA pulses in the MFC or by inducing 

the AD inhibition. A microbial community assessment was performed 

to study MFC changes over its operation when it was fed with 

digestate. The MFC achieved COD removal efficiencies of 50% 

during the AD inhibition, reaching a maximum of ammonium removal 

of 31% (11.19 gN m-2 d-1), while during stable operation of AD the 

COD removed in the serial MFC was 10-20%. High throughput 16S 

rRNA gene based sequencing assessment revealed anode biofilm 

different from feeding digestates, with a reduction in the microbial 

population diversity in the anode after a 182-day-operation period with 

digested pig slurry. Main enriched populations in the anode belonged 

to Bacteroidetes (Flavobacteriaceae), Chloroflexi (fermentative 

bacteria Anaerolineaceae), Methanosarcinaceae and 

hydrogenotrophic methanogens belonging to Methanobacteriaceae. 

An MFC has proven to be a reliable technology to complement the 

AD operation, improve the effluent quality and recover ammonia, 

especially during AD inhibition.  
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5.1 Introduction 

Microbial fuel cells (MFCs) are bioelectrochemical devices with a wide range of 

applications, from power sources to biosensors (Abrevaya et al., 2015). MFCs have proven 

recently as a promising technology to be combined with anaerobic digestion (AD), mainly as a 

polishing strategy to increase the quality of the effluent, either by reducing its organic matter 

content or by removing nutrients. MFCs have been used to polish the effluent of two-stage 

biogas process (Fradler et al., 2014), hydrogen production fermentors (Sharma and Li, 2010) or 

up-flow anaerobic sludge blanket reactors (UASB) (Zhang et al., 2009), working with different 

kind of substrates, such as landfill leachate (Tugtas et al., 2013), wastewater from potato-

processing industries (Durruty et al., 2012), sludge (Ge et al., 2013), pig slurry (Chapter 4; 

Cerrillo et al., 2016a) or molasses wastewater (Zhang et al., 2009).  

MFCs can be particularly useful when the AD suffers from inhibition, as a buffer system 

to complement the AD process until its recovery. It is well known that the AD process, especially 

when it is performed at thermophilic temperature range, can be sensitive to several substances 

that may be present in the waste stream, such as ammonia (Yenigün and Demirel, 2013), long 

chain fatty acids (Palatsi et al., 2009), sulphide, light metal ions (Na, K, Mg, Ca and Al), heavy 

metals and organic compounds such as chlorophenols or halogenated aliphatics (Chen et al., 

2008; Kroeker et al., 1979). In case of inhibition of the AD, an increase of VFA content in the 

effluent will take place, and a system such as a MFC to maintain them at low concentrations will 

be needed.  

Apart from the utility of MFCs as a system to reduce VFA, it has been applied in the 

recovery of ammonium, since in two chamber systems there is a flux of cations through the 

cation exchange membrane from the anode to the cathode compartment in order to maintain 

electroneutrality. A subsequent step of stripping and absorption will allow for the recovery of the 

ammonia in order to reuse it as a fertiliser (Chapter 4; Cerrillo et al., 2016a; Cord-Ruwisch et al., 

2011; Kim et al., 2008; Kuntke et al., 2012; Sotres et al., 2015a). This application is particularly 

interesting, since AD does not modify total N content of digestates, and thus it needs to be 

combined with other processes for N removal or recovery, especially when working with high 

strength wastewater such as livestock manure. Recently, a hybrid system consisting of a 

submersible microbial desalination cell and a continuous stirred tank reactor has been 

developed for counteracting ammonia inhibition during AD with simultaneous in-situ ammonia 

recovery and electricity production, when working with synthetic wastewater (Zhang and 

Angelidaki, 2015). 

The combination of a thermophilic AD with an MFC under perturbation has been 

previously evaluated, by the addition of a severe acetic acid load (Weld and Singh, 2011). But 

MFCs performance against an AD destabilisation has not been studied in depth, neither its 
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influence in ammonia recovery. In Chapters 6 and 7 work performed under microbial electrolysis 

cell (MEC) mode, thus applying a low amount of energy to the system to boost the process, will 

show that VFA accumulation in pig slurry digestate can be removed in a MEC reactor while 

recovering ammonium, and that a higher performance of the MEC is achieved when the AD is 

under unstable or inhibited states. Therefore, it is interesting to assess whether this behaviour is 

also achieved under a producing energy MFC without additional external energy in terms of 

reactor sustainability.  

Furthermore, the combination of the AD with the MFC systems may modify the anode 

biofilm biomass, both due to a continuous allocthonous biomass from digestate and to 

anodophilic enrichment on the anode. Therefore, the evolution of the microbial population in 

these conditions is a field that needs a deep study to gain insight on the stability of microbial 

biofilms established on the anode material in BES reactors. In Chapter 7 it will be shown a 

reduction in the anode biodiversity when integrating pig slurry AD with a MEC system (Cerrillo 

et al., 2016b), but more data is needed to understand these changes with a MFC system when 

no additional energy is provided to the BES.  

The main aim of this study is to assess the performance of an MFC operated in 

combination with a pig slurry thermophilic AD, as a system to overcome AD destabilisation and 

inhibition periods due to organic and nitrogen overloads. Effluent quality will be assessed in 

terms of chemical oxygen demand (COD), VFA and ammonium removal. Also changes in the 

microbial composition of the MFC anode will be evaluated. 

5.2 Materials and methods  

5.2.1 Experimental set-up 

The MFC reactor was the same two chamber cell used in the previous Chapter, and 

described in Section 3.1.1. The assays were performed after the batch assays carried out in 

Chapter 4. Digested pig slurry was used as feeding solution in the anode compartment (Table 

5.1). The feeding solution for the MFC cathode chamber contained (per litre of deionised water): 

KH2PO4, 3 g; Na2HPO4, 6 g (pH of the buffer of 9.1). 

 
Table 5.1 Characterisation of the digested pig slurries used as feeding in the MFC. 

Parameter Phase 1 Phase 2a Phase 2b 

pH (-) 8.21 ± 0.05 7.85 ± 0.03 7.74 ± 0.03 
COD (gO2 kg-1) 26.04 ± 3.73 15.13 ± 2.46 34.43 ± 7.43 
N-NH4

+ (g L-1) 2.05 ± 0.04 1.29 ± 0.07 2.41 ± 0.34 
TS (%) 1.37 ± 0.10 1.05 ± 0.02 1.93 ± 0.51 
VS (%) 0.83 ± 0.10 0.62 ± 0.03 1.18 ± 0.33 
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5.2.2 Reactor operation 

The MFC was operated in continuous for 182 days with a hydraulic retention time (HRT) 

of 34 h. The stability of the AD-MFC integrate operation was assessed in two different 

experiments, using digestate from two different sources. Table 5.1 shows the main 

characteristics of the feeding solutions.  

In a first block of experiments, Phase 1, the MFC was fed for 40 days with the digestate 

from a pig slurry mesophilic AD plant with a HRT of 40 days (Vila-Sana, Lleida, Spain), 

previously filtered through a stainless steel sieve of 125 μm and diluted with tap water (1:2) to 

obtain the desired COD. The OLR of the MFC anode compartment was set at 18.22 gCOD L-1 d-1, 

similar to the one used in a latter work in MEC mode (Chapter 6). As a preliminary evaluation of 

the performance of the MFC under a punctual overload episode of the AD system, a series of 

pulses of diverse pure and mixed VFA were performed (Table 5.2). Samples were taken from 

the anode and the cathode compartment previous to the pulse, and at time 1, 4, 7 and 24 h 

after the pulse.  

 
Table 5.2 Operational conditions for de MFC reactor during the series of pure and mixed VFA pulses in Phase 1. 

Day VFA addition (mg) Added COD (mg) 
Acetate Propionate Butyrate 

1-7 0 0 0 - 
8 250 0 0 267 

9 ,14 and 15 500 0 0 534 

19 and 20 0 500 0 757 

21 and 28 500 500 0 1291 

29 and 33 1000 200 85 1525 
 

 

The second block of experiments, Phase 2a and 2b, started a week after the last pulse 

of Phase 1. The MFC was fed during 142 days with the effluent of a 4 L lab-scale thermophilic 

AD described in Section 3.1.3, fed with pig slurry with a HRT of 10 days, in order to assess its 

performance under a real inhibited AD effluent. During Phase 2a, the MFC was fed for 80 days 

with the effluent of the AD performing in a stable state, while during Phase 2b (62 days) the 

effluent resulted from the AD destabilised by an organic and nitrogen overload. Previously to 

feed the MFC, the AD effluent was filtered through a stainless steel sieve of 125 μm. The 

resulting OLR of the MFC anode compartment was of 10.59±1.78 and 24.10±5.20 gCOD L-1 d-1 in 

Phase 2a and 2b, respectively, and a nitrogen loading rate (NLR) of 0.90±0.05 and 1.84±0.06 

gN L-1 d-1, respectively. All the assays were performed at room temperature (~ 23 ºC).  
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5.2.3 Analyses and calculations 

Samples of the feeding solutions and the anode effluent were characterised for chemical 

oxygen demand (COD), total and volatile solids (TS and VS), alkalinity, volatile fatty acids 

(VFA), ammonium N-NH4
+ and pH, besides dissolved methane in the anode effluent. Cathode 

samples were characterised for ammonium N-NH4
+ and pH. All the analyses were performed 

following the methods described in Section 3.2. 

In order to know the biodegradability of the remaining organic matter of the digestates 

used as feed solution to the MFC, anaerobic biodegradability tests (ABT) of the two different 

digestates used during Phase 2 were performed as described in Section 3.2.11. 

Current density, coulombic efficiency (CE), COD and ammonium removal efficiencies 

and ammonium flux were determined as described in Section 3.4. 

The bacterial communities attached to the anode material in the MFC at the beginning 

and the end of the experiments, and the ones present in the digested pig slurry in Phase 1, 

were analysed by culture-independent molecular techniques such as quantitative real-time PCR 

(qPCR) and high throughput 16S rRNA gene sequencing (MiSeq, Illumina). The microbial 

diversity and structure of the MFC influent (digestate) in Phase 2a and 2b will be described later 

as part of Chapter 7, defined there as Phase 1 and Phase 2, respectively. Briefly, that study 

showed that Pseudomonadaceae (20%), and Clostridiaceae (20%) were the predominant 

eubacteria families in Phase 2a and 2b, respectively, while Methanobacteriaceae was the 

predominant archaea family (98%) in both digestates. 

 Total DNA extraction, qPCR and high throughput 16S rRNA gene sequencing (MiSeq, 

Illumina) were performed following the methods described in Section 3.6.1, 3.6.3, and 3.6.5, 

respectively. The standard curve parameters of the qPCRs performed had a high efficiency, and 

were as follows (for 16S rRNA and mcrA, respectively): slope of -3.407 and -3.591; Y-intercept 

of 39.26 and 39.48; correlation coefficient of 0.999 and 0.998; efficiency of 97 and 90%. Data 

obtained from sequencing datasets were deposited in the Sequence Read Archive of the 

National Center for Biotechnology Information (NCBI) under study accession number 

SRP070839, for eubacterial and archaeal populations. 

The evaluation of the diversity of the samples and statistical multivariate analyses were 

performed following Section 3.6.6. 
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5.3 Results and discussion  

5.3.1 MFC performance under AD instability: assays with VFA pulses in the feed 

In order to test the performance of the MFC when an AD instability even occurred, the 

MFC was fed with the digested plus different pulses of VFA to simulate the composition of the 

digestate under these periods (Table 5.2). During the first 7 days of Phase 1, before any VFA 

pulse was performed, the MFC produced a current density in a range of 100-300 mA m-2. When 

the pulses of VFA started to be applied, the current density was maintained at around 150 mA 

m-2, and although some current peaks were registered, a clear correspondence between the 

VFA introduction and an increase in the current density could not be established (Figure 5.1a). 

After each VFA pulse, the VFA concentration showed a fast decrease, returning to the values 

existing before the VFA addition in less than 24 h, and the pH of the bulk solution in the anode 

compartment was maintained in a range of 7.3-8.8, thus appropriate for the microbial activity 

(Figure 5.2a). In a latter work, using a MEC, the response to the VFA addition fitted properly 

with each pulse after 24h, obtaining an increase in the current density after the addition of COD 

(Chapter 6). This behaviour is in concordance with the low coulombic efficiencies achieved 

when working with MFC (11-18%) compared to the obtained in MEC mode (1-4%) (Chapter 4; 

Cerrillo et al., 2016a). Independently from the energy recovery, these results show that the MFC 

can absorb punctual increases in VFA, without showing signs of destabilisation. 
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a) 
 
 

 
 
 
 
 
 
 
b) 
 
b) 

 
Figure 5.1 a) Current density and b) VFA concentration and pH in the anode compartment obtained in Phase 1 

during the pure and mixed VFA pulses. Arrows show when each pulse was performed. 

 

5.3.2 MFC performance under AD stable and inhibited states 

During Phase 2a, the MFC was fed with the effluent of a lab-scale thermophilic AD at 

steady state operation. The current density was in average 121 mA m-2. At the start of this 

period, the COD removal efficiency in the MFC was as high as 48%, and gradually decreased to 

values between 10 and 20% at the end of the period (Figure 5.2), since the COD of the influent 

gradually decreased from 18.70 to 12.50 g L-1, showing an improvement in the performance of 

the AD. At the end of Phase 2a, the COD of the MFC effluent was of 10.06 g kg-1, representing 

a removal of 1.57 gCOD L-1 d-1. The overall COD removal for the AD-MFC combined system 

would be of around 70%. Results of the anaerobic biodegradability assay showed that the 
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maximum biodegradability in 62 days of the digestate utilised in Phase 2a was of 53%, similar 

to the COD removal efficiency of the MFC in this phase, with lower HRT than the time used in 

the anaerobic biodegradability assays. Average CE was 1.07±0.59%, much lower than the 

obtained in batch experiments with digested pig slurry and the same reactor and external 

resistance (100 Ω) (Chapter 4; Cerrillo et al., 2016a). The conversion of COD to methane only 

represented between 0.5-3.5% of the electron losses in this MFC, accordingly to the dissolved 

methane detected in the samples. So other complex processes are taking part in the anode 

compartment, and other electron acceptors may be present in the substrate, reducing the 

amount of electrons reaching the electric circuit. The ammonium removal efficiency during this 

phase oscillated between 12 and 27%, with a N-NH4
+ concentration in the effluent at the end of 

this phase of 1.03 g L-1, representing a flux of N-NH4
+ through the CEM of 4.76 gN m-2 d-1. 

Previous assays performed in batch mode MFC with the same external resistance achieved a 

flux of 8.86 gN m-2 d-1, although working with a lower COD and ammonia concentration; in that 

case, it was also found that ammonia transport in open circuit was as high as the obtained in 

closed circuit, so all ammonium transport was being produced by diffusion (Chapter 4; Cerrillo 

et al., 2016a). Although nitrogen removal rates obtained in other studies so far range between 

2.94 and 162.18 gN m-2 d-1 (Rodriguez Arredondo et al., 2015), the removal rate in this study is 

similar to the 3.3 gN m-2 d-1 value obtained working with urine with an MFC working at higher 

current density (500 mA m-2) and also a 3 times higher concentration of N in the influent (4050 

mgN L-1) (Kuntke et al., 2012). Increasing the electron recovery efficiency of the MFC system will 

allow to have a higher current density and more ammonia could be recovered.  

 

 

 

Figure 5.2 Current density and COD and ammonium removal efficiencies obtained in Phase 2. 

  

0%

10%

20%

30%

40%

50%

0

100

200

300

400

500

0 50 100 150

Rem
oval efficiency (%

)

Cu
rr

en
t d

en
si

ty
 (m

A
 m

-2
)

Time (d)

COD removal efficiency Ammonium removal efficiency Current density

Phase 2a Phase 2b 



AD instability by organic and N overloads: digestate polishing by coupling an MFC 

104 
 

On day 80 the influent was changed (Table 5.1), shifting to the effluent obtained from an 

inhibited AD as a result of an increase in the organic and nitrogen loading rates (Phase 2b). As 

a response, the MFC showed an increase in the COD removal efficiency up to values of 50%, 

stabilising around 30-40%. At the end of Phase 2b, the COD of the MFC effluent was of 25.20 g 

L-1, representing a removal of 5.04 gCOD L-1 d-1, a 3.2 fold increase with respect to Phase 2a 

(when the OLR was half of the one in Phase 2b). The anaerobic biodegradability tests (ABT) 

showed a maximum biodegradability of the MFC influent used in this phase of 81%. The 

increase with respect to the value obtained for the influent in the previous phase is in 

concordance with a destabilisation of the AD. The MFC maximum COD removal efficiency is 

62% of the achieved in the ABT, so a longer HRT would help to achieve higher removal 

efficiencies in the MFC. Average CE was 0.30±0.06%, a third part of the obtained in the 

previous phase, pointing out that in spite of a higher COD removal, an increase in the current 

density was not achieved. A previous study has found that an increase in the organic loading 

rate is not always followed by a significant increase in current generation, since the increase in 

the loading rate needs to be accompanied by a decrease of the external resistance in order to 

increase the continuous current generation (Aelterman et al., 2008). Methane production in the 

MFC during Phase 2b was lower than in the previous phase, representing between 0.3-0.9% of 

the removed COD. On the other hand, the ammonium removal efficiency remained in a range of 

14-31%, slightly higher than in the previous phase (12-27%). The N-NH4
+ concentration in the 

effluent at the end of this phase was of 2.23 g L-1, representing a flux of N-NH4
+ through the 

CEM of 11.19 gN m-2 d-1, which was a two-fold higher value than the one obtained in Phase 2a, 

and approaching the flux obtained in a similar reactor running in MEC mode with equivalent 

OLR and NLR (Chapter 7; Cerrillo et al., 2016b). In spite of the increase of COD of the influent 

and the removal rate, the average current density was similar to the previous phase (112 mA m-

2), so migration force may have a low influence on ammonia transfer through the CEM. 

Ammonia transport by diffusion may still have an important role in this system, probably due to 

the exchange of cations with the cathodic buffer and favoured in Phase 2b by the 2-fold higher 

ammonium concentration in the influent.  

Figure 5.3 shows the VFA concentration both of the influent and the effluent of the MFC. 

At the end of Phase 2a the removal efficiency for acetate established in a range of 50-80% (with 

a concentration in the effluent of 155-387 mg L-1), achieving 100% removal for propionate, thus 

polishing the effluent of the AD and removing the residual VFA concentration of the digestate. 

During Phase 2b, an increase in the VFA of the influent was observed, especially acetate and 

propionate, as a result of the destabilisation of the AD. The reduction of the VFA concentration 

in the MFC at the end of this period was of 52-64% for acetate and 55-70% for propionate. 

Minor VFA such as iso- and n-butyrate, and iso- and n-valerate, were reduced in a 68-70%, 92-
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98%, 71-77% and 87-100%, respectively, maintaining the acetic equivalent average VFA 

concentration under 2000 mg L-1 in spite of being the influent concentration in a range of 4200-

6500 mg L-1. The MFC is able to polish the AD effluent when the reactor is under inhibition, 

being the integration of both systems a valuable approach to maintain the effluent quality.   

a)

 

b) 

 

Figure 5.3 VFA concentration in a) the influent and b) the effluent in Phase 2. 

5.3.3 Microbial community analysis 
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operation with the AD was studied by means of qPCR and high throughput sequencing.  
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in methanogenic populations may explain the reduction in methane production during Phase 2b. 

On the other hand, the decrease in eubacteria and archaea populations may be due to the 

increase in the NLR in the last phase, since some microbial populations may be sensible to the 

high ammonia concentration of the influent. Concentrations of free ammonia nitrogen (FAN) 

above 900 mg L-1 were reached during Phase 2b, and at these levels the first signs of inhibition 

may occur according to previous studies (Angelidaki and Ahring, 1993; Hansen et al., 1998).  

 

Figure 5.4 Gene copy numbers for 16S rRNA and mcrA genes and ration between them, of the initial and final MFC 

anode biofilm (MFCi and MFCf, respectively), and the MFC influent in Phase 1. 

 

Regarding high throughput 16S rRNA gene sequencing assessment (MiSeq analysis), 

the reads, ranging from 34632 to 16875 reads per sample, and the coverage obtained for 

bacteria and archaeal community for each sample are shown in Table 5.3. Figure 5.5 shows 

rarefaction curves, with all the samples near to approach a plateau when plotting OTUs vs. the 

number of 16S rRNA, concomitant to high coverage values (99-100%) (Table 5.3). Regarding 

the eubacterial diversity, the inverted Simpson, Shannon and Chao-1 indices showed that the 

sample of the MFC at the start of the assays was the most diverse one (36.63, 4.75 and 820.25, 

respectively), while the MFC anode biofilm at the end of the assays was the less diverse one 

(8.01, 3.03 and 591.25, respectively) (Table 5.3). With respect to the archaeal diversity, different 

results were obtained depending on the index taken into account (Table 5.3). Inverted Simpson 

index showed the highest diversity in the case of the initial sample of the MFC anode biofilm, 

being followed by the final sample and the AD effluent. Shannon index identified the final anode 
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biofilm as the sample with the highest diversity, followed by the initial anode biofilm. However by 

using Inverted Simpson index, which is more sensitive to samples with low diversity (i.e. 

Archaea), it was revealed that the diversity of archaeal community on the anode was 

maintained throughout phase 2 period, being higher than those harboured in the inflow 

digestate. Chao-1 revealed complex eubacterial populations in all samples (anode and 

digestate) ranging from 591 to 820 OTUs, whereas Archaeal community was quite less complex 

accounting for 62 to 94 OTUs.  These diversity and richness results are in concordance with the 

study performed in Chapter 7 that also showed a reduction of the BES biodiversity after being 

operated with digested pig slurry (Cerrillo et al., 2016b). 
 

Table 5.3 Diversity index for Eubacterial and Archaeal community of the MFC anode and MFC influent in Phase 1 

samples (average±SD). Data normalised to the sample with the lowest number of reads (17049 and 16875 for 

eubacterial and archaeal, respectively). 

 Reads Coverage OTUs 
Inverted 
Simpson 

Shannon Chao 

Eubacteria       

MFCi 17049 0.99±0.00 713.00±0.00 36.63±0.00 4.75±0.00 820.25±0.00 

MFCf 26308 0.99±0.00 453.12±6.54 8.01±0.06 3.03±0.01 591.25±28.39 

InfluentPh1 23555 0.99±0.00 689.01±6.36 15.66±0.17 4.30±0.01 819.02±23.00 

Archaea       

MFCi 128381 1.00±0.00 68.61±3.81 2.30±0.01 1.19±0.01 94.25±16.95 

MFCf 16875 1.00±0.00 51.00±0.00 2.13±0.00 1.41±0.00 62.14±0.00 

InfluentPh1 34632 1.00±0.00 56.63±2.58 1.64±0.01 1.03±0.01 74.68±14.40 
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(a) 

 
(b) 

 
Figure 5.5 Rarefaction curves for initial (MFCi) and final (MFCf) MFC anode samples and the digested pig slurry in 

Phase 1 regarding (a) Eubacterial and (b) Archaeal community. 

 

The dominant eubacterial phylum identified in the anode biofilm sample of the MFC at 

the start of Phase 1 was Bacteroidetes (40%), followed by Firmicutes (20%) and Proteobacteria 

(14%). These phyla are also the predominant ones in previous studies (Bonmatí et al., 2013; 

Mei et al., 2015; Sotres et al., 2015a; Sotres et al., 2015b) and in Chapter 7. At the end of the 

experiment (Phase 2b), Bacteroidetes increased its relative abundance in the anode up to 66%, 

concomitant to an increase of a minor phylum at the initial biofilm, Chloroflexi (17%), and the 

decrease of Firmicutes (8%) and Proteobacteria (below 0.5%). Regarding the eubacterial 

community, the influent (digestate) in Phase 1 and the anode biofilm were closely similar at the 
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start of the experiments (Figure 5.6). The anode compartment of the MFC had been fed 

previously in batch mode with digested pig slurry for 2 months as described in Chapter 4. At 

family level, the digestate in Phase 1 was dominated, as in the case of the MFC biofilms, by 

Flavobacteriaceae (24%). Indeed, Flavobacteriaceae (13%) was the predominant one at the 

initial biofilm, followed by three families with the same relative abundance, 

Desulfuromonadaceae, Porphyromonadaceae and Acholeplasmataceae (8%). The anode 

biofilm in MFC at the end of the experiment (Phase 2b) showed 2.6 fold increase of 

Flavobacteriaceae (34%, within the phylum Bacteroidetes), while Anaerolineaceae family, 

mainly Longilinea sp., (harbouring well known fermentative bacteria belonging to phylum 

Chloroflexi) increased from 1 to 17%, probably due to a higher bioavailability of fermentative 

substrates on the digestate from unstable anaerobic digester (Phase 2b). Both families have 

been identified in the anode of a MEC in the study performed in Chapter 7, as well as 

Anaerolineaceae in the anode of a MFC (Bonmatí et al., 2013). 32% and 36% of the OTUs of 

the initial and final biofilm of the MFC were unclassified at family level and belonged mainly to 

Bacteroidetes and Firmicutes phyla, representing 47 and 34% of the unclassified OTUs in the 

initial MFC biofilm, respectively, and 81% and 15% in the final one. These OTUs that cannot be 

assigned to a known family may be novel taxa or be still poorly defined in RDP database.   

Regarding archaea population, Methanomassiliicoccaceae (49%) and 

Methanotrichaceae (“Methanosaetaceae”) (45%) were the predominant families in the anode of 

the MFC at the start of the experiments (Figure 5.7). A clear shift was observed after the 

experiments of VFA pulses and inhibited AD feeding, showing a clear enrichment of 

Methanosarcinaceae family (70%), when in the initial anode it only represented 2% of the 

population. Also Methanobacteriaceae family, which was under 0.5% in the initial MFC biofilm, 

increased to 9% at the final sample. Both families are classified as hydrogenotrophic 

methanogens, being Methanosarcinaceae able to generate methane also by means of the 

aceticlastic way. On the other hand, Methanotrichaceae (“Methanosaetaceae”) is strictly 

aceticlastic. Previous studies have stated that Methanosarcina sp. seems to be more tolerant 

towards ammonium stress than other methanogens, particularly Methanosaeta sp. (De Vrieze 

et al., 2012). So the increase in the NLR of the MFC may have favoured the increase in relative 

abundance of the first one. Interestingly, Methanosarcinaceae was not a predominant group in 

the MFC influent, neither in Phase 1, dominated by Methanotrichaceae (78%), nor in Phase 2, 

dominated by the genus Methanothermobacter (98%) belonging to Methanobacteriaceae family, 

as was also described later in Chapter 7.  
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a) 

 

b) 

 

Figure 5.6 Taxonomic assignment of sequencing reads from Eubacterial community of the initial and final MFC 

anode biofilm (MFCi and MFCf, respectively), and the MFC influent of Phase 1, at a) phylum b) family levels. Relative 

abundance was defined as the number of reads (sequences) affiliated with any given taxon divided by the total 

number of reads per sample. Phylogenetic groups with a relative abundance lower that 1% were categorised as 

“others”. 
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Figure 5.7 Taxonomic assignment of sequencing reads from Archaeal community of the initial and final MFC anode 

biofilm (MFCi and MFCf, respectively), and the MFC influent of Phase 1, at family level. Relative abundance was 

defined as the number of reads (sequences) affiliated with any given taxon divided by the total number of reads per 

sample. Phylogenetic groups with a relative abundance lower that 1% were categorised as “others”. 

