YAM² (Yet Another Multidimensional Model):

An extension of UML

Alberto Abelló (a), José Samos (b), and Félix Saltor (c)

(a) U. Politécnica de Catalunya (UPC), Dept. de Lenguatges i Sistemes Informàtics
{abellol,saltor}@lsi.upc.es

(b) U. de Granada (UGR), Dept. de Lenguajes y Sistemas Informáticos
jsamos@ugr.es

Abstract. This paper presents a multidimensional conceptual Object-Oriented model, its structures, integrity constraints and query operations. It has been developed as an extension of UML core metaclasses to facilitate its usage, as well as to avoid the introduction of completely new concepts. YAM² allows the representation of several semantically related stars, as well as summarizability and identification constraints.

1 Introduction

A “Data Warehouse” (DW) is roughly a huge repository of data used on the decision making process. To help on the management and study of that enormous quantity of data appeared “On-Line Analytical Processing” (OLAP) tools. The main characteristic of this kind of tools is multidimensionality. They represent data as if these were placed in an n-dimensional space, allowing a study in terms of facts subject of analysis, and dimensions showing the different points of view according to which data can be analyzed.

Several papers appeared in the last years regarding multidimensional modeling. However, few of them place the discussion at a conceptual level. Moreover, most of them focus on the representation of isolated star schemas, i.e. the representation of only a kind of facts surrounded by its analysis dimensions. In spite of the dominant trend in data modeling is the “Object-Oriented” (O-O) paradigm, there exist only a couple of proposals on O-O multidimensional modeling: [TP98] and [NTW00]. These proposals use “Unified Modeling Language” (UML) standard (defined in [OMG99]) in some way, but none of them proposes an extension of it to include multidimensionality. Just the “Common Warehouse Metamodel” (CWM) standard (defined in [OMG01]) extends UML metaclasses to represent some multidimensional concepts. However, it is too general, and not conceived as a conceptual model.

Next section explains the main contributions of our multidimensional model. Then, sections 3, 4, and 5 present its structures, inherent integrity constraints, and operations, respectively. Section 6 shows the metaclasses of the model and their relationships with UML metaclasses. Finally, section 7 compares YAM² with other multidimensional models against several items (most of them already introduced by other authors). Conclusions, and references close the paper.
2 Not just another multidimensional data model

As stated in [AHV95], a “database model” provides the means for specifying particular data structures, for constraining the data sets associated with these structures, and for manipulating the data. It is also explained there that, as relations are the data structures of the Relational model, so graphs are the structures of O-O models. We provide a precise, easily understandable semantics for graphs in our O-O model, by defining \(YAM^2 \) structures as an extension of a wide accepted modeling language, i.e. UML (each and every \(YAM^2 \) metaclass is a subclass of a UML metaclass). There are some multidimensional models that use UML notation, but no one extends its concepts for multidimensional purposes. By using UML as a base for the definition of structures of \(YAM^2 \), we build our model on solid, well accepted foundations, and avoid the definition and exemplification of basic concepts. It makes unnecessary to explain what classes, attributes, etc. are.

The main goal of multidimensionality is to help non-expert users to query data. Therefore, the data structures of a multidimensional model should show how data can be accessed, driving users in their understanding. They should keep as much information as possible, but the resulting schema must be easily understandable by final users. Thus, the different modeling elements in \(YAM^2 \) have been defined at three levels (i.e. upper, intermediate, and lower), so that they are successively decomposed to give the desired detail.

“Expressiveness” or “Semantic Power”, as it is defined in [SCGS91], is the degree to which a model can express or represent a conception of the real world. It measures the power of the elements of the model to represent conceptual structures, and to be interpreted as such conceptual structures. The most expressive a model is, the better it represents the real world, and the more information about the data gives to the user. This is crucial for conceptual models like \(YAM^2 \), since they are used to represent user ideas. Therefore, we will define different kinds of nodes and arcs in the graphs to improve the “Expressiveness” of our model. The applicability of the different kinds of relationships supported by UML has been systematically studied.

Another important point for a data model is its “Semantic Relativism”. It is defined in [SCGS91] as the degree to which the model can accommodate not only one, but many different conceptions. It is really important because since different persons perceive and conceive the world in different ways, the data model should be able to capture all of them. The information kept in the DW should be shown to users in the form they expect to see it, independently of how it was previously conceived or is actually stored. Therefore, \(YAM^2 \) also provides mechanisms (derivation relationships at different detail levels) to model the same data from different points of view.

Our model also pays special attention to show how data can be classified and grouped in a manner appropriate for subsequent summarization. Summarized data can be reflected in the schema, as well as the ways to obtain it. For instance, this information can be used at later design phases to decide materialization.
In section 7, we compare YAM² with other models to show its advantages and
disadvantages. There, contributions of our model can be clearly seen, regarding
specific items.

3 Structures

In this section, we define the structures in our O-O model (i.e. nodes and arcs).

