QM: A Tool for Building Software Quality Models
Carvallo, J.P. and Franch, X. and Grau, G. and Quer, C.
Research Report LSI-04-11-R

Departament de Lienguatges i Sistemes Informdtics

UNIVERSITAT POLITECNICA DE CATALUNYA

QM: A Tool for Building Software Quality Models

Juan P. Carvallo, Xavier Franch, Gemma Grau, Carme Quer
Universitat Politecnica de Catalunya (UPC)
¢/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)
email: {carvallo, franch, ggrau, cquer}@lsi.upc.es

Abstract

This paper presents QM, a tool for supporting the construction of quality models for software systems.
The quality framework assumed for QM is defined by means of a conceptual model. The goals of QM
are enumerated and its functionalities described. Among other, QM provides functionalities to define
software quality factors, to reuse these quality factors among different quality models, to state
relationships among them and to assign metrics for their future evaluation. The construction of quality
models can be guided following any method and new methods can be defined using the tool itself. QM
has been designed to be integrated with other tools to support processes in the different contexts where
quality models can be used (software development, component selection, etc). As an example, the
architecture of a whole system for supporting component selection processes is finally included.

1. Introduction

The term quality referring to software is becoming more and more used in software engineering. One
way to establish a framework for studying software quality is the construction of a quality model, which
consist of a set of quality factors that describe the relevant features that software exhibits [1]. Quality
models can be used in different contexts, usually as a part of the software quality assurance activity during
software development [2, 3] or as a baseline for arranging the criteria used during a software component
selection process [4, 5]. Considering software domains (e.g. ERP systems, requirements management
tools, meeting scheduler tools, etc.), quality models may dramatically differ from one domain to another.
This fact implies that, in the construction of a quality model, the domain has to be deeply studied in order
to establish the quality factors that best describe it. Building a quality model becomes a complex and
time-consuming activity, involving dozens or even hundreds of quality factors some of them very specific
of the target domain. Therefore it requires adopting a method to build reliable quality models in an
efficient manner, and also some tool support to assist the application of the method.

In this paper, we present QM, a tool aimed to support quality model construction. QM offers
functionalities for defining the quality factors that conform a particular quality model; to reuse these
quality factors among different quality models; to establish relationships among them; to define software
metrics for their future evaluation; and to define quality model construction methods.

The paper is organized as follows. We give an outline, in section 2, of quality models for software
domains and we formulate a method for guiding its construction. Section 3 enumerates the goals of the
QM tool. The quality framework used as a basis to develop QM is presented in section 4. The
functionalities provided by the tool are explained in sections 5 and 6, and other aspects supported by the
tool in sections 7 and 8. In section 9, we present how we plan to enlarge the tool to support component
selection. Last, section 10 summarizes the conclusions.

2. Quality models for software domains

When studying a software domain, it is very useful to have a description of the quality factors that
characterize the products of this domain. This description could be as simple as a list of quality factors
built from the scratch but, having them structured in some way, certainly helps in their identification,
understanding and reuse. Because of this, quality models are used. Quality models are built upon a
catalogue of quality factors which are specific of the quality domain addressed. Many catalogues are
proposed and can be used as a departing catalogue.

One of the most widespread existing quality frameworks is the ISO/IEC 9126-1 quality standard [6]. This
standard organizes quality factors (referred to as quality entities) into six very high-level quality
characteristics (functionality, reliability, usability, efficiency, maintainability and portability) that are

decomposed into a first level of subcharacteristics (such as security, interoperability, etc., up to almost 20
high-level subcharacteristics). This hierarchical structure is generic enough to be adapted to any specific
quality context and can be used as a departing catalogue in which other subcharacteristics and measurable
attributes featuring an specific domain are added to complete its description, yielding to a multilevel
hierarchy.
As mentioned above, quality model construction may be a complex, time-consuming and cumbersome
activity. For this reason, some methods aimed at supporting this activity have been proposed. In
particular, we have formulated an ISO/IEC 9126-1-based method that consists of the following steps
(intertwined and iterated as needed):
= New subcharacteristics that are specific of the quality domain can be added, the definition of some
others can be refined, and even some of them can be removed.
= Subcharacteristics are decomposed to form a subcharacteristic hierarchy.
= Subcharacteristics are decomposed into quality attributes that allow the evaluation of observable
properties of the software products that belong to the quality domain.
= Complex attributes (derived) are decomposed until basic attributes, i.e. attributes that can be
measured in a direct way, are identified.
= Relationships between quality entities are established, which allows a better comprehension of the
model and a more accurate analysis of the quality requirements that can be defined in the quality
domain.
= Metrics for the identified attributes are adopted.

