
 1

EU-Rent Car Rentals Specification

Leonor Frias, Anna Queralt1 and Antoni Olivé2
(leonor.frias@estudiant.upc.es, [aqueralt | olive]@lsi.upc.es)

1. INTRODUCTION AND MOTIVATION

EU-Rent is a widely known case study being promoted as a basis for demonstration of
product capabilities. However, no in-deep case analysis neither specification had been
developed. As far as we are concerned, all available documents only referred to a part of the
system and did not confront some definition holes or even ambiguities of the case.

Therefore it was considered interesting, useful and even necessary to develop an in-depth
study of the case which would lead to its whole specification. Having a complete specification
of the case should be useful for its users, which could have a common reference.

On the other hand, it was considered a good opportunity to test the real application of some
proposals. The first group consists on alternate mechanisms to define integrity constraints
and derived elements proposed in [IC-Ol03][DR-Ol03] by Antoni Olivé. The root of these
proposals is the definition of constraint and derived elements by means of operations.

Secondly, it was aimed to proof the utility and easy-to-use of an alternative approach of
modelling events in which is still working Antoni Olivé. This alternative consists basically on
modelling the events as objects and so, exploit the advantages of the OO.

Furthermore, although it was not an initial objective, the specification of this case has been
useful to experiment with a few of the latest releases introduced in UML 2.0 and OCL 2.0 as
some of these new mechanisms were needed (or practical) for the project working out.

This document is structured as follows: firstly the original case study is reviewed as some
extensions are introduced, then, general remarks about the specification (language and tools
used) are made, and next, the complete specification is presented with some previous
explanations in each section. Lastly, conclusions and success of the overall work are
commented on.

1 Reviewer
2 Director

 2

2. THE CASE STUDY: EU-Rent Car Rentals

Overview

EU-Rent is a case study being promoted as a basis for demonstration of product capabilities
which originally was developed by Model Systems, Ltd. It presents a car rental company with
branches in several countries which provides typical rental services. Apart from collecting
information about cars, branches…etc, effort is done to capture information about customers
(if they are good clients or had had bad experiences otherwise).

Firstly, we will present the original case study, and then, some extensions widely used about
pricing and discounting. These extensions were developed by Inastrol, and have been of
great importance for all the interesting business rules associated in determining the price of a
rental agreement. Documents from [BRF03] and [EBRC03] have been used for this section.

Lastly, we will expose some clarifications of some aspects of the case being judged obscure.
The decisions made are intended to be consistent with the rest of the case and refer to other
documents ideas when possible. Apart from own ideas, suggestions from [BRF03] ,
[EBRC03], [PSZ00] have been used for that section.

The original case

EU-Rent is a car rental company owned by EU-Corporation. It is one of three businesses -
the other two being hotels and an airline - that each has its own business and IT systems,
but with a shared customer base. Many of the car rental customers also fly with EU-Fly and
stay at EU-Stay hotels.

EU-RENT BUSINESS

EU-Rent has 1000 branches in towns in several countries. At each branch cars, classified by
car group, are available for rental. Each branch has a manager and booking clerks who
handle rentals.

Rentals

Most rentals are by advance reservation; the rental period and the car group are
specified at the time of reservation. EU-Rent will also accept immediate ("walk-in")
rentals, if cars are available.

At the end of each day cars are assigned to reservations for the following day. If more
cars have been requested than are available in a group at a branch, the branch manager
may ask other branches if they have cars they can transfer to him.

Returns

Cars rented from one branch of EU-Rent may be returned to a different branch. The
renting branch must ensure that the car has been returned to some branch at the end of
the rental period. If a car is returned to a branch other than the one that rented it,
ownership of the car is assigned to the new branch.

 3

Servicing

EU-Rent also has service depots, each serving several branches. Cars may be booked
for maintenance at any time provided that the service depot has capacity on the day in
question.

For simplicity, only one booking per car per day is allowed. A rental or service may cover
several days.

Customers

A customer can have several reservations but only one car rented at a time. EU-Rent
keeps records of customers, their rentals and bad experiences such as late return,
problems with payment and damage to cars. This information is used to decide whether
to approve a rental.

EU-RENT BUSINESS RULES

External constraints

• Each driver authorized to drive the car during a rental must have a valid driver's
licence.

• Each driver authorized to drive the car during a rental must be insured to the level
required by the law of each country that may be visited during the rental.

• Rented cars must meet local legal requirements for mechanical condition and
emissions for each country that may be visited during the rental.

• Local tax must be collected (at the drop-off location) on the rental charge.

Rental reservation acceptance

• If a rental request does not specify a particular car group or model, the default is
group A (the lowest-cost group).

• Reservations may be accepted only up to the capacity of the pick-up branch on the
pick-up day.

• If the customer requesting the rental has been blacklisted, the rental must be refused.
• A customer may have multiple future reservations, but may have only one car at any

time.

Car allocation for advance reservations

At the end of each working day, cars are allocated to rental requests due for pick-up the
following working day. The basic rules are applied within a branch:

• Only cars that are physically present in EU-Rent branches may be assigned.
• If a specific model has been requested, a car of that model should be assigned if one

is available. Otherwise, a car in the same group as the requested model should be
assigned

• If no specific model has been requested, any car in the requested group may be
assigned

• The end date of the rental must be before any scheduled booking of the assigned car
for maintenance or transfer

• After all assignments within a group have been made, 10% of the group quota for the
branch (or all the remaining cars in the group, whichever number is lower) must be
reserved for the next day's walk-in rentals. Surplus capacity may be used for
upgrades.

 4

• If there are not sufficient cars in a group to meet demand, a one-group free upgrade
may be given (i.e. a car of the next higher group may be assigned at the same rental
rate) if there is capacity

• Customers in the loyalty incentive scheme have priority for free upgrades.
If demand cannot be satisfied within a branch under the basic rules, one of the 'exception'
options may be selected:

• A car may be allocated from the capacity reserved for the next day's walk-ins.
• A 'bumped upgrade' may be made. (For example, if a group A car is needed and

there is no capacity in group A or B, then a car allocated to a group B reservation
may be replaced by a group C car, and the freed-up group B car allocated to the
group A reservation.)

• A downgrade may be made.
• A "downgrade" is a car of a lower group.

• A car from another branch may be allocated, if there is a suitable car available and
there is time to transfer it to the pick-up branch.

• A car due for return the next day may be allocated, if there will be time to prepare it
for rental before the scheduled pick-up time.

• A car scheduled for service may be used, provided that the rental would not take the
mileage more than 10% over the normal mileage for service.

If demand cannot be satisfied within a branch under the 'exception' rules, one of the 'in
extremis' options may be selected:

• Pick-up may have to be delayed until a car is returned and prepared.
• A car may have to be rented from a competitor.

Walk-in rentals

• The end date of the rental must be before any scheduled booking of the assigned car
for maintenance or transfer.

• If there are several available cars of the model or group requested, the one with the
lowest mileage should be allocated.

Handover

• Each driver authorized to drive the car during a rental must be over 25 and have held
a driver's license for at least one year.

• The credit card used to guarantee a rental must belong to one of the authorized
drivers; and this driver must sign the rental contract. Other drivers must sign an
'additional drivers authorization' form.

• The driver who signs the rental agreement must not currently have a EU-Rent car on
rental.

• Before releasing the car, a credit reservation equivalent to the estimated rental cost
must be made against the guaranteeing credit card.

• The car must not be handed over to a driver who appears to be under the influence of
alcohol or drugs.

• The driver must be physically able to drive the car safely - must not be too tall, too
short or too fat; if disabled, must be able to operate the controls.

• The car must have been prepared -- cleaned, full tank of fuel, oil and water topped
up, tires properly inflated.

• The car must have been checked for roadworthiness -- tire tread depth, brake pedal
and hand brake lever travel, lights, exhaust leaks, windscreen wipers.

 5

No-shows

• If an assigned car has not been picked up 90 minutes after the scheduled pick-up
time, it may be released for walk-in rental, unless the rental has been guaranteed by
credit card.

• If a rental has been guaranteed by credit card and the car has not been picked up by
the end of the scheduled pick-up day, one day's rental is charged to the credit card
and the car is released for use the following day.

Return from rental

• At the end of a rental, the customer may pay by cash, or by a credit card other than
the one used to guarantee the rental.

• If a car is returned to a location other than the agreed drop-off branch, a drop-off
penalty is charged.

• The car must be checked for wear (brakes, lights, tires, exhaust, wipers etc.) and
damage, and repairs scheduled if necessary.

• If the car has been damaged during the rental and the customer is liable, the
customer's credit card company must be notified of a pending charge.

Early returns

• If a car is returned early, the rental charge is calculated at the rate appropriate to the
actual period of rental (e.g. daily rate rather than weekly).

Late returns

• If the car is returned late, an hourly charge is made up to 6 hours' delay; after 6 hours
a whole day is charged.