 

 

Correspondence analysis for eubacterial and archaeal population (Figures 5.8a and 

5.8b, respectively), including in this case the samples of the digested pig slurry in Phase 2a and 

b (AD-Ph2a and AD-Ph2b, respectively), clusters similarly in both cases. The MFC initial biofilm 

was clustered together with the digested pig slurry in Phase 1 (AD-Ph1), while the final biofilm 

was located far from this cluster and the second one formed by the digested pig slurry in Phase 

2a and 2b, showing that the anode biofilm evolution is independent from the population present 

in the digestates feeding the MFC. 
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 a) 

b)     

       
Figure 5.8 Correspondence Analysis for initial (MFCi) and final (MFCf) MFC anode samples and the 3 AD influents 

(AD-Ph1, AD-Ph2a and AD-Ph2b) regarding (a) Eubacterial and (b) Archaeal community. 
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5.4 Conclusions  

The MFC has proven to be a useful technology to improve the effluent quality after 

possible malfunction of AD reactors, since it has been able to remove high levels of VFA from 

AD effluents, while recovering ammonia. During punctual pulses of VFA, simulating a 

malfunction of the AD process, the MFC showed a poor conversion of COD increase into 

current density. Probably other complex reactions may be taking place in the anode 

compartment or other electron acceptors may be present in the substrate, although VFA were 

totally removed. The MFC operated under a stable period of the AD achieved 10-20% of COD 

removal and 12-27% of ammonium removal, while when feeding with the effluent of the 

inhibited reactor these removal efficiencies increased to 30-40% and 14-31%, respectively. The 

MFC operated in serial after the anaerobic digestion of pig slurry has proven to produce a 

reduction of the biodiversity of the microbial population, as well as a decrease in the total 

population, especially of eubacteria. 
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Abstract 

Anaerobic digestion (AD) is widely used to treat various kinds of 

wastes. One of the main drawbacks is that the process can become 

unstable by organic overload and several substances that may be 

present in the waste stream. Furthermore, AD does not modify total N 

content of digestate and it usually needs correct management or 

further treatment. A microbial electrolysis cell (MEC) was studied as a 

technology to be combined with AD to overcome these limitations. 

Continuous assays with a MEC fed with digested pig slurry were 

performed to evaluate its stability and robustness to malfunction 

periods of the AD reactor and its feasibility as a strategy to recover 

ammonia. During punctual pulses of volatile fatty acids (VFA), 

simulating a malfunction of the AD process, an increase in the MEC 

current density was produced as a result of the added COD, 

especially when acetate was used, reaching current densities of 3500 

mA m-2 concomitant to high levels of VFA removal. Furthermore, 

ammonium diffusion from the anode to the cathode compartment was 

enhanced during daily pulses and the removal efficiency achieved up 

to 60%. An AD-MEC combined system has proven to be a robust and 

stable configuration to obtain a high quality effluent, with a lower 

organic and ammonium content. 
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6.1 Introduction 

Livestock manure can be a source of energy and nutrients if managed and processed 

properly. Anaerobic digestion (AD) is a biological process which converts organic substrates in 

a mixture of gases (biogas) –mainly methane and carbon dioxide. This energy recovering 

technology is well established in terms of performance, is technically and economically feasible, 

and is widely used to treat various kinds of wastes (Angenent et al., 2004). However, this 

technology presents some drawbacks. In the first place, AD does not modify total N content of 

digestates, and thus when it is applied to livestock manure it needs to be combined with other 

processes for N removal or recovery to avoid effluent management constrains, such as 

chemical precipitation of ammonium and phosphate as struvite (Cerrillo et al., 2015), ammonia 

stripping and its subsequent absorption in an acid solution (Laureni et al., 2013) or thermal 

concentration of the digestate (Bonmatí et al., 2003; Bonmatí and Flotats, 2003). In the second 

place, the process can become unstable by organic overload or inhibited by several substances 

that may be present in the waste stream, such as long chain fatty acids (Palatsi et al., 2009), 

ammonia (Yenigün and Demirel, 2013), sulphide, light metal ions (Na+, K+, Mg2+, Ca2+ and Al3+), 

heavy metals and organic compounds as chlorophenols or halogenated aliphatic compounds 

(Chen et al., 2008). Reactor inhibition caused by the accumulation of these substances will be 

indicated by reduced biogas production and/or biogas methane content, and accumulation of 

volatile fatty acids (VFA) such as acetate, propionate or butyrate, that may led to reactor failure. 

So it is interesting to find out new technologies that can help to maintain effluent quality within 

the desired limits. 

Bioelectrochemical systems (BESs), such as Microbial Electrolysis Cells (MECs), that 

use microorganisms attached to one or both bioelectrode(s) in order to catalyse oxidation 

and/or reduction reactions, can also be coupled to AD in order to improve its performance and 

effluent quality (Chapter 4; Cerrillo et al., 2016). BESs offers some advantages over AD as it 

performs properly at low substrate concentration levels. Combining AD and MEC is a new 

processing strategy aiming to recover energy and nitrogen simultaneously. On the one hand, 

ammonium can be removed and recovered, as it is transferred through the cation exchange 

membrane from the anode to the cathode compartment where it can be recovered (Chapter 4; 

Cerrillo et al., 2016; Kuntke et al., 2014; Sotres et al., 2015; Zhang et al., 2013). And on the 

other hand, this system can help to produce additional energy and to polish the AD effluent, 

especially when malfunction of the AD system is produced due to organic overloads or inhibition 

process, attaining a more stable and robust performance.  

The combination of BES and AD has been previously studied, although using Microbial 

Fuel Cell (MFC) mode and with the objective of polishing the digestate, such as the effluent of a 

two-stage biogas process at low organic loading (Fradler et al., 2014), digested landfill leachate 
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(Tugtas et al., 2013) or digested wastewater from potato-processing industries (Durruty et al., 

2012). Also the long-term performance of sludge treatment has been examined in an MFC 

operated for almost 500 days (Ge et al., 2013). Another MFC has been coupled with a hydrogen 

production fermentor (Sharma and Li, 2010). It has also been described an up-flow anaerobic 

sludge blanket reactor-microbial fuel cell-biological aerated filter (UASB-MFC-BAF) integrated 

system for simultaneous bioelectricity generation and molasses wastewater treatment (Zhang et 

al., 2009). Finally, Chapter 4 has compared the treatment of digested pig slurry under MFC and 

MEC mode (Cerrillo et al., 2016). 

However, a deep assessment of BES performance against an AD destabilisation has not 

been undertaken, neither its influence in ammonia recovery. Stability can be defined by the 

concepts of resistance (ability of a system to resist disturbance) and resilience (rate of recovery 

of a system after a disturbance) (Hashsham et al., 2000). Different studies have found a positive 

correlation between biodiversity and stability when working with activated sludge (Saikaly and 

Oerther, 2010). But stability has found to be best correlated not to population diversity per se 

but to functional redundancy (Briones and Raskin, 2003). Methanogens are represented by a 

low diversity compared to the more diverse fermentative bacteria (Saikaly and Oerther, 2010). 

In AD reactors, the lack of functional redundancy of the methanogenic group suggests that they 

may be less functionally stable to toxic shock loading. In BESs, microorganisms develop into a 

biofilm on electrodes, which confers their good resistance to toxic substances and 

environmental fluctuations (Borole et al., 2011) and makes the integration of BESs with AD an 

attractive synergic mode (Zhang et al., 2009).  

The main aim of this Chapter is to assess the stability and robustness of continuous 

MEC operation in combination with AD, and its feasibility as a strategy to recover ammonia. 

MEC response to punctual and sustained organic overloads when fed in continuous with AD 

effluent as a result of AD failure was evaluated, regarding resistance and resilience against the 

perturbation, VFA removal and its capacity to absorb the higher organic load to increase current 

density production and ammonia removal. 

6.2 Materials and methods  

6.2.1 Experimental set-up 

The MEC reactor was the same two chamber cell used in Chapter 4, and described in 

Section 3.1.1. The assays were performed after the batch assays carried out in Chapter 4. 

Digested pig slurry was used as feeding solution in the anode compartment. The 

digestate was obtained from a mesophilic AD plant with a hydraulic retention time (HRT) of 40 

days (Vila-Sana, Lleida, Spain), previously filtered through a stainless steel sieve to remove 
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particles larger than 125 μm and diluted with tap water to obtain the desired COD. Table 6.1 

shows the main characteristics of the feeding solution. The feeding solution for the cathode 

chamber contained NaCl 0.1 g L-1 (in deionised water). The solutions of both the anode and the 

cathode compartment were fed in continuous with a pump working at 16.4 mL h-1 and mixed by 

recirculating them with an external pump. 

6.2.2 Reactor operation 

The MEC was operated in continuous for 110 days with a HRT of 30 h, while poising the 

anode (working electrode) potential at 0 mV vs SHE. In Phase 1, the MEC was fed for 10 days 

with the digestate to evaluate its performance under a stable operation of the AD reactor, with 

an organic loading rate (OLR) of 18.24 g COD L-1 d-1. In Phase 2, in order to simulate an 

overload episode of the AD system and to study VFA degradation dynamics in the MEC, a 

series of pulses of diverse VFA were performed in the anode compartment in duplicate, 

increasing the added COD in each series; while in Phase 3 the pulses were of mixed VFA 

(Table 6.2). Each pulse was performed once the current density had returned to basal levels. 

Finally, in Phase 4, a daily pulse of mixed VFA (acetate, propionate and butyrate, as specified in 

Table 6.2) was applied during 5 days to the MEC cell for 2 weeks, simulating a long period of 

malfunction of the AD reactor. All assays were performed at room temperature (~ 23 ºC). 

Samples were taken from the anode and the cathode compartment prior to the pulse, and at 

time 1, 7, 24 and 48 h after the pulse. 

 
Table 6.1 Characterisation of digested pig slurry and the final solution used as feeding in the MEC. 

Parameter Digested Pig Slurry 
Digested Pig Slurry 

MEC influent* 

pH (-) 8.4 8.2 
COD (mg O2 kg-1) 173 369 23 170 
N-NH4

+ (mg L-1) 4 438 2 190 
TS (%) 8.39 1.44 
VS (%) 6.10 0.90 
Acetate  (mg L-1) 261 110 
Alkalinity (gCaCO3 L-1) 13.8 - 
NH4

+ (mg L-1) 3 806 1 827 
Na+ (mg L-1) 1 014 694 
Mg2+ (mg L-1) n.d. n.d. 
Ca2+ (mg L-1) 3 566 1 199 
K+ (mg L-1) 1 374 650 
PO4

3- (mg L-1) 184 n.d. 
SO4

2- (mg L-1) 3 463 972 
* Digested pig slurry sieved 125 μm and diluted 50% 

n.d: not detected 
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Table 6.2 Operational conditions for the MEC reactor during the series of VFA pulses. 

Phase Day VFA addition (mg) Added COD (mg) 
Acetate Propionate Butyrate 

1 1-10 0 0 0 - 

2 

11 and 12 250 0 0 267 

13 and 17 500 0 0 534 

19 and 20 0 500 0 757 

60 and 62 0 0 500 909 

3 
33 and 38 500 500 0 1291 

40 and 47 1000 200 85 1525 

4 66 to 70 

73 to 77 
1000 200 85 1525 

6.2.3 Analyses and calculations 

Samples of the feeding solutions and the anode effluent were characterised for chemical 

oxygen demand (COD), total and volatile solids (TS and VS), alkalinity, volatile fatty acids 

(VFA), ammonium N-NH4
+ and pH, besides dissolved methane in the anode effluent. Cathode 

samples were characterised for ammonium N-NH4
+ and pH. All the analyses were performed 

following the methods described in Section 3.2. 

In order to know the biodegradability of the remaining organic matter of the digested pig 

slurry (substrate) used as feed solution to the MEC, anaerobic biodegradability tests (ABT) of 

the digestate were performed as described in Section 3.2.11. 

Current density, coulombic efficiency (CE), COD and ammonium removal efficiencies 

and ammonium flux were determined as described in Section 3.4. 

Resilience was used as a measure of system stability, and was calculated as the time 

taken for VFA concentration to recover basal levels. 

6.3 Results and discussion  

6.3.1 Stable feeding with digested pig slurry (Phase 1)  

During this phase the MEC was fed with digested pig slurry and showed a stable 

performance in current density (Figure 6.1), achieving a 100% reduction in VFA (an average 

110 mg L-1 acetic acid was present in the influent and it was not detected in the effluent). The 

average COD removal was of 12.21±1.77%, indicating that mainly low biodegradable COD was 

available in the digestate. The anaerobic biodegradability assay performed in mesophilic 

conditions with the same digested pig slurry fed to the MEC showed an anaerobic 

biodegradability of 33% (data not shown). Taking this value as a reference, the MEC was able 
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to remove 37% of the biodegradable organic matter present in the digested pig slurry, 

concomitant to an ammonium removal efficiency of 11.81±1.36% (3.73±0.51 g N m-2 d-1). The 

current density produced was of 425±77 mA m-2. The average CE was of 3.52% (10.67% if 

taking into account only the biodegradable COD), and just 0.97% of the removed COD was 

converted into methane (the anodic effluent contained 11.40±0.72 mgCH4 L-1). These results are 

in accordance with the values obtained in previous studies. Ge et al. (2013) obtained 

36.2±24.4% COD removal and 2.6±1.4% CE with an MFC treating digested sludge, although 

with a much longer HRT (9 days) and an influent COD of 16.7±11.4 g L-1. In Chapter 4 the MEC 

fed with digested pig slurry (8 g COD L-1 and 872 mg N-NH4
+ L-1) in discontinuous mode 

achieved a maximum peak of 700 mA m-2 when poising the anode at 0 mV, with a COD removal 

efficiency of nearly 20% and an ammonium removal efficiency of around 30% in 48 h assays 

(Cerrillo et al., 2016). Longer HRT and lower COD and ammonium concentration may have 

favoured these higher removal efficiencies. Higher ammonium removal efficiencies of around 

30% (171.4 g N m-2 d-1) have been reported in another study using a MEC fed with diluted urine, 

which may have been achieved thanks to the high current densities obtained of 14.64±1.65 A m-

2 (Kuntke et al., 2014), which were nearly 35 times higher than the one described in the present 

study, and a shorter HRT of 2 h.  

The pH of the anode compartment effluent was of 7.8±0.1, thus slightly lower than the 

influent pH (8.2±0.1). The buffering capacity of the anolyte (digested pig slurry; alkalinity 13.8 

gCaCO3 L-1) avoided a higher decrease in the anode compartment pH, despite acidification due to 

cation transport to the cathode compartment and proton accumulation in the anode (Rozendal 

et al., 2008). Regarding cathode effluent pH, it was of 10.1±0.1, a very convenient pH for 

ammonia recovering, since can drive ammonium to ammonia gas and favour a subsequent 

stripping and absorption process (Cord-Ruwisch et al., 2011; Kim et al., 2008; Kuntke et al., 

2012; Sotres et al., 2015). The increase of pH in the cathode compartment was favoured as no 

buffer solution was used. 

 
Figure 6.1 Current density during Phase 1, of stable feeding with digested pig slurry. 
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6.3.2 Punctual VFA pulses (Phase 2) 

The response of the MEC after the pulses of acetate was an immediate increase in 

current density, with a peak of between 1300 and 1700 mA m-2 for the 250 mg pulses and 

between 2100 and 2600 mA m-2 for the 500 mg pulses; and a later decrease of it concomitant 

with acetate removal, achieving the total degradation in 24 h and 48 h for the 250 and 500 mg 

pulses, respectively (Figure 6.2a). Current density returned to levels of around 500 mA m-2, 

similar to those obtained in Phase 1, demonstrating a high resilience to perturbation by VFA 

accumulation. The amount of charge produced, calculated by integrating the area under the 

current (A) peak, resulted in 0.65±0.03 and 1.62±0.15 mmol of electrons, equivalent to 1.94 and 

2.42% of the COD added with the 250 and 500 mg pulses, respectively. Methane production 

increased slightly during acetate pulses, with a concentration of 12.60±2.34 mgCH4 L-1 and 

14.45±2.53 mgCH4 L-1 in the anodic effluent for the 250 and 500 mg pulses, respectively although 

this difference was not statistically significant. A slight increase in ammonium removal was also 

observed, from a level of 15% before the pulse to around 20% after the pulse, in response to 

the increase of electron transport through the external circuit. As a result of the increase of 

current density, the pH of the cathode compartment was also increased during current peaks 

achieving a pH of 11 during 250 mg pulses and even above 12 during the 500 mg ones. The pH 

of the anode effluent oscillated between 7 and 8, an optimum range for microbial activity.  

The response to propionate pulses was less intense than to the acetate ones: the 

increase in current density was observed with a slight delay, and the peak achieved 1000 mA m-

2 (Figure 6.2b). After 24 h a level of 200 mg L-1 of propionate remained still in the effluent, and a 

small amount of acetate was detected (around 100 mg L-1). Although the electrons that could 

potentially be delivered through propionate degradation were 1.4 fold higher than those 

available in the 500 mg acetate pulse (each g of acetate will produce 135.5 mmols of electrons 

in MEC’s anode and 1 g of propionate will release 191.6 mmols of electrons), the amount of 

charge produced resulted in 0.45±0.05 mmols of electrons, equivalent to 0.47% of the COD 

added with the pulse. This behaviour could be explained because acetate was the sole VFA 

present in the influent of the MEC and thus the development of propionate oxidising 

populations, probably different to acetate oxidising populations, has not been favoured. 

Methane production was not statistically different to that of acetate pulses, with a concentration 

of 15.42±1.82 mgCH4 L-1 in the anodic effluent. As the peak current was less intense, the 

increase of pH in the cathode effluent was also moderate, achieving a maximum pH of 11.5. 

Ammonium removal was not enhanced during propionate pulses, since it was similar to the 

removal efficiency obtained in Phase 1. 

Finally, the pulses of butyrate showed an increase in current density with a wider peak 

than the ones obtained with the acetate pulses, and a maximum of nearly 2500 mA m-2 (Figure 
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6.2c). Butyrate concentration in the anode effluent was of about 70 mg L-1 within 24 h, and 

acetate increased to levels between 200-360 mg L-1 during the peaks and decreased to basal 

levels after 24h. The presence of acetate, produced by butyrate degradation, explains the width 

of the current peak, and suggests the existence in the anode of a microbial population more 

efficient in the oxidation of butyrate and acetate than of propionate. The potential amount of 

charge that could be produced from the butyrate pulse was 1.7 fold higher than in the 500 mg 

acetate pulse, although the area under the peak corresponded with 1.95±0.01 mmol of 

electrons, only 1.2 fold higher, and 1.72% of the electrons provided by the pulse. Methane 

concentration in the anodic effluent 7 h after the pulse achieved levels of 20 mgCH4 L-1. 

Furthermore, in response to a higher level of current production, cathode pH remained near 12 

during both butyrate pulses. Anode pH, as in the preceding pulses, was maintained between 7 

and 8. Ammonium removal efficiency was enhanced during the second butyrate pulse, 

concomitant to the current density increase, achieving nearly 28%.  

From those results it can be said that the MEC has shown a high resilience against VFA 

increase in the influent, since the high levels of VFA have been removed, within the 

concentrations tested, and the effluent concentration returned to the initial level in about 48 h. 

Furthermore, each of the three VFA assayed had positive effect on power density. However, as 

shown here and consistent with previous results, acetate was the preferred substrate for 

electricity generation in MFC/MEC, and microbial community was less efficient in converting 

propionate to energy, as other studies have shown (Choi et al., 2011; Yang et al., 2015). 

Acetate can be directly consumed for electricity generation; however, long-chained VFAs must 

first be converted into acetate. In a previous study, MFC in fed batch mode with synthetic 

medium with the same VFA as assayed here showed that CE and power output varied with the 

different substrates. The acetate-fed-MFC showed the highest CE (72.3%), followed by butyrate 

(43.0%) and propionate (36.0%) (Chae et al., 2009). In a batch single-chambered MFC, power 

generated when feeding with acetate was up to 66% higher than that obtained when feeding 

with butyrate (Liu et al., 2005). A better performance in a MFC fed with acetate was obtained 

respect the ones fed with propionate or butyrate. For the same organic loading rate, the current 

generated with propionate or butyrate was half the produced with acetate (Freguia et al., 2010). 
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Figure 6.2 Current density, VFA concentration, ammonium removal and anode and cathode pH obtained in Phase 2 

during the VFA pulses of (a) 250 and 500 mg of acetate, (b) 500 mg of propionate and (c) 500 mg of butyrate. Arrows 

show when each pulse was performed. 

 

6.3.3 Punctual mixed VFA pulses (Phase 3) 

Current density profiles of the pulses of mixed VFA are shown in Figure 6.3. When a 

pulse of acetate and propionate was applied (500 mg each one), the maximum current density 

achieved was between 2000 and 3000 mA m-2, quite similar to that obtained when only acetate 

was applied, although the base of the peak was wider. The two VFA were removed at a similar 

rate, being undetectable 48 h after the pulse, when the current density decreased to values 
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below 500 mA m-1. The amount of charge produced did not correspond to the addition of the 

charge produced during the pure VFA pulses in Phase 2, but was a value very similar to that 

obtained with the pulse of only acetate (1.70±0.21 mmol of electrons, 1.05% of the potential 

charge added with the pulse). Methane concentration in the anodic effluent was of 7.91±2.58 

mgCH4 L-1, significantly lower to that obtained with pure 500 mg acetate pulses, although the 

recovery of electrons had been lower. The pH of the cathode effluent increased again up to 12, 

while pH of the anode effluent decreased but was always above 7. Ammonium removal followed 

the current density profile, being 30% the maximum removal efficiency. 

Regarding the mixed VFA pulses of acetate, propionate and butyrate, Figure 6.3b shows 

that the current density peaks were between 3000 and 3500 mA m-2, and that the bases of the 

peaks were the wider ones among all the pure and mixed VFA pulses performed. Current 

density decreased sharply when VFA were totally removed, between 48 and 55 h after the 

pulse, and returned to levels below 500 mA m-2, similar to those obtained in Phase 1. The 

amount of charge produced was of 2.65±0.19 mmol of electrons, a 1.39% of the potential 

charge added with the pulses. As in the previous mixed VFA pulses, methane concentration in 

the anodic effluent (10.04±3.02 mgCH4 L-1) was not statistically different to that obtained with 

pure VFA. Showing again a very similar behaviour to the mixed VFA pulses of acetate and 

propionate, the pH of the cathode and the anode increased to 12 and decreased to nearly 7, 

respectively. Ammonium removal efficiency increased to levels up to 35%. 

These results show that when mixed VFA pulses are applied, again a high resilience is 

shown by the MEC, since VFA and current density levels return to the initial ones in about 48 h. 

It has also been observed that the efficiency of the MEC in the electricity conversion is lower 

than when pure VFA are applied. This is in agreement with the results reported in previous 

studies. When food wastes were used as feedstock in an MFC, it was found that the co-

existence of various VFA slowed the removal of each VFA, which indicated that anodic 

microbes were competing for the different substrates. Furthermore, the degradation rate of 

butyrate increased when short VFAs were absent in the anode chamber, indicating that these 

readily degradable short compounds inhibited microbial activity on large VFAs (Choi et al., 

2011). Teng et al. (2010) found that although both acetate and propionate contributed positively 

to the power density, they had antagonistic effects when they were mixed together. Similar 

antagonistic effects were also obtained in that study for acetate–butyrate and propionate–

butyrate, and the increase or decrease of the power density depended on the relative proportion 

of each VFA in the mixture. 
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Figure 6.3 Current density, VFA concentration, ammonium removal and anode and cathode pH obtained in Phase 3 

during the mixed VFA pulses of (a) 500 mg of acetate and 500 mg of propionate and (b) 1000 mg of acetate, 200 mg 

of propionate and 85 mg of butyrate. Arrows show when each pulse was performed. 

 

6.3.4 Continuous daily base mixed VFA pulses (Phase 4) 

During the mixed VFA daily base pulses performed in the MEC, power density was 

maintained on average between 1500 and 3000 mA m-2 (Figure 6.4). Acetate from previous 

pulse had not been consumed when a new pulse was added (remaining around 1000 mg L-1). 
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But after 3 days, before starting the second series of pulses, all VFA had been removed. During 

the second series, the peaks of acetate were lower than in the first series.      

Therefore, the MEC was able to maintain a stable production of current and reduce 

acetate concentration, avoiding VFA accumulation. Furthermore, methane production was 

maintained in the lowest levels among the different punctual pulses performed, with an average 

concentration in the anodic effluent of 5.09±1.45 mgCH4 L-1. During the daily pulses, the cathode 

pH increased and was maintained between 12-12.5, while anode pH was stable around 7-8. A 

slight oscillation in the later pulses performed was shown, decreasing down to 6.5 but 

recovering to values higher than 7 few hours after the pulse. Furthermore, ammonium removal 

increased during the series of pulses to a level of 40%, achieving in the second series values up 

to around 60%. These values are higher than those obtained in previous studies which 

achieved an ammonium removal efficiency of 30%, but with 10 times higher current densities 

(Kuntke et al., 2014). 
Sharma et al. (2014) proposed some general guidelines to meet robustness with 

electroactive biofilms. One of them was that electroactive biofilm should exhibit preservation of 

the predominant electrochemical mechanisms and metabolic constructs by which a targeted 

outcome was achieved (e.g. generation of electric current, a set of organic chemicals, 

recalcitrant COD removal, denitrification, metal reduction, etc.) after scenarios of metabolic 

disturbances common to BES (e.g. fluctuations in potential, pH, temperature, conductivity, 

substrate concentration and composition, power supply instabilities/interruptions, flow rate, 

dissolved oxygen). The MEC evaluated in this study has proven to be a robust system, showing 

a high resistance to organic overloads and also a high resilience, since after both punctual and 

daily VFA pulses the system has been able to recover its performance in less than 48 h after 

the stress. 

A previous study focused in evaluating an AD-MFC hybrid system stability using a high 

acetic load as disturbance, reported that the hybrid system did not have increasing resilience 

compared to the solitary systems. However, since the low pH had a relatively delayed effect on 

the MFC compared to the AD, the energy output indeed was more stable in the hybrid system 

(Weld and Singh, 2011). By contrast, the objective of this Chapter has been to assess the 

stability of an AD-MEC system during a range of less severe stresses, showing that using a 

MEC as a post-treatment of AD can improve the quality of the effluent during AD malfunction, 

both at high levels of VFA and ammonia, while recovering energy. 
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Figure 6.4 Current density, VFA concentration, ammonium removal and anode and cathode pH obtained in Phase 4, 

during daily pulses of 1000 mg of acetate, 200 mg of propionate and 85 mg of butyrate. Arrows show when each 

pulse was performed. 
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6.4 Conclusions  

The MEC has been able to remove high levels of VFA from AD effluents and has shown 

to be a useful technology to correct possible malfunction of AD reactors. The MEC fed with 

digested pig slurry achieved 12.21±1.77% of COD removal. During punctual pulses of VFA, 

simulating a malfunction of the AD process, the MEC showed as a resistant and resilient 

system, and an increase in the current density (up to 14 times, reaching values of 3500 mA m-2 ) 

was produced as a result of the added COD, especially when acetate was used. Furthermore, 

ammonium diffusion from anode to cathode compartment was enhanced and the removal 

efficiency achieved up to 60% during daily basis pulses, since electron transport is directly 

related to cation transport through the CEM membrane. An AD-MEC combined system has 

proven to be a robust and stable configuration to recover energy and obtain a high quality 

effluent, with a lower organic and ammonium content. 
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Abstract 

The combination of the anaerobic digestion (AD) process with a 

microbial electrolysis cell (MEC) coupled to an ammonia stripping unit 

as a post-treatment was assessed both in series operation, to 

improve the quality of the effluent, and in loop configuration 

recirculating the effluent, to increase the AD robustness. The MEC 

allowed maintaining the chemical oxygen demand removal of the 

whole system of 46±5% despite the AD destabilisation after doubling 

the organic and nitrogen loads, while recovering 40±3% of ammonia. 

The AD-MEC system, in loop configuration, helped to recover the AD 

(55% increase in methane productivity) and attained a more stable 

and robust operation. The microbial population assessment revealed 

an enhancement of AD methanogenic archaea numbers and a shift in 

eubacterial population. The AD-MEC combined system is a promising 

strategy for stabilising AD against organic and nitrogen overloads, 

while improving the quality of the effluent and recovering nutrients for 

their reutilisation. 
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7.1 Introduction 

Anaerobic digestion (AD) of livestock manure and other wastes results in organic matter 

stabilisation and biogas production, a biofuel containing mainly methane and carbon dioxide 

that can be used in power generation systems to obtain heat and electricity. This energy 

recovering technology is nowadays widely used to treat various kinds of wastes (Angenent et 

al., 2004). AD process is complex, since it involves many different groups of microorganisms, 

especially methanogens, that are particularly sensitive to organic overloads and diverse 

substances that may be present in the waste stream such as ammonia (Angelidaki and Ahring, 

1993; Yenigün and Demirel, 2013). AD can mainly take place at two different ranges of 

temperatures, either mesophilic (25-40 ºC) or thermophilic (45-60 ºC). The later one is more 

favourable to obtain a high digestion rate, since high loading rates or short retention times can 

be applied, due to higher growth rates of bacteria at higher temperatures. Moreover, improved 

solids settling and destruction of microbial pathogens is attained (Angelidaki and Ahring, 1994). 