3.1 Nodes

Multidimensional models are based on the duality Fact-Dimensions. Intuitively,
a “Fact” represents data subject of analysis, and “Dimensions” show different
points of view we can use in analysis tasks. “Facts” represent measurements (in a
general sense), while “Dimensions” represent given information we already have
before taking the measurements (on the understanding that they can always be modified).
As previous work for the definition of this model, we separately
studied “Dimensions” and “Facts” in [ASS01b] and [ASS01c], respectively.
The reader is referred to them for a specific, deeper explanation of each of both
kinds of data. Now we are going to give the definition of the different nodes we
find in a multidimensional O-O schema.

Definition 1. A Level represents the set of instances of the same granularity
in an analysis dimension. It is an specialization of Class UML metaclass.

Definition 2. A Descriptor is an attribute of a Level, used to select its instances. It is an specialization of Attribute UML metaclass.

Definition 3. A Dimension is a connected, directed graph representing a point
of view on analyzing data. Every vertex in the graph corresponds to a Level, and
an edge reflects that every instance at target Level decomposes into a collection
of instances of source Level (i.e. edges reflect part-whole relationships between
instances of Levels). It is an specialization of Classifier UML metaclass.

![Figure 1. Example of analysis dimension](image)

Figure 1 shows an example of Dimension. It contains four Levels: Customer, AgeGroup, Goodness, and All. Every instance of Customer Level represents a
customer, which can be aggregated in two different ways to obtain either age
or goodness groups of customers. At top we have All level with exactly one
instance representing the group of all customers in the Dimension. The structure
of Dimension's graphs and their properties were carefully explained in [ASS01b].
Just to note here that it forms a lattice, and due to the transitive property of part-whole relationships, some arcs are redundant, so that they do not need to be explicited (for instance, Customer being aggregated into All).

Definition 4. A Cell represents the set of instances of a given kind of fact measured at the same granularity for each of its analysis dimensions. It is an specialization of Class UML metaclass.

Definition 5. A Measure is an attribute of a Cell representing measured data to be analyzed. Thus, each instance of Cell contains a (possibly empty) set of measurements. It is an specialization of Attribute UML metaclass.

Definition 6. A Fact is a connected, directed graph representing a subject of analysis. Every vertex in the graph corresponds to a Cell, and an edge reflects that every instance at target Cell decomposes into a collection of instances of source Cell (i.e. edges reflect part-whole relationships between instances of Cells). It is an specialization of Classifier UML metaclass.

![Graph of Cells in a Fact with two Dimensions](image)

Figure 2 shows an example of the structure of a Fact with two Dimensions: Customer, already depicted in figure 1; and Clerk, composed by Clerk, Team, and All Levels. We can see that there is a Cell in the Fact for every combination of Levels in the Dimensions. Thus, a Fact contains all data regarding the same subject at any granularity. Having two Dimensions with 4 and 3 Levels respectively, means that the Fact will have 12 different Cells. These Cells and the part-whole relationships between them form a lattice, as was already explained in [AS80].

These six kinds of nodes are grouped in three pairs. At upper detail level, we have Facts and Dimensions (one Fact and the Dimensions associated to it compose a Star). At intermediate level, there are Cells and Levels. Finally, looking at lower detail we see Measures and Descriptors. Moreover, at this level, we also define KindOfMeasure to show that several Measures in different Cells correspond to the same measured concept at different aggregation levels.

3.2 Arcs

Once the nodes have been defined, in this section we are going to see the different kinds of arcs we could find between them. UML provides four different kinds of
Fig. 3. UML Relationships between model elements

relationships: Generalization, Flow, Association, and Dependency. As depicted in figure 3, Generalization relationships relate two GeneralizableElements, one with a more specific meaning than the other. Classifiers and Associations are GeneralizableElements. Flow relationships relate two elements in the model, so that both represent different versions of the same thing. Association, as defined in UML specification, defines a semantic relationship between two Classifiers. By means of a stereotype of AssociationEnd, UML allows to use a stronger type of Association (i.e., Aggregation), where one classifier represents parts of the other. If parts cannot be shared by different wholes, we have a stronger form of Aggregation known as Composition. Both kinds of Aggregation show part-whole relationships, so we will not distinguish them in the study, but only in some diagrams. Finally, UML allows to represent different kinds of Dependency relationships between ModelElements like Binding, Usage, Permission, or Abstraction. We are not going to consider the three first, because they are rather used on application modeling, and YAME is just a data model. Moreover, due to the same reason, out of the different stereotypes of Abstraction we are only going to use Derivation. Derivability, also known as “Point of View”, helps to represent the relationships between model elements in different conceptions of the UoD.

The usability of these relationships between concepts was briefly explained and exemplified in [ASS01a]. Here we are systematically going to see how they can be used to relate multidimensional constructs at every detail level. For every pair of constructs at each detail level we will show if they can be related by a given kind of Relationship or not. Moreover, if two constructs can be related, we will also show if they must belong to the same construct at the level above, or not (i.e. inter or intra relationships, respectively).