• A customer may request a rental extension by phone -- the extension should be
granted unless the car is scheduled for maintenance.

• If a car is not returned from rental by the end of the scheduled drop-off day and the
customer has not arranged an extension, the customer should be contacted.

• If a car is three days overdue and the customer has not arranged an extension,
insurance cover lapses and the police must be informed.

Car maintenance & repairs

• Each car must be serviced every three months or 10,000 kilometres, whichever
occurs first.

• If there is a shortage of cars for rental, routine maintenance may be delayed by up to
10% of the time or distance interval (whichever was the basis for scheduling
maintenance) to meet rental demand.

• Cars needing repairs (other than minor body scratches and dents) must not be used
for rentals.

Car purchase and sale

• Only cars on the authorized list can be purchased.
• Cars are to be sold when they reach one year old or 40,000 kilometres, whichever

occurs first.

Car ownership

• A branch cannot refuse to accept a drop-off of a EU-Rent car, even if a one-way
rental has not been authorised.

 6

• When a car is dropped off at a branch other than the pick-up branch, the car's
ownership (and, hence, responsibility for it) switches to the drop-off branch when the
car is dropped off.

• When a transfer of a car is arranged between branches, the car's ownership switches
to the 'receiving' branch when the car is picked up.

• In each car group, if a branch accumulates cars to take it more than 10% over its
quota, it must reduce the number back to within 10% of quota by transferring cars to
other branches or selling some cars.

• In each car group, if a branch loses cars to take it more than 10% below its quota, it
must increase the number back to within 10% of quota by transferring cars from other
branches or buying some cars.

Loyalty incentive scheme

• To join the loyalty incentive scheme, a customer must have made 4 rentals within a
year.

• Each paid rental in the scheme (including the 4 qualifying rentals) earns points that
may be used to buy 'free rentals.'

• Only the basic rental cost of a free rental can be bought with points. Extras, such as
insurance, fuel and taxes must be paid by cash or credit card.

• A free rental must be booked at least fourteen days before the pick-up date.
• Free rentals do not earn points.
• Unused points expire three years after the end of the year in which they were earned.

EXAMPLES OF "RULES FOR RUNNING THE BUSINESS"

(not really the same kind of rules as those above)
• Each branch must be set targets for performance -- numbers of rentals, utilization of

cars, turnover, profit, customer satisfaction, etc.
• Where performance requirements conflict (e.g. profit vs. customer satisfaction when a

customer requests a reduction in charges after an unsatisfactory rental) heuristics
must be provided to guide branch staff.

• Performance data must be captured.
If performance targets are not met, control action must be taken. Control action may include:

• changing the resources at branches (e.g. numbers of cars, quotas of cars within each
group, number of staff),

• changing responsibilities (e.g. having transfers of cars managed by groups of
branches, rather than by negotiation between individual branch managers),

• changing operational guidance (e.g. what proportion of cars should be kept for walk-
in rentals), but not external constraints (e.g. legal requirements) or company policies
(e.g. rentals must be guaranteed by a credit card, a customer may have only one car
at a time).

Assumed extensions about pricing and discounting

Standard Price
Rental Duration Category provides the allowable set of rental durations. For each duration,
the unit of measure is provided (e.g. week, day, hour) and the minimum and maximum limits
for each duration. For example, a weekly rental is for a minimum of 6 days and a maximum
of 7 days. EU-Rent doesn’t have weekend rental durations.

 7

A rental may cover multiple durations. For example, a 10-day rental consists of 1 weekly
rental and 3 daily rentals.

While EU-Rent will rent cars on an hourly basis during one day, it won’t rent for portions of a
day. So, a customer can’t request to rent a car for 3 days and 5 hours. But he could ask to
rent a car for just 5 hours.

Car Group Duration Price provides the standard rates for each Car Group by Rental Duration
Category.

To develop the standard price for a rental agreement

• Break down the total rental duration into duration categories (weeks, days etc.) and
determine the number of units for each,

• For each duration category, select the duration price for the car group, multiply each
price by the number of units.

• Add all the results to get the total price.

Discounting
A rental may qualify for discounts under a number of promotions, such as a Loyalty Program
Member discount or a “week long” rental discount. Only one (the best one) is used to
calculate the rental price.

A customer must always receive the best price for a rental, regardless of promotions that
were in effect when they made their reservations. At each customer touch point (e.g. make a
reservation, pick up the car, return the car) the pricing business rules are applied to
determine whether the rental qualifies for a better discount. So, if a new promotion is put into
place after the customer makes a reservation or even during the rental, the customer can
benefit from that new promotion.

However, provided that the rental duration is unchanged the best price quoted is always
honoured; e.g. if the best price at pick-up is higher than the price quoted at reservation, the
reservation price is used, even if the rules and rates that applied at reservation time are no
longer current.

If the rental duration is changed - by rescheduling before pick-up, by returning the car earlier
or later than the scheduled date - the price must be recalculated, using the best discount for
the new duration.

EU-Rent's current discounted promotion programmes are

Name Car Groups Durations Discount Business Rules
3-day
Advance

All All 10% All rentals booked at least 3 days in
advance qualify for a 10% discount.

Summer
Week

Mid-sized,
Full Sized,
Luxury,
Sport Utility,
Minivan

Weekly €50.00 Weekly renters of a qualifying car
receive a €50 discount.

New Loyalty
Member

Compact,
Mid-sized,
Full Sized

Daily,
Weekly,
Monthly

2 car group
upgrades

New loyalty club members are
eligible for a 2 level upgrade, subject
to availability on their first rental after
joining the programme.

 8

Proposed clarifications

This section seek mainly two aims. Firstly, it pretends to describe more clearly the entities of
the system and their attributes while making some hypothesis; secondly, it pretends to make
concrete clarifications about the logic of the business.

ENTITIES

In the case study, we can identify the following entities:
- Branch:

• Attributes:
- Capacity (on a day): There is no definition in the context of the case, and from our

point of view, the term availability would represent the concept more accurately.
We understand that branch capacity refers to the total number of cars available to
rent on a concrete day (that is, the sum of the number of estimated cars of each
group), and so, better corresponding with the idea of availability.

Our suggestion to calculate the capacity of a day x is to add the capacity of the
previous day(x-1), to the cars expected to be returned that day(x), and finally,
subtract the cars which are already reserved for that day(x).

- Location: on the road, medium city, big city, airport
- Cars:

• They are classified by car group.
• Important attributes:

- Model: a rental could specify a preferred model.
- Mileage: is an indicator for the state of the car (if it is in need of service or not). It

will be necessary the current mileage and mileage from last service.
- Date of last service.

• State:
- Available: not being rented, assigned or need maintenance.
- Assigned: assigned to one of today’s reservations and awaiting pick-up.
- In rent: assigned to an open rental agreement
- Needs maintenance: one of the conditions to need maintenance has become true.
- Maintenance scheduled
- Repairs scheduled
- To be sold: cars that have reached one year old or 40,000 kilometres, or the ones

that the manager has decided to sell due to a surplus.
- Sold: cars that no longer belong to EU-Rent

- Car group:

• Classification scheme that groups car models, based on common features.
• Each car group has a quota, which corresponds to the desirable number of cars of a

concrete type. We assume that every branch has its quota for each car group.
• We won’t assume that the number of car groups is fixed, however this hypothesis is

made in some interpretation in [PSZ00].

- Car model:

• The name given by a car manufacturer to a category of car that it produces.

- Rental agreement:

 9

• There are two types of rentals.
- Advance reservations: it must be supplied the rental period (that is, pick-up time

and day of drop-off), the drop-off branch and car group (otherwise default group is
used). We assume that countries through which the customer is going to travel
are also given.
Other additional information that may be supplied: model of preference, credit
card to guarantee the rental(*).Recording the moment in which the reservation is
made will be also useful for defining a priority criteria to allocate cars.

- Walk-in rentals: immediate, depend on the availability of cars

(*) The original text is rather contradictory in this aspect and we have assumed that
the customer must not necessarily guarantee the rental, which is the suggested
option until the last section (where it is stated the contrary).

• States:
- Reservation: a car has been requested for a specific date
- Open Rental Agreement: a car has been picked up and the car has not been

returned.
- Closed Rental Agreement: the car has been picked up and returned
- Cancelled: any of the handover requirements has not been met, the customer

has not shown or the customer has decided to cancel the reservation.
We will consider that if the customer decides to cancel the rental before the pick-
up day, it’s free of charge (it is the policy that seems to be suggested by the way
no-shows are treated). Otherwise, if it was a guaranteed rental, one-day rental will
be charged.

• Other attributes:
- Payment type: cash, credit card, loyalty club points
- Base rental price: price before any discounts have been applied
- Lowest price: lowest price offered since reservation
- Actual return date and time

- People (of interest to EU-Rent):

• Categories:
- Customer: someone who once had or has a reservation with EU-Rent

- member of the loyalty incentive scheme.
- non member

- Non customer: has been an additional driver in at least one rental or has tried to
do a rental.