On the other hand, thermophilic AD has lower process stability than mesophilic AD, it being 

more sensitive to high ammonia concentrations since free ammonia (NH3), the active 

component causing ammonia inhibition, increases with an increase in pH and temperature 

(Angelidaki and Ahring, 1994). Reactor upset will be indicated by a reduction in biogas 

production and/or biogas methane content, and the accumulation of volatile fatty acids (VFA) 

that may lead to reactor failure (Chen et al., 2008). At a microbiology level, and due to the 

complex interdependence of microbial activities for the adequate functionality of anaerobic 

bioreactors, the genetic expression of mcrA, which encodes the α subunit of methyl coenzyme 

M reductase –the enzyme that catalyses the final step in methanogenesis–, has been proposed 

as a parameter to monitor the process performance (Alvarado et al., 2014; Morris et al., 2013).  

Besides monitoring the AD process by means of CH4 production, it is interesting to 

explore new technologies that can help AD to maintain effluent quality within the desired limits 

despite AD failure. So far, different strategies for stabilising AD reactors under high organic 

loading rates and for controlling ammonia toxicity have been evaluated, ranging from the more 

classical approaches, such as co-digestion with carbon-rich substrates to equilibrate the carbon 

to nitrogen ratio (Chiu et al., 2013), introduction of adaptation periods (Borja et al., 1996), 

reduction of ammonia content of the substrates by air stripping (Bonmatí and Flotats, 2003; 

Laureni et al., 2013), or dilution of the substrates (Hejnfelt and Angelidaki, 2009); to more 

innovative ones, such as the use of an electrochemical system aimed at NH4
+ extraction 

coupled to an upflow anaerobic sludge blanket (UASB) in the recirculation loop to help control 

ammonia toxicity with high nitrogen loading conditions (Desloover et al., 2014). 

An alternative to these techniques is the use of bioelectrochemical systems (BES) in 

combination with an AD process. BESs are bioreactors that use microorganisms attached to 
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one or both electrode(s) in order to catalyse oxidation and/or reduction reactions. These 

systems are also useful for recovering nutrients, such as ammonium (Sotres et al., 2015a). 

BESs have proven to be useful as post-treatment for anaerobic digesters in order to reduce 

organic matter content and recover ammonium (Chapter 4; Cerrillo et al., 2016). Different AD-

BES configurations have been previously studied, mainly aimed to improve biogas production in 

the AD (Tartakovsky et al., 2011; Zhang and Angelidaki, 2015). But more research in terms of 

combined system behaviour against factors that may destabilise the AD process is needed, as 

well as a more global approach of the AD-BES system integrating stabilisation of the process, 

microbial community stability, improvement of the quality of the effluent, and nutrient recovery.  

Since the effluent of a BES is expected to have a lower content of organic matter and 

ammonium, a combined AD-BES system with a recirculation loop between both components 

may offer some advantages in order to increase the stability of the system, mainly improving its 

resistance against organic and nitrogen overloads. The combination of BES with AD, as a 

system to reduce ammonia inhibition, has been previously demonstrated using a submersible 

microbial desalination cell fed with synthetic wastewater, although in that case the BES was not 

exploited to reduce organic matter content (Zhang and Angelidaki, 2015). On the other hand, 

although combined AD-BES systems have been tested against strong perturbations (Weld and 

Singh, 2011), the effect of stress on microbial synergies (eubacterial and archaeal communities) 

is scarcely known, especially on methanogenic archaea and their evolution when operating in a 

coupled system under inhibited and recovered stages. 

The main aim of this Chapter is to assess the combination of the AD process with a 

microbial electrolysis cell (MEC) both in series operation, as a system to improve the effluent 

quality, and in loop configuration to recirculate the effluent, as a technique to increase the 

stability and robustness of the AD process, while recovering ammonia with a stripping and 

absorption unit. Furthermore, microbial community dynamics have been assessed in both 

reactors to understand the reactor set-up effects, as well as microbial resilience at different 

operational conditions, even under an inhibited AD operation.  

7.2 Materials and methods  

7.2.1 Experimental set-up 

A lab-scale continuous stirred tank reactor (CSTR) described in Section 3.1.3 was used 

to study its performance when treating pig slurry at a thermophilic temperature range. The two 

chamber cell MEC reactor described in Section 3.1.1, which had been previously operated in 

the assays performed in Chapters 4 and 6, was used, poising the anode (working electrode) 

potential at 0 mV vs SHE. A stripping and absorption system, described in Section 3.1.4, was 
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used to recover the ammonium transferred from the anode to the cathode compartment.  Figure 

7.1 shows the scheme of the complete AD-MEC-Stripping/Absorption combined system. 

 

 

 

Figure 7.1 Scheme of the set up of the AD-MEC combined system coupled to the stripping and absorption unit. 

 

7.2.2 Reactors operation 

The AD was fed in a continuous mode with raw pig slurry from a farm in Vila-Sana 

(Lleida, Spain) with a hydraulic retention time (HRT) of 10 days. The pig slurry was diluted with 

tap water to obtain the desired organic load; the characteristics of the influent used can be seen 

in Table 7.1. The reactor was operated during 336 days in 5 different phases (Table 7.2). In 

Phase 1, the organic loading rate (OLR) was of 3.02±0.60 kgCOD m-3 day-1 and the nitrogen 

loading rate (NLR) was of 0.17±0.03 kgN m-3 day-1. In Phase 2, the previous OLR and NLR were 

doubled (6.25±1.05 kgCOD m-3 day-1; 0.34±0.06 kgN m-3 day-1) to evaluate the stability of the 

reactor with an organic overload, and the AD effluent was used to feed the MEC from day 160, 

after 4 HRT, as a polishing step and a system to recover ammonia. In Phases 3, 4 and 5 a 

recirculation loop between the AD and the MEC was introduced, with 25%, 50% and 75% of 

feed flow rate recirculation, respectively, so as to study the effectiveness of this recirculation as 

an AD stabilisation strategy. As an effect of the recirculation, the real HRT in the AD decreased 

from 10 days to 8, 6.7 and 5 days (recirculation flow rates of 25, 50 and 75% of the fed flow 

rate, respectively). Each phase was maintained at least for 4 HRT to ensure a stable operation. 

Samples of the AD effluent were taken once a week.  
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Table 7.1 Characterisation of the diluted pig slurry used as feeding solution in the anaerobic digester (AD) in Phase 1 

and Phases 2 to 5 (n=number of samples). 

Parameter 
Diluted pig slurry 

Phase 1 (n=7) Phase 2 to 5 (n=16) 

pH (-) 7.49±0.36 6.98±0.21 
COD (gO2 kg-1) 31.34±3.77 63.36±6.30 
NTK (g L-1) 1.76±0.03 3.69±0.26 
N-NH4

+ (g L-1) 1.23±0.11 2.64±0.25 
TS (g kg-1) 17.58±0.73 34.70±2.65 
VS (g kg-1) 12.35±0.69 23.87±1.88 

   

With regards to the MEC, the digested pig slurry obtained from the AD was later used as 

feed for the anode compartment, previously filtering it in batches through a 125 μm stainless 

steel sieve. Filtering removed an average of 5% of the AD influent COD, and this amount was 

included in the calculations of COD removal efficiency. Table 7.2 shows the average OLR and 

NLR for each Phase. The feeding solution for the cathode chamber contained (in deionised 

water) NaCl 0.1 g L-1. The solutions of both the anode and the cathode compartment were fed in 

continuous mode at 14 mL h-1 and mixed recirculating them with an external pump. The 

stripping and absorption system was operated in Phases 2 and 3 to prove the feasibility of the 

full combined system. The MEC was operated at room temperature during the entire assay (~ 

23 ºC). Samples were taken 3 times a week.  

 
Table 7.2 Operational conditions for the AD reactor and the MEC. 

Phase 
Period 

(d) 

AD MEC 

OLR 
(kgCOD m-3 d-1) 

NLR 
(kgN m-3 d-1) 

Recirculation 
(% feed flow rate) 

OLR 
(kgCOD m-3 d-1) 

NLR 
(kgN m-3 d-1) 

1 1-110 3.02±0.60 0.17±0.03 0 - - 

2 110-200 

6.25±1.05 0.34±0.06 

0 27.80±1.40 1.76±0.02 
3 200-240 25 28.50±1.80 1.73±0.09 

4 240-299 50 26.10±2.90 1.68±0.09 

5 299-236 75 27.00±2.20 1.94±0.03 

 

7.2.3 Analyses and calculations 

For each experimental condition of the AD, specific methane productivity rate (m3
CH4 m-3 

d-1) and chemical oxygen demand (COD) were determined, as well as biogas composition, 

alkalinity, N-NH4
+ and VFA concentrations in the effluent. pH and N-NH4

+ were analysed in the 

anode and cathode effluents of the MEC and the acidic solution of the absorption column, 
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besides COD and VFA of the anode effluent. All the analyses were performed following the 

methods described in Section 3.2. 

Current density, free ammonia concentration, IA:TA ratio, COD and ammonium removal 

efficiencies and ammonium flux were determined as described in Section 3.4. 

To better understand the results obtained, the bacterial communities present in the AD 

at the end of each Phase from 1 to 5, and the ones attached to the anode of the MEC at the 

beginning and at the end of the experiments, were analysed by culture-independent molecular 

techniques, such as quantitative real-time polymerase chain reaction (qPCR) and high 

throughput DNA sequencing (MiSeq, Illumina). Total DNA extraction, qPCR and high 

throughput 16S rRNA gene sequencing (MiSeq, Illumina) were performed following the methods 

described in Section 3.6.1, 3.6.3, and 3.6.5, respectively. The standard curve parameters of the 

qPCRs performed had a high efficiency, and were as follows (for 16S rRNA and mcrA, 

respectively): a slope of -3.407 and -3.591; a correlation coefficient of 0.999 and 0.998; and an 

efficiency of 97 and 90%. Data obtained from sequencing datasets were deposited in the 

Sequence Read Archive of the National Centre for Biotechnology Information (NCBI) under 

study accession number SRP063053, for eubacterial and archaeal populations. 

The evaluation of the diversity of the samples and statistical multivariate analyses were 

performed following Section 3.6.6. 

7.3 Results and discussion  

7.3.1 Performance of the AD independent operation 

After the start-up of the AD, in Phase 1 the COD removal efficiency increased from 

values in the range of 10-20% up to values in the range of 55-63% (Figure 7.2a), with COD 

effluent values in the range of 14.25–16.48 g kg-1. When the OLR was doubled in Phase 2, the 

COD removal efficiency decreased down to values in the range of 20-28%, increasing the COD 

of the effluent up to 43.58 – 51.65 g kg-1. During Phase 1, maximum methane productivity was 

of 0.33 m3 m-3 d-1, increasing to 0.56 m3 m-3 d-1 at the beginning of Phase 2 as a response to the 

increase in OLR (Figure 7.2b). Nevertheless, methane productivity dropped down in the 

following weeks and was of only 0.12 m3 m-3 d-1 after 80 days of operation under these new 

conditions, representing a 63% decrease with respect to the previous phase, as a result of a 

severe inhibition due to the increase of OLR and NLR. This inhibition process can also be 

observed with the IA:TA ratio (Figure 7.2c) found to be in the range of 0.21-0.26 at the end of 

Phase 1 –well below the 0.30 limit for a stable operation– but increased up to 0.52 after the 

stress produced by the increase of the OLR and NLR. These results are in accordance with the 

VFA content (Figure 7.2d), as there was an increase in values, starting under 1000 mgCOD L-1 
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(585 mgacetic L-1 and 175 mgpropionic L-1) at the end of Phase 1, and going up to a maximum of 

17000 mgCOD L-1 in Phase 2, reaching values of 4808 mgacetic L-1, 1384 mgpropionic L-1, 794 mgiso-

butyric L-1, 1634 mgn-butyric L-1, 838 mgiso-valeric L-1, 686 mgn-valeric L-1 137 mgiso-caproic L-1 and 924 mgn-

caproic L-1. This accumulation of VFA is a clear indication that the methanogenic population is 

inhibited, as well as of AD failure. Average values in each Phase (stable period) for COD 

removal efficiency, methane productivity, biogas composition, pH, alkalinity and IA:TA ratio are 

shown in Table 7.3. 

 
Table 7.3 Summary of the parameters for the AD and the MEC reactors in the different phases (n=number of 

samples). Results for the AD correspond to the stable period of each phase. n.a.; data not available as the stripping 

and absorption system was disconnected. 

Parameter Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

AD      
n 9 5 4 5 6 

CH4 productivity (m3
CH4 m-3 d-1) 0.27±0.05 0.06±0.06 0.26±0.08 0.42±0.05 0.38±0.06 

CH4 (%) 74±1 67±1 66±1 67±2 66±1 

Total alkalinity (gCaCO3 L-1) 5.23±0.41 8.42±0.31 8.63±0.19 8.66±0.43 8.92±0.34 

Partial alkalinity (gCaCO3 L-1) 3.90±0.38 4.52±0.45 4.45±0.26 5.01±0.34 5.23±0.33 

IA:TA 0.26±0.03 0.50±0.04 0.49±0.03 0.41±0.03 0.42±0.02 

pH (-) 7.73±0.10 7.69±0.04 7.66±0.08 7.83±0.14 7.74±0.07 

COD removal efficiency (%) 47±13 30±8 31±6 35±4 42±3 

MEC      

n  14 11 14 10 

COD removal efficiency (%)  25±8 28±7 30±11 20±7 

N-NH4
+ removal efficiency (%)  40±3 31±5 22±5 17±5 

N-NH4
+ absorbed (%)  30±6 13±3 n.a. n.a 

Current density (A m-2)  2.01±0.63 1.59±0.70 0.96±0.43 0.85±0.28 

Anode pH (-)  7.03±0.07 7.47±0.19 7.64±0.25 7.56±0.07 

Cathode pH (-)  11.83±0.60 12.02±0.25 11.67±0.27 11.66±0.17 

AD-MEC      

COD removal efficiency (%)  46±5 51±7 59±7 56±7 
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Figure 7.2 Performance of the AD regarding (a) COD removal efficiency; (b) methane productivity; (c) IA:TA ratio; (d) 

VFA concentration; and (e) free ammonia concentration (FAN) and pH. 

a)

d)

OLR 3.02±0.60 kgCOD m-3 d-1

NLR 0.17±0.03 kgN m-3 d-1

OLR 6.25±1.05 kgCOD m-3 d-1

NLR 0.34±0.06 kgN m-3 d-1

b)

c)

e)
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Inhibition of AD by ammonia has been long studied (Yenigün and Demirel, 2013). In one 

of these studies, cattle manure was used as the substrate in continuously fed thermophilic 

laboratory scale reactors, gradually administering NH4Cl for adaptation while the pH was kept 

constant. The first signs of inhibition occurred at a total ammonia nitrogen (TAN) concentration 

of 4000 mg L-1 –i.e. free ammonia nitrogen + ammonium nitrogen–, corresponding to 900 mg L-1 

of free ammonia nitrogen (FAN). Process instability due to the presence of ammonia led to VFA 

accumulation, which lowered the pH. As a result, the decreased FAN concentration eventually 

resulted in a stable, though lowered, methane yield, called by the authors the ‘inhibited steady 

state’ (Angelidaki and Ahring, 1993). Another study investigated the digestion of swine manure 

in a laboratory scale batch and CSTRs –again in thermophilic conditions–, and concluded that a 

threshold of 1100 mg L-1 FAN concentration was required for introducing inhibition (Hansen et 

al., 1998). The values in the present study for FAN are quite below the inhibitory values 

indicated in those works, except at the beginning of Phase 2 (Figure 7.2e). The increase in 

NLR, summed to an increase in the pH of the reactor, raised the FAN concentration up to 960 

mg L-1. From then on, the first signs of inhibition were shown, with a decrease in COD removal 

efficiency and methane productivity and VFA accumulation. Later, this VFA accumulation 

produced a decrease in pH and in the FAN concentration, even if the reactor did not show signs 

of recovery. This fact can be explained because the levels of VFA, especially for propionic acid, 

remained high and could inhibit the activity of methanogens. Although VFA levels for which an 

AD reactor can show inhibition may differ from one digester to another, Wang et al. (2009) 

reported that acetic acid and butyric acid concentrations of 2400 and 1800 mg L-1, respectively, 

resulted in no significant inhibition of the activity of methanogens, while a propionic acid 

concentration of 900 mg L-1 resulted in their significant inhibition. The VFA concentration of the 

AD was above these values, so the observed inhibition was probably produced by the 

combination of high ammonia and VFA concentrations. 

7.3.2 Performance of the AD-MEC combined system in series operation 

The MEC was fed with the effluent of the AD during Phase 2, as a polishing step and a 

way to buffer the malfunction period of the AD. The average COD removal efficiency achieved 

in the MEC was of 25±8% (Table 7.3), resulting in an effluent COD of 31.48±4.52 g kg-1 and a 

total COD removal efficiency of the combined system of 46±5%. The VFA were reduced at the 

effluent to a range of 6418-8804 mgCOD L-1, maintaining acetic and propionic under 2000 and 

1000 mg L-1, respectively (Figure 7.3c). Furthermore, concomitant to COD removal, an average 

of 2.01±0.63 A m-2 were produced (Figure 7.3a) and 40±3% of the ammonia was transferred 

from the anode to the cathode compartment (12.97±2.04 g N-NH4
+ d-1 m-2) (Figure 7.3b). Those 

values were equivalent to the obtained in a recent work with an electrochemical system in the 
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recirculation loop of an UASB (Desloover et al., 2014) but lower to the 86 g N-NH4
+ d-1 m-2 

obtained with a submersible microbial desalination cell fed with synthetic solution (Zhang and 

Angelidaki, 2015). With the stripping and absorption step, up to 37% of the ammonia of the 

anode compartment influent was recovered in the acidic solution. Such high recovery was 

achieved thanks to the high cathode effluent pH (11.83±0.60), due to charge and cation transfer 

between the anode and cathode compartments (Chapter 4; Cerrillo et al., 2016) while the pH of 

the anode effluent remained neutral (7.03±0.07).  

 
Figure 7.3 Performance of the MEC regarding (a) Current density; (b) ammonium removal efficiency; and (c) VFA 

concentration in the effluent. 

a)

b)

c)
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7.3.3 Performance of the AD-MEC combined system with recirculation loop 

When the recirculation loop between the AD and the MEC was established, starting with 

a volume of 25% of the feed flow rate in Phase 3, a clear recovery of the AD was observed. 

After a period of 4 HRT, the COD removal efficiency reached up to 38% and methane 

productivity increased up to 0.35 m3 m-3 d-1, equalling the productivity obtained before the 

inhibition (Figure 7.2b). The IA:TA ratio also showed an improvement, decreasing from 0.56 to 

0.46, parallel to the VFA decrease to 11740 mgCOD L-1 (4477 mgacetic L-1 and 1088 mgpropionic L-1). 

In these conditions, the MEC achieved a COD and ammonium removal efficiency of 28±7% and 

31±5%, respectively (Table 7.3). The AD-MEC combined system achieved a COD removal 

efficiency of 51±7%, resulting in an effluent COD of 28.88±2.69 g kg-1. 

When the recirculation between MEC and AD was increased to 50% of the feed flow rate 

(Phase 4), the COD removal of the AD stabilised at an average of 35±4% and a methane 

productivity of 0.42±0.05 m3 m-3 d-1. This productivity represented a 55% increase with respect 

to the one obtained before the inhibition, when the OLR was a half, and a 7 fold increase with 

respect to inhibited state in Phase 2 (Table 7.3). The IA:TA ratio showed an improvement at the 

end of Phase 4, decreasing to a value of 0.38, since VFA were stabilised at around 8500 mgCOD 

L-1 (3200 mgacetic L-1 and 1000 mgpropionic L-1). The MEC achieved a COD and ammonium removal 

efficiency of 30±11% and 22±5%, respectively (Table 7.3). This way the AD-MEC combined 

system achieved an overall COD removal efficiency of 59±7%, with an effluent COD of 

28.10±6.04 g kg-1. 

Finally, in Phase 5 the recirculation volume was increased up to 75% of the feed flow 

rate. This time the AD showed the highest COD removal efficiency from the three recirculation 

phases, with an average of 42±3% (Figure 7.2). Methane productivity and IA:TA ratio were 

similar on average to the previous phase (0.38±0.06 m3 m-3 d-1 and 0.42±0.02, respectively), 

although with a slight tendency to worsen, which can be due to the biomass wash out produced 

by an excess in recirculation volume. VFA were stabilised in a range of 3800 – 4150 mgCOD L-1 

(2750 mgacetic L-1 and 750 mgpropionic L-1). The MEC achieved a COD and ammonium removal 

efficiency of 20±7% and 17±5%, respectively (Table 7.3). The AD-MEC combined system 

achieved a COD removal efficiency of 56±7%, resulting in an effluent COD of 27.27±3.67 g kg-1. 

From these results it can be seen that MEC removal efficiencies, both for COD and for 

ammonium, decreased at the same time that the AD recovered its performance, and the 

average current density produced in Phase 5 represented only 42% of the average current 

density of Phase 2. This behaviour can be explained because the AD effluent decreased the 

COD concentration when the recirculation loop was connected, so less organic matter was 

available for degradation by microorganism in the MEC (especially acetate) and less electrical 

intensity was produced, reducing also ammonium transport between anode and cathode. In 



CHAPTER 7 

149 
 

return, removal efficiencies of the MEC were higher during the inhibition period of the AD, 

counterbalancing its poor performance. 

The beneficial effect of the recirculation loop between the MEC and the AD can be due 

to different aspects. In the first place, the MEC contributes to decrease ammonia inhibition in 

the AD in two ways: by ammonium removal of the effluent, since it transfers from the anode to 

the cathode compartment, decreasing its concentration in a range of 17-31%; and by slightly 

decreasing the pH of the AD, and therefore the FAN level, as proton accumulation is induced in 

the anode compartment of the MEC due to charge and cation transport to the cathode. In the 

second place, the recirculation of the MEC effluent reduces also the organic load of the AD, 

since the MEC removes between 20 to 30% of the remaining COD. And finally, the robustness 

and stability of the AD may be increased thanks to the biomass connection between both 

reactors (Section 7.3.4.). A recent work, focused on ammonium recovery with a desalination cell 

to overcome AD inhibition achieved a 40.8% recovery of ammonium and helped to gradually 

increase methane productivity back to 83%, compared to the control, 55 days after the inhibition 

of the AD (Zhang and Angelidaki, 2015). In that case, synthetic wastewater was used, and the 

inhibition of the AD was produced only increasing the NLR; while in this work, a more complex 

and realistic inhibition process has been induced, increasing both OLR and NLR. Furthermore, 

the set up proposed by Zhang and Angelidaki (2015) does not make the most of the BES in 

order to reduce the COD of the AD effluent. Hence a more integrated approach is presented in 

this study since not just the recovery of AD, after its inhibition, is achieved, but the COD 

concentration in the effluent is kept low. 

7.3.4 Microbial community assessment  

The microbial community structure of the AD at the end of each Phase, as well as the 

biofilm developed on the carbon felt (anode) of the MEC reactor, at the start and at the end of 

the assays, were characterised by means of qPCR technique and sequenced by MiSeq.  

7.3.4.1 Quantitative analysis by qPCR 

Figure 7.4 shows qPCR results for all the samples. The number of bacterial 16S rRNA 

gene copies g-1 in the AD sample at the end of Phase 1 was of 8.42·109, and slightly oscillated 

throughout the different phases, with a maximum of 1.40·1010 (a 1.7 fold increase) at the end of 

Phase 3. The mcrA gene copy numbers quantified by qPCR revealed that the initial abundance 

of 4.57·107 copy numbers g-1 at the end of Phase 1, decreased gradually to a minimum at the 

end of Phase 4 (9.55·106 copy numbers g-1). The sample taken at the end of Phase 5 showed a 

level of mcrA copy numbers similar to the one obtained in Phase 2 (2.19·107 copy numbers g-1). 

These values, including those corresponding to the inhibited state, are higher than those 
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obtained in other studies, which quantified mcrA copies in different anaerobic digesters in a 

range of 1.04·106-3.95·106 copy numbers mL-1 (Steinberg and Regan, 2009). The evolution of 

archaea population was found to be in great correlation with the operational parameters 

described in the previous sections, although a delay in the response was observed. The 

reduction in mcrA copy numbers under inhibited state, although working with lower ammonium 

concentrations, is similar to a previous study. qPCR in that work revealed that mcrA copy 

number decreased by one order of magnitude in the treatment with large amount of ammonium 

(10 g NH4
+-N L-1) but did not change much with treatments with lower NH4

+-N content (3 and 7 g 

NH4
+-N L-1) compared to the control (Zhang et al., 2014). The ratio between archaea and 

eubacteria in the AD is under 1% in all cases, in spite of the importance of methanogenic 

archaea in AD, which is in agreement with previous studies (Sundberg et al., 2013). Regarding 

the MEC, an increase of an order of magnitude in mcrA copy numbers –at late stages– in the 

final sample, with respect to the initial one is produced, as a result of allochthonous 

methanogenic archaea coming from the AD. The same increase was also observed in bacterial 

16S rRNA gene copies.  

 
Figure 7.4 Gene copy numbers for 16S rRNA and mcrA genes and ration between them, of the effluent of the AD at 

the five phases, and initial and final MEC anode biofilm (MECi and MECf, respectively). 

7.3.4.2 MiSeq sequencing of total eubacteria and archaea, biodiversity and 
correspondence analysis 

The reads obtained for bacteria and archaeal communities in each sample are shown in 

Table 7.4. Figure 7.5a shows that the dominant eubacterial phyla identified in the anode biofilm 

sample of the MEC at the start of the assay was Bacteroidetes (31%), followed by 

Proteobacteria (21%), while at the end of the assay a clear enrichment in the Firmicutes group 
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took place, representing 66% of the relative abundance. These three phyla have been identified 

in previous studies in BES (Bonmatí et al., 2013; Sotres et al., 2015b). At family level, results in 

Figure 7.5b revealed the dominance of Desulfuromonadaceae (17%), Anaerolineaceae (16%) 

and Flavobacteriaceae (13%) at the start of the assay, and a clear enrichment in Clostridiaceae 

(43%) and Peptostreptococcaceae (14%) once the recirculation loop with the AD was 

established.  

 
Table 7.4 Diversity index for Eubacterial and Archaeal community of the MEC anode and AD effluent samples 

(mean±standard deviation). Data normalised to the sample with the lowest number of reads (16872 and 19235 for 

eubacterial and archaeal, respectively). 

  
Reads OTUs 

Inverted 
Simpson 

Shannon 

Eubacteria     

MECi 16872 706.00±0.00 17.50±0.00 4.27±0.00 

MECf 22481 615.75±7.23 9.29±0.08 3.52±0.01 

ADPhase1 17776 489.51±2.98 15.44±0.04 3.58±0.00 

ADPhase2 20447 481.17±5.08 13.67±0.07 3.56±0.01 

ADPhase3 19778 474.51±4.95 8.03±0.05 3.21±0.01 

ADPhase4 20295 426.77±5.18 5.67±0.04 2.90±0.01 

ADPhase5 25178 520.70±7.21 12.70±0.10 3.51±0.01 

Archaea     

MECi 56913 82.11±2.93 8.12±0.00 2.39±0.00 

MECf 231636 26.96±0.26 1.01±0.00 0.05±0.00 

ADPhase1 19409 34.94±0.00 1.05±0.00 0.17±0.00 

ADPhase2 19235 37.00±1.47 1.06±0.00 0.20±0.01 

ADPhase3 25256 63.08±2.09 1.39±0.00 0.80±0.01 

ADPhase4 38734 35.99±0.66 1.21±0.00 0.45±0.00 

ADPhase5 20088 50.54±3.28 2.47±0.05 1.29±0.01 
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Figure 7.5 Taxonomic assignment of sequencing reads from Eubacterial community of the effluent of the AD at the 

five phases, and initial and final MEC anode biofilm (MECi and MECf, respectively), at a) phylum b) family levels; and 

c) from Archaeal community at family level. Relative abundance was defined as the number of reads (sequences) 

affiliated with any given taxon divided by the total number of reads per sample. Phylogenetic groups with a relative 

abundance lower that 1% were categorised as “others”. 