<table>
<thead>
<tr>
<th>Relationship Type</th>
<th>Upper Level</th>
<th>Inter Level</th>
<th>Intra Level</th>
<th>Intra Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalization</td>
<td>inter</td>
<td>inter</td>
<td>inter</td>
<td>inter</td>
</tr>
<tr>
<td>Association</td>
<td>inter</td>
<td>intra/intra</td>
<td>intra/intra</td>
<td>intra/intra</td>
</tr>
<tr>
<td>Aggregation</td>
<td>inter</td>
<td>inter</td>
<td>inter/intra</td>
<td>intra/intra</td>
</tr>
<tr>
<td>Derivation</td>
<td>inter/intra</td>
<td>inter/intra</td>
<td>inter/intra</td>
<td>inter/intra</td>
</tr>
</tbody>
</table>

Table 1. Relationships between elements at upper detail level

Upper detail level. Table 1 shows the different relationships we can find at this detail level. Since a Star only contains one Fact, in order to have two related Facts, they must belong to different Stars. Therefore, relationships between
Facts will always be inter-stellar. However, we can have inter-stellar as well as intra-stellar relationships between two Dimensions, because a Star contains several Dimensions, which can be related.

Figure 4 shows examples of most relationships at this level. Firstly, corresponding to the upper-left corner of the table, we see that two Facts can be related by Generalization (i.e., ProductSale and CreditSale). We will have different information for the more specific Fact (for example, number of credit card). Thus, analysis dimensions are inherited from the more general Fact, but others could be added, like Bank. ProductSale and Production are related by Association to show the correspondences between produced and sold items. We can also find Aggregation relationships between Facts. A Fact in a Star can be composed by Facts in another Star. For instance, a Deal is composed by several individual ProductSale. Notice that it is not always possible to calculate all measurements of Deal from those of ProductSale (for instance, discount in the deal). Data sources, measure instruments, or calculation algorithms are probably going to change, and these changes should be reflected in our model by means of Flow relationships between Facts. All these changes are not reflected by just relating our Facts to Time Dimension, since we actually have different Cells. On December 28th of 1992, we started recording discount checks in ProductSale, so that we kept both incomes (i.e. cash, and discount checks). From that day, we have different Facts containing the same kind of data before and after the acceptance of the checks (i.e. OldProductSale, and ProductSale). Finally, two Facts could also be related by Derivation relationships to show that they are the same concept from different points of view.

In the upper-right corner of table 1, we can see that there exist Generalization relationships between Dimensions. For instance, People Dimension generalizes Clerk and Customer ones. Notice that if we suppose that all people is a customer, both related Dimensions would belong to the same Star. It is also possible to have analysis dimensions related by Association. Thus, Clerk is associated with Store.
Dimension to show that clerks are assigned to stores. We can also find stronger associations between analysis dimensions, if we join more than one to give rise to another. For example, People Dimension is used to define Clubs by means of an Aggregation relationship. Every instance of Clubs is composed by a set of people. Several years ago, when our local business grew, Store Dimension was changed to reflect the new Level Region. At conceptual level, those changes are represented by a Flow relationship between OldStore and Store. Derivations allow to state that there are different views of the same Dimension. We could find that the same concept has different names depending on the subject we are. Thus, a Dimension could be used in different Stars. For example, Product is considered RawMaterial in a different context. Therefore, the same Dimension, with exactly the same instances, needs a different name depending on the context. These Dimensions could even have different aggregation hierarchies or attributes of interest to the users. For example, studying the raw material grouped by profit margin can be meaningless.

The middle columns in table 1 show how a Fact can be related to a Dimension and vice versa. Firstly, we see that a Fact is related to its analysis dimensions by means of Association relationships. Moreover, they can also be associated to Facts in another Star as shown in the example, where Promotion Fact is associated to Product Dimension in the Sales Star. A Dimension can be obtained by deriving it from a Fact. The name can be changed, some aggregation levels added or removed, others modified, some instances selected, etc. in order to adapt it to its new usage. In our example, some people is interested in the analysis of promotions. Thus, the promotions selected by studying Promotion Fact, can be used as Dimension to study ProductSale. Notice the difference between deriving a Dimension and associating it to a Fact in another Star. The former allows to study the sales performed during a promotion, while the latter shows all promotions that have been applied to a kind of product. That Derivation between a Fact and a Dimension uses to be an inter-stellar relationship (i.e. from a Fact, we derive a Dimension to analyze another Fact). However, we could also use information derived from a Fact to analyze the same Fact. It is also important to say that a Fact cannot be derived from a Dimension, because Facts represent measurements, so that they cannot be found a priori in the form of Dimension. The rest of relationships (i.e. Generalization, Aggregation, and Flow) cannot be found between a Fact and a Dimension, nor vice versa. All three imply obtaining a new element based on a preexisting one, and the difference between Fact and Dimension is so important that the obtaining of one from the other should be restricted to derivation mechanisms. For instance, a Fact cannot eventually become a Dimension.