• Historical information about customers is kept to decide whether to approve a rental.
This information is a composite of rentals, bad experiences (such as late returns,
problems with payment and damage to cars) and others.

• They must have a valid driving license.
• They must be over 25 (date of birth should be recorded).
• Historical information about additional drivers should be recorded as well, in case

they become customers in the future or to accept them as additional drivers again.
This information includes: bad experiences, age, driving license.

- Rental duration category:

• The minimum and maximum duration should be stored for each

- Countries:

• Requirements for mechanical condition and emissions of cars should be recorded.
• Other attributes: car renting tax

 10

EU-RENT BUSINESS RULES

- Rental reservation acceptance:

• Some extensions of EU-Rent use criteria to blacklist a person. In this aspect, we think
the criteria should also take into account faults seriousness. Consequently, it will be
necessary to describe more accurately the bad experiences to identify the degree of
the fault, and have a concrete criteria to blacklist (because managers are not
expected to examine client records). In the examples given we suggest:
- late return: number of days/hours, justifying cause
- problems with payment: amount of money, delay time
- car damage: repairing cost (in days, hours).
Intervals can be made to fix the degree of the fault.

Additionally, we will assume that as soon as the blacklisting criteria are met (after a
return, …), the customer will be blacklisted and all his reservations cancelled.

Finally, we will assume for simplicity that once a person has been blacklisted, he or
she will always remain blacklisted, since neither the original case nor any of the
extensions specify the opposite. However, in a real case, this option should be
included (to correct errors, misunderstandings, special situations…).

- Car allocation for advance reservations:

A relevant fact that is not mentioned in the original case is the order in which car
allocation is made, which is specially important when a reservation cannot be eventually
accomplished. One reasonable criteria to solve this problem is to give more priority to the
“best customers” (that is, in the loyalty incentive scheme), and then to guaranteed
rentals.
Finally, more priority can be given to the earliest reservations.

However, this cannot be inconsistent with the fact of giving free upgrades to the best
customers, so it is needed a previous estimation of the number of free upgrades that are
going to be made, and then assign them firstly to clients in the loyalty incentive scheme.
Furthermore, among clients within a kind of assignment (e.g. Clients who asked for class
B and are going to be assigned class B), the preference criteria (model) will be applied to
decide the concrete assignment.

Lastly, we consider that in case the client is served after the day expected, he/she should
be compensated, in the same way that he is required to pay a fine when has a bad
experience. Additionally, an apologising letter will be sent as is suggested in an
interpretation in [PSZ00] as we want to harm the least possible customer satisfaction.

We leave the order in which exception criteria should be applied open to the user or the
designer.

Additionally, some remarks on the following exception rules:

- A downgrade may be made.
If this option is chosen, rental price will be calculated on the basis of the downgrade
car group, instead of doing it with the desired car group as usual. This is done to
prevent the customer from paying for more than what he is offered.

- A car from another branch may be allocated, if there is a suitable car available

and there is time to transfer it to the pick-up branch.
First of all, we will assume that a suitable car is a car of the group demanded by the
customer. Secondly, this alternative presents the following problem: if every branch
can transfer to every branch, which first? With which criteria? As we have the

 11

transportation time constraint, it seems reasonable that each branch can only
transfer to a subset of all branches (for distance limitations or size of the branch). To
have a concrete criteria to look for a transfer, we will assume that we know the
expected time of transportation between related branches, and that minimum time is
desirable. We will not assume bidirectionality of the relation (That is, A can transfer to
B, but B not necessarily transfers to A).
Additionally, we will assume that ownership of the car is not effectively transferred
until the car arrives to its destination.

- A car due for return the next day may be allocated, if there will be time to prepare

it for rental before the scheduled pick-up time
This option implies 2 facts: firstly, it implies knowing that a car is going to be dropped
off in that branch, and secondly, having an estimation of time needed to prepare a car
to rent. We will assume that this time is composed by a basic time, needed for a
simple inspection, and an additional time needed depending on the characteristics of
the rental which is to be assigned.
To fulfil the first implication we will assume that the client must fix the branch of drop-
off when doing the reservation. It is reasonable that this factor is fixed as it is stated in
[EBRC03].

- Walk-in rentals:

It is not described what happens when no cars of the requested type are available.
However, it is logical to think that available cars are going to be offered, paying in this
case the fee corresponding to the rented car, not the corresponding to the initially desired
car, as happens with reservations.

Furthermore, it is surprising that the mileage criteria is only used for walk-in rentals.
However, we won’t include it in reservations. We will lastly assume that mileage is
referring to the absolute mileage, not relative to the last service.

- Handover:

First of all, if any of the handover conditions is not met, we assume that the reservation is
cancelled.

Additionally, we consider that, in case that any of the conditions which the renter is
responsible for is not fulfilled, he/she should be punished. Firstly, the renter should be
aware of these conditions and consequently know his rights and duties. Secondly, in the
case of late-returns and no-shows the customer is punished (at least economically), and
so should happen in this case to be consistent.

We assume that if it was a reservation, the car assigned is freed and the renter is
charged in an hourly base if it was a guaranteed rental (we adopt the policy used for no-
shows). It also could be considered as a bad experience (as late-returns are), but we are
not going to do it.

Furthermore, we consider similarly as it is suggested in [EBRC03], that additional drivers
who have been blacklisted must be refused. This implies that additional drivers behaviour
has to be judged as customers’ is.

Lastly, we consider that additional drivers information(who, driving license..) is not known
until the handover, as the rental procedure does not mention anything about it.

 12

- No shows:

If a rental has been guaranteed by credit card and the car has not been picked up by the
end of the scheduled pick-up day, one day’s rental is charged to the credit card and the
car is released for use the following date.

To ease the assignment of cars to reservations, we will assume that cars can only be
picked up or returned during what is considered the working day. Otherwise, we could not
be able to use cars (for new assignments) whose driver has not appeared. Besides, a 24-
hour service is not suggested in the case, so we consider it a reasonable hypothesis (as
happens with real car rent companies).

- Return from rental:
We assume that car checking will be done as soon as possible (not more than a working
day unless big repairs are needed) and in the same branch. We suppose that every
branch is equipped with a garage service, where checking and repairs are done.
Whereas, the responsibilities of service depots seem to be only periodic maintenance,
not checking before and after a rental. Repairs and maintenance can’t overlap.

In case any damage has been recorded, it will be taken into account for all drivers.
However, we will consider that the other bad experiences (problems with payment, late
return…) will be only taken into account for the renter.

- Late returns:

One additional problem that late returns (without arranged extension) imply refers to
possible current assignments of cars returned late. A car could be assigned for the same
day if the corresponding exception rule has been applied. In that case, the only
reasonable solution would be delaying the handover unless there is an available car. In
that case, the unsatisfied renter should be compensated as stated previously in the
document.

Furthermore, extensions should only be allowed until 1 day before the agreed date of
return, otherwise the same problem as with late returns (without arranged extension) may
happen. If this is fulfilled and provided there are not overlaps with other reservations of
the same customer, we assume that there is no limit in the number of extensions.

- Car maintenance & repairs:

We will consider that although initial date of car maintenance can be delayed as it is
stated, we will achieve this effect by cancelling and rescheduling it to avoid more
problems. Additionally, we will assume that both car maintenance and repairs must last
for the expected duration (there will not be possible extensions). This conservative
decision is taken because no major attention has been paid to this aspect in the
bibliography, and it has been considered top priority to keep the simplicity of the case.

- Car purchase and sale:

The original case states that only cars on the authorized list can be purchased. We will
assume that the authorized list includes car models which are to offer in EU-Rent, and
their corresponding car groups.

However, it is not described how this process works. We will assume consequently a
simplified process consisting of ordering a car and receiving a car (moment which is
acquired effective ownership, although since its ordered it’s owned with the object of
accounting).

 13

- Car ownership:

In the case is stated that responsibility for a car is switched when car is dropped off,
consequently, while the car is being rented, the renter branch has its ownership. If the car
is rented from a competitor, we consider that no branch has ownership of it, but
responsibility about it.

Then, in order to manage the difference between the desirable quota of a car group and
the actual number of car it owns (that includes the ones being currently rented by the
stated before), both car transfers and selling are possible options. However, is not
specified a preferable option or to which branches cars can be transferred.

It is logical that the preferable option is transferring cars. However, transferring should not
collapse the target branches (if there is surplus) or leave a branch with not enough cars
of a car group. So it may be necessary to transfer cars to different locations. We suggest
that cars can be transferred from one branch to another if there is a transfer agreement,
and the transferring branch has excess, the receiver has less than its quota of that type
of car and transferring does not exceed that quota. Finally, if there is still surplus, oldest
cars of that group will be sold, while if there were not enough cars, cars should be
bought.