0%

20%

40%

60%

80%

100% Unclassified

Others

Flavobacteriaceae

Coriobacteriales

Anaerolineaceae

Desulfuromonadaceae

Clostridiales_Incertae Sedis XI

Ruminococcaceae

Thermodesulfobiaceae

Pseudomonadaceae

Porphyromonadaceae

Peptostreptococcaceae

Actinomycetales

Clostridiaceae 1

0%

20%

40%

60%

80%

100%
Unclassified

Others

Cloacimonetes

Chloroflexi

Bacteroidetes

Actinobacteria

Proteobacteria

Firmicutes

0%

20%

40%

60%

80%

100%

Others

Unclassified

Methanobacteriaceae

Methanomassiliicoccaceae

Methanomicrobiaceae

Methanosarcinaceae

Methanospirillaceae

Methanotrichaceae

a)

b)

c)



CHAPTER 7 

153 
 

Regarding the samples of the AD effluent, Firmicutes phylum (63%) was de predominant 

one at the end of Phase 1, followed by Proteobacteria (28%). A previous study, performed also 

in a thermophilic AD running on swine manure by means of 454-pyrosequencing technology, 

also found that the Firmicutes phylum was the predominant one, representing 72.2% of the 16S 

rRNA gene sequences (Tuan et al., 2014). At the end of Phase 2, whilst the reactor was 

inhibited, Firmicutes increased its relative abundance up to 75% and Proteobacteria decreased 

to 7%. Once the recirculation loop with the MEC was established, both phyla equilibrated their 

presence at the end of Phase 3 (41%) and Proteobacteria surpassed Firmicutes in Phase 4, 

while at the end of Phase 5 Firmicutes recovered its dominance (57%). This phylum has been 

also observed to be in domination in AD under ammonia inhibition in previous studies (Niu et 

al., 2013). Furthermore, Firmicutes showed an important increase in the MEC anode, as 

aforementioned, it being a clear example of population sharing between both systems. Indeed, 

6 OTUs belonging to the Firmicutes phylum, not detected in the initial MEC sample but present 

in the AD, increased in relative abundance in the final MEC sample after the AD-MEC combined 

operation (Table 7.5). On the other hand, Bacteroidetes, the predominant phylum in the MEC 

anode at the beginning of the assays, increased its relative abundance in the AD from 4% to 

32% once the recirculation loop was established, and until Phase 5. Coincidentally, 4 new 

OTUs belonging to the Bacteroidetes phylum showed up in the AD, once the recirculation loop 

was connected (Table 7.6). The most abundant OTUs in the final MEC sample, three belonging 

to the Firmicutes phylum and one belonging to the Bacteroidetes phylum, were shared by the 

AD at the end of Phase 5 (Table 7.7). At family level, Pseudomonadaceae (20%), 

Thermodesulbobiaceae (16%) and Clostridiaceae (15%) were the predominant ones at the end 

of Phase 1. At the end of Phase 2, during the inhibition phase, Clostridiaceae increased its 

relative abundance (20%) with the other two families decreasing. Peptostreptococcaceae and 

Ruminococcaceae increased slightly their relative abundance, becoming the second and third 

most abundant families (14 and 11%, respectively). During Phase 3 and 4, with the recirculation 

loop established, Pseudomonadaceae showed an important increase, up to 40 and 44%, 

respectively, but suffered a sharp decrease at the end of Phase 5, and Clostridiaceae, after 

decreasing to 7% in Phase 3, recovered its initial relative abundance at the end of Phase 5. 

Finally, it is noteworthy to mention that possible syntrophic acetate-oxidising bacteria (SAOB) 

OTUs, such as Syntrophaceticus or Tepidanaerobacter, were detected in the AD samples, 

showing higher relative abundances during Phases 1, 2 and 3 (0.60, 0.51 and 0.50, 

respectively) than in Phases 4 and 5 (0.19 and 0.32, respectively). The high concentration of 

ammonia in the reactor might be favouring syntrophic acetate oxidation (SAO) coupled to a 

hydrogenotrophic methanogenesis route, which consists in the oxidation of methyl and carboxyl 

groups of acetate to CO2, producing H2, catalysed by the SAOB (Hattori, 2008).  
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Correspondence analysis for eubacterial population indicated that initial biofilm from the 

MEC anode evolved during the recirculation phases, approaching the composition of the AD 

samples, although maintaining its own specific composition. AD samples from the recirculation 

phases (3, 4 and 5) clustered together, moving away from samples of the phases without 

recirculation (1 and 2) (Figure 7.6a).  

 
Table 7.5 Operational taxonomic units (OTUs) of eubacterial microbial community that were not detected in the initial 

microbial electrolysis cell (MEC) sample (MECi) but were present in the anaerobic digester and enriched in the final 

MEC sample (MECf) after the AD-MEC integrated operation (percentage of total 16S rRNA reads).  
OTU  
number 

Phylum Class Order Family Genus 
MECi MECf 

(% reads) 

24 Firmicutes Clostridia Clostridiales  Ruminococcaceae Ruminococcaceae 0 0.04 

41 Firmicutes unclassified    0 0.11 

52 Firmicutes Clostridia Clostridiales  Clostridiales_Incertae Sedis XI Tepidimicrobium 0 0.04 

56 Firmicutes unclassified    0 0.10 

138 Firmicutes Clostridia Clostridiales  Clostridiales_Incertae Sedis III Tepidanaerobacter 0 0.04 

637 Firmicutes Clostridia Clostridiales  Clostridiaceae 1 unclassified 0 0.08 

 

 

 

Table 7.6 Operational taxonomic units (OTUs) of eubacterial microbial community that were not detected in the 

anaerobic digester (AD) before the connection of the recirculation loop (AD-Ph2) but were present in the microbial 

electrolysis cell (MEC) and enriched in the final AD sample (AD-Ph5) after the AD-MEC integrated operation 

(percentage of total 16S rRNA reads).  
OTU  

number 
Phylum Class Order Family Genus 

AD-Ph2 AD-Ph5 

(% reads) 

107 Bacteroidetes Bacteroidia Bacteroidales unclassified  0 0.17 

161 Bacteroidetes Bacteroidia Bacteroidales unclassified  0 0.06 

359 Bacteroidetes unclassified    0 0.06 

561 Bacteroidetes Bacteroidia Bacteroidales unclassified  0 0.05 

 
 
Table 7.7 Operational taxonomic units (OTUs) most abundant of eubacterial microbial community in the final 

microbial electrolysis cell (MEC) sample (MECf) shared with the final sample of the anaerobic digester (AD-Ph5) 

(percentage of total 16S rRNA reads).  
OTU  
number 

Phylum Class Order Family Genus 
MECf AD-Ph5 

(% reads) 

1 Firmicutes Clostridia Clostridiales Peptostreptococcaceae Clostridium XI 12 7 

3 Firmicutes Clostridia Clostridiales Clostridiaceae 1 Clostridium sensu stricto 28 9 

10 Firmicutes Clostridia Clostridiales Clostridiaceae 1 Clostridium sensu stricto 7 2 

5 Bacteroidetes unclassified    7 4 

 

 
 



CHAPTER 7 

155 
 

 

 

a) 

b)  

 
Figure 7.6 Correspondence Analysis for initial (MECi) and final (MECf) MEC anode samples and the 5 phases AD 

samples (AD-Ph1 to AD-Ph5) regarding (a) Eubacterial and (b) Archaeal community. 
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Regarding archaeal population, Figure 7.5c shows that the most abundant families in the 

anode of the MEC at the start of the experiments were Methanomassiliicoccaceae (37%), 

Methanosarcinaceae (20%), Methanomicrobiaceae (15%) and Methanotrichaceae (formerly 

known as Methanosaetaceae) (15%). The last family, of strictly acetotrophic methanogens, was 

clearly enriched at the end of the assays, the recirculation loop with the AD once established, 

achieving a relative abundance of 94%. The AD presented, at the end of Phase 1, a high 

dominance of the Methanobacteriaceae family (98%), hydrogenotrophic methanogens, 

dominance maintained throughout the inhibition of the reactor in Phase 2. The predominance of 

hydrogenotrophic methanogens could be favoured by the low HRT used in this study, since the 

difference in the specific growth rate between hydrogenotrophic methanogens and aceticlastic 

methanogens makes for a relatively short HRT to provide a more favourable environment for 

the first ones. Furthermore, it has been reported that Methanobacteriaceae became the 

dominant species when increasing ammonia levels in biogas reactors (Kim et al., 2014). The 

Methanobacteriaceae family was also the predominant one in a thermophilic AD running on 

swine manure (Tuan et al., 2014). The community of a mesophilic real scale AD fed with swine 

faeces was composed, up to 57.7%, of by Methanobacteriales, hydrogenotrophic methanogens 

also being the dominant methane producing archaea (more than 94% of methanogenic archaea 

of the reactor) (Zhu et al., 2011). Although a slight decrease in the Methanobacteriaceae family 

relative abundance was observed during Phase 3 and 4, the highest decrease was observed at 

the end of Phase 5 –up to 58%. In parallel with this decrease, an increase in Methanotrichaceae 

was observed, reaching up to 31% at the end of Phase 5, whilst also becoming the predominant 

archaea in the MEC anode, as aforementioned. An OTU shared by the MEC and the AD was 

the dominant one in the Methanotrichaceae family, either in the final MEC and the AD Phase 5 

sample (Table 7.8). This shift in population towards acetotrophic methanogens can be 

stimulated by more favourable conditions in the AD in subsequent phases, once the ammonia 

concentration in the AD is reduced and the inhibition is overcome. These results correlate quite 

well with the ones obtained by qPCR, indicating that the inhibition of the AD regarding methane 

productivity and AGV increase is detected before a change in archaeal population abundance 

and composition is observed. Although the changes in the total population of methanogens can 

be used as an indicator of the performance of the AD, methanogenesis inhibition is largely due 

to the repression of functional gene expression (Zhang et al., 2014) and a deep study at RNA 

level in this sense would help to better link community structures and digester functions. 

Correspondence analysis for archaea population showed that initial and final biofilm from the 

MEC anode were far more distant in composition than in the case of the eubacteria population, 

and there was not a clear approach to the composition of the AD samples. AD samples were all 

clustered together, appreciating that the phases without recirculation (1 and 2) were quite 
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similar, while a slight evolution in the recirculation phases samples (3, 4 and 5) could be 

observed (Figure 7.6b).  

 
Table 7.8 Operational taxonomic units (OTUs) most abundant of archaeal microbial community in the final microbial 

electrolysis cell (MEC) sample (MECf) shared with the final sample of the anaerobic digester (AD-Ph5) (percentage of 

total 16S rRNA reads).  
OTU  
number 

Phylum Class Order Family Genus 
MECf AD-Ph5 

(% reads) 

1 Euryarchaeota Methanomicrobia Methanosarcinales Methanotrichaceae Methanothrix 94 31 

 

 

Regarding biodiversity, the inverted Simpson and Shannon indices showed that the 

sample of the MEC at the start of the assays was the most diverse one, either for eubacteria 

(17.50 and 4.27, respectively) and for archaea (8.12 and 2.39, respectively) (Table 7.4). For the 

AD, biodiversity indices for eubacteria showed that the values corresponding to Phase 2 

decreased with respect to Phase 1, but the minimum values were detected at the end of Phase 

4. In Phase 5, the diversity values were near to the initial values. The AD archaea biodiversity 

increased over time, finishing Phase 5 with the highest values for the inverted Simpson (2.47) 

and Shannon (1.29). These results show that the AD diversity was increased by the parallel 

treatment of the substrate, and in spite of the stressful conditions in the reactor, the exchange 

with the MEC biomass seems to help to recover its biodiversity. 

7.4 Conclusions  

Coupling an inhibited AD in series, with a MEC and a stripping and absorption unit 

allowed for the maintenance of the effluent quality (COD removal and ammonia recovering of 

46±5% and 40±3%, respectively). The AD-MEC system in loop configuration stabilised the AD 

after failure (55% increase in methane productivity) and enhanced methanogenic archaea 

recovery, concomitant to an AD biodiversity increase, while reducing it in the MEC biofilm. 

These results show that the AD-MEC combined system is a promising strategy to stabilise AD 

against organic and nitrogen overloads, while improving the quality of the effluent and 

recovering nutrients for their reutilisation. 
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in a thermophilic anaerobic digester-
microbial electrolysis cell coupled system 
under different conditions 
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Abstract 

Thermophilic anaerobic digestion (AD) of pig slurry coupled to a 

microbial electrolysis cell (MEC) with a recirculation loop was 

investigated at lab-scale as a strategy to increase AD stability when 

submitted to organic and nitrogen overloads. The system 

performance was studied with the recirculation loop both connected 

and disconnected, in terms of AD methane production, chemical 

oxygen demand removal (COD) and volatile fatty acids (VFA) 

concentration. Furthermore, microbial population was assessed 

quantitatively and qualitatively, through DNA and RNA-based qPCR 

and high throughput sequencing (MiSeq) respectively, in order to 

identify those active microbial populations (RNA-based) from total 

microbial community composition (DNA-based) both in AD and MEC 

reactor at different operational conditions. Suppression of the 

recirculation loop AD-MEC resulted in a reduction in the AD COD 

removal efficiency (from 40% to 22%) and in the methane production 

(from 0.32 to 0.03 m3 m-3 d-1). The restart of the recirculation 

increased methane production to 0.55 m3 m-3 d-1 concomitant with 

maximum COD and ammonium removal efficiency of 29 and 34%, 

respectively in the MEC. Regarding microbial analysis, composition of 

AD and MEC anode populations differed from really active 

microorganisms. Desulfuromonadaceae revealed as the most active 

family in the MEC (18-19% of RNA relative abundance), while 

hydrogenotrophic methanogens (Methanobacteriaceae) dominated 

the AD biomass. 
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8.1 Introduction 

Anaerobic digestion (AD) is a technology that has been widely used since the beginning 

of the twentieth century to treat animal, municipal and industrial wastes, while producing biogas, 

a form of renewable energy (Yenigün and Demirel, 2013). One of its weak points is the 

sensitivity of methanogens, one of the main groups involved in the process, to chemical and 

environmental stressors, especially under thermophilic conditions (Chen et al., 2008). Inhibitory 

substances or process conditions may lead to the anaerobic reactor upset and failure, indicated 

by a decrease of the methane gas production and an accumulation of volatile fatty acids (VFA). 

Different strategies for recovering inhibited reactors have been evaluated, such as reactor 

feeding patterns, dilution and addition of absorbents for fast recovery after the inhibition of AD 

reactor by the presence of long chain fatty acids (LCFA) (Palatsi et al., 2009) or electrochemical 

nutrient recovery for ammonia toxicity control (Desloover et al., 2014; Sotres et al., 2015a); 

dilution with distillate water, digested biomass or fresh manure have also been strategies used 

to recover an ammonia-inhibited thermophilic process (Nielsen and Angelidaki, 2008). Ammonia 

inhibition is one of the main issues when treating high strength wastes such as livestock 

manure, so it has been subject for a wide range of studies and reviews (Rajagopal et al., 2013; 

Yenigün and Demirel, 2013).  

The combination of AD and bioelectrochemical systems (BES) such as microbial 

electrolysis cells (MEC) has been previously reported as a new processing strategy aiming to 

recover energy and nitrogen (Chapter 7; Cerrillo et al., 2016b). On the one hand, this system 

can help to produce additional energy and to polish the AD effluent, especially when 

malfunction of the AD reactor is produced due to organic overloads, attaining a more stable and 

robust system. And on the other hand, ammonium can be removed and recovered, taking 

advantage of this process to reduce ammonia inhibition in the AD (Chapter 7; Cerrillo et al., 

2016b). In the study performed in Chapter 7, the microbial community assessment revealed that 

changes in biomass composition were appreciated with a certain delay with respect to the 

observed performance of the AD, in terms of VFA accumulation or methane production (Cerrillo 

et al., 2016b). This fact pointed out that RNA-based approach in AD-BES system could help us 

to gain insight on the active microbial key players resilient during an inhibition process. A 

previous work also demonstrated that the inhibition of methanogenesis by ammonia in AD was 

largely due to the repression of functional gene transcription rather than a decrease of the total 

populations of methanogenic archaea (Zhang et al., 2014). In fact, DNA only provides 

information about the existence of bacteria in the reactors, but it cannot provide information 

about their activity and gene expression, which is important to understand which groups are 

being enhanced by certain environmental or operational conditions. Transcription analysis 

enables exclusive detection of short-lived messenger RNA (mRNA) produced by active 
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organisms without the potential bias of DNA detection from dormant or dead cells (Munk et al., 

2012). In addition, total rRNA is dependent of ribosome abundance in a bacterial cell, and it can 

be shifted significantly (10-100 folds) from dormant cells in comparison with growing cells 

(Neidhardt et al., 1996). For this reason, direct extraction of total bacterial RNA (basically mRNA 

and rRNA) from samples is a key procedure for subsequent application of qPCR or high 

throughput sequencing techniques. 

The main aim of this Chapter is (1) to assess the combination of the AD process with a 

microbial electrolysis cell with a recirculation loop as a system to remediate AD reactors that 

have experienced process failure, and (2) study the microbial population in an AD-MEC system 

during inhibited and recovered states of the AD process, regarding presence of predominant 

eubacteria and archaea in the biomass, but also regarding the metabolically active populations 

by means of DNA and RNA-based methods.   

8.2 Materials and methods  

8.2.1 Experimental set-up 

The anaerobic thermophilic 4 L lab-scale continuous stirred tank reactor (AD) described 

in Section 3.1.3 was used to study its performance when treating pig slurry. The AD reactor was 

connected in series with the anode compartment of the two chambered MEC described in 

Section 3.1.1 for ammonia recovery, and had a recirculation loop between both reactors, as it 

was operated in Chapter 7. 

8.2.2 Reactors operation 

The raw pig slurry that was used to feed the AD was collected from a farm in Vila-Sana 

(Lleida, Spain), and was diluted with tap water at 50% (v/v) to obtain the desired organic load 

(Table 8.1). The hydraulic retention time (HRT) was fixed at 10 days. The reactor was operated 

during 118 days in 2 different phases, with an organic loading rate (OLR) and a nitrogen loading 

rate (NLR) of 6.10±1.88 kgCOD m-3 day-1 and 0.35±0.04 kgN m-3 day-1, respectively (Table 8.2). 

The AD had been previously operated with a recirculation loop between the AD and the MEC 

for 37 days, with recirculation in order to reduce ammonia inhibition phenomena in Chapter 7. At 

the start of this study, corresponding to Phase 1, the recirculation loop was suppressed, and in 

Phase 2 it was again recovered (50% of the AD feed flow rate), with the objective of evaluating 

the effectiveness of this processing strategy to recover the AD after its failure and study the 

changes produced in the biomass. For each experimental condition, the specific methane yield 

(m3
CH4 d-1), the specific methane production rate (m3

CH4 m-3 d-1) and the COD removal efficiency 
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were used as control parameters, as well as the biogas composition, the alkalinity, N-NH4
+ and 

the VFA concentrations in the effluent. 

Regarding the MEC, the digested pig slurry obtained from the AD was used as feed in 

the anode compartment previous filtering it through a stainless steel sieve of 125 μm. Catholyte 

solution for the cathode chamber contained (in deionised water) NaCl 0.1 g L-1. Samples were 

taken periodically to analyse the pH and N-NH4
+ concentration in the anode and cathode 

effluent, besides COD and VFA of the anode effluent. 

 
Table 8.1 Characterisation of the diluted pig slurry used as feeding in the anaerobic digester (AD) (n=number of 

samples). 

 
Parameter Value 

pH (-) 7.0±0.1 
COD (gO2 kg-1) 62.63±2.96 
NTK (g L-1) 3.65±0.11 
N-NH4

+ (g L-1) 2.66±0.27 
TS (g kg-1) 35.80±0.72 
VS (g kg-1) 23.50±1.21 
n 10 
  

Table 8.2 Operational conditions for the AD reactor. 

Phase Period 
(d) 

OLR  
(kgCOD m-3 day-1) 

NLR  
(kgN m-3 day-1) 

Recirculation 
(% of feed flow rate) 

1 1 - 15 
6.10±1.88 0.35±0.04 

0 
2 16-118 50 

8.2.3 Analyses and calculations 

Chemical oxygen demand (COD), Kjeldahl nitrogen (NTK), ammonium (N-NH4
+), pH, 

total solids (TS), volatile solids (VS), volatile fatty acids (VFAs), biogas composition (N2, CH4, 

CO2), partial, total and intermediate alkalinity were determined as described in Section 3.2. Free 

ammonia nitrogen (FAN), COD and ammonium removal efficiency and current density (A m-2) 

obtained in the MEC were calculated as described in Sections 3.3 and 3.4.   

The eubacterial and archaeal communities in the AD at the end of both Phase 1 and 2, 

and attached to the anode on the MEC at the beginning and the end of the experiments, were 

analysed by culture-independent molecular techniques such as quantitative PCR (qPCR and 

RT-qPCR) and high throughput DNA (hereafter 16SrDNA) and cDNA (hereafter 16SrRNA) 

sequencing of 16S rRNA gene libraries of eubacteria and archaea (MiSeq, Illumina). 

Simultaneous total genomic DNA and RNA extraction and complementary DNA (cDNA) 

synthesis, qPCR and high throughput 16S rRNA gene sequencing (MiSeq, Illumina) were 

performed following the methods described in Section 3.6.2, 3.6.3, and 3.6.5, respectively. The 
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standard curve parameters of the qPCRs performed prove that the reactions had a high 

efficiency, and were as follows (for 16S rRNA and mcrA, respectively): slope of -3.515 and -

3.558; correlation coefficient of 0.999 and 0.996; efficiency of 93 and 91%. The data obtained 

from sequencing datasets was submitted to the Sequence Read Archive of the National Center 

for Biotechnology Information (NCBI) under the study accession number SRP071288 for 

eubacterial and archaeal populations. 

The evaluation of the diversity of the samples and statistical multivariate analyses were 

performed following Section 3.6.6. 

8.3 Results and discussion  

8.3.1 Inhibition of the AD with the suppression of the recirculation loop (Phase 1) 

The recirculation loop between the AD and the MEC that had been operating for 37 days 

in a previous assay (Chapter 7) was suppressed at the beginning of Phase 1. This configuration 

change resulted in a failure of the AD, with a drop in the COD removal efficiency from 40% 

down to 22% in two weeks (Figure 8.1a), increasing the COD of the effluent from 41 to 47 g L-1, 

and in methane production, from 0.32 to 0.03 m3 m-3 d-1 (Figure 8.1b). The VFA concentration 

increased to 10140 mgCOD L-1, especially propionic (1215 mg L-1), iso and n-butyric (900 and 

561 mg L-1, respectively) and iso and n-valeric (561 and 918 mg L-1, respectively) (Figure 8.1c), 

in parallel with a IA:TA ratio increase to 0.49 (Figure 8.1c). The IA:TA ratio is a parameter used 

as an indicator of AD stability and it is considered that values higher than 0.30 are a sign of 

inhibition of the reactor. On the other hand, it has been reported that a propionic acid 

concentration of 900 mg L-1 results in significant inhibition of methanogens (Wang et al., 2009). 

The propionic acid concentration of the AD was over this value, so the observed inhibition was 

probably due to VFA rather than to ammonia concentration, since the highest free ammonia 

nitrogen (FAN) was of 732 mg L-1 (data not shown), far from inhibition values of 900 mg L-1 

(Angelidaki and Ahring, 1993). However, the FAN levels may have inhibited certain groups of 

methanogens, since hydrogenotrophs have a higher tolerance to FAN that acetotrophs 

(Angelidaki and Ahring, 1993; Lee et al., 2014). 

The behaviour of the AD during this phase indicates that the recirculation loop improved 

the system stability and robustness, and its suppression resulted in the inhibition of the reactor. 

As described in Chapter 7, the beneficial effect of the recirculation loop between the MEC and 

the AD can be due to i) the decrease of ammonia inhibition in the AD by ammonium removal 

and slightly decreasing the pH of the digestate in the MEC; ii) the reduction of the organic load 

of the AD thanks to the MEC removing part of the remaining COD and VFA; and iii) the biomass 

interaction between both reactors. 
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Figure 8.1 Performance of the AD regarding (a) COD removal efficiency; (b) methane production; (c) VFA 

concentration; and (d) IA:TA ratio. 
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8.3.2 Recovery of the AD after restarting the recirculation loop (Phase 2) 

When the recirculation loop between the AD and the MEC was connected again, the AD 

showed a fast recovery in methane production, up to values of 0.55 m3 m-3 d-1, a 1.7 fold 

increase with respect to the initial value in Phase 1 (Figure 8.1b). The COD removal efficiency 

still decreased during 3 weeks after the restart of the recirculation, with a progressive increase 

afterwards up to values of 46% (effluent COD of 32 g L-1), slightly higher than the initial one in 

Phase 1 (Figure 8.1a). Acetic acid concentration showed an increase during the same 3 weeks 

of lower COD removal efficiency, achieving values of 6000 mg L-1, and a later decrease down to 

initial values for all the VFA was produced (Figure 8.1c). The same behaviour was observed 

regarding the IA:TA ratio (Figure 8.1d), achieving values of around 0.30 at the end of the Phase, 

thus improving the initial one. 

The MEC achieved a maximum COD and ammonium removal efficiency of 29 and 34%, 

respectively, coincidentally with average current densities of around 2.5 A m-2 (Figure 8.2). This 

MEC high performance period is concurrent with the AD lowest performance period in terms of 

COD removal efficiency. The progressive decrease of the current density, and thus in the 

ammonium removal, shown in the MEC from day 80 to the end of the assay is due to the 

increase in the COD removal efficiency in the AD, so less organic matter is available for being 

converted into current in the MEC. The AD and MEC integrated system allowed this way to 

maintain the quality of the effluent in spite of the inhibition of the AD, keeping an overall COD 

removal efficiency above 35% during the poorest performance of the AD, with a maximum of 

60±1% at the end of the assay (effluent COD of 25±1 g L-1). This complementation between the 

performance of both reactors has been also described in Chapter 7, and allows not only to 

stabilise the AD, but also to polish the obtained effluent during AD malfunction periods. The 

present work has shown that the maintenance of the recirculation loop is necessary to sustain 

the operation of the AD under organic and nitrogen overload, suggesting that the improvement 

of its performance is not due to biomass acclimatisation. 
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Figure 8.2 Performance of the MEC regarding current density and COD and ammonium removal efficiency (phase 

2). 

 

8.3.3 Microbial community assessment  

The microbial community structure and activity of the samples taken from the AD effluent 

at the end of Phase 1 and 2 and from the carbon felt of the MEC reactor at the beginning and 

the end of the assays was characterised by means of total and active eubacteria and 

methanogenic archaea enumeration by means of qPCR/RT-qPCR, and 16SrDNA and 16SrRNA 

amplicon sequencing by means of MiSeq. 

8.3.3.1 Quantitative analysis by qPCR 

Figure 8.3 shows qPCR results of the four samples, regarding DNA (existence) and 

cDNA (active populations), for 16S rRNA (eubacteria) and mcrA (methanogenic archaea) gene 

copy numbers. An increase in gene copy numbers regarding total eubacteria in the AD can be 

observed by the end of Phase 2, when the AD reactor was recovered after restarting the 
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16S rRNA and mcrA genes. While 16S rRNA gene copy numbers from DNA showed nearly a 2 

fold increase in Phase 2, for mcrA gene the increase was of 1 order of magnitude, showing a 

recovery both in eubacteria and methanogenic archaea abundance in the AD. This recovery 

was also remarkable in the 16SrRNA and mcrA transcript abundance, with a 4.5 fold raise. 