Intermediate detail level Table 2 shows the relationships we can find at this level. Most of them are exemplified in figure 5. Our company (resulting from the fusion of preexisting smaller companies) is organized in autonomous regions. Thus, the information systems in one of these regions collect data that those in other regions do not, so we specialize our Cells (i.e. AtomicSale) depending
Table 2. Relationships between elements at intermediate detail level

on the region. This specialization is due to the specialization of the kind of fact they are representing. Therefore, we can see in the upper-left corner of the table that two Cells can be related by Generalization, but they must belong to different Facts (i.e. it is an inter-factual relationship). Cells in different Facts can be associated (for instance, each Cell representing a sale with its corresponding Cell representing the production of what was sold). Moreover, we can also have Association relationships between Cells in the same Fact (for instance, computers are associated to those other products that are plugged to them). In general, we only have intra-factual Aggregation relationships, which correspond to those relationships between Levels, and are not necessary in the schema. However, we could also find that different Cells are aggregated to obtain a Cell about a different kind of fact (when both Facts are also related like ProductSale and Deal). In this case, we do not group Cells along any analysis dimension, i.e. it does not generate coarser Cells in the same Fact, but Cells in another Fact (i.e. AtomicDeal). If a new Measure would appear for a kind of fact, we would obtain a new Cell related to the old one by means of a Flow. Both would represent the same concept. However, they would belong to different versions of the same Fact (it is a inter-factual relationship). Derivation relationships can be used to hide information, change names, or Measures in the Cells, giving rise to new Facts.

Fig. 5. Example of YAM² schema at intermediate detail level
The rightmost column shows that we could also find Generalization relationships between two Levels. As in the case of Cells, it must be an inter-dimensional relationship, because both Levels cannot be related, at the same time, by Generalization and part-whole relationships. Associations between Levels can be intra- as well as inter-dimensional. The Level representing clerks is associated with other clerks (his/her relatives) in the same Dimension, and with stores in another Dimension. Intra-dimensional Aggregations define the graph of the Dimension. However, we could also find inter-dimensional Aggregations between Levels, if two Dimensions are so related. When the company was restructured and the regional division changed, the aggregation level showing it also changed. Both, new and old Levels are related by means of a Flow (although they represent the same concept, they belong to different versions of the same Dimension). Finally, as for any other concept, a Level could be derived from another one to show it from a different point of view.

All relationships in the central columns must be inter-structure, because Cells and Levels always belong to different structures (i.e. Facts and Dimensions, respectively). As for relationships at upper detail level, a Cell cannot be converted into a Level nor vice versa by means of Generalization, Aggregation, or Flow. It must always be done using derivation mechanisms. Moreover, because of the same reason that a Fact cannot be derived from a Dimension, a Cell cannot be derived from a Level. Nevertheless, if a Dimension is derived from a Fact, its Levels are also derived from the Cells of the Fact. Associations exist between Cells and Levels, or vice versa (showing the granularity of the Cells).

<table>
<thead>
<tr>
<th>Flow</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>Inter-Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Structure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. Relationships between elements at lower detail level

Lower detail level Elements at this level are neither Classifiers nor Generalizable Elements, but just Attributes. Therefore, as it is shown in table 3, they can only be related by those relationships between Model Element (i.e. Derivation, and Flow).

If a change affects a Measure or Descriptor, they will belong to new versions of their Cell and Level, respectively. Thus, Flow relationships are in both cases inter-structure. Moreover, time cannot convert a Measure into a Descriptor, nor vice versa.

It is always possible to define derived Measures from other Measures in the same Cell, as well as Descriptors from other Descriptors in the same Level. Moreover, in both cases, supplier Attributes could also be in other Classes. Measures in a Cell could be obtained by applying some operation to Measures in other Cells. For instance, looking to lower detail level elements in figure 6, we see that measurements of revenue in AtomicSale are obtained from subtracting cost in Production. What is more, a Descriptor can be obtained from some Measures
Derivation Level Cell C

\[
\frac{\text{L/influenceArea}}{\text{L/population}} \text{IncomePerPerson}
\]

\[
\text{CDailySalesByStore}(\text{Time, Product} \rightarrow \sum(\text{IncomePerPerson})}
\]

\[
\text{Time, Product, Store, Promotion, Customer, Clerk} \rightarrow \text{avg}(\text{Income})
\]

\[
\{\text{income-Production.cost}\}
\]

\[
\text{AtomicSale C/NonTransitive/}\text{IncomeAverage}
\]

\[
\text{IncomeAverage} = \text{Time, Product, Store, Promotion, Customer, Clerk} \rightarrow \text{avg}(\text{Income})
\]

4 Inherent integrity constraints

The metaclasses of the model define constraints on multidimensional schemas, but constraints should also be defined on their instances. In this section, we are going to address that kind of constraints, paying special attention to two important points in multidimensional modeling, namely visualization of data in an n-dimensional space, and summarizability of data.