- Loyalty incentive scheme :
First of all, it is not clear from the case whether a customer automatically becomes a
member of the loyalty incentive scheme when the criteria is achieved, or on the other
hand, some action should be taken. However, the use of the verb ‘join‘ suggests that the
client should make some specific action. It is also the hypothesis that follow [BRF03].

Besides, we will assume that no quota should be paid for becoming or being a member of
the loyalty member scheme. In addition, we assume that once a customer has become a
member, he or she will be so until he/she declines (previous reservations will not lose the
discounts), makes no rental within a year or records a bad experience.

With regard to the requirements to become a member of the loyalty incentive scheme, it
is stated that a customer must have made 4 rentals within a year. However, it is natural to
think that if a bad experience is recorded, points or accumulated rentals are lost, as this
scheme promotes good customers.

Furthermore, it is not fixed how points are assigned. We will assume that points are given
upon the cost of rental (for example each x euros, a point is given) and only if the rental
has not been qualified as a bad experience (due to reasons defended before).

Another interesting point is the policy referring to how points can be spent. It is exposed
that extras such as insurance, fuel and taxes must be paid by cash or credit card.
However, this description of extras is a bit misleading. First of all, a prepared car must
have the tank full of oil (so we do not consider that as an extra service), and secondly,
insurance as is made reference in the case (in section about returns) seems to be
referring to a company insurance, not customer’s .

Additionally, concerning points use, we will assume as in [EBRC03], that a base price for
a rental (without taxes) must be entirely paid with points. We also take the same criteria
of not benefiting then from discounts.

 14

- Pricing and discounting:

If the duration of a rental is changed previous discounts are not applicable, that is, final
price will be calculated upon current or future fees. It is the only point in which payment
type can (and should) be reconsidered (if loyalty points are used or not).

We could also consider the possibility of adding new parameters of discounting, such as
a senior citizen discount, as is suggested in [BRF03], which will be the same for all
branches.
Additionally, we assume that the best discount is automatically applied in every touch
point, except for offers for a better service but same price, such as upgrades due to being
a brand new member of the loyalty program, as it is assumed in [BRF03]. In that case,
the customer may decline the upgrade (and consequently, lose that discount) and then,
the rest of discounts are applicable.

Lastly, we assume a logical (but not mentioned) rule concerning fees between car
groups. Fees for a higher car group, in each of the durations, will be equal or more
expensive than the lower groups.

EXAMPLES OF “RULES FOR RUNNING THE BUSINESS”

- We assume that targets for performance can be different from one branch type to

another. However, some common indicators can be assumed (we will assume the ones
given as an example).

- Some additional performance criteria suggested in bibliography, which we are not
going to take into account, are:
• In some interpretation of the case in [PSZ00] the most popular models within a

branch are recorded. This may give priority to buy cars of popular models.
• Track the discounts actually applied to rentals to analyse the effectiveness of the

discount program. Suggested in [BRF03].
- Similarly, heuristics can change from one branch to another, as different countries

can have different values. Another factor can be the size of the branch or location(if it is
in a big city or not, in an airport…). This division is used in some cases of [PSZ00].
Consequently, it can be assumed that each kind of branch within a country defines its
additional indicators and heuristics.

- Finally, actions to be taken will be grouped as is stated in the case, and each kind of
branch within a country can define the concrete actions.

ADDITIONAL REMARKS

- Sharing of client database with companies EU-Fly and EU-Stay:

It is not clear in the case how the different companies share customer data. We will
suppose in the text that although there is actually a shared data, the term new client
refers to a new client for EU-Rent, but not necessarily for EU-Stay and EU-Fly. This
should be taken into account when defining the related operations of the system.

- Interaction with the system:

Some of the services that the system must provide, such as reservations, could be
served either from a EU-Rent branch or from the Internet (we can easily imagine that a
potential costumer could fill in a formulary by the Internet to make a reservation).
However, this would imply that some checkings could not be done until the handover,
and so, if basic customer requirements such as driving license and age were finally not
met, there would be stored data of someone who can’t be a customer. So, in order not to

 15

add unnecessary complexity, we will assume that all transactions apart from extension of
a rental agreement, will be done in situ in a EU-rent branch.

- Customer management:

Most of the actions to be managed in EU-Rent are naturally assigned to a branch
(reservations, assignments…). However, where is customer management (without direct
customer involvement) done? (For example, who invites a customer to the loyalty
incentive scheme?) As central management does not seem a solution because is a wide
area company and there is so many data and sensibilities to be taken into account, we
choose the following criteria: a customer belongs to the EU-Rent branch where he/she
firstly had a contact with. His/her management (notifications…) will be done there.

- Units of measurement: We have assumed euros for money and decimal metrical
system for distances, as it is in the original case, despite in Inastrol case study miles are
used for distances.

- Money available of each branch: We will assume that EU-Rent is a profitable company

and there is no problem of money to pay expenses (a new car, service depots…).
Calculating the available money of a branch would require knowing many data which is
not defined: sum of staff salaries (and so, how many staff), cost of maintenance…etc.

 16

3. GENERAL COMMENTARIES ABOUT THE
SPECIFICATION

Notation and Language

In order to define the conceptual schema of the case EU-Rent, UML was chosen as base
modelling language, while OCL was chosen for the definition of constraints. Additionally, the
variations and proposals mentioned in the introduction will be used when appropriate.

Concerning versions, initially were implicitly chosen current versions 1.5 of UML and OCL.
However, during the development of this project, some mechanisms were needed which
were not offered by the current versions, and therefore it was considered reasonable to use
the new proposals of UML 2.0 and OCL 2.0 (still not definitive).

Concretely, UML 2.0 notation has been used for the elaboration of sequence diagrams and
OCL 2.0 has been used for the definition of some complex restrictions which needed the
concept of Tuple which is introduced in 2.0 version.

Furthermore, it has been considered convenient to use some standard XML types relating to
time, as UML does not define any by default. XML schema provides a concrete semantic of
these types and their operations and no additional complexity wanted to be added.

Finally, it should be noticed that some global predicates have been used for convenience,
such as now(), today(),…. In these cases, the chosen name has tried to be self descriptive.

Tools

To easily construct the diagrams which make up the conceptual model, the Rational Rose 98
Case Tool was mainly used. The choice of this tool was motivated by a mere criteria of
previous knowledge of the tool and it was considered enough for the aim of this project.

However, once the project was being developed it showed to be rather poor in some aspects
such as the lack of representation of n-ary associations, which were solved with some
graphical tricks.

Additionally, the sequence diagrams were drawn manually with Microsoft Word. There were
not significantly better alternatives as UML 2.0 notation is still not official and so, it is not
supported by case tools.

 17

4. USE CASES

Notation

To describe the system use cases we have chosen a rather simple 2-column template (that
is, without preconditions and postconditions, GUI requirements …etc) which we have
considered enough for the aim of this project. Additionally, we have had the need to structure
the use-cases, mainly using the include stereotype, as there is not a total agreement about
the use of extend stereotype and generalization.

In order to describe alternate courses and have a clear semantic reference of them, we have
mainly applied the ideas proposed in [Coc00] although we have also taken into account
commentaries in [Lar02] and [Gel03].

Finally, we have written the use cases which imply complex business rules with the aid of
tables. This technique is suggested in [Wei03] to not clutter the schema.

Diagrams

The modelling of use cases has been divided in packages, corresponding to thematic areas,
in order to ease understanding. These are the following:

Reservation
Management

Customer
Management

Pricing and
Discounting

Car Allocation Car Preparation
and Maintenance

Car Pick-up and
Return

Car
Management

Branch
Management

Car Group and Model
Management

Performance Indicators
Management

 18

RESERVATION MANAGEMENT

Handover

(from Car Pick-up and Return)

Cancel a reservation

Extend a rental agreement

Make a walk-in rental

<<include>>

EU-Rent
Customer

Clerk

Introduce a new EU-Rent
customer/driver

<<include>>

Offer points payment

Offer special advantatges

Make a reservation
<<include>>

<<include>>

<<include>>

 19

CUSTOMER MANAGEMENT

Recalculate price for loyalty
scheme membership

Clerk

(from Reservation Management)...)

Introduce a new EU-Rent
customer/driver

(from Reservation Management)

Introduce a new EU-Corporation
costumer

<<include>>

Join the loyalty incentive scheme

<<include>>
EU-Rent
Customer

(from Reservation Management)...)

Branch Manager

Cancel membership of the loyalty
incentive scheme

Get candidates for membership of
the loyalty incentive scheme

List customers being blacklisted

Clerk

(from Reservation Management)...)

Cancel all reservations

Record defaulting customer
<<include>>

 20

PRICING AND DISCOUNTING

Introduce a new discount

Eliminate a discount

Create a new rental category

Create a car group duration price
Change price for a car group

duration price

EU-Rent Manager

EU-Rent
Customer

(from Reservation Management)...)

Offer points payment

(from Reservation Management)

Offer special advantatges

(from Reservation Management)

<<include>>

Clerk

(from Reservation Management)...)