3. Goals for the QM tool
QM is the tool that we have developed to support the construction of quality models. It's main goals are:
= To be built upon a well-defined quality framework.
= To support the definition of hierarchical quality models for software domains based on the ISO/IEC
9126-1 quality standard.
= To keep track of relevant relationships among quality entities enclosed in quality models.
= To support the definition of metrics to allow the evaluation of quality entities.
= To allow the definition of several methods to facilitate a correct and stepwise construction of the
models.
= To be used in different contexts, such as software system development and software component
selection.
= To be ready for later integration with other tools in a larger environment in order to facilitate the use
of quality models in these contexts.

4. A conceptual model for defining our quality framework

We follow Kitchenham et al. proposal [7] of using a conceptual model for specifying the different

components of our intended quality framework; more precisely, we use a UML class diagram [8]

introducing all the concepts and associations among them. As a result, we may say that we have an

unambiguous and complete quality framework that can be used as the basis to develop the QM tool and

to reason about quality.

The resulting conceptual model can be divided in four different parts that will be detailed in the rest of the

paper:

= Definition of the hierarchy of quality entities. Some decisions were taken referring to our
particular interpretation of the ISO/IEC 9126-1 standard (which leaves some open points), as
explained in section 5.

= Definition of the relationships among quality entities. The quality model becomes more
exhaustive by stating the relationships between quality entities. We have defined some predefined
relationships allowing their further refinement and the use of different relation scales, see also section
5.

= Definition of metrics for quality entities. We offer different types of metric for describing the
evaluations that entities can have. In QM, metrics are characterized by some traditional aspects such
as their scale and their unit, and also they have a measurable concept for obtaining homogenous
results when evaluating under the specified conditions. Section 6 describes this part.

= Other aspects. To provide a complete definition of the quality framework some other parts have
been modelled, such as the definition of various methods, see section 7, or some extra features
presented in section 8.

5. Defining the hierarchy of a quality model
As the corerstone of our quality framework, we have chosen the ISO/IEC 9126-1 standard. It is quite
generic, presents a hierarchical structure and is widespread. However the standard is not precise enough
in some points and, therefore, some decisions have been taken and reflected in the UML diagram of
figure 1. The two most important ones are:
= Hierarchies of subcharacteristics and attributes are allowed without any restriction about its number
of levels.
. An attribute may be associated to several subcharacteristics, as the standard does not

Quality Y Quality
Entity Model

{incomplete } % f
Specific Characteristic

{ disjoint, incomplete }

Subcharacteristic Attribute

{incomplete } { incomplete }
Specific Specific . Specific
Characteristic Subcharacteristic Attribute
L 1
{ disjoint, incomplete }
* { disjoint, complete }
Basic Derived ~
Attribute Attribute

Fig 1. UML conceptual model: interpretation of the ISO/IEC 9126-1 quality standard
forbid overlapping of software entities.

To avoid misunderstanding, we have also made a formal definition of the types of quality entities
proposed in the standard as follows:
= Characteristics are used as a classification level which groups the different quality entities related
with it.
= Subcharacteristics are used as an organisational level between entities and they cannot be directly
measurable, although a subjective appreciation can be bound to them.
= Attributes keep track of a particular observable feature of the domain and can be derived or basic.
Basic attributes are always directly measurable, while derived attributes should be decomposed until
they are completely expressed in terms of basic ones.
We have also introduced an extra classification hierarchy for quality entities, which indicates if an entity
is specific or generic, i.e. if it is fully defined or not. Generic entities facilitate reusability among quality
models.
To help the understanding of a quality model, the tool shows its quality entities organised as a tree (see
figure 2). Some entities may be showed in more than one branch due to overlapping, but still being the
same. QM allows constructing the model by browsing this tree and following the proposed conceptual
model. Due to this fact, when selecting a characteristic, only subcharacteristics can be added to their
decomposition. Although subcharacteristics can be decomposed into subcharacteristics or attributes, the
tool forbids decomposing them into subcharacteristics and attributes at the same time. Derived attributes
can only be decomposed into attributes and the tool does not allow decomposing basic attributes.
To obtain a really complete quality model, relationships between quality entities should be explicitly
defined. The QM tool allows stating these relations between entities by permitting to choose a

| P it

Ae Wimeds Took Help

|ole|el @ Ble]8|n] &) €
[seremie =l

Main functionalities featured
over quality models

1[0 Wy Harcling

= Acicrwey Bosk

1O e A B ratEy
= Scichtion | Sultnbily

10 okt A ROARIOnS

The level of definition
of the new attribute
can be set.