These results correlate well with a higher methane production of the AD in Phase 2 (Section 

8.3.3). The lower 16S rRNA gene copy numbers in Phase 1 may suggest that ammonia toxicity 

does not only affect methanogenic archaea but also hydrolysis and acidification processes 

performed by eubacteria, as stated in a previous work (El-Mashad et al., 2004).  
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Figure 8.3 Gene copy numbers for 16S rRNA and mcrA genes and ratio between them of DNA and cDNA (gene 

expression), of the effluent of the AD at the end of Phases 1 and 2 and the initial and final MEC anode biofilm (MECi 

and MECf, respectively). 
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sequences at 80% cut-off values according to Bayesian Classifier from RDP (Wang et al., 2007) 

(Figure 8.4b). 

 

 
 

              
Figure 8.4 Taxonomic assignment of sequencing reads from Eubacterial community of the effluent of the AD at the 

end of Phases 1 (Ph1) and 2 (Ph2) and the initial and final MEC anode biofilm (MECi and MECf, respectively) for 

DNA and cDNA, at a) phylum b) family levels. Relative abundance was defined as the number of reads (sequences) 

affiliated with any given taxon divided by the total number of reads per sample. Phylogenetic groups with a relative 

abundance lower that 1% were categorised as “others”. 
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In the MEC anode biofilm, Firmicutes (39%) and Bacteroidetes (25%) were the dominant 

eubacterial phyla, followed by Proteobacteria (9%), with little changes between the samples at 

the start and the end of the assay (35, 30 and 11%, respectively, at the end of Phase 2) (Figure 

8.4a). The three phyla have been identified in previous Chapters (5 and 7) and studies in BES 

(Bonmatí et al., 2013; Sotres et al., 2015b). When looking at active members Proteobacteria, 

Firmicutes and Bacteroidetes accounted for around 70% of 16S rRNA relative abundance in 

both samples. And a new phylum appeared among the dominant ones, Planctomycetes (17% in 

both samples), in spite of its low relative abundance in 16S rDNA amplicon reads (2%). 

Planctomycetes phylum is poorly known, and has been previously described in MFC focusing 

on Anammox processes (Li et al., 2015) or with wastewater or sludge inoculums (Kim et al., 

2006; Zhang et al., 2012). At family level (Figure 8.4b), Clostridiaceae, Flavobacteriaceae and 

Desulfuromonadaceae were the predominant groups in the initial (22, 10 and 7%, respectively) 

and final sample (17, 19 and 10%, respectively). However, Desulfuromonadaceae, which is 

reported as an electroactive family in BES reactors (Logan, 2009) and has been enriched under 

MEC mode operation (Chapter 4; Cerrillo et al., 2016a), revealed as the most active family (18 

and 19% relative abundance at RNA level (16S rRNA) in the initial and final samples, 

respectively), followed by Planctomycetaceae (17% in both samples).  

Regarding archaeal community (Figure 8.5), an increase in Methanobacteriaceae 

relative abundance was observed from inhibited (73%) to stable phase (86%) in the AD, 

concomitant with a decrease in Methanomicrobiaceae (from 16 to 5%, respectively), being all 

the genus of both families exclusively hydrogenotrophic methanogens, such as Methanoculleus, 

Methanobrevibacter or Methanothermobacter. Changes of mcrA transcripts abundance in the 

AD have been more perceptible, accordingly to a previous study which suggested that 

methanogens in anaerobic sludge had a strong mcrA transcriptional response to ammonia 

stress without a change in the community structure (Zhang et al., 2014). For example, 

Methanotrichaceae (Methanosaeta), a minor acetotrophic family detected in DNA analysis, 

revealed as an active microorganism by the end of Phase 1, although suffering a sharp 

decrease during stable state (from 31 to 1%). This family was present in previous phases of the 

operation of the AD, as described in Chapter 7, so its detection in Phase 1 may reflect the 

evolution from this state. In turn, Methanobacteriaceae and Methanomassiliicoccaceae families, 

hydrogenotrophic and methylotrophic methanogens, respectively, increased their activity (16S 

rRNA) during stable operation (accounting from 15 to 36% and from 11 to 24%, respectively), 

while Methanomicrobiaceae remained stable (42 and 38% in Phase 1 and 2, respectively). 

Independently from the changes produced in the AD operation and methane production, the 

composition and activity of the biomass remained mainly dominated by hydrogenotrophic 

genus, probably due to the high ammonia concentration in the reactor, since acetotrophic 
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methanogens are usually more sensitive to the inhibitory effect of FAN (IC50 = 250 mg L-1). FAN 

levels in the reactor were high enough to selectively inhibit their growth; and the low HRT of the 

anaerobic reactor also favoured hydrogenotrophic methanogens growth. The high concentration 

of ammonia in the reactor may be favouring the occurrence of potential syntrophic acetate 

oxidation processes (SAO) coupled to hydrogenotrophic methanogenesis route, which consist 

on the oxidation of methyl and carboxyl groups of acetate to CO2, producing H2, catalysed by 

the syntrophic acetate-oxidising bacteria (SAOB) (Hattori, 2008). Possible SAOB, as 

Syntrophaceticus or Tepidanaerobacter, were detected in the AD samples, although with a low 

relative abundance (0.75 and 0.48% for Phase 1 and 2, respectively). Apart from being more 

abundant in Phase 1, or inhibited state, they were also more active in this phase (0.29%) with 

respect to Phase 2 (0.05%), where the recirculation loop with the MEC was connected. 

 
Figure 8.5 Taxonomic assignment of sequencing reads from Archaeal community of the effluent of the AD at the end 

of Phases 1 (Ph1) and 2 (Ph2) and the initial and final MEC anode biofilm (MECi and MECf, respectively) for DNA 

and cDNA at family level. Relative abundance was defined as the number of reads (sequences) affiliated with any 

given taxon divided by the total number of reads per sample. Phylogenetic groups with a relative abundance lower 

that 1% were categorised as “others”. 
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were growing using hydrogen gas or electrons transferred from exoelectrogenic bacteria, since 

direct electron transfer from the cathode to a methanogenic biofilm has been recently described 

(Cheng et al., 2009). The work developed in Chapter 7 also revealed the enrichment in 

Methanotrichaceae in the MEC working in continuous with digested pig slurry, while a similar 

cell working in MFC mode with the same substrate evolved towards the enrichment in 

Methanosarcinaceae, able to develop the hydrogenotrophic route (Chapter 5). These results 

suggest that the operation mode may favour the selection of one or the other family. On the 

other hand, it has been recently described that Methanothrix (Methanosaeta) is capable of 

accepting electrons via direct interspecies electron transfer (DIET) for the reduction of carbon 

dioxide to methane (Rotaru et al., 2014), so additional and further assessments are necessary 

to better understand the role of this species in the anode of a MEC. 

As a conclusion, the comparison between existing and active microorganisms through 

DNA and RNA extraction has revealed important differences in the obtained data and proves 

that analysis of 16S rRNA at RNA level and mcrA transcript abundance is essential in order to 

evaluate the relationships and function of the different families of microorganisms.  

8.3.3.3 Biodiversity analysis 

Table 8.3 shows the results for the biodiversity analysis performed on AD and MEC 

samples. Regarding the eubacterial diversity, the inverted Simpson and Shannon indices 

showed that the sample of the AD at the end of Phase 2 was more diverse than in Phase 1. 

However, when looking at RNA-level, Phase 1 sample reveals as the most diverse one. 

Archaea biodiversity related to gene expression showed the opposite behaviour, with a higher 

biodiversity in Phase 2, while at DNA level the richness of Phase 1 sample is slightly higher. 

These results correlate with a better performance of the AD in Phase 2 (with connected loop), 

where more different archaea can be active thanks to the improvement of the conditions in the 

reactor.  

Regarding the eubacterial diversity in the MEC anode biofilm, the initial sample showed 

a higher biodiversity than the final one, either in DNA or cDNA level. In Chapter 7 it was also 

reported a loss in biodiversity in the MEC biofilm when integrated with an AD. Biodiversity 

related to eubacterial 16S rRNA (RNA level) in MEC was higher compared to both AD samples, 

and this fact can be of great importance to maintain the stability of the system in case of AD 

inhibition. Biodiversity for Archaea according to inverted Simpson and Shannon Weaver indices 

was very similar at DNA level, while it was higher by the end of the assay when looking at RNA-

level. In this case, inversely to the behaviour detected for eubacterial biodiversity, values for 

mcrA transcripts and archaea 16S rRNA diversity were lower in MEC than in AD samples, 
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confirming that methanogenic processes have less importance in MEC environments when 

compared to AD. 
 
Table 8.3 Diversity index for Eubacterial and Archaeal community of the effluent of the AD at the end of Phases 1 

and 2 and the initial and final MEC anode biofilm (MECi and MECf, respectively) (mean±standard deviation). Data 

normalised to the sample with the lowest number of reads (36854 and 62211 for eubacteria and archaea, 

respectively). 

 

  
Reads Coverage OTUs Inverted 

Simpson Shannon 

Eubacteria     
AD-Ph1-DNA 50674 0.94±0.00 373±12 12.0±0.4 3.64±0.04 

AD-Ph2 DNA 50751 0.91±0.00 550±15 31.1±1.1 4.52±0.03 

AD-Ph1-cDNA 50897 0.94±0.00 391±12 17.2±0.5 3.88±0.03 

AD-Ph2-cDNA 86842 0.94±0.00 352±12 7.3±0.3 3.34±0.04 

MECi-DNA 46644 0.91±0.00 617±15 33.0±1.3 4.76±0.03 

MECf-DNA 36854 0.91±0.00 549±15 19.4±0.8 4.34±0.04 

MECi-cDNA 46641 0.92±0.00 533±14 27.5±1.0 4.51±0.03 

MECf-cDNA 37766 0.92±0.00 535±15 17.8±0.7 4.33±0.04 

Archaea     

AD-Ph1-DNA 102718 0.98±0.01 18±3 1.8±0.1 1.11±0.08 

AD-Ph2 DNA 87626 0.97±0.01 23±3 1.5±0.1 0.90±0.09 

AD-Ph1-cDNA 62211 0.98±0.01 26±3 4.8±0.3 2.01±0.06 

AD-Ph2-cDNA 64716 0.96±0.01 33±3 7.9±0.4 2.41±0.06 

MECi-DNA 112133 0.97±0.01 19±3 1.3±0.1 0.68±0.08 

MECf-DNA 106114 0.98±0.01 15±3 1.4±0.1 0.70±0.07 

MECi-cDNA 132548 0.98±0.01 10±2 1.1±0.0 0.34±0.06 

MECf-cDNA 136706 0.98±0.01 17±3 1.3±0.0 0.58±0.07 
 

8.3.3.4 Correspondence analysis 

Correspondence analysis results for eubacteria community are shown in Figure 8.6a. 

MEC samples were closer together than AD samples, as it could be intuited in the sequencing 

analysis by the similarity of the relative abundance between the samples. Furthermore, final 

MEC samples moved away from AD samples, suggesting that in spite of the recirculating loop, 

both populations are able to evolve independently. The highest differentiation corresponded to 

AD samples regarding gene expression (cDNA), since the sequencing results showed a higher 
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population diversification, with the increase of “Others” group, composed by families with less 

than 1% of relative abundance.  

Regarding archaea community, Figure 8.6b shows that MEC samples were clustered 

together, while the AD samples for DNA were well differentiated from cDNA samples. These 

results suggest that MEC archaea community was well established and maintained certain 

stability in composition in spite of slight variations in activity when influent characteristics were 

changed. However, AD samples showed higher differences either comparing inhibited and 

stable phases, or between composition and microbial activity of the community themselves. 

Summing up, microbial activity of the AD samples seemed to be less correlated to community 

composition than in the case of MEC samples. 
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Figure 8.6 Correspondence Analysis of the effluent of the AD at the end of Phases 1 (Ph1) and 2 (Ph2) and the initial 

and final MEC anode biofilm (MECi and MECf, respectively) for DNA and cDNA samples regarding (a) Eubacteria 

and (b) Archaea community. 
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8.4 Conclusions  

As a conclusion, the recirculation loop between the AD and the MEC allowed the first 

one to tolerate a high organic and nitrogen loading rate that other way would result in the 

inhibition of the reactor, increasing the methane production from 0.03 to 0.55 m3 m-3 d-1. 

Furthermore, the MEC process was able to improve the quality of the digestate during AD 

inhibition, achieving a maximum COD and ammonium removal efficiency of 29 and 34%, 

respectively, and overall AD-MEC COD removal efficiencies of around 60%. The microbial 

analysis of the AD biomass and the biofilm of the anode of the MEC showed that population 

composition differed from really active microorganisms according to 16S rRNA (cDNA) amplicon 

sequencing. Regarding AD biomass, it was dominated by hydrogenotrophic methanogens 

(Methanobacteriaceae), as a result of the high ammonia concentrations in the reactor. MEC 

biofilm was stable both in diversity and activity. Desulfuromonadaceae revealed as the most 

active family in the MEC (18-19% of cDNA relative abundance in Phase 1 and 2) although not 

being the predominant one in DNA analysis. Furthermore, the populations of both reactors 

maintained well differentiated in spite of the existence of the recirculation loop, increasing the 

biodiversity of the system and suggesting that this configuration is more tolerant to stress than 

the AD operating alone. And finally, the obtained results demonstrated that AD microbial 

population was altered in response to the stress, while MEC consortium maintained its stability. 
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Abstract 

Methanogenic archaea enrichment of a granular sludge was 

undertaken in an upflow anaerobic sludge blanket reactor (UASB) fed 

with methanol in order to enrich methylotrophic and hydrogenotrophic 

methanogenic populations. A microbial community assessment, in 

terms of microbial composition and activity –throughout the different 

stages of the feeding process with methanol and acetate– was 

performed, using specific methanogenic activity assays (SMA), 

quantitative real-time polymerase chain reaction (qPCR), and high 

throughput sequencing of 16S rRNA genes from DNA and cDNA. 

Distinct methanogenic enrichment was revealed by qPCR of mcrA 

gene in the methanol-fed community, being two orders of magnitude 

higher with respect to initial inoculum, and achieving a final mcrA/16S 

rRNA ratio of 0.25. High throughput sequencing analysis revealed 

that the resulting methanogenic population was mainly composed by 

methylotrophic archaea (Methanomethylovorans and Methanolobus 

genus), being also highly active according to the RNA-based 

assessment. SMA confirmed that the methylotrophic pathway, with a 

direct conversion of methanol to CH4, was the main step of methanol 

degradation in the UASB. The biomass from UASB, enriched in 

methanogenic archaea, may bear a great potential as further 

inoculum for an electromethanogenic biocathode of a microbial 

electrolysis cell (MEC) intended for biogas upgrading.  
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9.1 Introduction 

Biogas production in anaerobic digestion plants is spreading due to its potential as an 

alternative to fossil fuels. This renewable energy carrier can be stored and used in different 

applications, such as heating or electricity production, or upgraded to biomethane to inject into 

the grid or to use as transport fuel. Raw biogas consists mainly of methane (CH4, 40-75%) and 

carbon dioxide (CO2, 15-60%), and trace amounts of other components such as water (H2O, 5-

10%), hydrogen sulphide (H2S, 0.005-2%) or ammonia (NH3, <1%) (Ryckebosch et al., 2011). In 

order to transform biogas into biomethane, a cleaning and upgrading process should be 

performed. Upgrading consists in the adjustment of the calorific value of the biogas –separating 

CH4 from CO2– generally performed in order to meet the standards required to use it as vehicle 

fuel or for injection in the natural gas grid. After biogas transformation, applying techniques for 

biogas upgrading, such as pressure swing adsorption, membrane separation or chemical CO2-

absorption, the final product obtained typically contains 95-97% of CH4 and 1-3% of CO2 

(Ryckebosch et al., 2011). An alternative to these enrichment techniques, focused on CO2 

removal without changing CH4 mass, is biological methane enrichment using hydrogenotrophic 

methanogenic populations capable of using CO2 as a carbon source, and H2 as an energy 

source and convert them to CH4 (Equation 9.1) (Strevett et al., 1995), or even capable of 

obtaining these electrons directly from the cathode in a process known as 

electromethanogenesis (Cheng et al., 2009). 

 

4H2 + CO2 CH4 + H2O     (9.1) 

 

Various studies about electromethanogenesis taking place in bioelectrochemical 

systems (BES) have been developed (Villano et al., 2011), and certain hydrogenotrophic 

methanogens have been identified as the key players of this process (Van Eerten-Jansen et al., 

2013). Hydrogenotrophic methanogens belong to the orders Methanobacteriales, 

Methanococcales, Methanomicrobiales and Methanosarcinales (Karakashev et al., 2005). Thus, 

obtaining a biomass rich in these microorganisms to be used as inoculum could accelerate the 

start up of the methane producing BES.  

Upflow anaerobic sludge blanket reactors (UASB) are suitable for enriching 

methanogenic archaea because they can be operated at low hydraulic retention times (HRT). 

Bhatti et al. (1996) investigated the feasibility of methanolic waste treatment in an UASB reactor 

and demonstrated that methanol can be converted to methane via at least three routes. Later, 

Vavilin (2010) developed a model for explaining the metabolic pathways for methanol 

degradation with 13C-labeled methanol. Methanol can either be i) directly converted to methane 



Assessment of active methanogenic archaea in a methanol-fed UASB 

188 
 

by methylotrophic methanogens (Equation 9.2), ii) generated via the intermediate formation of 

acetate (acetogenesis) and later converted to methane by acetoclastic methanogens (Equations 

9.3 and 9.4), iii) or by hydrogenotrophic methanogens, with the use of H2 and CO2 (Equation 9.5 

and 9.6). 

4CH3OH 3CH4 + CO2 + 2H2O     (9.2) 

4CH3OH + 2H2CO3  3CH3COOH + 4H2O    (9.3) 

CH3COOH +H2O  CH4 + H2CO3     (9.4) 

CH3OH + 2 H2O  3 H2 + HCO3
- + H+    (9.5) 

4 H2 + 2 HCO3
- + H+  CH4 + 3 H2O     (9.6) 

 

Therefore, methanol feeding can be an alternative for the enrichment of 

hydrogenotrophic methanogenic archaea inoculum to CO2/H2 gassing or cultivation in an 

electrochemical bioreactor. 

The main aim of this study was to assess the utilisation of a methanol-fed UASB as a 

system for enriching a granular sludge in methanogenic archaea and characterise the evolution 

of the microbial community when shifting from acetate to methanol substrate, in terms of 

composition and activity using quantitative real-time polymerase chain reaction (qPCR) and 

high throughput sequencing of 16S rDNA and 16S rRNA. Specific methanogenic activity tests 

(SMA) were also performed so as to corroborate the results obtained through the microbial 

community analysis regarding active methanol routes in the UASB. 

 

9.2 Materials and methods  

9.2.1 Experimental set-up 

A lab-scale UASB reactor described in Section 3.1.5 was used to perform the experiment.  

9.2.2 Reactor operation 

The UASB was fed in continuous mode with a mineral medium, with a hydraulic 

retention time (HRT) fixed at 6 h. The reactor was operated for 416 days in 3 different phases 

(Table 9.1). The UASB was initially fed with an acetate influent for 214 days, increasing the 

organic loading rate (OLR) from 3 to 10 kgCOD m-3 d-1 in order to activate the biomass and 

acclimate it to a high OLR (Phase 1). Having achieved high operational performance, the feed 

was progressively changed to methanol substrate during 21 days (Phase 2). And finally, only 

methanol was used as substrate for another 180 days, in order to promote the enrichment in 

methanogenic archaea biomass (Phase 3). The mineral medium contained acetate and/or 
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methanol as organic carbon source, in concentrations shown in Table 9.1 for each phase, and 

(per litre of deionised water): NH4Cl, 1.33 g; CaCl2, 0.04 g ; KH2PO4, 3 g; Na2HPO4, 6 g; MgSO4 

0.25 g; yeast extract, 0.1 g and 1 mL of a trace mineral solution. The trace mineral solution 

contained (per litre of deionised water): FeCl3·H2O, 1.50 g; H3BO3, 0.15 g; CuSO4·5H2O, 0.03 g; 

KI, 0.18 g; MnCl2·4H2O, 0.12 g; Na2MoO4·2H2O, 0.06 g; ZnSO4·7H2O, 0.12 g; CoCl2·6H2O, 0.15 

g; NiCl2·6H2O, 0.023 g; EDTA, 10 g (Lu et al., 2006).  

 
Table 9.1 Operational conditions of the UASB reactor. 

Phase 
Length 

(d) 
OLR 

(kgCOD m-3 d-1) 
Acetate 

concentration (g L-1) 
Methanol 

concentration (g L-1) 
Aim of the phase 

1 

135 3.25 1.02 0 Start-up, activation 

of the biomass and 

acclimatisation to 

high OLR 

7 6.05 1.89 0 

7 8.44 2.64 0 

65 10.08 3.15 0 

2 

7 10.08 2.01 0.53 Acclimatisation of 

the biomass to 

methanol feeding 

7 10.08 1.34 1.06 

7 10.08 0.67 1.58 

3 180 10.08 0 2.11 

Enhancement of 

the biomass 

enrichment 

 

9.2.3 Analyses and calculations 

Reactor head space methane content, soluble chemical oxygen demand (CODs) and pH 

of the UASB effluent were used as control parameters for each experimental condition. All the 

analyses were performed following the methods described in Section 3.2. CODs removal 

efficiency was calculated as described in Section 3.4.  

The SMA of the anaerobic granular sludge used as inoculum, and by the end of Phase 1 

(acetate operation) and Phase 3 (methanol operation) was evaluated as described in Section 

3.2.12. 

A microbial community assessment in the initial UASB inoculum and in the granular 

sludge by the end of Phase 1 (acetate feed) and Phase 3 (methanol feed) was performed  by 

means of both culture-independent molecular techniques such as quantitative real-time 

polymerase chain reaction (qPCR), and high throughput sequencing (MiSeq, Illumina) of 16S 

rDNA and 16S rRNA. Simultaneous total genomic DNA and RNA extraction and complementary 

DNA (cDNA) synthesis, qPCR and high throughput 16S rRNA gene sequencing (MiSeq, 

Illumina) were performed following the methods described in Section 3.6.2, 3.6.3, and 3.6.5, 
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respectively. Standard curve parameters of the qPCRs performed had a high efficiency, and 

were as follows (for 16S rRNA and mcrA, respectively): slope of -3.515 and -3.558; correlation 

coefficient of 0.999 and 0.996; efficiency of 93 and 91%. Data obtained from sequencing 

datasets were deposited in the Sequence Read Archive of the National Centre for 

Biotechnology Information (NCBI) under study accession number SRP071847, for eubacterial 

and archaeal populations. 

The evaluation of the diversity of the samples and statistical multivariate analyses were 

performed following Section 3.6.6. 

9.3 Results and discussion  

9.3.1 Operation performance 

Average COD removal efficiencies and methane content in the biogas for each phase 

are shown in Table 9.2. The COD removal efficiency by the end of Phase 1 was of 82±12%, 

gradually increasing during the acetate shift to methanol, up to an average value of 97±1% by 

the end of Phase 3. It was in the range of the 86-98% obtained with a similar OLR as the one 

previously described by Badshah et al. (2012). These values are also comparable or even 

higher than those described in previous studies with higher OLR, such as 97.1% and 92.5% 

with an OLR of 30 and 48 kgCOD m-3 d-1, respectively (Kobayashi et al., 2011; Lu et al., 2015); 

showing high adaptation of the UASB biomass to the methanol feeding. Methane content in the 

head space of the reactor increased from 68±14%, when using acetate as feed, to 85±1% 

during the methanol fed phase. The low methane content during Phase 1 was partly due to 

operational problems with the outlet of the reactor, which led to air flowing into the head space.  

 
 

Table 9.2 Average performance of the UASB reactor in the different operational phases. 

Phase 

Carbon source 
(% COD) 

OLR 
(kgCOD m-3 d-1) 

COD removal 
efficiency (%) 

Biogas CH4 content 
(%) 

Acetate Methanol 

1 100 0 

3.25 73±9 22±8 

6.05 74±1 41±1 

8.44 82±3 32±1 

10.08 82±12 68±14 

2 

75 25 10.08 70±16 70±0 

50 50 10.08 93±13 81±8 

50 75 10.08 96±1 81±3 

3 0 100 10.08 97±1 85±1 
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9.3.2 Metabolic pathways and granular sludge activity 

To better understand the metabolic pathways of methanol in the UASB (Vavilin, 2010), 

and assess the activity of the biomass in the UASB reactor, both the SMA of the granules used 

as inoculum and from the samples taken at the end of Phase 1, of activation with acetate, and 

Phase 3, of methanol feed, were determined with different substrates (VFA mix, acetate, H2, 

and methanol). Table 9.3 shows that by the end of Phase 3, the granular sludge had a high 

SMA for methanol, acetate and VFA mix (470; 239 and 220 mg CODCH4 g-1 VSS d-1, 

respectively), while being 20-40 fold lower for H2 (12 mg CODCH4 g-1 VSS d-1). Nevertheless, this 

later value increased 6 times with respect to the one corresponding to the acetate feeding 

phase (2 mg CODCH4 g-1 VSS d-1). Again, the VFA mix and acetate SMA showed values 70 

times higher than those of the H2 assay. These results suggest that in spite of the long term 

operation of the reactor with methanol as the sole carbon source (180 days), the granular 

sludge did not completely lose its acetate utilisation capacity. Other studies have reported the 

loss of acetic activity after long periods of methanol feeding (Paulo et al., 2003). A recent study 

stated that after operating an UASB with methanol for 143 days, the granules presented an 

acetate SMA of 150 mg CODCH4 g-1 VSS d-1, losing completely this capacity after 300 days of 

operation (Lu et al., 2015). In this same study, higher SMA values were achieved for H2 and 

methanol (0.08 and 2.11 g CODCH4 g-1 VSS d-1, respectively) than those obtained in the present 

study. From the SMA results, it can be concluded that the main pathway in the UASB reactor for 

methanol conversion to methane is more likely methylotrophic methanogenesis, although the 

conservation of the acetate activity suggests that the acetogenesis-acetoclastic route may be 

taking place as well. Finally, such a low hydrogenotrophic activity indicates that the methanol 

oxidation followed by hydrogenotrophic methanogenesis was not promoted in the operational 

conditions applied in the UASB, the hydrogenotrophic methanogenic enrichment not taking 

place. Nevertheless, these hypotheses should be confirmed by the microbial community 

assessment simultaneously performed. 

 
Table 9.3 Specific methanogenic activity (SMA) of the inoculum and Phase 1 and 3 granular sludge fed with different 

substrates. n.d: not determined. 

Phase 
SMA (mg CODCH4 / g VSS d) 

VFA Mix Acetate H2 Methanol 

Inoculum 107 125 40 n.d. 

1 138 149 2 n.d. 

3 220 239 12 470 
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9.3.3 Microbial community assessment  

The microbial community structure and the activity of the samples taken from the initial 

inoculum and the biomass in the UASB by the end of Phase 1 (acetate feeding) and 3 

(methanol feeding) were characterised by means of qPCR technique and high throughput 

sequencing of 16S rRNA gene of total and active eubacteria and archaea by MiSeq. 

9.3.3.1 Quantitative analysis by qPCR 

qPCR results of the 3 samples, regarding DNA (present microorganisms) and cDNA 

(active microbial populations), for 16S rRNA (eubacteria) and mcrA (methanogenic archaea) 

gene copy numbers showed a progressive increase in mcrA gene copy numbers from the 

inoculum to the biomass sample by the end of Phase 3 (Figure 9.1). This result correlates with 

the increase in methane content in the biogas in the UASB (Section 9.3.1). An increase of two 

orders of magnitude of mcrA gene (at DNA level) in Phase 3 in comparison to the initial 

inoculum (1.13·1010 and 1.25·108 gene copy numbers g-1, respectively) was revealed, while the 

mcrA expression (cDNA level) in Phase 3 was twice the obtained in Phase 1 (4.76·108 and 

2.46·108 gene copy numbers g-1, respectively). On the contrary, 16S rRNA gene copy numbers 

remained in the same order of magnitude in both Phases and initial inoculum. As a 

consequence, the highest mcrA/16S rRNA gene ratio achieved was of 0.25, by the end of 

Phase 3. These quantitative results prove that a progressive enrichment in methanogenic 

archaea was taking place in the reactor biomass, and that its activity was coincident with an 

enhancement of methane production. Since the ratio between methanogenic archaea and 

eubacteria in the biomass clearly increased during the methanol feeding phase of the UASB, it 

may harbour a great potential as inoculum for an electromethanogenic biocathode MEC 

intended for biogas upgrading.  
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Figure 9.1 Gene copy numbers for 16S rRNA and mcrA genes and ratio between them of DNA and mRNA (cDNA), 

of the initial inoculum and the biomass of the UASB at the end of Phases 1 (acetate feeding) and 3 (methanol 

feeding). 