Calculate best base price

Apply discount

Calculate best price

<<include>>

<<include>>

 21

CAR ALLOCATION

Trailer Driver

Head Mechanic
Transfer cars

Receive cars being transferred

Sell a car

Clerk

(from Reservation Management)...)

Allocates cars to reservations

<<include>>

Allocate a car with an in-extremis rule
Allocate a car for a reservation

<<include>>

<<include>>

Allocate a car with an exception rule

<<include>>

Branch Manager

(from Customer Management)...)

Clerk

(from Reservation Management)...)

Establish a transfer agreement
between branches

Change transfer agreement data

Cancel a transfer agreement between
branches

Branch Manager

(from Customer Management)...)

 22

CAR PREPARATION AND MAINTENANCE

Get cars to be preparedHead Mechanic

(from Car Allocation)

EU-Rent
Customer

(from Reservation Management)...)

Cancel all reservations

(from Customer Management)

Mechanic

Sell a car

(from Car Allocation)

End of car preparation

Detect damages

<<include>>

End of car checking

<<include>>

<<include>>

End of car maintenance

<<include>>

End of car repairs

<<include>>

Schedule maintenance

Clerk

(from Reservation Management)...)

 23

CAR PICK-UP AND RETURN

Free cars

Additional Driver

Introduce a new EU-Rent customer/driver

EU-Rent
Customer

(from Reservation Management)...)

Pick-up a car

Handover

<<include>>

<<include>>

Control late returns

EU-Rent
Customer

(from Reservation Management)...)

Cancel all reservations

(from Customer Management)

Clerk

(from Reservation Management)...)

Calculate best price

(from Pricing and Discounting)

Return of a car
<<include>>

<<include>>

 24

CAR MANAGEMENT

Receive a car

Sell a car

(from Car Allocation)

Reduce number of cars

<<include>>

Clerk

(from Reservation Management)...)

Control number of cars

<<include>>

Buy a carIncrease number of cars

<<include>>

<<include>>

Branch Manager

(from Customer Management)...)

Confirm car sale

BRANCH MANAGEMENT

Create a branch

Record country information

<<include>>
EU-Rent Manager

(from Pricing and Discounting)...)

 25

CAR GROUP AND MODEL MANAGEMENT

Create a new car group

Add a car model

<<include>>

Change a car model group

Change car group quota

EU-Rent Manager

(from Pricing and Discounting)...)

PERFORMANCE INDICATORS MANAGEMENT

Add a performance indicator

Change target value for a performance
indicator

EU-Rent Manager

(from Pricing and Discounting)...)

List information of a performance indicator

Get alert indicators and execute actions

Branch Manager

(from Customer Management)...)

 26

Description

Reservation management

Use case: Make a reservation
Actors: Customer (initiator), Clerk
Overview: A customer makes a reservation from an EU-Rent branch
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

customer decides to make a
reservation and tells it to an available
clerk

2. The clerk asks the costumer for
his/her ID and introduces it.

3. Checks if the customer is a person
who has had contact with EU-Rent.

a. If he or she exists, verifies that
the customer has not been
blacklisted

b. Initiate Introduce a new EU-
rent costumer/driver, otherwise

4. The customer tells the information
about the reservation to the clerk

5. The clerk introduces the period
desired, the pick-up branch, the drop-
off branch, countries planned to visit
and, optionally, the car group or the
car model desired.

6. Verifies that the period is correct, that
there is no overlap with other
reservations of the customer and the
availability of the specified car group
or car model for the period indicated.
If the customer has neither specified
a car group nor a car model, he will
be assigned a car belonging to the
cheapest group. If the customer has
specified a car model but there are no
cars available of that model, a car of
the same group will be assigned.

7. The clerk asks the customer if he/she
wants to guarantee the rental. If so, a
credit card number is introduced.

8. If a credit card number has been

provided, the rental is guaranteed.
9. Checks offers which must be selected

a priori:
a. If the customer is a member of

the loyalty incentive scheme,
Initiate Offer points payment

b. Initiate Offer special
advantages, otherwise

 27

10. The rental is confirmed.

11. A new rental agreement is created

with the indicated characteristics
SUCCESS EXIT

Extensions:
3a.a. The customer has been blacklisted: FAILURE EXIT.

6a. - The period is not correct:

- The period overlaps with other reservations of the customer:
Actor action System responsibility

 6ª.1. Notifies the problem
6a.2. The clerk notifies the customer of
the problem.
6a.3. The customer either:

a. Abandons the rental.
SUCCESS EXIT.

b. Specifies another period.

6b. There is no availability of the specified car group or model for the complete period

Actor action System responsibility

6ª.1. Notifies the problem

6b.2. The clerk notifies the customer of
the problem.
6b.3. The customer either:

c. Abandon the rental.
SUCCESS EXIT.

d. Specifies other data.

10a. The rental is cancelled: SUCCESS EXIT

Use case: Extend a rental agreement
Actors: Customer (initiator), Clerk
Overview: A customer extends a rental agreement by phone
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

customer decides to extend his
current rental agreement.

2. The customer phones an EU-Rent
Branch and tells his/her ID to the
clerk who answers. The clerk
introduces his/her ID and demands
the extension.

3. Verifies if the extension is possible
(no maintenance should be done).

4. The changes are confirmed.

5. The rental agreement is updated.
SUCCESS EXIT

Extensions:
3a. Maintenance has been scheduled: FAILURE EXIT

 28

Use case: Cancel a reservation by customer demand
Actors: Customer(initiator), Clerk
Overview: A customer decides to cancel a reservation
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

customer decides to cancel one of
his/her reservations. He/She tells the
clerk his/her ID and the beginning
date of the reservation which wants to
be cancelled.

2. The clerk indicates the ID of the client,
which one of his reservations wants to
be cancelled, and the beginning date
of the reservation which wants to be
cancelled.

3. Verifies that a reservation for that day
exists and has not been cancelled.

4. The cancellation is confirmed.

5. Looks for the pick-up day of the

reservation.
a. If the pick-up day is today and

it was a guaranteed rental, the
assigned car will be freed and
1 day-rental will be charged.
Additionally, the system
checks if there is a today
reservation without car and the
freed car can be assigned to it.

b. The customer is charged with
no costs, otherwise.

6. The reservation is updated with
cancelling details.

SUCCESS EXIT
Extensions:
3a. Reservation doesn’t exist:

Actor action System responsibility

2a.1. Notifies the problem

2a.2. The clerk notifies the customer of
the problem.
2a.3. The customer either:

a. Abandons the cancellation.
SUCCESS EXIT.

b. Specifies another beginning
date.

3b. Reservation has already been cancelled: FAILURE EXIT

 29

Use case: Make a walk-in rental
Actors: Customer (initiator), Clerk
Overview: A customer wants to make a walk-in rental
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

customer decides to make a walk-in
rental and tells it to an available clerk

2. The clerk asks the costumer for its ID
and introduces it.

3. Checks if the customer is a person
who has had contact with EU-Rent.

a. If he or she exists, verifies that
the customer has not been
blacklisted

b. Initiate Introduce a new EU-
rent costumer/driver, otherwise

4. The customer tells the information
about the reservation to the clerk

5. The clerk introduces the period
desired, the drop-off branch,
countries planned to visit, the car
group and a car model if customer
specifies it.

6. Verifies that the period is correct, that
there is no overlap with other
reservations of the customer and that
there is current availability (including
non-guaranteed rentals whose renter
has not shown after 90 min) of the
specified car group. The system also
verifies that the car is not scheduled
for maintenance before the return
date.
If there are several cars available, the
one with the lowest mileage should be
allocated.

7. The rental is confirmed.

8. If the car was previously assigned to

a no-show reservation, it is cancelled
and the car is freed.

9. A new rental agreement is created
with the indicated characteristics

10. Initiate Handover
11. The customer will wait until the car is

prepared.
SUCCESS EXIT

Extensions:
3a.a. The customer has been blacklisted: FAILURE EXIT.

 30

6a. - The period is not correct:
- The period overlaps with other reservations of the customer:

Actor action System responsibility
 6a.1. Notifies the problem

6a.2. The clerk notifies the customer of
the problem.
6a.3. The customer either:

a. Abandons the rental.
SUCCESS EXIT.

b. Specifies another period.

6b. There is no availability of the specified car group on the current day

Actor action System responsibility

 6b.1. Notifies the problem
6b.2. The clerk notifies the customer of
the problem.
6b.3. The customer either:

c. Abandons the rental.
SUCCESS EXIT.

d. Specifies other data.

10a. The rental is cancelled: SUCCESS EXIT

Customer management

Use case: Introduce a new EU-Rent customer/driver
Actors: Customer, Clerk
Overview: A new EU-Rent customer/driver is recorded.
Type: Abstract
Typical course of events:

Actor action System responsibility
 1. Verifies that the customer is an

existing customer of EU-Corporation.
2. Otherwise, initiate Introduce a new

EU-Corporation customer.
3. The clerk asks the customer for the

driving license and verifies number,
date of issue (at least 1 year of
experience), date of expiration (it is
still valid) .