The main contribution of multidimensionality is the placement of data in an n-dimensional space. It improves the understanding of those data and allows the implementation of specific storage techniques. From our point of view, it is important that the n dimensions of the space are orthogonal. If not, i.e. if a dimension determines others, the visualization of data will be unnecessarily complicated (we are showing more information that it is needed and it will be more difficult for users to understand it); moreover, storage mechanisms are affected, as well, because they are not considering that several combinations of dimension values are impossible, resulting in a waste of space.

A Cell instance is related to one object or set of objects (if it is an Association with upper-bound multiplicity greater than one) at each associated analysis dimension, and those objects or sets of objects completely identify it. Thus, regarding visualization of data in n-dimensional spaces, we could say that the set of Levels a Cell is associated with form a “superkey” (in Relational terms) of that Cell. We call Base to every minimal set of Levels being “superkey” (i.e. “key” in the Relational model) of a Cell. When one of these Bases (that define spaces of orthogonal dimensions) is associated to a Cell, we obtain a Cube. For instance, AtomicSale (in figure 5) can be associated with points in the 3-dimensional space defined by Levels Clerk, Minute, and Product, so that AtomicSale is functionally determined by those three Levels (a Base of the space).

Definition 7. A Cube is an injective function from an n-dimensional finite space (defined by the cartesian product of n functionally independent Levels
If the Levels were not functionally independent (i.e., they did not form a Base), we would use more Dimensions that strictly needed to represent the data, and would generate empty meaningless zones in the space.

Another interesting group of constraints to deal with is that related to summarization anomalies and how to solve (or prevent) them. In multidimensional modeling, it is essential to know how a given kind of measure must be aggregated to obtain it at a coarser granularity. [LS97] identifies three necessary (intuitively also sufficient) conditions for summarizability:

1. Disjointness: subsets of objects must be disjoint.
2. Completeness: the union of subsets must constitute the entire set.
3. Compatibility: category attribute (Level), summary attribute (KindOfMeasure), and statistical function (Summarization) must be compatible.

The first two conditions are absolutely dependent on constraints over cardinalities in the part-whole relationships of the Dimensions, because these define the grouping categories. Therefore, let us briefly talk also about this third group of integrity constraints of our model.

To avoid those anomalies on summarizing data, some models forbid “to-many” relationships in the aggregation hierarchies. This means that instances of a Part Level can only belong to one Whole. Nevertheless, there is no mereological axiom forbidding the sharing of parts among several wholes. A given product Kinder Surprise (at Level Product) belongs to two different kinds of products at the same Level Kind (i.e., Candies, and Toys). We argue that this case should not be ignored by a multidimensional model. Therefore, non-strict hierarchies are allowed in the Dimensions, and they need to be taken into account to decide summarizability of Measures.

The other problem on cardinalities is that of “non-onto” and “non-covering” hierarchies (as presented in [Ped00]). That is, having different part-whole structures for instances at the same Level is allowed. For example, if we would have a state-city (like Monaco in a Geographic linear Dimension with Levels City, State, and All), we could generate both situations. If we consider that Monaco is a city, we have a “non-covering” hierarchy (we are skipping State level). On the other hand, if it is considered a state, we obtain a “non-onto” hierarchy (we have different path lengths from the root to the leaves depending on the instances). In this case, we propose the usage of what some authors call “Dummy Values” to guarantee the existence of at least one part for every whole in the hierarchy. These values are not dummy at all. Monaco being a state-city does not mean it is either a state or a city, but a state and a city at the same time. Thus, both instances will represent city and state facets of the same entity.

Therefore, in YAM², cardinalities in aggregation hierarchies are “1..*” parts for every whole, and “*” wholes for every part, on the understanding that Dimension instances can always be defined so that there are “1..*” wholes for every part. Please, refer to [ASS01b] for a deeper explanation of these cardinalities.
Going back to the group of constraints regarding summarizability, in our model, there are three different elements to deal with that problem (all exemplified in figure 6). These elements allow to represent summarizability conditions in a more flexible way than just distinguishing "additive", "semi-additive", and "non-additive" measures. Firstly, we have that some Levels are an InvalidSource for the calculation of a given KindOfMeasure (for example, Kind is an invalid source for Income and Revenue). It means that measurements at an aggregation level cannot be used to obtain data at higher aggregation levels. This can be due to the instances of that Level are not disjoint or not complete (i.e. summarizability conditions 1 and 2 mentioned above). A Level being invalid or not cannot be deduced just from the cardinalities of its associations, but also depends on the KindOfMeasure. For instance, if a Measure is obtained as the minimum of a set of measurements, it does not matter whether the source sets of instances are disjoint or not. In some cases, double counting could even be desirable.

Moreover, Induce Association shows the summarization that must be performed on aggregating a given KindOfMeasure along a Dimension. This constraint regards the third condition mentioned above. Along a given analysis dimension we can use a summarization operation, while along a different analysis dimension we use a different function. For instance, we aggregate IncomePerPerson along Time and Product by means of sum, while along Store it needs to be recalculated from Incomes. Incompatibilities are not always associated to Time Dimension. Furthermore, inductions could be partially ordered, if necessary, to show that operations are not commutative, and must be performed in a given order, as pointed out in [Tho97]. For example, sums along a Dimension must be performed before averages along another one, so that, we aggregate up to the desired Level in a Dimension, and then we aggregate along the other.