st i e

_"ﬁ"‘”"m"‘"" "~ gamrc deived siibds [baoc ettt <E

Rl Becuridy Eaxplaria
w0 Corrphnce uppeoLn for Uaenst news users, news gooups o S
o RESJARSA.

.=.- (Z8 Fud Torecn .:I

These buttons facilitate
definition, by allowing
browsing the model

< Previcam Btk | Wew sangae |

P | pecorpare |

| |-l vbarincw Stnciardz, snd sendsrdation
(I Wish i wroidsche e

To make information more accessible, when a quality
entity is selected, its related information is shown.

Fig 2. QM snapshot: adding a new attribute to the entity hierarchy

relationship from a defined scale. These scales are completely customisable, so new relationships of any

elaborate type can be created. Once the relationships are stated, it is also possible to define intensities

between them: a relationship may refine another one with a certain degree. We propose the adoption of

the relationship style defined in [9].

Although quality entities can vary from one domain to another, in practice we have observed that some of

them appear over and over, which means that quality models are not completely different and some

hierarchy parts can be reused. We will refer to these parts as quality patterns: pieces of quality models that

appear in many other quality models. QM promotes reusability by allowing the construction of a

catalogue of quality patterns in which users can store their own patterns and look up all existing patterns

(even those defined by other users). Reusability is also facilitated in the two following ways:

= Jtis possible to open existing quality models and copy hierarchical fragments in order to paste them

in the current model.As an extreme condition of the situation above, it may be the case that the
modelled domain depends on other domains. For instance, when defining the security quality
entities for the mail servers domain, the part concerning virus detection and repair can be defined in
terms of the quality model of the anti-virus tools domain. QM supports inclusion of quality models
to deal with this situation.

In figure 3 we show how a relationship between entities is stated. In the background the quality patterns

catalogue is being used.

6. Defining metrics for quality entities
To allow further evaluation of software systems from the domain being modelled, we shall define metrics
for quality entities. We present below the part of our quality framework related to metrics (see figure 4).
First, three important facts (captured by our conceptual model) should be remarked:
= A metric can be bound to quality entities belonging to different quality models. Thus, in QM,
metrics are collected in a catalogue that may be browsed in every quality model under construction.
= A quality entity may have more than one metric bound. For instance, a usual situation is an attribute
having two different metrics: one for measuring it as an absolute value and the other as a
percentage.

uality patterns can e consulted either y user or entity

iy

T

he information of
each entity of the
quality pattern can

econsulted ny
entity can e copied
to eused

relation scale is chose
and a alue selected to
state the relationship

Fig . Msnapshot: addin ane entity relationship and sho in the quality pattern catalo ue

A quality entity that appears more than once in the hierarchy may have different metrics in each
one. For instance, in the mail servers domain, the measurable attribute message tracking and
monitoring decomposes both analysability and accurateness. When decomposing analysability it
has a boolean metric, while in decomposing accurateness has an enumerated metric that fixes if the
level of message tracking and monitoring is low, medium or high.

Taking into account some widespread proposals (e.g., [7, 10]) and also our academic and industrial
experiences, we establish an exhaustive categorization of metrics based on some concepts that depend on
their interpretation in the evaluation process:

Subjectivity/objectivity. A metric has a subjective value when it is not possible to establish a
precise, non-ambiguous measurement procedure to get the value of the quality entity that it
evaluates, but it is possible to give an appreciative value (subjective). Otherwise, the metric is
objective. The measurement procedure for objective metrics is always repeatable and gives the
same results.

Basic/derived. A metric is basic when its value must be assigned directly by a software quality
expert. Otherwise, the metric is derived. For instance, in the mail servers domain, the attribute
folders has a derived metric because it depends on the values of the metrics of the attributes default
folders, folders management and access of remote folders, which can be directly evaluated.