9.3.3.2 Sequencing results for eubacteria and archaea 

In the high throughput sequencing analysis (MiSeq) 2,770 and 483 OTUs were detected 

for eubacteria and archaea, respectively, with 50,466-64,777 reads for eubacteria and 66,226-

121,706 reads for archaea. Figure 9.2a shows the relative abundance of eubacterial phyla in 

the inoculum and the anaerobic granular sludge of the UASB at the end of Phase 1 (acetate 

feeding) and 3 (methanol feeding), both at DNA and RNA (cDNA) level. Although 

Proteobacteria was the predominant phylum in the inoculum (39%), Bacteroidetes, Firmicutes 

and Synergistetes grew into the most abundant in Phase 1 (40, 26 and 14%, respectively) and 

Phase 3 samples (61, 14 and 8%, respectively). At gene expression level (cDNA), relative 

abundance of the predominant phylum was consistent with the obtained for DNA, except for an 

increase up to 22% in Proteobacteria in Phase 1 sample and a general reduction of 

Synergistetes phylum. At family level, between 24% and 74% of the OTUS were unclassified, 

Phase 3 sample showing the highest values (Figure 9.2b). Of the classified OTUs, 

Pseudomonadaceae accounted for 37% of the relative abundance in the inoculum, it being 

below 1% in the granular sludge of the UASB in Phase 1 and Phase 3. Porphyromonadaceae, 

Ruminococcaceae and Synergistaceae were the predominant families in Phase 1 (28, 13 and 

14%, respectively), though less abundant in Phase 3 (14, 6 and 8%, respectively). The first 

family, Porphyromonadaceae, maintained its predominance as an active group (cDNA level) in 

Phase 1 (19%), and Desulfobulbaceae revealed itself as a highly active family (15%) in spite of 

its low relative abundance (2%) at DNA level. Finally, regarding Phase 3 sample, no clear 
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dominant active families were highlighted, due to the high number of unclassified OTUs (74%). 

78% of the unclassified OTUs obtained in Phase 3 cDNA sample correspond to Bacteroidetes 

phylum, and 21% to Firmicutes. These OTUs that cannot be assigned to a known family could 

be novel taxa or perhaps still poorly defined in the RDP database.   

As for archaea population, Figure 9.3 shows a clear Methanosarcinaceae family 

enrichment in the UASB, particularly in Phase 3, both in community composition and activity (52 

and 64% of relative abundance, respectively). On the contrary, Methanotrichaceae, an 

acetotrophic family formerly known as Methanosaetaceae, was clearly reduced during Phase 3, 

due to methanol feeding, and although maintaining 19% of relative abundance at DNA level, 

solely represented 3% of all OTUs at cDNA level. Nevertheless, its presence is relevant as 

correlates well with the results obtained in the SMA test, in which the acetic activity of the 

granular sludge was high (Section 9.3.2) when acetate was used as feed. The fact that the 

Methanotrichaceae (Methanosaeta) family was still active after 180 days of methanol feeding as 

the sole carbon source suggest that the homoacetogenic route may be responsible of methanol 

transformation to acetate. Bicarbonate plays an important role in the anaerobic conversion of 

methanol, as a required co-substrate in the acetogenic breakdown. Although bicarbonate was 

not added to the medium used in this assay in order to avoid the acetogenic route, it is 

produced when methanol is converted into methane (Equation 9.4). According to stoichiometry, 

up to one third of the methanol can potentially be consumed by acetogens from the endogenous 

methanogenic supplied bicarbonate (Florencio et al., 1997). Indeed, the methylotrophic 

acetogenic eubacteria Sporomusa was active in the granular sludge with a low relative 

abundance (0.2 %), and may be involved in the conversion of methanol to acetate. In Phase 1, 

the Methanotrichaceae family accounted for the highest relative abundance at cDNA level 

(60%), demonstrating its high activity during acetate feeding, in spite of presenting a lower 

relative abundance at DNA level (39%). However, according to a recent study, it seems that 

Methanothrix (Methanosaeta) is capable of accepting electrons via direct interspecies electron 

transfer (DIET) to reduce carbon dioxide to methane (Rotaru et al., 2014) and not being strictly 

aceticlastic. To what extend it could have a role in the hydrogenotrophic route in Phase 3 should 

be analysed in depth. Methanobacteriaceae and Methanoregulaceae, families where most of its 

members obtain energy from the reduction of CO2 with H2, decreased their relative abundance 

during Phase 3 (10% and not detected, respectively), thus suggesting that the enrichment in the 

hydrogenotrophic methanogenic group, aim of this work, was not achieved. Conversely, genus 

Methanomethylovorans and Methanolobus, both part of the Methanosarcinaceae family and 

defined as methylotrophs (Jiang et al., 2005; Mochimaru et al., 2009), were the predominant 

and most active groups. These were followed by the Thermoplasmatales genus 

(Methanossiliicoccaceae family), which is also capable of using methanol as a substrate 
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(Poulsen et al., 2013). The predominance of methylotrophic groups agrees with the results of 

the SMA test, which showed a high activity with methanol substrate.  

a) 

  
 

b)  

 
 

Figure 9.2 Taxonomic assignment of sequencing reads from Eubacterial community of the initial inoculum and the 

biomass of the UASB at the end of Phases 1 (acetate feeding) and 3 (methanol feeding) for genomic DNA and RNA 

(cDNA) level , at a) phylum b) family levels. Relative abundance was defined as the number of reads (sequences) 

affiliated with any given taxon divided by the total number of reads per sample. Phylogenetic groups with a relative 

abundance lower that 1% were categorised as “others”. 
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Figure 9.3 Taxonomic assignment of sequencing reads from Archaeal community of the initial inoculum and the 

biomass of the UASB at the end of Phases 1 (acetate feeding) and 3 (methanol feeding) for genomic DNA and RNA 

(cDNA) at family level. Relative abundance was defined as the number of reads (sequences) affiliated with any given 

taxon divided by the total number of reads per sample. Phylogenetic groups with a relative abundance lower that 1% 

were categorised as “others”. 

 

Although methanol is a simple compound with only one carbon, it can support a very 

complex food chain under anaerobic conditions (Florencio et al., 1994). The methylotrophic 

population enriched in this study may have been favoured by the pH in operation, which was 

maintained between 6.9 and 7.0. A slightly more acidic pH would have stimulated the 

hydrogenotrophic pathway, according to Bhatti et al. (1996), who established that at pH values 

close to 7.0, methanol will either be converted directly to methane (by methylotrophic 

methanogens), via the intermediate formation of acetate (by acetoclastic methanogens), or 

through a combination of both. Hydrogenotrophic methanogens will be mainly responsible for 

this conversion, by utilising H2 and CO2, only at pH values between 5.0 and 6.0. 

9.3.3.3. Biodiversity analysis 

Table 9.4 shows the results for the biodiversity analysis performed on UASB granular 

sludge samples. Inverted Simpson and Shannon indices for archaea population decreased 

throughout the entire operation time of the UASB, and when the change of feed from acetate to 

methanol was carried out, suggesting that Phase 3 promoted the enrichment of certain groups 

of methanogenic microorganism, reducing the biomass biodiversity of the granular sludge. The 

inoculum was the most diverse sample, followed by Phase 1 and Phase 3 samples. This 
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biodiversity reduction in Phase 3 is observed at community composition level, and also at 

activity level. For eubacterial population, both indices showed that the inoculum sample was the 

least diverse community. The highest biodiversity was harboured by the Phase 1 sample, 

according to the Shannon index but, according to the Inverted Simpson index, it was harboured 

by the Phase 3 sample. On the contrary, both indices were the highest in Phase 1 when it 

comes to gene expression (cDNA), suggesting that acetate feeding promoted that more 

eubacteria species were active in the granular sludge than with methanol feeding. So it can be 

concluded that the use of methanol as carbon source induced a reduction in biomass 

biodiversity due to the high predominance of the methylotrophic route for its degradation. 

 

 

 
Table 9.4 Diversity index for Eubacteria and Archaea community of the inoculum and the biomass of the UASB at the 

end of Phases 1 (acetate feeding) and 3 (methanol feeding) for DNA and cDNA samples (mean±standard deviation). 
Data normalised to the sample with the lowest number of reads (50466 and 66226 for eubacterial and archaeal, 

respectively). 

 Coverage Inverted 
Simpson 

Shannon 

Eubacteria    

Inoculum 1.00±0.00 8.35±0.03 3.66±0.00 

Phase 1-DNA 0.99±0.00 15.06±0.00 4.01±0.00 

Phase 3-DNA 0.99±0.00 15.27±0.04 3.75±0.00 

Phase 1-cDNA 0.99±0.00 9.80±0.02 3.66±0.00 

Phase 3-cDNA 0.99±0.00 5.44±0.02 2.94±0.01 

Archaea    

Inoculum 1.00±0.00 5.92±0.02 2.33±0.00 

Phase 1-DNA 1.00±0.00 4.12±0.01 1.95±0.00 

Phase 3-DNA 1.00±0.00 2.83.±0.00 1.63±0.00 

Phase 1-cDNA 1.00±0.00 3.37±0.01 1.99±0.01 

Phase 3-cDNA 1.00±0.00 2.97±0.01 1.85±0.01 
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9.3.3.4 Correspondence analysis 

Correspondence analysis results for eubacteria community are shown in Figure 9.4a. A 

clear evolution in population was evidenced with the change of feed, from the inoculum to 

Phase 1 sample, using acetate, and from Phase 1 to Phase 3 sample, with methanol as a 

substrate. DNA (16S rDNA) and cDNA samples (16S rRNA) for each phase were clustered 

together, suggesting that few differences could be found between existing and active 

microorganisms. Therefore, the distribution of the samples agrees with the discussion of the 

sequencing results (Section 9.3.3.2). Regarding archaea correspondence analysis (Figure 

9.4b), Phase 1 sample remained near to the inoculum when looking at DNA composition but 

moved away when looking at gene expression. Phase 3 samples, as in the case of eubacteria 

community, were clustered together and far from the 3 other samples. 

These results confirm that a clear population shift in UASB microbial communities was 

promoted during the operation of the reactor, obtaining specialised acetotrophic and 

methylotrophic communities in Phase 1 and Phase 3, respectively, due to the different feeding 

strategies applied.  
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Figure 9.4 Correspondence Analysis of the initial inoculum and the biomass of the UASB at the end of Phases 1 

(acetate feeding) and 3 (methanol feeding) for DNA and cDNA samples regarding (a) Eubacteria and (b) Archaea 

community. 
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9.4 Conclusions  

The anaerobic granular sludge used as inoculum in the UASB was activated during the 

acetate feeding phase, and later progressively adapted to a methanol substrate, achieving high 

COD removal efficiencies (97±1%). From the different metabolic pathways known for methanol, 

the methylotrophic methanogenic (by the genus Methanomethylovorans and Methanoglobus) 

was the predominant pathway by the end of the UASB operation, followed by the aceticlastic 

one (by the genus Methanothrix (Methanosaeta) while the hydrogenotrophic route presented a 

low activity. The ratio between methanogenic archaea and eubacteria in the biomass showed a 

distinct increase during the methanol feeding phase of the UASB, so it may harbour a great 

potential as inoculum for an electromethanogenic biocathode MEC intended for biogas 

upgrading.  
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Start-up of electromethanogenic microbial 
electrolysis cells with two different biomass 
inocula  
 

 

 

 

 

 

Part of the content of this chapter is in preparation to be submitted for publication as: 

 

Cerrillo, M., Viñas, M., Bonmatí, A. Start-up of electromethanogenic microbial electrolysis cells 
with two different biomass inocula. 
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Abstract 

The performance and biomass enrichment of the biocathode of 

a pair of lab-scale two-chambered microbial electrolysis cells (MEC) 

were assessed during 95 days as a technology for upgrading the 

biogas produced in anaerobic digesters, converting CO2 into CH4 

through the electromethanogenic process. Two different inocula were 

compared: i) a mixture of biomass from the anode of a MEC and 

anaerobic granular sludge (BC1); ii) biomass enriched in a methanol-

fed upflow anaerobic sludge blanket reactor (UASB) (BC2). 

Quantitative and qualitative microbial community assessment of the 

enrichment process on the biocathodes from initial inocula was 

performed by means of  high throughput sequencing of 16S rDNA 

and 16S rRNA based massive libraries, as well as RT-qPCR of 16S 

rRNA and mcrA genes. Results showed that, although BC2 had a 

faster increase in current density than BC1, there were no significant 

differences neither in the average CH4 production (0.23±0.01 and 

0.22±0.05 L m-3 d-1 for BC1 and BC2, respectively), or in the cathodic 

methane recovery efficiency (65±8 and 79±17%, respectively). 

Furthermore, independently from the origin of the inoculum, archaeal 

microbial community in both biocathodes were highly dominant, both 

in presence and activity, in hydrogenotrophic methanogenic archaea, 

especially belonging to Methanobacteriaceae family (mainly 

Methanobrevibacter genus) (84-98% of both 16S rDNA and 16S 

rRNA relative abundance). 
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10.1 Introduction 

Biogas is a renewable energy carrier gas consisting mainly of methane (CH4, 40-75%) 

and carbon dioxide (CO2, 15-60%) (Ryckebosch et al., 2011) that is obtained from the 

anaerobic digestion of bio-degradable materials such as manure, energy crops, household and 

industry wastes. So far, heating and electricity generation are the main applications of biogas, 

which are spreading its use as an alternative to fossil fuels. Moreover, it has more efficient uses, 

such as the injection in the existent natural gas grid or the utilisation as transport fuel. For the 

latter purposes raw biogas needs some treatments prior to its use intended to remove 

undesired compounds (cleaning) and adjust the calorific value separating CH4 from CO2 

(upgrading), obtaining biomethane. Conventional techniques for biogas upgrading, that are 

focused on CO2 removal without changing CH4 mass, include pressure swing adsorption, 

membrane separation or chemical CO2-absorption, obtaining a final product with 95-97% of CH4 

and 1-3% of CO2 (Ryckebosch et al., 2011). An alternative to these enrichment techniques that 

has recently emerged is the use of microbial electrolysis cells (MEC), in which external energy 

is supplied to promote a thermodynamic no spontaneous reaction such as the 

bioelectrochemical CO2 conversion into methane in a process known as electromethanogenesis 

(Cheng et al., 2009; Van Eerten-Jansen et al., 2013; Villano et al., 2011). This way, the 

methane yield from anaerobic digestion could be increased (Van Eerten-Jansen et al., 2011; Xu 

et al., 2014). The key players of the electromethanogenesis process are hydrogenotrophic 

methanogenic archaea that develop in the cathode compartment of the MEC (biocathode). 

Previous studies have demonstrated that methane obtaining from CO2 can be achieved through 

two different mechanisms of extracellular electron transfer, i) indirectly, through the intermediate 

abiotic electrochemical and/or microbially catalysed production of hydrogen in the cathodic 

compartment (Equation 10.1 and 10.2); or ii) directly, by taking the electrons from the cathode 

and using them to reduce CO2 to methane (Equation 10.3) (Cheng et al., 2009; Van Eerten-

Jansen et al., 2013; Villano et al., 2011).  

 

2 H+ + 2 e-  H2      (10.1) 

4 H2 + CO2  CH4 + H2O     (10.2) 

CO2 + 8 H+ + 8 e-  CH4 + 2 H2O    (10.3) 

 

The cathode potential required to enhance the electromethanogenic process due to 

potential losses is in the range from -650 to -750 mV (vs. the standard hydrogen electrode, 

SHE), since at more negative potentials also acetate may be produced simultaneously with CH4 

and H2 in a microbial biocathode based on mixed cultures (Jiang et al., 2013). However, acetate 
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has been coproduced with methane at a fixed cathode potential as low as -590 mV (vs, SHE) in 

another study (Marshall et al., 2012). 

Obtaining a biomass rich in hydrogenotrophic methanogenic archaea in order to be used 

as inoculum could accelerate the start up of the methane producing MECs and improve 

methane production rates, being CO2/H2 gassing (Jiang et al., 2014; Villano et al., 2010) or 

cultivation in an electrochemical bioreactor (Hou et al., 2015; Jiang et al., 2013) the most 

common enrichment methods. A recently proposed alternative enrichment method was the 

utilisation of a methanol-fed upflow anaerobic sludge blanket reactor (UASB), providing that 

hydrogenotrophic methanogenesis is one of the possible routes for methanol degradation, 

besides the predominant methylotrophic route (Chapter 9). The effectiveness of this latter 

method to increase the performance of an electromethanogenic biocathode needs to be further 

evaluated. Furthermore, a deep study of the biomass harboured by methanogenic biocathodes 

is needed, applying new techniques such as simultaneous DNA and RNA extraction, 

quantification and high throughput sequencing, in order to disclose which microorganisms are 

really active among the ones that might be present in the biofilm (Chapter 8). 

The main aim of this Chapter was to assess the performance and biomass enrichment of 

the biocathode of a lab-scale MEC to convert CO2 into CH4 as a technology for upgrading the 

biogas produced in anaerobic digesters, comparing two different inocula: i) a mixture of biomass 

from the anode of a MEC and anaerobic granular sludge; ii) biomass enriched in a methanol-fed 

upflow anaerobic sludge blanket reactor (UASB). The microbial enrichment on the biocathodes 

was assessed in terms of composition and activity using quantitative real-time polymerase chain 

reaction (qPCR) and high throughput sequencing of 16S rDNA and 16S rRNA massive libraries. 

10.2 Materials and methods  

10.2.1 Experimental set-up 

A pair of identical two chamber cell described in Section 3.1.2 (BC1 and BC2) were 

operated.  

10.2.2 Reactor operation 

The MECs were operated in continuous for 95 days poising the cathode potential at -800 

mV vs SHE. One of the MECs (BC1) was inoculated, both the anode and the cathode 

compartment, with 30 mL of a mixture 3.6:1 of the biomass of the anode of the MEC operated in 

Chapter 8 and granular biomass from a full-scale AD, with a volatile suspended solids (VSS) 

content of 16 g L-1. The cathode of the second MEC (BC2) was inoculated with 30 mL of a 

resuspension (VSS content of 33 g L-1) of the anaerobic granular sludge of the UASB that was 

operated in Chapter 9 with methanol in order to enrich the biomass with methanogenic archaea. 
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The resuspension was done by vortex mixing during 10 minutes in a 50 mL tube containing 30 g 

of granular sludge and 25 mL of Ringer 1/4 sterilised solution. The two MEC were operated in 

continuous mode, the influent solutions of both the anode and the cathode compartment were 

fed in continuous with a pump at 40 mL h-1 and mixed by recirculating them by an external 

pump. The hydraulic retention time of each compartment (HRT) was of 6.8 h (with respect to the 

net volume of each compartment), and the organic loading rate (OLR) of the anode 

compartment was established at 7.83 kgCOD m-3 day-1. The MECs were operated at room 

temperature during the entire assay (23±2 ºC). 

10.2.3. Analyses and calculations 

Samples of the effluent of each compartment were analysed for pH, besides chemical 

oxygen demand (COD) in the anode compartment samples and dissolved methane in the 

cathode samples, following the methods described in Section 3.2. Methane production was 

normalised to the net volume of the cathode compartment (0.265 L). COD removal efficiency in 

the MECs was calculated as described in Section 3.4.1.  

The current density (A m-3) of the MECs was calculated as described in Section 3.3. The 

Coulombic efficiency (CE), or the fraction of electrons obtained from the consumption of COD 

that are available for methane production at the cathode; the energy efficiency relative to 

electrical input recovered as methane (EEe); the energy efficiency relative to the energy content 

of the substrate (EEs); the energy efficiency with respect to the energy input and the energy in 

the substrate (EEe+s); and the cathodic methane recovery efficiency (Rcat), defined as the 

fraction of electrons reaching the cathode that are recovered as methane, were calculated as 

described in Section 3.4.3. 

Cyclic voltammetries (CV) in turnover conditions were performed at the start (day 0) and 

the end (day 95) of the assays in each biocathode, following the methodology described in 

Section 3.3.   

The bacterial communities in the 2 different inoculums used for the cathodes of BC1 and 

BC2 and the biofilm harboured in the same electrodes at the end of the assay were analysed by 

culture-independent molecular techniques such as (RT) quantitative PCR (RT-qPCR) and high 

throughput sequencing (MiSeq, Illumina) of 16S rDNA and 16S rRNA. Simultaneous total 

genomic DNA and RNA extraction and complementary DNA (cDNA) synthesis, qPCR and high 

throughput 16S rRNA gene sequencing (MiSeq, Illumina) were performed following the methods 

described in Section 3.6.2, 3.6.3, and 3.6.5, respectively. The standard curve parameters of the 

qPCRs were as follows (for 16S rRNA and mcrA, respectively): slope of -3.244 and -3.532; 

correlation coefficient of 0.998 and 0.999; efficiency of 103 and 92%; showing that the reactions 

performed had a high efficiency. The data obtained from sequencing datasets for eubacterial 
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and archaeal populations was submitted to the Sequence Read Archive of the National Center 

for Biotechnology Information (NCBI) under the study accession number SRP072511. 

The evaluation of the diversity of the samples and statistical multivariate analyses were 

performed following Section 3.6.6. 

10.3 Results and discussion  

10.3.1 Operation performance 

The current densities produced by the BC1 and the BC2 during the 95 days of operation 

are shown in Figure 10.1a and 1b, respectively. The BC2 achieved current densities between 

150 and 200 A m-3 after 5 days of operation, while the BC1 showed a more progressive 

increase (the low current densities between days 8 and 14 are due to a MEC destabilisation 

after the performance of a cyclic voltammetry). However, the BC1 maintained a current density 

between 100 and 150 A m-3 from day 50 on, while the BC2 produced a current density around 

80 A m-3. The decrease in current density on day 10, 41 and 60 of the BC2 was due to a failure 

in the potentiostat that did not allowed to maintain the cathode poised at -800 mV. 

Nevertheless, the average methane production was similar in both MECs, 0.22-0.23 m3 m-3 d-1 

(Table 10.1). It is noteworthy that the obtained values are twenty-fold and ten-fold higher, in 

terms of current density and methane production respectively  than those reported previously in 

a dual-chamber methanogenic MEC using graphite granules as electrodes, with current density 

generation and methane production rate of 9.3 A m-3 and 0.018 m3 m-3 d-1, respectively (Villano 

et al., 2011); also higher than those achieved from a spiral-wound-electrode MEC with an 

applied voltage of 1.2 V, with a current density generation and methane production rate of 109 

A m-3 and 0.16 m3 m-3 d-1, respectively (Hou et al., 2015). Even 0.28 m3 m-3 d-1 were achieved in 

a MEC with a semi-batch fed cathode (Villano et al., 2013). 

 

 
Figure 10.1 Current density profiles obtained for (a) BC1 and (b) BC2. 
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Table 10.1 Performance of BC1 and BC2 (average±standard deviation). 

Parameter BC1 BC2 

CH4 production (m3 m-3 d-1) 0.23±0.01 0.22±0.05 
CE (%) 33±10 25±12 
Rcat (%) 65±8 79±17 
EEe (%) 57±17 61±16 
EEs (%) 23±6 54±34 
EEe+s (%) 17±2 33±18 

 

Regarding the cathodic methane recovery efficiency (Rcat) and energy efficiencies (EEe, 

EEs and EEe+s), the values obtained for the BC2 are higher than those of the BC1, but due to 

their higher variability the differences cannot be considered as significant (Table 10.1). Previous 

works with a two-chambered MEC using graphite granules as electrodes have achieved an 

energy efficiency related to the electrical energy input (EEe) and of electrical input and substrate 

(EEe+s) of 57% and 30%, respectively, in batch mode (Villano et al., 2011), values very similar to 

these obtained in this study. On the contrary, the achieved CE (33±10 for BC1 and 25±12 for 

BC2) are lower than those previously reported, such as 72-80% (Zeppilli et al., 2014). Finally, 

the obtained Rcat (65±8 for BC1 and 79±17 for BC2) are below the 96% previously reported by 

Cheng et al. (2009) or the 84-86% obtained by Zeppilli et al. (2014), but much higher than the 

23.1% achieved by Van Eerten-Jansen et al. (2001) or the 24.2 ± 4.7% reported by Zhen et al. 

(2015). 

Figure 10.2 shows the cyclic voltammograms obtained in both biocathodes at the start 

(day 0) and the end (day 95) of their operation. The curves obtained at the start of the operation 

showed a low response to the different applied potentials, as a result of the recent inoculation. 

At the end of the assay the curves showed that the biofilm was established in both biocathodes, 

with a better performance of BC2 at potentials lower than -330 mV vs. SHE. However, current 

densities obtained during continuous operation of the MECs were lower than those achieved in 

the cyclic voltammetries, especially in BC2. Catalytic current for both biocathodes had an onset 

at approximately -300 mV, that could be related to the reduction of CO2 to methane (E’ = -237 to 

-303 mV for pH 7-8) or acetate (E’ = -287 to -352 mV for pH 7-8), in the case that this product 

was generated in the cathode compartment (Xafenias and Mapelli, 2014). A second onset 

appeared at a potential near -800 mV, which might be related to the hydrogen evolution reaction 

(2H+ + 2e-  H2) (Fu et al., 2015), so it is possible that H2 was formed at the biocathode and 

immediately consumed by hydrogenotrophic methanogens.  
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Figure 10.2 Cyclic voltammograms obtained for BC1 and BC2 at the start (BC1i and BC2i) and the end (BC1f and 

BC2f) of the assay. 

 

10.3.2 Evaluation of the electromethanogenic MEC as a biogas upgrading 

technology 

With the obtained results of methane conversion from CO2 (0.23 m3 m-3 d-1), the 

performance of the electromethanogenic MEC as a biogas upgrading technology was 

assessed. Assuming a typical biogas composition of 60% CH4 and 40% CO2, a volume of 

biogas of 0.58 m3 m-3 d-1 could be treated in this biocathode to obtain near 100% CH4. And for 

example 1 m3 m-3 d-1 of biogas could be treated to obtain a composition of 83% CH4 and 17% 

CO2. When compared to the existing biogas upgrading technologies, that achieve a methane 

purity of 95-97% (Ryckebosch et al., 2011), it has to be taken into account that these 

technologies remove CO2, without changing CH4 mass, so the final volume of gas obtained is 

reduced. That is, for each m3 of biogas treated on traditional biogas upgrading technologies, 

about 0.6 m3 of CH4 would be recovered, while in the biocathode the obtained volume would be 

of 0.9 m3. As higher cathodic methane recovery efficiencies have been achieved in previous 

studies (Cheng et al., 2009), and the designs and materials for biocathodes are constantly 

improving (Hou et al., 2015), a better performance for this new biogas upgrading technology 

can be expected in the future, so its scaling up must be undertaken. 
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10.3.3 Microbial community assessment  

The microbial community structure and activity of the samples taken from the inoculums 

of the cathodes of BC1 and BC2 and the biofilm harboured on the electrodes at the end of the 

assay was characterised by means of qPCR and high throughput sequencing by Miseq of 

16SrRNA/16SrDNA-based massive libraries. 

10.3.3.1 Quantitative evolution of cathode biomass  

qPCR results of the 4 samples, regarding DNA (present microorganisms) for both 16S 

rRNA (eubacteria) and mcrA (methanogenic archaea) showed higher gene copy numbers in the 

final BC2 biofilm than in BC1, although of the same order of magnitude (Figure 10.3). However, 

when looking at cDNA (active microorganisms), methanogenic archaea in BC1 biofilm revealed 

themselves more active than in BC2, with more than one order of magnitude increase (2.95·105 

and 9.86·103 mcrA transcript copy numbers g-1, respectively), while eubacteria 16S rRNA gene 

copy numbers in the BC2 biofilm were 3.2 times higher than in BC1. In spite of the quantitative 

differences in methanogenic archaea between both biocathodes, no significant differences were 

observed related to methane production, so other mechanisms may be affecting the 

performance of the biomass. It could be possible that the higher number of active eubacteria in 

the BC2 increased the synergies with archaea that could help to overcome their lower number 

in comparison with BC1, as will be discussed in the following section. 