4. The clerk introduces the information.

5. Records the information of a new EU-
rent customer belonging to the EU-
Rent branch where the registration is
done.

SUCCESS EXIT

Extensions:
3a. The customer has less than a year of experience: FAILURE EXIT
3b. The driving license is not valid: FAILURE EXIT

 31

Use case: Introduce a new EU-Corporation customer
Actors: Customer, Clerk
Overview: A new EU-Corporation customer is recorded.
Type: Abstract
Typical course of events:

Actor action System responsibility
1. The clerk asks the customer for

personal details (name, address,
birthdate).

2. The clerk introduces personal details

3. Records the information of a new EU-
Corporation customer.

SUCCESS EXIT

Extensions:
3a. The customer is below 25: FAILURE EXIT

Loyalty incentive scheme

Use case: Join the loyalty incentive scheme
Actors: Customer (initiator) ,Clerk
Overview: A good customer joins the loyalty incentive scheme
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

customer wants to join the loyalty
incentive scheme.

2. The clerk introduces customer ID.

3. Verifies that the customer is not

already a member of the scheme.
4. Verifies that the customer meets the

requirements to become a member of
the loyalty incentive scheme (he/she
has made at least 4 rentals within a
year and none of them has been
qualified as a bad experience).

5. The membership is accepted.

6. The status of the client is changed

and points are accumulated for the
last 4 rentals.

SUCCESS EXIT
Extensions:
3a. The customer is already a member of the scheme: FAILURE EXIT
4a. The customer doesn’t meet the requirements: FAILURE EXIT

 32

Use case: Cancel membership of the loyalty incentive scheme
Actors: Customer (initiator), Clerk
Overview: A current member of the loyalty incentive scheme declines membership
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

customer wants to decline
membership of the loyalty incentive
scheme.

2. He/she tells to a clerk in a EU-Rent
branch. The clerk introduces customer
ID.

3. The status of the client is changed

and points are lost.
SUCCESS EXIT

Use case: Get candidates for membership of the loyalty incentive scheme
Actors: Clerk, Branch manager
Overview: Customers belonging to a branch which meet the requirements for being
members of the loyalty incentive scheme are notified.
Type: Primary and essential, temporal
Typical course of events:

Actor action System responsibility
1. At the end of each working day, an

automatic process is initiated to get
candidates for membership.

2. List all customers belonging to the

branch which have met the
requirements for being members of
the loyalty incentive scheme during
this day.

3. Print the list of customers.
4. Select one customer from the list and

prepare a letter for him/her.
5. Repeat 3 while there are more clients.

6. A clerk picks up the printout and the
letters. He/she sends the letters and
hands the printout to the branch
manager.

SUCCESS EXIT

Blacklisting

Use case: List customers being blacklisted
Actors: Clerk, Branch manager
Overview: List candidates which are being blacklisted
Type: Primary and essential, temporal

 33

Typical course of events:
Actor action System responsibility

1. At the end of each working day, an
automatic process is initiated to get
candidates being blacklisted that day.

2. List all customers belonging to the

branch which have met the
requirements for being blacklisted
(have recorded several bad
experiences of certain seriousness)
during this day.

3. Print the list.
4. Select one customer of the list and

prepare a letter for him/her.
5. Repeat 4 while there are more

customers.
6. A clerk picks up the letters and sends

them. He/she also picks up the
printout and hand it to the branch
manager

SUCCESS EXIT

Use case: Cancel all reservations
Actors: -
Overview: Cancel all reservations from a customer with the supplied motivation
Type: Abstract
Typical course of events:

Actor action System responsibility
 1. Get all customer reservations.

2. Select one reservation which has not
been cancelled.

3. The reservation is updated with
supplied cancelling details.

4. Repeat 2 and 3 while there are
reservations which have been not
cancelled

SUCCESS EXIT

Payment problems

Use case: Record defaulting customer
Actors: Clerk (Initiator)
Overview: Record a customer’s problem with payment
Type: Primary and essential

 34

Typical course of events:
Actor action System responsibility

1. The use case begins when a clerk
receives a notification of a defaulting
customer.

2. The clerk introduces the customer’s
ID, the rental qualifying for bad
experience and the seriousness of
the problem.

3. Verifies that the customer and the

rental exist.
4. Records a bad experience for the

customer of the indicated seriousness.
5. If the customer was member of the

Loyalty Incentive Scheme, he loses his
membership.

6. Checks criteria to be blacklisted
a. If they are achieved, blacklist

the person and initiate Cancel
all reservations of the renter
due to blacklisting

SUCCESS EXIT
Extensions:
3a. The customer doesn’t exist: FAILURE EXIT
3b. The rental doesn’t exist: FAILURE EXIT

Pricing and discount management

Use case: Offer points payment
Actors: Customer ,Clerk
Overview: The price for a rental duration is calculated and the customer chooses points
payment or discounts.
Type: Abstract

 35

Typical course of events:
Actor action System responsibility

 1. Verify that the reservation is being
done or was done at least 14 days in
advance.

2. Calculate the current base price for
the duration of the reservation for the
desired car group.

3. Verify that the customer has enough
points

4. Calculate applicable offers and show
the best (best discount, free days,..)
and price paying with points.

5. The clerk tells the customer which are
the options and asks if he/she wants
to pay with points.

6. The clerk introduces customer’s
option

7. The rental will be paid in the chosen

way.
SUCCESS EXIT

Extensions:
1a. The reservation is not being done at least 14 days in advance:

Actor action System responsibility
 1a.1. Initiate Offer special advantages

SUCCESS EXIT

3a. The customer doesn’t have enough points:

Actor action System responsibility
 3a.1. Initiate Offer special advantages

SUCCESS EXIT

Use case: Offer special advantages
Actors: Customer ,Clerk
Overview: The customer is offered some special advantages that must be decided at
reservation time.
Type: Abstract
Typical course of events:

Actor action System responsibility
 1. Select all special advantages currently

applicable to the customer rental.
2. Verify that there are special

advantages applicable
3. Show the options to the customer.

4. The clerk tells the customer which are

the options and asks if he/she wants
any of them or prefers normal
discounts.

5. The clerk introduces customer’s
decision result.

6. The rental will be paid in the chosen

way.
SUCCESS EXIT

 36

Extensions:
2a. There are no special advantages applicable: SUCCESS EXIT

Use case: Calculate best base price
Actors: -
Overview: Calculate best base price for a customer rental
Type: Abstract
Typical course of events:

Actor action System responsibility
 1. Check if the rental has been

extended.
a. If it has been so, obtain date of

last extension.
2. Calculate the duration of the rental
3. Calculate best price for the rental

duration and car group since
reservation date or last extension (if it
has been extended).

4. Show base price
SUCCESS EXIT

Use case: Calculate best price
Actors: -
Overview: Calculate best price for a customer rental
Type: Abstract
Typical course of events:

Actor action System responsibility
 1. Initiate Calculate best base price.

2. Check if points payment has been
chosen:

a. If it has been chosen, verify
that the customer has enough
points

b. Initiate Apply discount with
base price.

3. Show final price
SUCCESS EXIT

Extensions:
2a. The customer has not enough points:

Actor action System responsibility
 2a.1. Payment will not be done with

points.
2a.2. Initiate Apply discount with base
price

Use case: Apply discount
Actors: -
Overview: Calculate best discount for a customer rental
Type: Abstract

 37

Typical course of events:
Actor action System responsibility

 1. Calculate the applicable discounts on
a customer’s rental.

2. For each applicable discount,
calculate final price.

3. Select best option.
SUCCESS EXIT

Use case: Introduce a new discount
Actors: Manager (initiator)
Overview: Introduction of a new discount.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a Manager

from EU-Rent decides to offer a new
discount.

2. The manager introduces the name of
the discount, the applicable car
groups and durations, the concrete
effect, a description, the date when it
starts being available and if it is valid
only for reservation time.

3. The information of the new discount is

recorded.
4. Each EU-rent branch is notified of the

new discount
SUCCESS EXIT

Extensions:
3a. The discount already exists: FAILURE EXIT

Use case: Eliminate a discount
Actors: Manager (initiator)
Overview: Eliminate a current discount.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a Manager

from EU-Rent decides to eliminate a
current discount.

2. The manager introduces the name of
the discount.

3. Records that the discount is not
applicable any more.
SUCCESS EXIT

Extensions:
3a. The discount doesn’t exist: FAILURE EXIT

 38

Rental categories and their prices

Use case: Create a new rental duration
Actors: Manager(s) (initiator)
Overview: Create a new rental duration
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when

managers decide to create a new
rental category.

2. A manager specifies the name, the
minimum and maximum duration and
the shorter rental duration.

3. Verifies that the rental duration doesn’t

already exist and the previous rental
category exists.