Finally, another point to take into account, usually forgotten in other models, is that of transitivity. If a summarization operation is not transitive, we cannot use precalculated aggregates at a given Level to obtain those at higher levels. Going to the atomic source is mandatory (for instance, we should not perform the average of averages, if we want to obtain the average of raw data).

5 Operations

The multidimensional model is just a query model, i.e. it does not need operations for update, since this is not directly performed by final users. YAMF operations focus on identifying and uniformly manipulating sets of data, namely Cubes. In a Cube, data are identified by their properties. Thus, these operations are separated from the physical storage of the data.

<table>
<thead>
<tr>
<th>Detail level</th>
<th>Subject of analysis</th>
<th>Point of view</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>DrillSource</td>
<td>Change Basis</td>
</tr>
<tr>
<td>Intermediate</td>
<td>-</td>
<td>RollUp</td>
</tr>
<tr>
<td>Lower</td>
<td>Projection</td>
<td>Selection</td>
</tr>
</tbody>
</table>

Table 4. YAMF operations
As everything in a multidimensional model, operations are also marked by the duality Fact-Dimensions. Table 4 shows the operations in two columns. The first one contains those operations having effect on the subject of analysis (i.e. Fact, Cell, and Measure). They select the part of the schema we want to see. In the other column, there are those operations affecting the point of view we will use in the analysis (i.e. Dimension, Level, and Descriptor). They allow to reorganize the data, modify their granularity, and focus on a specific subset, by selecting the instances we want to see.

![Fig. 7. Operations as composition of functions](image)

In the sense of [AHV95], these operations are conceptually a “procedural language”, because queries are specified by a sequence of operations that construct the answer. We generally say that a query is from (or over) its input schema to its output schema. Thus, there exists an input m-dimensional Cube \(c_i\), and we want to obtain an output n-dimensional Cube \(c_o\). Since, we defined a Cube (see definition 7) as a function, operations must transform a function into another function. Operations in the first column work on the image of the function, while operations in the second column change its domain. Therefore, as depicted in figure 7, we have three families of functions (i.e. \(f\), \(g\), and \(h\)), that can be used to transform a Cube.

Drill-across: This operation changes the image set of the Cube by means of a bijective function \(\psi\) of the family \(g\) (relationships in section 3.2 can be used for this purpose). This function relates instances of a Fact to instances of another one, \(c_o(x) = \delta_\psi(c_i) = \psi(c_i(x))\)

Projection: This just selects a subset of Measures from those available in the selected Cell, \(c_o(x) = \pi_{m_1..m_k}(c_i) = c_i[x][m_1..m_k]\)

Change Base: This operations changes the domain set of the Cube by means of a bijective function \(\phi\) of the family \(f\) (i.e. \(\phi\) relates points in an n-dimensional finite space to points in an m-dimensional finite space). Thus, it actually modifies the analysis dimensions used, \(c_o(x) = \gamma_\phi(c_i) = c_i(\phi(x))\)

Roll-up: It modifies the granularity of data, by means of an exhaustive function \(\varphi\) of the family \(h\) (i.e. \(\varphi\) relates instances of two levels in the same Dimension, corresponding to a part-whole relationship), \(c_o(x) = \rho_\varphi(c_i) = \bigcup_{\varphi(y)=x} c_i(y)\)

Dice: By means of a predicate \(P\) over Descriptors, this operation allows to choose the subset of points of interest out of the whole n-dimensional space. \(c_o(x) = \sigma_P(c_i) = \begin{cases} c_i(x) & \text{if } P(x) \\ \text{undef} & \text{if } \neg P(x) \end{cases}\)

It is clear that there is one operation missing, which would allow to select the Cell we want to query in the same way we choose Measures or Facts. However,
the specific Cell we analyze cannot be selected by itself, but it is absolutely determined by the selected aggregation levels in every Dimension.

If we want to know the production cost of every product sold under a given promotion, by month and plant, we should perform the following operations over our AtomicSale schema: 1) Dice to select promotion “A”, 2) Drill-across to “Production” Fact, 3) Projection to see just the desired Measure “cost”, 4) Roll-up to obtain data at “Month” Level (notice that summarization operation is not explicit, because a YAM schema shows how a given KindOfMeasure must be summarized along each Dimension), and finally 5) ChangeBase to choose the appropriate n-dimensional space to place data.

\[
\text{Month} \times \text{Plant} \times \text{Product}(\text{Month}(\pi_{\text{cost}}(\delta_{\text{Production}}(\sigma_{\text{Promotion} = \text{A}}(\text{AtomicSale})))))
\]

6 Metaclasses

![Diagram](image.png)

Fig. 8. YAM² metaclasses in UML notation (as in [OMG09])

As it was defined in [Inm96], a DW is a subject-oriented set of data. When analysts want to study a given subject, they want to see together all data regarding it. Thus, we propose a subject-oriented model, where all classes related to a subject are shown together in the multidimensional schema. For this purpose
we use the upper detail level which, as depicted in figure 8, shows that a Star is composed by one Fact and several Dimensions. Subject-oriented does not imply subject-isolated. Therefore, relationships between different Stars will exist, as it was shown in section 3.2.