 
Figure 10.3 Gene copy numbers and transcripts of 16S rRNA and mcrA genes from initial inoculum of BC1 and BC2 

(i) and the final enrichment on each biocathode (f). 
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10.3.3.2 Sequencing results for eubacteria and archaea 

Table 10.2 shows the number of reads obtained for the inoculums and the final biofilm of 

the biocathodes for eubacteria (3538 OTUS) and archaea (725 OTUS). Figure 10.4a shows the 

relative abundance of eubacterial phyla for the four samples, regarding DNA (present 

microorganisms) and cDNA (active microorganisms) forms. Both inoculums had a different 

composition, with a higher relative predominance of Proteobacteria (57%) and in Bacteroidetes 

(61%) in the inoculums of BC1 and BC2, respectively, while at the end of the assays the 

biofilms where enriched the opposite (45% for Bacteroidetes and 58% for Proteobacteria in BC1 

and BC2, respectively). The most active phyla in BC1 biofilm were, according to cDNA results, 

Bacteroidetes (37%), Firmicutes (33%) and Proteobacteria (27%), while Proteobacteria phylum 

(73%) was highly active in BC2 biofilm. A previous study also found that Proteobacteria was the 

most predominant phylum (54% of the clones in the library) (Kobayashi et al., 2013). At family 

level (Figure 10.4b), Cyclobacteriaceae was the predominant one in the BC1 biofilm (30%) in 

spite of being Pseudomonadaceae the most abundant in the inoculum (46%). In the BC2 biofilm 

four families accounted for the same relative abundance (11%):  Desulfovibrionaceae, 

Cyclobacteriaceae, Pseudomonadaceae and Rhodocyclaceae, when they had a low relative 

abundance in the inoculum (below 3% for Desulfovibrionaceae and below 0.25% for the other 

three families).  
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Figure 10.4 Taxonomic assignment of sequencing reads from Eubacterial community of the inoculum of BC1 and 

BC2 and the final sample of each cathode for DNA (total population) and cDNA (active populations), at a) phylum b) 

family levels. Relative abundance was defined as the number of reads (sequences) affiliated with any given taxon 

divided by the total number of reads per sample. Phylogenetic groups with a relative abundance lower that 1% were 

categorised as “others”. 
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When looking at the cDNA form, and thereby active microorganisms, the 

Cyclobacteriaceae family maintained its higher relative abundance (25%), accompanied by 

Eubacteriaceae (13%) in the BC1 biofilm. However, the most active families in the BC2 biofilm 

where Desulfobacteraceae and Desulfovibrionaceae (22 and 20%, respectively), although being 

practically inactive in the inoculum. Therefore, these results suggest on the one hand that the 

active groups of microorganisms differ from the most abundant ones; and on the second hand, 

the enrichment of eubacteria on the electromethanogenic biocathodes under the same 

operational conditions may be different, which is consistent with a recent work (Siegert et al., 

2015b). Some of the genera identified in the biocathodes with a higher relative abundance 

belonged to Pseudomonas (2 and 7% of active microorganisms in BC1 and BC2, respectively), 

Geobacter (3 and 4% of active microorganisms in BC1 and BC2, respectively), Desulfovibrio (7 

and 20% of active microorganisms in BC1 and BC2, respectively) or Acetobacterium (11 and 

0.1% of active microorganisms in BC1 and BC2, respectively), which have been identified 

previously in methanogenic cathodes (Siegert et al., 2015a; Siegert et al., 2015b; Van Eerten-

Jansen et al., 2013). Acetobacterium is a typical cathodic acetogen (Marshall et al., 2012), and 

its presence could indicate that electrons were not exclusively directed to methanogenesis, 

explaining the obtained cathodic methane recovery below 100% of both biocathodes. This 

hypothesis is reinforced by the fact that small amounts of acetate were detected in the cathode 

effluent (<33 mg L-1). In turn, Geobacter and Desulfovibrio are able to catalyse 

bioelectrochemical hydrogen production at the cathode (Aulenta et al., 2012; Geelhoed and 

Stams, 2011), and may be involved in the production of methane through the microbially 

catalysed production of hydrogen (equation 10.1 and 10.2). As the latter family is more 

abundant in BC2, it could be the reason for its similar methane production to BC1 in spite of the 

lower copy number of active mcrA gene obtained by qPCR. 

Regarding archaea population, Figure 10.5 shows a clear enrichment in the 

Methanobacteriaceae family in both biocathodes, especially in BC2 (90% of relative 

abundance), belonging mainly to Methanobrevibacter genus. A part from its high relative 

abundance, it also revealed itself as the most active family (87 and 98% in BC1 and BC2, 

respectively). Previous work also determined that Methanobacteriaceae was the predominant 

family on methanogenic biocathodes, although identifying Methanobacterium as the 

predominant species (Van Eerten-Jansen et al., 2013; Xu et al., 2014; Zhen et al., 2015). An 

abundance of 86.7% for Methanobacterium was determined using fluorescent in situ 

hybridisation (FISH) in a two-chamber electrochemical reactor containing an abiotic anode and 

a biocathode for methane production (Cheng et al., 2009); and it represented more than 93% of 

the total sequenced active archaeal reads in a MEC with concomitant production of acetate, 

methane and hydrogen (Marshall et al., 2012). Methanobacterium dominated also on the 
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biocathodes, with lesser members of Methanobrevibacter, in MECs inoculated with either 

anaerobic bog sediment where hydrogenotrophic methanogens were detected or anaerobic 

digestion sludge dominated by the acetoclastic Methanosaeta (Siegert et al., 2015a). Instead, 

Methanobrevibacter was found to dominate the biofilms developed on platinum cathodes (81-

100%), while Methanobacterium abounded on the other cathode materials assayed (median of 

97% in abundance of all archaea), when the inoculum used contained primarily the genus 

Methanosaeta (95%) (Siegert et al., 2015b). Methanobacterium, Methanobrevibacter and 

Methanocorpusculum dominated the biocathode of another MEC at an applied voltage of 0.7 V 

(Jiang et al., 2014), and Methanobrevibacter and Methanosarcina were observed in a MEC with 

a cathode of graphite granules (Zeppilli et al., 2014). Therefore, regardless of the initial 

composition of the inoculums, in the present study a convergent enrichment towards 

hydrogenotrophic methanogenic families was clear, especially in the case of the inoculum of 

BC2, which was initially enriched in methylotrophic methanogenic archaea 

(Methanomassiliicoccaceae, 24% (Poulsen et al., 2013) and Methanosarcinaceae, 50%, genus 

Methanomethylovorans and Methanolobus (Jiang et al., 2005; Mochimaru et al., 2009)). 

Methanobrevibacter genus, along with Methanobacterium found in other studies, seem to be 

especially adapted for growth in electromethanogenic MECs, as stated in a previous work 

(Siegert et al., 2015b), differentiating from other hydrogenotrophic methanogens under poised 

potentials. 

 

 
 

Figure 10.5 Taxonomic assignment of sequencing reads from Archaeal community of the inoculum of BC1 and BC2 

and the final sample of each cathode for DNA (total population) and cDNA (active populations) at family level. 

Relative abundance was defined as the number of reads (sequences) affiliated with any given taxon divided by the 

total number of reads per sample. Phylogenetic groups with a relative abundance lower that 1% were categorised as 

“others”. 
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10.3.3.3. Biodiversity analysis 

Table 10.2 shows the results for the biodiversity analysis performed on inoculums and 

final biocathode biofilm samples. The Inverted Simpson and Shannon indices for eubacteria and 

archaea population showed that in general biodiversity decreased when looking at the really 

active population in biofilms with respect to the present one. Eubacteria population in the final 

biofilm of BC2 was the richest, either in presence or in activity according to the Inverted 

Simpson index (16.36 and 9.90, respectively), while archaea population was richer in the final 

biofilm of BC1 (2.46 and 2.30 for DNA and cDNA, respectively). These results agree with the 

high relative abundance of Methanobacteriaceae in BC2 found in the Miseq 16S-based 

sequencing analysis, which reduces its biodiversity. On the other hand, the final biocathode 

biofilms showed a lower biodiversity compared to the inoculums regarding archaea community, 

as a result of their high enrichment in Methanobrevibacter, while eubacteria increased its 

biodiversity in BC2 compared to the inoculum, which disagree with the results of a previous 

work that found the opposite behaviour (Siegert et al., 2015b). 
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Table 10.2 Diversity indices for Eubacteria and Archaeal community of the inoculums and the final biofilm of BC1 and 

BC2 (BC1f and BC2f, respectively) for 16S rRNA (cDNA) and 16S rDNA (DNA) massive libraries (mean±standard 

deviation). Data normalised to the sample with the lowest number of reads (104277 and 93126 for eubacterial and 

archaeal, respectively) 

 Reads Coverage Inverted 
Simpson Shannon 

Eubacteria     

Inoculum BC1-DNA 110431 1.00±0.00 9.20±0.01 3.67±0.00 

BC1f-DNA 104277 1.00±0.00 9.02±0.00 3.62±0.00 

Inoculum BC2-DNA 114481 1.00±0.00 13.66±0.02 3.56±0.00 

BC2f-DNA 174367 1.00±0.00 16.36±0.04 3.90±0.00 

BC1f-cDNA 206865 1.00±0.00 6.73±0.02 3.51±0.00 

Inoculum BC2-cDNA 243660 1.00±0.00 5.69±0.02 3.22±0.00 

BC2f-cDNA 112853 1.00±0.00 9.90±0.01 3.33±0.00 

Archaea     

Inoculum BC1-DNA 93126 1.00±0.00 13.04±0.00 3.17±0.00 

BC1f-DNA 177146 1.00±0.00 2.46±0.01 1.51±0.00 

Inoculum BC2-DNA 223995 1.00±0.00 3.86±0.01 2.54±0.00 

BC2f-DNA 212931 1.00±0.00 2.21±0.00 1.45±0.00 

BC1f-cDNA 192016 1.00±0.00 2.30±0.01 1.48±0.00 

Inoculum BC2-cDNA 175828 1.00±0.00 3.97±0.01 2.34±0.00 

BC2f-cDNA 230930 1.00±0.00 1.91±0.00 1.05±0.00 

 

10.3.3.4 Correspondence analysis 

Correspondence analysis results for eubacteria and archaea community are shown in 

Figure 10.6a and 6b. The evolution from the inoculums to the final biocathode biofilms was 

similar for both populations. Results show a clear differentiation between BC1 and BC2 

inoculums but, in spite of their diverse initial composition, their populations evolved on the 

biocathodes towards consortiums that were clearly clustered together at the end of the assay, 

as a clear example of convergent microbial enrichment. Furthermore, DNA and cDNA for each 

sample were prochain, indicating that the active populations were similar to the existing ones, in 

spite of the differences detected by the MiSeq sequencing. These results corroborate that a 

very specific archaea population was obtained under the strict operation conditions of both 

biocathodes, and that the different inocula used had little influence on the final composition and 
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activity, as was also suggested by the results obtained regarding methane production and 

operation performance. 

 

 
Figure 10.6 Correspondence Analysis (CA) of the inoculum of BC1 and BC2 and the final sample of each cathode for 

16SrDNA and 16SrRNA (cDNA)  regarding (a) Eubacteria and (b) Archaea community on the basis of MiSeq-16S 

based profile (OTU level). 
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10.4 Conclusions  

Results showed that, although BC2 achieved a higher current density faster than BC2, 

there were no significant differences in the average CH4 production (0.23±0.01 and 0.22±0.05 

m3 m-3 d-1 for BC1 and BC2, respectively) or cathodic methane recovery efficiency (65±8 and 

79±17%, respectively), suggesting that the origin of the biomass had little influence on the 

performance of the biocathode. Furthermore, also independently from the inocula, the obtained 

archaeal communities on both biocathodes at the end of the assay were very similar, highly 

dominated by hydrogenotrophic methanogenic archaea, especially in Methanobacteriaceae 

family (84-90% of DNA relative abundance), being also the most active (87-98% of RNA relative 

abundance) belonging mainly to Methanobrevibacter. From the obtained results it has been 

proved that the electromethanogenic biocathode MEC is a promising technology for biogas 

upgrading, as it is based on CO2 conversion into CH4, that would be able to compete in the 

future with the existing technology, based on CO2 removal. 
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Anaerobic digestion and 
electromethanogenic microbial electrolysis 
cell integrated system: increased stability 
and recovery of ammonia and methane  
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Abstract 

The integration of anaerobic digestion (AD) and a microbial 

electrolysis cell (MEC) with an electromethanogenic biocathode is 

proposed here to increase the stability and robustness of the AD 

process against organic and nitrogen overloads; to keep the effluent 

quality; to recover ammonium; and to upgrade the biogas. The 

methane production of the AD could be recovered after the inhibition 

of the reactor due to the doubling of the organic and nitrogen loading 

rate thanks to the connection of a recirculation loop with the MEC 

effluent. Ammonium removal in the anode compartment of the MEC 

achieved 14.46 g N-NH4
+ m-2 d-1, while obtaining on average 79 L 

CH4 m-3 d-1 through the conversion of CO2 in the cathode 

compartment. The microbial analysis showed that methylotrophic 

Methanossiliicoccaceae family (Methanomassiliicoccus genus) was 

the most abundant among active archaea in the AD during the 

inhibited state; while on the cathode Methanobacteriaceae family 

(Methanobrevibacter and Methanobacterium genus), usually found to 

be the most abundant in methanogenic biocathodes, shared 

dominance with Methanomassiliicoccaceae and Methanotrichaceae 

families (Methanomassiliicoccus and Methanothrix genus, 

respectively). 
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11.1 Introduction 

The combination of anaerobic digestion (AD) and bioelectrochemical systems (BES) is 

attracting attention in recent years as an integrated strategy that can be implemented with 

different objectives. On the one hand, nutrients can be recovered from ammonium-rich 

wastewater such as pig slurry or digested pig slurry thanks to cation or anion transport through 

exchange membranes that takes places in BESs. The main example of this application is the 

recovery of ammonium (Chapter 4 to 8), which can be reused as fertiliser (Cerrillo et al., 2016a; 

Kuntke et al., 2012; Sotres et al., 2015a; Zhang et al., 2013). Otherwise, the AD effluent would 

need to be processed or managed properly due to its high nutrient content. Ammonia recovery 

has been demonstrated in various BESs including microbial fuel cells (MFCs) and microbial 

electrolysis cells (MECs). In MECs, a higher current density would greatly enhance ammonium 

recovery, and thus MECs exhibit a better performance for ammonium recovery than MFCs (Liu 

et al., 2016). On the second hand, BESs can operate with low organic loading rates and may be 

used to polish the effluent of the AD (Chapter 5; Durruty et al., 2012; Ge et al., 2013) or even to 

absorb higher organic concentrations in the digestates due to AD destabilisation or inhibition 

(Chapter 6). On the third place, the combination of the previous advantages can be applied to 

increase the stability of the AD process through the use of a submersible microbial desalination 

cell (Zhang and Angelidaki, 2015) or the establishment of a recirculation loop with the BES 

(Chapter 7 and 8). The latter strategy has proven to be effective for the control of AD inhibition 

due to organic and nitrogen overloads, while recovering ammonia and maintaining the effluent 

quality and the methane production of the AD (Chapter 6). Finally, BES have been applied to 

increase the methane content of the biogas produced in the AD by the use of MECs with 

electromethanogenic biocathodes (Chapter 10; Xu et al., 2014). Since biogas consists mainly of 

methane (CH4, 40-75%) and carbon dioxide (CO2, 15-60%) it needs upgrading prior to its use 

as vehicle fuel or for injection in the natural gas grid intended to adjust the calorific value. 

Conventional techniques for biogas upgrading focus on CO2 removal without changing CH4 

mass (Ryckebosch et al., 2011), while electromethanogenesis performed in MECs allows for 

the conversion of CO2 into CH4 (Cheng et al., 2009; Van Eerten-Jansen et al., 2013; Villano et 

al., 2011). MECs for CO2 conversion to methane have been operated mainly with synthetic 

medium (Hou et al., 2015; Zeppilli et al., 2014), and there is a lack of studies with real 

wastewater feed for the anode compartment. 

The multiple ways of AD and BES combination suggest that a more comprehensive 

strategy can help to settle most of the limitations of the AD process, which up to now has not 

been assessed. An integrated AD-MEC system could be designed with a multiple purpose: i) to 

increase the stability and robustness of the AD process against organic and nitrogen overloads, 

ii) to keep the effluent quality, iii) to recover nutrients, and iv) to upgrade the biogas. 
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Furthermore, further study on the active microbial populations enriched in the bioanode and 

biocathode of the BES is needed to gain insight on potential resilience strategies as well as to 

complement previous studies (Zeppilli et al., 2014). An special focus on active biomass is 

lacking, since usual studies are centred so far on the description of existent microorganisms on 

methanogenic biocathodes (Cheng et al., 2009; Marshall et al., 2012; Van Eerten-Jansen et al., 

2013; Xu et al., 2014; Zhen et al., 2015).  

The main aim of this Chapter was to assess the performance of a lab-scale AD-MEC 

integrated system as a strategy to stabilise a pig slurry thermophilic AD under an organic and 

nitrogen overload, recover ammonia and increase the methane content of the biogas produced 

by the AD, in terms of chemical oxygen demand and ammonia removal, methane yield and 

energy efficiency of the process. The evolution of the active microbial community of the AD and 

the MEC bioelectrodes (both the anode and the cathode) was evaluated in terms of composition 

and activity by means of high throughput sequencing (16S rRNA /16SrDNA based Miseq) and 

quantifying total and active populations (16SrRNA and mcrA gene and transcripts) by qPCR. 

11.2 Materials and methods  

11.2.1 Experimental set-up 

A 4 L lab-scale thermophilic anaerobic continuous stirred tank reactor (AD) described in Section 

3.1.3 was used in the assays. The AD reactor was connected in series with the anode 

compartment of a two-chambered MEC (described in Section 3.1.2) and had a recirculation loop 

between both reactors. The cathode compartment of the MEC was inoculated with 30 mL of a 

resuspension of the anaerobic granular sludge of the UASB (volatile suspended solids content 

of 33 g L-1) that had been operated with methanol in order to enrich the biomass in 

methanogenic archaea, in Chapter 9. The resuspension was done by vortex mixing during 10 

minutes in a 50 mL tube containing 30 g of granular sludge and 25 mL of Ringer 1/4 sterilised 

solution.  

11.2.2 Reactor operation 

The AD was fed with pig slurry (Table 11.1) and operated for 222 days in three different 

phases, with a hydraulic retention time (HRT) of 10 days (Table 11.2). In Phase 1, the organic 

loading rate (OLR) and nitrogen loading rate (NLR) were established at 3.92 kgCOD m-3 day-1 and 

0.22 kgN m-3 day-1, respectively. In Phase 2, the OLR and NLR were doubled to force the 

inhibition of the reactor. And finally, in Phase 3 the OLR and NLR were the same as those of the 

previous phase and the recirculation loop with the MEC was connected (50% of the AD feed 

flow rate) to recover the AD. Samples of the AD effluent were taken once a week in order to 

assess the operation of the reactor. 
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The MEC was operated in continuous in series with the AD poising the cathode potential 

at -800 mV vs SHE. The solutions of both the anode and the cathode compartment were fed in 

continuous with a pump at 20 mL h-1 and mixed recirculating them by an external pump. The 

HRT was of 32.4 h and 14.1 h for de anode and cathode compartment, respectively (with 

respect to the net volume of each compartment). The OLR and NLR of the anode compartment 

for each phase are specified in Table 11.2. The MEC was operated at room temperature during 

the entire assay (23±2 ºC). 

 
Table 11.1 Characterisation of the raw pig slurry used as feeding solution in the anaerobic digester (AD) in Phase 1 

and Phases 2 and 3 (n=number of samples; mean±standard deviation). 

Parameter 
Raw pig slurry 

Phase 1 (n=6) Phase 2 and 3 (n=12) 

pH (-) 7.1±0.1 6.8±0.2 
COD (gO2 kg-1) 43.96±2.04 80.55±6.40 
NTK (g L-1) 2.41±0.00 4.29±0.17 
N-NH4

+ (g L-1) 1.59±0.08  2.97±0.25 
TS (g kg-1) 24.40±0.52 47.95±2.53 
VS (g kg-1) 16.37±0.43 32.79±1.88 
   

 
Table 11.2 Operational conditions of the AD reactor and the MEC (mean±standard deviation). 

Phase Period 
(d) 

AD MEC 

OLR 
(kgCOD m-3 d-1) 

NLR 
(kgN m-3 d-1) 

Recirculation 
(% feed flow 

rate) 

OLR 
(kgCOD m-3 d-1) 

NLR 
(kgN m-3 d-1) 

1 1 - 78 3.92±0.61 0.22±0.03 0 7.87±0.76 0.74±0.04 
2 78 - 126 

7.39±1.36 0.40±0.06 
0 

43.12±3.58 2.42±0.13 3 126 - 222 50 

 

 

11.2.3 Analyses and calculations 

Samples were analysed for pH, chemical oxygen demand (COD), ammonium (N-NH4
+), 

methane content (biogas produced by the AD and dissolved methane in the cathode effluent 

samples), partial alkalinity (PA), total alkalinity (TA) and intermediate alkalinity (IA) accordingly 

to the methods described in Section 3.2. COD and ammonium removal efficiency in the MEC 

were calculated as described in Section 3.4.1. 

The current density (A m-2) of the MEC was calculated as described in Section 3.3. The 

Coulombic efficiency (CE), or the fraction of electrons obtained from the consumption of COD 
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that are available for methane production at the cathode, the energy efficiency relative to 

electrical input recovered as methane (EEe), the energy efficiency relative to the energy content 

of the substrate (EEs), the energy efficiency with respect to the energy input and the energy in 

the substrate (EEe+s) and the cathodic methane recovery efficiency (Rcat), defined as the fraction 

of electrons reaching the cathode that are recovered as methane, were calculated as described 

in Section 3.4.3. 

Cyclic voltammetries (CV) in turnover conditions were performed after the cathode 

inoculation (day 0) and at the end of Phase 2 and 3 (day 78 and 222 of the assays, 

respectively), following the methodology described in Section 3.3.   

The bacterial communities in the biofilm harboured in the bioanode and the biocathode 

of the MEC at the end of Phase 2 and 3 and in the AD biomass at the end of each Phase (1, 2 

and 3) were analysed by culture-independent molecular techniques such as quantitative PCR 

(qPCR) and high throughput sequencing (MiSeq, Illumina) of partial 16S rDNA and 16S rRNA 

massive libraries. Simultaneous total genomic DNA and RNA extraction and complementary 

DNA (cDNA) synthesis, qPCR and high throughput 16S rRNA gene sequencing (MiSeq, 

Illumina) were performed following the methods described in Section 3.6.2, 3.6.3, and 3.6.5, 

respectively. The standard curve parameters of the qPCRs were as follows (for 16S rRNA and 

mcrA, respectively): a slope of -3.244 and -3.532; a correlation coefficient of 0.998 and 0.999; 

and an efficiency of 103 and 92%. The data obtained from sequencing datasets for eubacterial 

and archaeal populations was submitted to the Sequence Read Archive of the National Center 

for Biotechnology Information (NCBI) under the study accession number SRP072956. 

The inoculum of the cathode and the biofilm settled up on the anode had been 

characterised in Chapters 9 and 8, respectively. Briefly, regarding eubacteria, the cathode 

inoculum was dominated by Bacteroidetes, Firmicutes and Synergistetes (61, 14 and 8%, 

respectively); Methanosarcinaceae (52%) was the predominant archaea family (methylotrophs 

genus, Methanomethylovorans and Methanolobus). In the case of MEC anode biofilm, 

Firmicutes, Bacteroidetes and Proteobacteria were the dominant eubacterial phyla (35, 30 and 

11%, respectively), and the predominant archaea family was Methanotrichaceae (87%). 

The evaluation of the diversity of the samples and statistical multivariate analyses were 

performed following Section 3.6.6. 
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11.3 Results and discussion  

11.3.1 Performance of the AD independent operation 

The AD showed a stable operation during Phase 1 (Figure 11.1), with an average COD 

removal efficiency of 54±8% and a methane production of 0.45±0.06 m3 m-3 d-1 (Table 11.3). 

The IA:TA ratio was kept below 0.3, corroborating the stability of the reactor. When the OLR 

and NLR of the AD were doubled in Phase 2, the reactor showed a fast inhibition, reducing the 

value of COD removal to 18% and the methane production to 0.23 m3 m-3 d-1, 50% of the 

obtained in the previous phase (Figure 11.1a and b). VFA accumulated, reaching values of 

5670 mg L-1 for acetate, 1850 mg L-1 for propionate and over 1000 mg L-1 for butyrate (Figure 

11.1c), and the IA:TA ratio increased to 0.44 (Figure 11.1d) confirming the instability of the AD 

reactor. 

 
Table 11.3 Summary of the main parameters of the AD and the MEC reactors in the different phases. Results for the 

AD correspond to the stable period of each phase (mean±standard deviation). 

Parameter Phase 1 Phase 2 Phase 3 

AD    
CH4 production (m-3 m-3 d-1) 0.45±0.06 0.27±0.04 0.38±0.04 
COD removal efficiency (%) 54±8 28±8 22±5 
IA:TA 0.22±0.04 0.40±0.08 0.50±0.03 
pH 7.8±0.1 7.8±0.1 7.6±0.1 
MEC    
COD removal efficiency (%) 24±8 14±5 21±6 
N-NH4

+ removal efficiency (%) 30±6 18±5 20±5 
CE (%) 3.5±1.8 2.1±1.4 1.5±0.5 
CH4 production (L m-3 d-1) 79±34 63±15 78±29 
Rcat (%) 45±37 61±18 59±13 
EEe (%) 50±41 62±17 85±23 
EEs (%) 4.2±2.3 3.0±1.5 1.4±0.7 
EEe+s (%) 3.6±1.4 2.9±1.4 1.4±0.7 
AD-MEC    
COD removal efficiency (%) - 42±6 41±6 
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Figure 11.1 Performance of the AD regarding (a) COD removal efficiency; (b) methane production; (c) VFA 

concentration; and (d) IA:TA ratio.  
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11.3.2 Performance of the AD-MEC combined system in series operation 

The MEC fed with the effluent of the AD during Phase 1 showed a stable performance 

regarding current density production during the first 30 days of operation, with an average 

current density of 0.4 A m-2 (Figure 11.2). Afterwards, the current density production became 

unstable, showing peaks of up to 4.5 A m-2 (average of 1.5 A m-2) and was drastically reduced 

from day 64 onward due to the degradation of the stainless steel mesh used as electron 

collector in the anode compartment (data corresponding to the unstable period was not 

considered for calculations). The mesh was replaced at the beginning of Phase 2. This change 

produced some period of instability at the beginning of Phase 2, but afterwards the MEC 

showed a current density production similar to the obtained in Phase 1. The COD removal 

efficiency of the MEC in Phase 1 was of 24±8%, with a maximum removal of 3.2 kgCOD m-3 d-1, 

and the CE was of 3.5±1.8% (Table 11.3). In Phase 2 the COD removal efficiency and the CE 

decreased to 14±5% and 2.1±1.4%, respectively. Since CE is related with the substrate 

concentration, the increase in COD of the influent resulted in a decrease in CE (Zhang et al., 

2015). The ammonium removal efficiency in Phase 1 was of 30±6%, corresponding to 6.64 g N-

NH4
+ m-2 d-1. The removal efficiency decreased to 18±5% during Phase 2, although the absolute 

flux was higher (12.87 g N-NH4
+ m-2 d-1) as a result of the increased NLR. Previous work 

performed with the same MEC but with an abiotic cathode fed with NaCl (0.1 g L-1) and higher 

organic and nitrogen loading rates (28.50±1.80 kgCOD m-3 day-1 and 1.73±0.09 kgN m-3 day-1, 

respectively) achieved a nitrogen removal rate of 12.97±2.04 g N-NH4
+ m-2 d-1, similar to the one 

obtained in Phase 2 and almost doubling the rate obtained in Phase 1 in this study (Chapter 7). 