4. Creates a new rental duration in the
specified place

5. A manager specifies the prices for
each applicable car group and the
newly created rental duration

6. Checks that price for a car group is

lower or equal in longer durations and
higher or equal in shorter durations.

7. Records the price for each car group
introduced.

8. Each EU-rent branch is notified of the
new car group duration prices.
SUCCESS EXIT

Extensions:
3a. The rental duration already exists: FAILURE EXIT
3a. The previous rental duration doesn’t exist: FAILURE EXIT

Use case: Create a car group duration price
Actors: Manager (initiator)
Overview: Create a car group duration price
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when

managers decide to establish a price
for a car group and a duration.

2. A manager specifies the car group,
the duration and the price

3. Verifies that the car group duration

price doesn’t already exist.
4. Create a new car group duration price.
5. Each EU-rent branch is notified of the

new car group duration price.
SUCCESS EXIT

 39

Extensions:
3a. The car group duration price already exists: FAILURE EXIT
3b. The car group doesn’t exist: FAILUE EXIT
3c. The duration doesn’t exist: FAILURE EXIT

Use case: Change price for a car group duration price
Actors: Manager (initiator)
Overview: Change price for a car group duration price
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when

managers decide to change the price
for the pair car group and duration
price.

2. A manager specifies the car group,
the duration and the new price

3. Verifies that the car group duration

price exist.
4. Change the car group duration price.
5. Each EU-rent branch is notified of the

change of the duration price.
SUCCESS EXIT

Extensions:
3a. The car group duration price doesn’t exist: FAILURE EXIT

Car allocation

Use case: Allocate cars to reservations
Actors: -
Overview: Assign cars to next-day reservations
Type: Primary and essential, temporal

 40

Typical course of events:
Actor action System responsibility

1. At the end of the day, it is time to
allocate cars to rental requests due for
pick-up the following working day.

2. Cancels all reservations not picked-up

during the day.
3. For all available cars, checks if the car

must be sold (More than one year old
or 40,000 km).

a. If it must, Initiate Sell a car
4. Calculates for each car group:

o Availability, availability per model
o Number of demands, number of

demands per model.
o cars available for upgrade

5. Gets next-day reservations of
members of the loyalty incentive
scheme. Between them order by
guaranteed rental and lastly by time of
reservation.

6. For each customer from 4, Initiate
allocate a car for a reservation

7. Get unresolved next-day reservations
of guaranteed rentals. Between them
order by time of reservation.

8. For each customer from 6, Initiate
allocate a car for a reservation

9. Get all unresolved next-day
reservations. Between them order by
time of reservation.

10. For each customer from 7, Initiate
allocate a car for a reservation

11. Notify all the branches with which
there is an agreement of the end of
the assignments.

SUCCESS EXIT

Use case: Allocate a car for a reservation
Actors: -
Overview: Allocate a car for a next-day reservation
Type: Abstract

 41

Typical course of events:
Actor action System responsibility

 1. Applies the first action of the following
whose condition is true:
• Allocate a free upgrade, if

availability in the car group < car
demand in the car group, and
there are remaining upgrades.

• Allocate a car of the desired
model, if it was specified in the
reservation and there are cars
available.

• Allocate a car of the specified
group, belonging to the model with
the lowest demand

• Initiate Allocate a car with an
exception rule

2. Verify that the end date of the rental is
before any scheduled booking of the
assigned car for maintenance or
transfer.

3. Decrement availability and availability
per model of the model of the car
group allocated.

4. Decrement number of demands and
number of demands per model of the
model desired.

SUCCESS EXIT
Extensions:
1a. No condition is satisfied: Initiate Allocate a car with an in-extremis rule
2a. There is some booking: Go to 1 and try with another car assignment

Use case: Allocate a car with an exception rule
Actors: Clerk
Overview: Allocate a car for a next-day reservation
Type: Abstract
Typical course of events:

Actor action System responsibility
 1. Calculates applicable exception rules.

2. A clerk selects one option.

3. Selects one car that meets the

requirements of the option selected.
4. Perform the specified action rule.
SUCCESS EXIT

Exception rules:
RULE APPLICATION

CONDITION
ACTION

Allocate a car from
the capacity
reserved for walk-
ins

The immediate higher car
group has capacity for
walk-ins.

The selected car is assigned to the
customer reservation.
If there is a loyalty member reservation
which doesn’t have a free upgrade,
assignments are exchanged.

 42

Make a bumped
upgrade

The second higher car
group has surplus

An assigned car of the immediate higher
group x (from a loyalty member if there is
one, any otherwise) is reassigned to the
customer reservation.
The selected car is assigned to the orphan
reservation.

Make a downgrade The immediate lower car
group has surplus.

The selected car is assigned to the
customer reservation. The selected car is
assigned to the customer reservation.

Allocate a car from
another branch

Exists a branch with a
relation which:
· has an available car of
the car group desired
· there is enough time for
doing the transfer
The candidate branch will
be the nearest.

Order the car to be transferred (notifying
the transferring branch)
Assign the car to the customer
reservation.

Use a car
scheduled for
service

Exists a car of the car
group desired which have
to be serviced and the
rental won’t take the
mileage more than 10%
over the normal mileage
for service.

Cancel service.
Assign the car to the customer
reservation.

Use case: Allocate a car with an in-extremis rule
Actors: Branch manager
Overview: Allocate a car for a next-day reservation
Type: Abstract
Typical course of events:

Actor action System responsibility

1. Calculates “least bad” in-extremis rules
and shows their description.

2. A branch manager selects one

option.

3. Perform the specified action rule.
SUCCESS EXIT

In-extremis rules:
RULE CHARACTERISTICS ACTION
Pick-up delay The pick-up should be delayed until a

car is returned and prepared. It is
calculated the expected time.

The rental is marked to be
pendant of assignment

Rent a car from a
competitor

Calculate cost from renting the car from
a competitor. Select the cheapest one.

Assign the car to the rental.

 43

Use case: Transfer cars
Actors: Clerk, Head mechanic, Trailer driver
Overview: Cars to be transferred are transported to their destinations.
Type: Essential, temporal
Typical course of events:

Actor action System responsibility
 1. Once cars have been assigned to

reservations in all branches which the
concrete branch has agreements, lists
(and prints) all the cars needed to be
transferred and their destinations.

2. For each car, change its status to
being transferred

3. A clerk picks up the printout and
gives it to the head mechanic, who
will prepare the cars to be
transferred.

4. The trailer driver transports the cars
to the destinations.

SUCCESS EXIT

Use case: Receive cars being transferred
Actors: Clerk, Head mechanic, Trailer driver (initiator)
Overview: Cars being transferred are delivered.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when the trailer

driver arrives to a branch where
he/she is transporting cars to.

2. Notifies the head mechanic and cars
are queued for preparation.

3. The head mechanic notifies a clerk
of the arrival of cars.

4. The clerk introduces the registration
number of every car.

5. Ownership of cars is transferred to the

branch and cars are available.
6. Cars being rented during the day, are

queued to be prepared.
SUCCESS EXIT

Use case: Establish a transfer agreement between branches
Actors: Receiver branch manager (initiator), Transferor branch manager
Overview: One branch asks another branch if it agrees to transfer them cars.
Type: Primary and essential

 44

Typical course of events:
Actor action System responsibility

1. The use case begins when a branch
manager decides to establish a
transfer agreement with another
branch.

2. The branch manager –receiver-
contacts with a branch manager –
transferor- from the other branch.
The branch manager asks the
transferor if they agree to transfer
cars to them when necessary.

3. The transferor agrees and introduces
the receiver branch.

4. Verifies that the transfer agreement

with the introduced branch doesn’t
already exist.

5. A new transfer agreement is recorded.
6. If the transferor is not a receiver of the

receiver: section Introduce transfer
agreement data

SUCCESS EXIT
Extensions:
3a. The transferor doesn’t agree: FAILURE EXIT
4a. The transferor agreement already exists: FAILURE EXIT

Section: Introduce transfer agreement data

Actor action System responsibility
1. The branch manager introduces

expected time to transfer cars and
distance between branches.

2. Distance and time is recorded for the

transfer agreement

Use case: Change transfer agreement data
Actors: Clerk, Branch Manager (initiator)
Overview: Distance to a receiver branch or/and transfer time is changed.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a branch

manager decides to update data
from a transfer agreement

2. A clerk introduces the receiver
branch, the new expected time to
transfer cars or/and the distance
between branches.

3. The new data about the transfer

agreement is recorded.
SUCCESS EXIT

Extensions:
3a. The transfer agreement doesn’t exist: FAILURE EXIT

 45

Use case: Cancel a transfer agreement between branches
Actors: Transferor Branch Manager (initiator)
Overview: One transferor branch decides to cancel one of its agreements.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a branch

manager decides to cancel a transfer
agreement with another branch.