Scale. The scale fixes the interpretation that can be done of the metrics value, as well as the
operations that can be applied to it. We follow Fenton’s proposal [10]: Interval, Ratio, Absolute,
Ordinal and Nominal.

Measurable concept and units. A metric is bound to a measurable concept (e.g., time, number of
lines of code, size, etc.). A measurable concept may have several units of measure (e.g., time may
be measured in fractions of seconds, hours, days, etc.). To allow further comparison between
evaluations when different units are used, a unit is selected as representative of the metric and
conversion formulas shall be defined.

Type. Every metric gives values of a given type. A type can be simple (boolean, string, integer, real,
enumeration) or structured (set, function, tuple). Structured types support the definition of metrics
for composite quality entities, which appear often in quality models (e.g., set of supported protocols,
or a function for measuring efficiency in different platforms). Subjective metrics are restricted to
enumeration values, or sets or functions of enumerated values. The type of the metric shall be
compliant with its scale.
The tool follows this proposal, distinguishing for each quality entity, which metrics are allowed for
evaluation. This means that, depending on the quality entity type, it is possible to apply a type of metric.
Characteristics are the exception because of their role as high-level classification entities, and cannot be
subject of evaluation. Subcharacteristics are still quite high-level quality entities, therefore they cannot be
evaluated with an objective metric, but just with subjective estimations of their value. As derived
attributes are decomposed into other attributes, a formula

] :b—‘

|
hﬁl%p

I

Fig . UML conceptual model for metric definition e cerpt

can be applied with the values obtained from these attributes to get a specific value. Sometimes it is
difficult to establish an objective metric for derived attributes or a subjective view is required, so a
subjective metric can be used to evaluate them. Basic attributes can be evaluated with any objective
metric belonging to simple or structured types.

As Kithencham et al. pointed out [7], the definition of the quality entities and the metrics does not ensure
comparability and there is also the need to specify the conditions under each measurement will be taken.
When defining evaluations for the entities the QM tool allows defining the measurement protocol and the
measure tools that must be used to recollect the data. (see figure 5).

<

1]

Fig . UML conceptual model for metric definition e cerpt

he method is consulted y step and functionalities are accessed

iy

ML can e used to
define the step in order to
or ani e the content

he defined steps are
sho n as ellasthe
information they contain

irect access to tool
functionalities can e added
to each step to lin method

Fig . M snapshot: definin a method

Defining and using methods for guiding quality model construction

We have motivated in the introduction the need of adopting a method for the construction of quality
models. QM has been built having in mind the method presented in section 2, but in fact the tool does not
enforce its adoption. This has two different implications. On the one hand, QM allows using methods in
an informative rather than prescriptive way. On the other hand, other methods can be defined and
adopted. In figure 6 we show how a new method can be created by defining its steps.

As a final remark, the QM tool provides a term glossary that can be adapted and extended for every
particular defined method.

Other aspects supported by QM
In the previous sections we have presented the most characteristic features of QM. In this section, we
briefly enumerate others worth mentioning:
Selection facilities. As an advanced feature, the QM tool makes possible to identify some typical
requirements related to the quality entities of the model, and construct a requirements catalogue to
facilitate requirements elicitation in the final phase of selection processes.
Traceability. Achieved in two different ways. On the one hand and in order to know where the
knowledge comes from, in the definition of new elements (quality entities, relationships, metrics,
etc) of a quality model it is possible to state personal comments and sources consulted. On the
other hand, version management is supported.
alidation. Once the model has been completely defined, it cannot be considered as definitive until
it becomes marked as validated. alidation can be accepted or rejected by a domain expert under
request of the user that defined the quality model. Once validated the quality model can be used
safely, as a departing model by other users or by other prospective subsystems (see next section).
This protocol is monitored by the QM tool.
Administration. Some functionalities of QM are restricted to the administrator user, as the
modification of the starting ISO/IEC 9126-1 quality model or the creation of initial catalogues of

quality patterns, metrics and relationship scales. This process helps having more homogeneous
quality models because the user has fewer items to define himself.

User management. The tool allows registering and unregistering users stating their expectations
and responsibilities on the tool: quality model definer user, domain expert and administrator.