And values as high as 86 g N-NH4
+ m-2 d-1 were reported with a submersible microbial 

desalination cell fed with synthetic solution (Zhang and Angelidaki, 2015). 

 

Figure 11.2 Current density profile obtained during the operation of the MEC. Data corresponding to the unstable 

period (shaded) was not considered for calculations. 
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11.3.3 Performance of the AD-MEC combined system with recirculation loop 

When the recirculation loop with the MEC was connected in Phase 3, the performance of 

the AD started to recover. COD removal values achieved 30% (below 20% in the end of Phase 

2) and maximum methane production was 0.43 m3 m-3 d-1, representing a 100% increase with 

respect to the production at the end of Phase 2, and nearly recovering the values achieved in 

Phase 1. However, the VFA concentration and the IA:TA ratio were similar to the previous 

phase. Interestingly, the overall performance of the AD-MEC integrated system maintained the 

COD removal in a range of 33-52%, in spite of the poorer performance of the AD, concomitant 

to an ammonium removal of 20±5% (14.46 g N-NH4
+ m-2 d-1). The MEC showed a current 

density production similar to the obtained at the beginning of Phase 1. The CE of the MEC 

decreased with respect to Phase 1, as described in Phase 2. The low CEs obtained are to be 

expected when working with complex substrates where other electron acceptors may be 

present (Catal et al., 2011; Liu et al., 2004; Min et al., 2005), while in Chapter 10 the 

methanogenic biocathode MEC, working with acetate medium, the CE achieved 33%. Much 

higher CEs have been previously reported, such as 72-80% (Zeppilli et al., 2014). 

11.3.4 Biocathode operation performance 

Methane production in the cathode compartment was around 0.079 m3 m-3 d-1. A volume 

of biogas of 0.2 m3 m-3 d-1 could be treated in this MEC with biocathode, assuming a typical 

biogas composition of 60% of CH4 and 40% of CO2, to obtain methane with a purity prochain to 

100%. Higher productions have been achieved in previous works, such as 0.16 m3 m-3 d-1 (Hou 

et al., 2015), 0.23 m3 m-3 d-1 (Chapter 10) or 0.28 m3 m-3 d-1 (Villano et al., 2013). 

The highest Rcat was achieved in Phase 2 (61±18%), although the high variability of the 

obtained results makes the observed differences between phases not to be significant (Table 

11.3). The obtained results for Rcat are below the 96% previously reported by Cheng et al. 

(2009) or the 84-86% obtained by Zeppilli et al. (2014), but much higher than the 23.1% 

achieved by Van Eerten-Jansen et al. (2001) or the 24.2 ± 4.7% reported by Zhen et al. (2015). 

The EEe was between 50 and 85%, values similar to the obtained in Chapter 10 with the 

anode fed with synthetic medium (57-61%) or in batch mode with a two-chambered MEC using 

graphite granules as electrodes (57%) (Villano et al., 2011). The low CE achieved in this MEC 

made also the obtained EEs (between 1.4 and 3.6%) to be low in comparison with the previous 

work (between 23 and 54%). 

Figure 11.3 shows the cyclic voltammograms obtained after the cathode inoculation and 

at the end of Phases 2 (78 days) and 3 (222 days). The curve obtained at the start of the 

operation showed a low response to the different applied potentials, as a result of the recent 
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inoculation. The performance of the biocathode increased at the voltage of -800 mV at the end 

of the assay (Phase 3), coincidently with the period of the best EEe. 

 
Figure 11.3 Cyclic voltammograms of the MEC after the cathode inoculation (t=0 d) and at the end of Phase 2 and 3 

((t=78 d and t=222 d, respectively). 

 

11.3.3 Microbial community assessment  

The microbial community structure and activity of the samples taken from the AD and the 

biofilm harboured on the electrodes of the MEC was characterised by means of qPCR 

technique and sequenced by MiSeq. 

11.3.3.1 Quantitative analysis by qPCR 

Figure 11.4 shows qPCR results for 16S rRNA and mcrA gene copy numbers of the 

seven samples analysed, either for DNA (present microorganisms) and cDNA (active 

microorganisms). In the AD samples eubacteria remained in the same order of magnitude for 

16S rRNA gene copy numbers g-1 during the stable, inhibited and recovered states; while 

showed a decrease of one order of magnitude for mcrA (from 1.26·108 to 2.18·107 gene copy 

numbers g-1) at the end of Phase 2 due to the inhibition caused by doubling the OLR and NLR. 

The connexion of the recirculation loop reduced the inhibition and helped to recover the 

methanogenic population and return to levels similar to those existing prior to the inhibition 

(1.38·108 gene copy numbers g-1). The same behaviour was observed at cDNA-based qPCR, 

showing a decrease of one order of magnitude for mcrA transcripts copy numbers in the AD 

sample of the end of Phase 2 and confirming that the methanogenic population was suffering 
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-400

-300

-200

-100

0

100

200

300

400

-1000 -800 -600 -400 -200 0 200 400 600

Cu
rr

en
t d

en
si

ty
 (

A
 m

-3
)

Cathode potential (mV vs. SHE)

t=0 t=78 t=222



AD and electromethanogenic MEC: increased stability and recovery of NH4
+ and CH4 

236 
 

submitted to inhibition by an organic and nitrogen overload was similar to the described in 

Chapter 8 and other previous work (Zhang et al., 2014). In Phase 1 free ammonia nitrogen 

(FAN) concentration was in the range of 400-670 mg L-1. Concentrations of FAN above 900 mg 

L-1 were reached during Phase 2, when the OLR and NLR were doubled, with a maximum of 

1186 mg FAN L-1 at the end of the Phase. At these levels the first signs of inhibition may occur 

according to previous studies (Angelidaki and Ahring, 1993; Hansen et al., 1998). Once the 

recirculation loop was established in Phase 3, FAN levels remained in a range of 365-740 mg L-

1. 

Regarding the MEC, gene copy numbers for 16S rRNA for the anode and cathode 

biofilm were of the same order of magnitude both for Phase 2 and 3 samples, either in DNA or 

in cDNA forms. On the contrary, mcrA gene copy numbers of the anode sample increased at 

the end of the recirculation phase, probably due to the parallel increase of methanogenic 

population in the AD. In the case of the cathode biofilm, mcrA gene copy numbers g-1 for DNA-

based qPCR at the end of the assay were within 106 gene copy numbers g-1, coincidently with 

the values obtained in Chapter 10. While a total methanogenic population decrease was 

observed from the initial cathode to the final sample (DNA level), mcrA expression belonging to 

methanogenic archaea increased one order of magnitude (from 1.40·105 to 2.63·106 transcript 

copy numbers g-1). 

From these results, it is clear that the AD methanogenic population decreased due to the 

organic and nitrogen overload and then could be recovered thanks to the establishment of the 

recirculation loop with the MEC. Furthermore, the methanogenic cathode of the MEC was 

progressively enriched in metabolically active methanogenic archaea. 

 
Figure 11.4 Gene copy numbers for 16S rRNA and mcrA genes and ratio between them of DNA and cDNA, of the 

AD effluent at the end of Phases 1, 2 and 3, and the biofilm harboured on the anode and cathode of the MEC at the 

end of Phase 2 and 3. 
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11.3.3.2 High Throughput Sequencing (16S-based MiSeq) results for eubacteria and 
archaea 

Table 11.4 shows the number of reads obtained for the AD samples and the anode and 

cathode biofilms of the MEC for eubacteria (6822 OTUs) and archaea (900 OTUs). Figure 11.5a 

shows the relative abundance of eubacterial phyla for the seven samples, regarding DNA 

(present microorganisms) and cDNA (metabolically active microorganisms) forms. The three AD 

samples showed a similar eubacterial composition at DNA level, dominated by Firmicutes, 

Bacteroidetes and Proteobacteria, with relative abundances in the ranges of 64-68%, 12-18% 

and 5-10%, respectively. Previous studies, performed also in a thermophilic AD running on pig 

slurry, found that the Firmicutes phylum was the predominant one (Chapter 7; Cerrillo et al., 

2016b; Tuan et al., 2014). The sample from the end of Phase 2 showed a decrease in 

Firmicutes and Proteobacteria phyla with respect to Phase 1 and the sample at the end of 

Phase 3, while Bacteroidetes increased slightly. At cDNA level, although Firmicutes was still the 

predominant phylum (46-75% of relative abundance), Proteobacteria active microorganisms 

clearly surpassed Bacteroidetes (19-40% and 1-5%, respectively) and were increasingly more 

abundant over time, while Firmicutes showed the opposite tendency. Bacteroidetes was the 

predominant phylum in the anode of the MEC both in Phase 2 and 3 samples (34 and 41%, 

respectively), according to DNA-based sequencing, while Proteobacteria revealed as the most 

active one in Phase 2 sample (65%) and Bacteroidetes and Proteobacteria shared dominance 

in the final sample (18 and 16%, respectively). These three phyla have been identified in 

previous studies in BES (Bonmatí et al., 2013; Sotres et al., 2015b; Sotres et al., 2016). In the 

case of the cathode biofilm, the domination of Firmicutes at DNA level in Phase 2 and 3 

samples (56 and 31%, respectively), shared by Proteobacteria in Phase 3 sample (33%), 

shifted to a clear dominance of Proteobacteria in both samples at cDNA level (59 and 68%).  

At family level Clostridiaceae 1 and Peptostreptococcaceae were the most present and 

active groups in the three AD samples (Figure 11.5b). Porphyromonadaceae, which was the 

third more abundant family (6-9%) at DNA level, showed a low activity according to cDNA 

sequencing (below 1%). Planococcaceae and Pseudomonadaceae revealed as active families 

at the end of Phase 2 (21 and 12%, respectively), as Campylobacteraceae at the end of Phase 

2 (13%), although they were below 3% in DNA form abundance. Regarding the samples of the 

MEC anode, Planctomyceraceae and Porphyromonadaceae stood out in the Phase 2 sample 

when looking at DNA sequencing results (12 and 16%, respectively), but were replaced by 

Desulfuromonadaceae and Pseudomonadaceae families according to cDNA (21 and 18%, 

respectively). In Phase 3 anode sample Porphyromonadaceae and Planctomycetaceae were 

the most abundant families at DNA (12%) and cDNA (14%) levels, respectively. Finally, the 

cathode biofilm was dominated by Clostridiaceae in Phase 2 and 3 samples at DNA level (34 
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and 12%, respectively), but by metabolically active Phodocyclaceae and Desulfovibrionaceae 

according to cDNA results (14 and 37%, respectively). Thus, a clear differentiation between 

total eubacteria and active eubacterial microorganisms, especially in the biomass harboured by 

the MEC electrodes, has been shown. 

 

 
Figure 11.5 Taxonomic assignment of sequencing reads from Eubacterial community of the AD effluent at the end of 

Phases 1, 2 and 3, and the biofilm harboured on the anode and cathode of the MEC at the end of Phase 2 and 3 for 

DNA and cDNA, at a) phylum and b) family levels. Relative abundance was defined as the number of reads 

(sequences) affiliated with any given taxon divided by the total number of reads per sample. Phylogenetic groups with 

a relative abundance lower that 1% were categorised as “others”. 
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Figure 11.6 shows the relative abundance of archaea families of the seven samples. 

Although Methanobacteriaceae showed a high abundance in the three AD samples (74-86%), 

the most active archaeal populations were Methanomicrobiaceae in Phase 1 and Phase 3 AD 

samples (58 and 56%, respectively) and Methanossiliicoccaceae in Phase 2 sample (54%). 

Members of the Methanomassiliicoccaceae family have recently been described as obligate 

hydrogen-consuming methanogens, reducing methanol and methylamines instead of carbon 

dioxide (Borrel et al., 2013; Dridi et al., 2012). A recent study has reported an increase of this 

family at high OLR, and concluded that an additional methanogenic pathway might contribute to 

methane production at high OLR (Moestedt et al., 2016).  It has also been reported that this 

family emerged in the recovery process of a thermophilic AD after an organic overload (Hori et 

al., 2015), since methanol could be produced fermentatively from lactate by a kind of 

Clostridium species. Methanogenic population in the AD showed higher differences between 

existing vs active composition than eubacteria. On the contrary, Methanotrichaceae, the 

predominant family on the MEC anode Phase 2 and 3 samples in presence (75 and 48%, 

respectively) was also active (74 and 31%, respectively), independently of being on a low 

relative abundance in the AD. On the other hand, Methanossiliicoccaceae and 

Methanomicrobiaceae increased in presence and activity over time, probably due to the high 

activity of these families in the AD. When looking at the cathode biofilm, Methanotrichaceae 

(genus Methanothrix, formerly known as Methanosaeta) was the dominant family at the Phase 2 

sample either in presence and activity (53 and 68%, respectively), while in the Phase 3 sample 

it dominated at DNA but not at cDNA level (36% and 0.3%, respectively). Methanothrix 

(Methanosaeta) genus was also detected in a methanogenic cathode by Xu et al. (2014). It has 

been recently described that Methanothrix (Methanosaeta) is capable of accepting electrons via 

direct interspecies electron transfer (DIET) for the reduction of carbon dioxide to methane 

(Rotaru et al., 2014), so a deeper study is necessary to understand the role of these species in 

the cathode biofilm of the methanogenic MEC. Methanomassiliicoccaceae (genus 

Methanomassiliicoccus) and Methanobacteriaceae (genus Methanobacterium and 

Methanobrevibacter) were also families with high relative abundances at DNA level (15-31%), 

being the most active ones in the Phase 3 sample (57 and 33%, respectively) as well.  Previous 

works have showed a clear dominance of Methanobacteriaceae family in methanogenic 

biocathodes (Chapter 10; Cheng et al., 2009; Marshall et al., 2012; Van Eerten-Jansen et al., 

2013; Xu et al., 2014; Zhen et al., 2015), differing from the results obtained in this study. The 

high relative abundance of the methylotrophic Methanomassiliicoccaceae family among the 

active archaea suggests that methanol must be present in the cathode compartment, although it 

was not monitored in the present study. Methanol produced in the anode compartment due to 

the fermentation of organic compounds could migrate to the cathode compartment through the 
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CEM. Methanol could be also produced at very low O2 partial pressure, from methane by 

ammonia oxidising bacteria (AOB) which can partially oxidise CH4 to methanol when using 

ammonia as an energy source (Taher and Chandran, 2013). The genera Nitrosomonas, a well 

known AOB, was present in the biocathode samples, although at low relative abundance 

(<0.01%). Besides, some methane oxidising archaea and bacteria can also carry out anaerobic 

oxidation of methane (Ge et al., 2014), although so far they are poorly known and it cannot be 

determined if they are present in the biocathode.  
 

 
Figure 11.6 Taxonomic assignment of sequencing reads from Archaeal community of the AD effluent at the end of 

Phases 1, 2 and 3, and the biofilm harboured on the anode and cathode of the MEC at the end of Phase 2 and 3 for 

DNA and cDNA, at family level. Relative abundance was defined as the number of reads (sequences) affiliated with 

any given taxon divided by the total number of reads per sample. Phylogenetic groups with a relative abundance 

lower that 1% were categorised as “others”. 

 

 

11.3.3.3 Biodiversity analysis 

Table 11.4 shows the results for the biodiversity analysis performed on the AD samples 

and the anode and cathode biofilms of the MEC samples. The Inverted Simpson and Shannon 

indices of the AD samples for eubacteria at DNA level decreased during Phase 2 and recovered 
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in Phase 3, showing the opposite behaviour for archaea. The biodiversity of the bioanode and 

the biocathode increased regarding archaeal population, either in total (DNA) or in metabolically 

active (cDNA). The previous work performed in Chapter 10 with a similar MEC but in synthetic 

medium found the opposite behaviour for the biocathode diversity, since a great enrichment in 

Methanobacteriaceae took place. On the contrary, eubacteria decreased its biodiversity, result 

that agrees with the trend observed in other studies (Siegert et al., 2015). 

11.3.3.4 Correspondence analysis 

Correspondence analysis results for eubacteria and archaea community are shown in 

Figure 11.7a and 11.7b, respectively. Regarding eubacteria, AD samples were clustered 

together, especially in the case of DNA, while for cDNA form the samples were more disperse 

and detached from the first ones. This cluster included the Phase 2 DNA sample of the cathode 

biofilm, which separated lately at the end of the assay. When looking at the Phase 2 sample for 

active microorganisms (cDNA), it was nearer to the anode samples, although the Phase 3 

sample differentiated completely from all the samples analysed. Finally, the anode samples 

clustered clearly in two groups, one for DNA and a second one for cDNA, showing that the 

metabolically active population (cDNA sequencing) was different from total population (DNA 

sequencing ). 

Archaeal results for the AD biomass showed that the three DNA samples were prochain, 

so little differences in composition were detected between inhibited and stable states. On the 

contrary, cDNA samples, related to the active microorganisms, were distant from DNA samples 

and Phase 1 and 3 samples were clustered together while Phase 2 sample moved away from 

them. This means that active microorganisms in the initial sample shifted to a different active 

community during Phase 2 due to the inhibition and, once recovered with the recirculation loop, 

went back to the previous composition. Regarding the anode and cathode communities, Phase 

2 DNA and cDNA samples resembled and an evolution was observed for the Phase 3 samples, 

moving away from the initial composition, especially for cDNA. Interestingly, the biocathode 

cDNA Phase 3 sample approached to the cDNA AD sample of Phase 2, suggesting that the 

active population of the cathode resembled the AD population under inhibition. 
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Table 11.4 Diversity index for Eubacteria and Archaea community of the AD effluent at the end of Phases 1, 2 and 3, 

and the biofilm harboured on the anode and cathode of the MEC at the end of Phase 2 and 3 for DNA and cDNA 

samples (mean±standard deviation). Normalised to the lowest number of reads (56424 and 59671 for eubacteria and 

archaea, respectively) 

 Reads Inverted Simpson Shannon 

Eubacteria    

ADPh1-DNA 116316 14.67±0.07 3.94±0.01 

ADPh2-DNA 142940 13.00±0.07 3.85±0.01 

ADPh3-DNA 117089 13.61±0.08 4.02±0.01 

Anodei-DNA 95391 38.16±0.22 4.90±0.01 

Anodef-DNA 96879 34.12±0.20 4.87±0.01 

Cathodei-DNA 65906 16.12±0.06 4.29±0.00 

Cathodef-DNA 61741 35.48±0.09 4.57±0.00 

ADPh1-cDNA 163191 7.55±0.03 3.07±0.01 

ADPh2-cDNA 152610 7.26±0.04 3.39±0.01 

ADPh3-cDNA 214052 6.54±0.03 2.78±0.01 

Anodei-cDNA 147740 8.58±0.05 3.71±0.01 

Anodef-cDNA 171251 9.24±0.05 3.54±0.01 

Cathodei-cDNA 56424 3.65±0.00 4.53±0.00 

Cathodef-cDNA 93469 5.22±0.02 3.01±0.01 

Archaea    

ADPh1-DNA 97511 2.87±0.01 1.67±0.01 

ADPh2-DNA 59777 3.41±0.00 2.10±0.00 

ADPh3-DNA 71736 3.33±0.01 1.84±0.00 

Anodei-DNA 183422 1.58±0.00 1.18±0.01 

Anodef-DNA 140800 2.83±0.01 1.90±0.01 

Cathodei-DNA 220361 1.77±0.01 1.44±0.01 

Cathodef-DNA 92290 4.92±0.02 2.40±0.01 

ADPh1-cDNA 59671 3.95±0.00 2.26±0.00 

ADPh2-cDNA 82628 5.97±0.02 2.61±0.00 

ADPh3-cDNA 91203 6.75±0.02 2.54±0.00 

Anodei-cDNA 125143 2.02±0.01 1.60±0.01 

Anodef-cDNA 99696 6.35±0.02 2.55±0.01 

Cathodei-cDNA 99324 2.37±0.01 1.76±0.01 

Cathodef-cDNA 64740 4.61±0.01 2.23±0.00 
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Figure 11.7 Correspondence Analysis of the AD effluent at the end of Phases 1, 2 and 3, and the biofilm harboured 

on the anode and cathode of the MEC at the end of Phase 2 and 3 for DNA and cDNA samples regarding (a) 

Eubacteria and (b) Archaea community. 
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11.4 Conclusions  

The integration of anaerobic digestion (AD) and a microbial electrolysis cell (MEC) with a 

methanogenic biocathode has proven to be a promising strategy to treat high strength 

wastewaters. The methane production of the AD could be recovered after the inhibition of the 

reactor due to the doubling of the organic and nitrogen loading rate thanks to the connexion of a 

recirculation loop with the MEC. Ammonium removal in the anode compartment of the MEC 

achieved 14.46 g N-NH4
+ m-2 d-1, while obtaining on average 79 L CH4 m-3 d-1 through the 

conversion of CO2 in the cathode compartment. The microbial analysis showed that 

methylotrophic Methanossiliicoccaceae family (Methanomassiliicoccus genus) was the most 

abundant among active archaea in the AD during the inhibited state. On the other hand, in the 

cathode Methanobacteriaceae family (Methanobrevibacter and Methanobacterium genus), 

usually found to be the most abundant in methanogenic biocathodes, shared dominance with 

Methanomassiliicoccaceae (Methanomassiliicoccus genus) and Methanotrichaceae 

(Methanothrix genus) families. 
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12.1 General conclusions 

The main objective of this Thesis was to study the integration of AD and BES in order to 

optimise energy production and nitrogen recovery, as well as the resilience of the combined 

process, during the treatment of a complex waste stream (pig slurry). This chapter summarises 

the main conclusions obtained from the research performed. 

 

1. Regarding the energy production optimisation of an integrated AD-BES system with 

ammonia recovery by a stripping and absorption system, both in MFC and MEC mode operation 

the main conclusions are: 

 

1.1 In batch assays, the AD-MEC integrated system achieved the maximum COD removal 

efficiency (60%). The use of NaCl solution as catholyte increased the pH (>10), which 

favours ammonium recovering in a subsequent stripping and absorption process. 

However, the highest ammonia removal efficiencies were achieved in MFC mode 

(40%).  

Desulfuromonadaceae was highly enriched in MEC mode on the anode, whereas 

phylotypes belonging to the potential methylotrofic-hydrogenotrophic methanogen 

Thermoplasmatales were also more favoured than acetotrophic Methanosaetaceae.  

1.2 In an integrated AD-MFC system the COD and ammonium removal was enhanced 

during the inhibition of the AD reactor with respect to the stable phase, with maximums 

of 40% and 31%, respectively.  

A reduction of the biodiversity of the microbial populations was observed in the MFC 

anode. Main enriched populations in the anode (MFC) belonged to Bacteroidetes 

(Flavobacteriaceae), Chloroflexi (fermentative bacteria Anaerolineaceae), 

Methanosarcinaceae and hydrogenotrophic methanogens belonging to 

Methanobacteriaceae family. 

1.3 Ammonium diffusion from the anode to the cathode compartment was enhanced during 

AD malfunction episodes (VFA pulses) in an integrated AD-MEC system, similarly to the 

behaviour observed with the AD-MFC. VFA were fast removed, concomitant with an 

increase in current density after the pulse, especially when acetate was added.  

1.4 The AD-MEC combined system in series achieved COD removal and ammonia 

recovering of 46% and 40%, respectively. The methane productivity of the AD increased 

55% with a recirculation loop configuration, after doubling the OLR and NLR.  
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Methanogenic populations increased when AD-MEC was connected with a loop 

configuration, whereas a clear shift in eubacterial population promoting Proteobacteria 

family relative prevalence was revealed. AD increased in biodiversity, while the MEC 

biofilm showed a reduction in biodiversity, as it was observed previously with the MFC, 

although in this case it was enriched in Methanotrichaceae family. 

1.5 The assessment of metabolically active populations by means of simultaneous DNA 

and RNA-based method showed the stability of the MEC consortium in spite of the 

alteration of the AD microbial population due to the stress. Although 

Methanobacteriaceae dominated among population present in the AD, 

Methanomicrobiaceae revealed as the most active family. Desulfuromonadaceae was 

the most active family in the MEC anode, although not being the predominant one in 

total population.  

 

2. Regarding the study of the conversion of CO2 into CH4 by the electromethanogenic 

process operating a MEC with a biocathode in combination with AD the main conclusions are: 

 

2.1 The operation of the UASB with methanol feed resulted in a biomass enrichment with 

methanogenic archaea. The methylotrophic methanogenic metabolic pathway 

(represented by the genus Methanomethylovorans and Methanoglobus) seems to be 

the predominant pathway at the end of the UASB operation, followed by the acetoclastic 

one (owned by the genus Methanothrix (Methanosaeta)) while the hydrogenotrophic 

route showed a low activity.  

2.2 The origin of the biomass used as inoculum in the biocathodes had little influence on 

CH4 production or cathodic methane recovery efficiency.  

Despite the different composition of the two initial inocula, the archaeal communities on 

both biocathodes at the end of the assay were very similar, highly dominated by 

hydrogenotrophic methanogenic archaea, especially in Methanobacteriaceae family 

(belonging mainly to well known hydrogenotrophic Methanobrevibacter), being also the 

most active one. 

2.3 The integration of AD and a MEC with a methanogenic biocathode removed 14.46 g N-

NH4
+ m-2 d-1 from the anode compartment of the MEC, while obtaining on average 79 L 

CH4 m-3 d-1 through the conversion of CO2 in the cathode compartment.  
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The methylotrophic Methanossiliicoccaceae family (Methanomassiliicoccus genus) was 

the most abundant among active archaea in the AD during the inhibited state. In the 

biocathode, Methanobacteriaceae family (Methanobrevibacter and Methanobacterium 

genus), shared relative dominance with Methanotrichaceae and 

Methanomassiliicoccaceae families. 

 

Considering these conclusions, the integration of AD with BES technology could be an 

alternative strategy to optimise energy and nutrients recovery from complex waste streams. The 

inhibition of the AD due to organic or nitrogen overload can be prevented or corrected, and the 

digestate would maintain its quality whenever the AD became unstable. Ammonium can be 

recovered for its reuse as fertiliser. The biogas produced by the AD could achieve the purity 

requirements for the injection in the gas natural grid or the use as transport fuel.  And finally, 

microbial composition of each reactor maintains well differentiated in spite of the connexion, and 

the increase in biodiversity in the integrated system may increase its resilience to stress. 
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12.2 Future work 

In this Thesis it has been shown that BES can be integrated with AD to overcome some 

of the limitations that AD presents. In order to achieve an efficient technology suitable for future 

full scale application, further work has to be undertaken. 

In the first place, the results obtained from the different assays performed can be useful 

to develop a mathematical model, in order to predict volatile fatty acids (VFA), chemical oxygen 

demand (COD) or ammonia removal in a BES. Even its integration with an AD with a 

recirculation loop could be modelled as a valuable tool to predict the AD evolution with different 

recirculation rates. 

Secondly, the set up and operation of a pilot scale AD-MEC-Stripping system would be 

need as a proof of concept to demonstrate the feasibility of this configuration to optimise energy 

and ammonia recovery from complex streams. The information obtained in this operation would 

be highly valuable in order to implement this technology at full scale. 

RNA-based high throughput sequencing and quantification of microbial populations has 

to be further assessed in order to be used as a tool to predict the behaviour of the reactors 

under different conditions. 

BES could be employed to recover other nutrients present in the digestates, such as 

phosphates. Further research is needed to integrate this application with AD and combine the 

recovery of different nutrients at the same time. 

Methane production and recovery in the MEC with electromethanogenic biocathode has 

to be optimised. The study of the generation of other products, such as VFA, is needed to 

understand the different processes that take place at the biocathode.  

Besides, the assays developed with the integrated AD-MEC-biocathode systems have 

been performed with the utilisation of buffered medium as catholyte. Since the use of a buffered 

medium limits the increase of pH in the cathode compartment (Chapter 4), the recovery of 

ammonia by stripping and absorption would be reduced. In order to improve ammonia recovery 

from the cathode compartment, removal of the buffer from the catholyte has to be assessed, 

especially regarding the effect the increase of pH could have over electromethanogenic 

biomass. 

Finally, metatranscriptomic techniques can give information about which physiological 

processes are active and which bacteria are carrying them out. This analysis will increase the 

knowledge about syntrophic relations and active pathways for the biosynthesis of organic 

compounds at the cathode. 

 

 