At the intermediate detail level, we can see that Dimensions are composed by Levels related by LevelRelations, representing part-whole relationships. Hence, a Dimension is a lattice stating how measured data can be aggregated. On the other hand, we see that a Fact is composed by a set of Cells. Each of those Cells is defined at an aggregation level for each of the analysis dimensions of its Fact. If there is a Level \(l_2 \) whose elements are obtained by grouping those of another Level \(l_1 \) at which a Cell \(c_1 \) is defined, then we have another Cell \(c_2 \) related to \(l_2 \) whose instances are composed by those of \(c_1 \). Cells \(c_1 \) and \(c_2 \) are related by a CellRelation, which corresponds to the LevelRelation between \(l_1 \) and \(l_2 \). A set of functionally independent Levels form a Base, and the pair Base-Cell (where the Base fully determines instances of the Cell) is a Cube.

Some data must be physically stored while other will or could be derived. In the same way, some model elements must be explicited in the schema, while other (for instance, CellRelation) can be derived. In this sense, we distinguish those Cells that need to be explicited (i.e. FundamentalCells), from those that do not (i.e. SummarizedCells), because all data they contain can be derived.

At lower detail level, we can see information regarding the attributes of the concepts we are representing. The Levels contain Descriptors, and the Cells contain Measures. SummarizedCells only contain data that can be derived (i.e. SummarizedMeasures), and FundamentalCells can contain derived or not derived data. SummarizedMeasures are obtained from other Measures, while FundamentalMeasures are not. Notice that it is possible to obtain one Measure from more than one supplier (for instance, to be able to weigh an average).

Every Dimension induces a Summarization over a given KindOfMeasure. In general, SummarizedMeasures are obtained by sum of other. However, this is not always the case, product, minimum, maximum, average, or any other operation could be used. It depends on the KindOfMeasure and the Dimension along which we are summarizing ([LS97] studies the influence of the Time dimension on three different kinds of attributes). Thus, when we want to obtain a SummarizedMeasure in a Cell \(c_1 \), from a Measure in another Cell \(c_2 \), the Summarization performed is that induced by the Dimension that contains the LevelRelation to which the CellRelation between \(c_1 \) and \(c_2 \) corresponds.

Summarizations over a KindOfMeasure are partially ordered to state that some must be performed before others. Moreover, some data at an aggregation level could be an invalid source to summarize some KindOfMeasures, which is also captured in the schema. A summarization operation being non-transitive, implies that any summarization that uses it must be done from the atomic data.

Figure 9 shows how all these multidimensional concepts perfectly fit into UML. A Star is a Package that contains a subject of analysis. Facts and Dimensions are Classifiers containing Classes (i.e. Cells, and Levels respectively). Finally, Measure and Descriptor are just Attributes of the Classes. All other
elements in YAM^2 have also been placed as specialization of a UML concept. Maybe, the most relevant ones are CellRelation and LevelRelation that are Aggregations. Moreover, a Base is just a Constraint stating that a set of functionally independent Levels fully determine instances of a Cell.

7 Related work

Some O-O multidimensional models have already been defined, and some of them used UML syntax to do it. However, to the best of our knowledge, this is the first extension of UML for multidimensional modeling. As previously said, CWM does extend UML. Nevertheless, it is not a multidimensional data model, but a metadata standard for data warehousing.

Table 5. Comparison between YAM^2 and other models

In [BSHD98], a list of requirements for a multidimensional model in order to be suitable for OLAP were derived from general design principles, and from
characteristics of OLAP applications. [Ped00] also presents eleven requirements (found in clinical data warehousing) for multidimensional data models. [Vas00] gives yet another classification of logical cube models, which we are not going to consider, because our model is at conceptual level. Let us briefly explain the items we use in the comparison of models (most of them taken from those papers), summarized in table 5.

1. **Language used to define the model.** This column shows the language mainly used by every multidimensional model to express its metaschema.

2. **Extended framework.** Some models redefine or extend concepts in other, more general models or design frameworks, which is reflected in this column. In spite of [TP98] uses UML notation, we consider that it is not extending UML, because neither stereotypes, properties nor constraints (i.e. the extension mechanisms of UML) are used on defining the multidimensional model.

3. **Explicit separation of structure and contents** [from [BSHD98]]. The data structure should be represented in the schema, while the contents should correspond to instances.

4. **Explicit aggregation hierarchies** [from [BSHD98] and [Ped00]]. The model should show how data can be successively aggregated along analysis dimensions.

5. **Multiple hierarchies in each Dimension** [from [Ped00]]. Although, aggregation hierarchies can be linear, most dimensions show multiple aggregation paths along the same analysis dimension, so this should also be allowed.