A step forward enlarging QM with other subsystems
The QM tool has been built to support quality model definition regardless of the context in which the
quality models are going to be used. One of these contexts is component selection of Commercial Off-
The-Shelf components (hereafter COTS) [11,12]. We have also defined a complete method for COTS
selection centred on the concept of quality model and we are currently developing subsystems to support
the involved activities. The process undertakes QM and three other subsystems (see figure 7) whose main
goals are:

O e aluation tool. Supports the evaluation of candidate COTS using a quality model defined
for the domain the components belong.

O selection tool. In the one hand it supports the definition of requirements and their association
to the quality entities of the model of the domain where the component will be selected. On the
other hand, it matches the component evaluation with these stated requirements for helping in the
requirements negotiation that will end with the selection of the most suitable COTS.

a onomy wi ard. This tool will be hardly integrated with the QM tool to help the organisation
and reusing of quality models. It is possible to define categories that group COTS domains with
similar features, which share parts of their quality entity hierarchy. By defining quality models for
these categories, inheritance of quality models becomes possible at several levels. The wizard
supports to manage a taxonomy of categories and domains with the consequent reuse of quality
models.

The projected platform and architecture for the whole system has been designed taking into account that
the different subsystems have different kind of users although they need to interact.

—{C

Eﬁ

Fig . Inte rationof M ith other su systems to support CO S component selection

To support the previous requirements, the system has been designed for a distributed platform and each
tool follows a client/server architecture. Thus, the client program of each tool can be installed
independently form the others and just need to access the server program to get and store the shared data
using HTTP/ ML, A A servlets and a MySQL database. All the libraries used are open source,
following the aim of getting openness and flexibility on the system development and distribution.

1. onclusion

We have presented in this paper QM, a tool for supporting quality model construction. The QM tool has
not a commercial goal but the academic purpose of supporting the application of the authors’ current
research on a method for building quality models. So far, we have used the tool to define quality models
in various academic and industrial experiences. Some of the domains for which we defined quality
models are mail servers, document management and requirement management.

There exist some other tools in the market that allow the construction of quality models and we mention
here two of them, which are virtually brand new. The first tool is miniSQUI [13] which has been
developed to store complex software metrics data sets and the metadata that describe them. MiniSQUI
use quality models (referred to as development models) as a framework for the development of the
structure where metrics will be set. The second one is OPAL [14], which is oriented to the selection of
software packages helping in its comparison; it offers and supports the construction of quality models as a
possible way of organising the user requirements. Both tools use a quality model structure but, to the best
of our knowledge, they do not provide any other reusing facilities than to start the construction from an
existing model. As far as we know, they are not designed for allowing other tools to use the quality
models generated. Thus, their quality models can not be used for other purposes than the ones supported
by the tool.

11. eferences

[1] IEEE Standard 1061-1992. tandard for a soft are quality metrics met odology, IEEE 1992,

[2] R. . romey. oncerningt e imera. EEE Software, volume 20, 1996.

[3] . Boegh, S. epanfilis, B. Kitchenham, A. Pasquini. et od for oft are wuality lanning
ontrol and aluation. IEEE Software, 23(2), 1999.

[4] . Franch, .P. Carvallo. sing wality odelsin oft are ackage election. IEEE Software,

20(1), anuary/February 2003, pp. 34-41.

[5] L. Beus- ukic, . Boegh. oft are wuality aluation. International Conference on COTS-
Based Software System. I[CCBSS’03.
[6] tandard oft are ngineering roduct uality art uality odel, 2001.

[7]1 B.A. Kitchenham, R.T. Hugues, S. . Linkman. odeling oft are easurement ata. IEEE
Transactions on Software Engineering, 2001.

[8] nified odeling anguage ecification. OM document formal (formal/2001-09-67).
2001.

[9] L. Chung, B. Nixon, E. u, .Myolopoulos. on unctional equirementsin oft are ngineering.
Kluwer Academic Publishers, 2000.

[10] N.E. Fenton, S.L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS, 1998.

[11] N.Maiden, C. Ncube. cquiring equirements for election. IEEE Software 15(2), 1998
[12] .Kontyo. ase tudyin lyinga ystematic et od for election. IEEE International
Conference on Software Engineering. ICSE, 1996.

[13] B.A. Kitchenham. ini andbook. 2002.

[14] M. Krystkowiak, B. Bucciarelli, E. ubois. election for s are ortona case study and

onasu orting tool International Workshop on COTS and Product Software: Why Requirements are so
Important. September, 2003