6. **Dimension attributes** [from [BSHD98]]. Showing other characteristics of the analysis dimensions that do not define hierarchies should also be possible.

7. **Measures sets** [from [BSHD98]]. This refers to the possibility of defining complex Cell structures (grouping more that one Measure) related to the same Fact. Support provided by [AGS97] is considered partial, because in spite of it allows to manage tuples of measurements, they do not have any extra meaning as a whole.

8. **Measures at different levels of granularity.** Measurements could be taken at different aggregation levels. If so, Measures belonging to the same Fact, or even showing the same kind of measure should be related in some way. [Ped00] proposes a comparison item slightly similar to this. However, it is stated as having exactly the same kind of measure being measured at different aggregation levels, so that sometimes it should be stored in a Cell, and others in a different one. It would be solved in YAM2 by specializing the Cells depending on whether the Measure is derived or not.

9. **Treat descriptions and measurements symmetrically** [from [BSHD98] and [Ped00]]. The data model should allow Facts to be treated as Dimensions and vice versa. YAM2 allows the usage of measurements as descriptors for another measurements by means of derivation mechanisms.

10. **Multi-star schemas.** Users should not be restricted to an isolated subject. They need to see several Facts in one schema. It is not enough sharing Dimensions, as in [Kim96], since richer semantic relationships can be used.

11. **Generalization relationships.** Generalizations should be shown.
12. **Association relationships.** Representing Associations should be allowed.
13. **Change and time** (from [Ped00]). Although the business being reflected in the schema change, it should be possible to compare data over time.
14. **Derived elements** (from [BSHD98]). The definition of concepts by means of other concepts should be part of the schema.
15. **Imprecision** (from [Ped00]). We just decided not to tackle the problem of representing and querying imprecise data in our model.
16. **Non-onto hierarchies** (from [Ped00]). That is, hierarchies with paths of different lengths from the root to the leaves should be represented. YAM does not fulfill this point because, from our point of view, every object in an aggregation level must have the same structure, i.e. the class structure. Thus, it is not possible that some instances of a class can be divided into parts, while others cannot (if so, it should be specialized in some way).
17. **Non-covering hierarchies** (from [Ped00]). That is, hierarchies where there exist relationships between elements of levels that are not directly related. It is not necessary to be supported in our model, because we consider that if these relationships really exist, they should be explicitly represented in the schema by a part-whole relationship between the corresponding Levels.
18. **Many-to-many relationships between two aggregation levels** (from [Ped00]). Some models just mention the possibility of having this kind of relationships (i.e. [AGS97], [HS97], and [DT97]).
19. **Many-to-many relationships between facts and dimensions** (from [Ped00]). There is no constraint forbidding this in YAM. Like these relationships are allowed in UML, so they are in YAM. However, we can always see it as the fact being related to one set of elements in the Dimension so that we obtain a “to-one” relationship with a new Dimension of sets of elements.
20. **Additivity semantics** (from [BSHD98] and [Ped00]). Multidimensional models should show how a concept is obtained (if it can) at coarser granularities, and which aggregation functions can be applied to a given Measure.
21. **Identification of facts.** The model should show how the different data subject of analysis can be identified by means of other data. Most models just show the aggregation levels at which data are taken, but they do not show the functional dependency that fully determine the measurements. [Vas00] mentions that the data set in a cube is a set of tuples such that contains a primary key. However, it is not reflected by his model in any way.
22. **Mathematical construct used for the operations** (from [BSHD98]). This column shows the mathematical formalism used in the models to define the operations over data.
23. **Elements over which operations are defined.**
24. **Queries using ad-hoc hierarchies not included in the schema** (from [BSHD98]). In order to roll data up, it is necessary a function showing the correspondence between levels. If that function is not in the schema, where is it? YAM allows to define specific star schemas for every user profile. Thus, ad-hoc hierarchies for ad-hoc queries can be defined there.
25. **User defined aggregation functions** (from [BSHD98]). As any operation can be defined in a UML schema, so YAM supports it.
Drill-across. Some models allow to drill-across if the Stars share analysis dimensions. However, we can find semantic relationships that also allow it.

8 Conclusions

In the last years, lots of work have been devoted to OLAP technology in general, and multidimensional modeling in particular. However, there is no well accepted model, yet. Moreover, in spite of the acceptance of the O-O paradigm, only a couple of efforts take it into account for conceptual modeling.

In this work, we have presented YAM^2, a multidimensional conceptual model, which allows the usage of semantic O-O relationships between different Stars. The model has been defined as an extension of UML to make it much more understandable, and avoid its definition from scratch.

Structures in the model have been defined by means of metaclasses, which are specialization of UML metaclasses. Thus, possible relationships among multidimensional elements have been systematically studied in terms of UML relationships among its elements, so that they allow to show semantically rich multi-star schemas. The inherent integrity constraints of the model pay special attention to identification of data, and summarizability (providing much more flexibility than those of previous multidimensional models). Finally, a set of intuitive, algebraic operations on Cubes have been defined in terms of operations over mathematical functions.

References