2. The branch manager introduces the
other branch name.

3. Verify that the transfer agreement

exists.
4. The transfer agreement is eliminated

for future transfers.
SUCCESS EXIT

Extensions:
3a. The transfer agreement doesn’t exist: FAILURE EXIT

Car preparation and maintenance

Use case: Get cars to be prepared
Actors: Head Mechanic (initiator)
Overview: A mechanic gets cars to be prepared.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when the head

mechanic starts his/her working day.
2. The head mechanic asks for cars to

be prepared during that day

3. Returns cars to be prepared (that is,

available cars assigned to reservations
of that day). Cars are returned in order
of pick-up.

4. The head mechanic queues the cars

to be prepared.
SUCCESS EXIT

Use case: End of car preparation
Actors: Mechanic (initiator), Clerk, Customer
Overview: A car has been prepared for a rental.
Type: Primary and essential

 46

Typical course of events:
Actor action System responsibility

1. The use case begins when a
mechanic finishes the preparation of
a car to be rented.

2. The mechanic tells a clerk the
registration number of the car. The
clerk introduces the number.

3. The status of the car is updated to

available.
4. If there is a customer waiting for the

car, he/she is notified.
SUCCESS EXIT

Extensions:
3a. Car doesn’t exist: FAILURE EXIT

Use case: End of car checking
Actors: Mechanic (initiator), Clerk
Overview: A car has been checked after a rental
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

mechanic finishes the checking of a
car being rented.

2. If the car has been damaged and it is
liable to the renter, initiate Detect
damages

3. The mechanic tells a clerk the
current mileage of the car.

4. The clerk introduces the registration
number of the car and its new
mileage.

5. Checks if the car needs to be serviced

(More than 3 months have passed
since the last maintenance or it has
accumulated 10,000 kilometres since
then).

a. If the car needs to be serviced,
service is scheduled. Status is
changed to maintenance
scheduled.

6. Checks if the car needs to be sold
(More than one year old or 40,000 km).

a. If the car needs so and no
repairs or maintenance are
needed, initiate Sell a car

7. If neither repairs, maintenance or
selling, checks if there is a today
reservation without car and the freed
car can be assigned to it.
SUCCESS EXIT

Extensions:
5a. Car doesn’t exist: FAILURE EXIT

 47

Use case: Detect damages
Actors: Mechanic (initiator), Clerk
Overview: A car has been checked after a rental and damages has been detected
Type: Abstract
Typical course of events:

Actor action System responsibility
1. A mechanic tells a clerk the rental

data corresponding to the car where
damages have been detected.

2. The clerk introduces the data.

3. Records a bad experience for the last

renter of the car (and the additional
drivers if there are). Credit card
company must be notified.

4. If the customer was member of the
Loyalty Incentive Scheme he loses his
membership.

5. Check criteria to be blacklisted
a. If they are achieved, initiate

Cancel all reservations of the
renter due to blacklisting

6. The credit card provided by the renter
is charged for the damages.

7. Reparation is scheduled and car status
is updated.
SUCCESS EXIT

Extensions:
3a. Car doesn’t exist: FAILURE EXIT

Use case: Schedule maintenance
Actors: Clerk (initiator)
Overview: A clerk establishes a date and a service depot for car maintenance
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a clerk

decides to schedule maintenance for
a car.

2. The clerk introduces de registration
number of the car and the beginning
date of the maintenance.

3. Checks if the car needs maintenance.
4. Checks if the corresponding service

depot has capacity for the beginning
date.

5. Maintenance is scheduled for the
indicated car.
SUCCESS EXIT

Extensions:
3a. Car doesn’t need maintenance: FAILURE EXIT
4a. The service depot doesn’t have capacity for the indicated day: FAILURE EXIT

 48

Use case: End of car maintenance
Actors: Mechanic (initiator), Clerk
Overview: A car has been serviced.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

mechanic finishes the maintenance
of a car.

2. The mechanic tells a clerk the
registration number of the car. The
clerk introduces the number.

3. Updates car mileage from last service

to current.
4. Checks if the car needs to be sold

(More than one year old or 40,000 km).
a. If the car needs so, initiate Sell

a car
b. Otherwise, the car is available

SUCCESS EXIT
Extensions:
3a. Car doesn’t exist: FAILURE EXIT

Use case: End of car repair
Actors: Mechanic (initiator), Clerk
Overview: A car has been serviced.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

mechanic finishes repairing a car.
2. The mechanic tells a clerk the

registration number of the car. The
clerk introduces the number.

3. The end of the repair is recorded.
4. Checks if the car needs to be sold

(More than one year old or 40,000 km).
a. If the car needs so and no

maintenance is booked, initiate
Sell a car

b. The car is available
SUCCESS EXIT

Extensions:
3a. Car doesn’t exist: FAILURE EXIT

 49

Car pick-up and return

Car pick-up

Use case: Pick-up a car
Actors: Customer (initiator), Clerk
Overview: A customer picks-up a car which was reserved.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when a

customer arrives to pick-up a car.
2. The customer shows his ID to a

clerk. The clerk introduces the
number

3. Verifies that there is reservation due to

pick-up for that customer that day and
the car is expected to be prepared
around fixed time.

4. The customer waits until the car is

prepared.
5. Initiate Handover of the car

assigned to the rental

6. If the car is given substantially late,

send an apologetic letter to the
customer and pay him/her the cost for
the non-served period
SUCCESS EXIT

Extensions:
3a. The reservation is not due to pick-up because it doesn’t exist, it has been cancelled

(either because the customer has arrived late and car has been assigned to another
rental or other reasons) or it is for a future day: FAILURE EXIT

3b. The car is expected to not be prepared at fixed time.
Actor action System responsibility

3b.1. Notifies that the car won’t be
prepared. Gives the expected time.

3b.2. The clerk notifies the customer that
the car won’t be prepared at fixed time.
3b.3.

b. The customer decides to
wait. GOTO 4.

c. The customer decides to
cancel the reservation with
no cost to him/her.

3b.4. The clerk introduces the
customer’s choice.

3b.5. The reservation is cancelled if so
decided and an apologetic letter is
sent.

SUCCESS EXIT

 50

Use case: Handover
Actors: Customer (initiator), Clerk, Additional drivers
Overview: Verifies that the renter and the additional drivers can drive the car assigned to
their rental.
Type: Abstract
Typical course of events:

Actor action System responsibility
1. The clerk verifies that the customer

(driver) is in an appropriate condition
to drive the car

2. The customer tells the clerks who
are the additional drivers, if there are
any.

3. The clerk verifies that each
additional driver is in an appropriate
condition to drive the car.

4. An additional driver tells his ID to the
clerk and he/she introduces it

5. Checks if the driver is a person who

has had contact with EU-Rent.
a. If it exists, verifies that the

driver has not been blacklisted
b. Initiate Introduce a new EU-

rent costumer/driver, otherwise
6. The additional drivers sign an

‘additional drivers authorization’
7. Repeat 7,8 and 9 while there are

additional drivers.
8. The customer signs the rental

contract.
9. The clerk confirms the pick-up.

10. The status of the rental is changed to

open.
SUCCESS EXIT

Extensions:
1a. The driver is not in an appropriate condition to drive the car (either appears to be under
the influence of alcohol or drugs, or is not physically able to drive the car safely): FAILURE
EXIT
3a. Any of the additional drivers is not in an appropriate condition to drive the car: FAILURE
EXIT
6a. Any of the additional drivers doesn’t sign the authorization: FAILURE EXIT
8a. The renter doesn’t sign the authorization: FAILURE EXIT

Use case: Free cars
Actors: -
Overview: At the end of each day, cars assigned to reservations which have not been
picked up are freed.
Type: Essential, temporal

 51

Typical course of events:
Actor action System responsibility

1. At the end of each working day, an
automatic process is initiated to free
all the cars assigned to reservations
which have not been picked up.

2. Obtains reservations which have not

been picked up during that day.
3. Selects one reservation and change its

status to cancelled. The car assigned
is released.

4. If it was a guaranteed rental, one day’s
rental is charged to the guaranteeing
credit card.

5. Repeat 3 and 4 while there are not
cancelled reservations from 2.
SUCCESS EXIT

Car return

Use case: Return of a car
Actors: Customer (initiator), Clerk
Overview: A car has been returned to an EU-Rent branch
Type: Primary and essential

 52

Typical course of events:
Actor action System responsibility

1. The use case begins when a
customer returns the car that he/she
was renting.

2. The customer leaves the car to a
mechanic and starts the car
checking.

3. The customer tells a clerk his ID and
beginning date of the rental.

4. The system verifies that the rental

exists and stores actual time as return
time.

5. Verifies that the car has been returned
to the agreed drop-off branch.

6. Verifies that the car has been returned
on time.

7. If the drop-off branch is different from
the pick-up branch, car ownership is
transferred.

8. Calculates basic cost of the rental (up
to the duration and car group): initiate
Calculate best price.

9. Add to the basic cost extras and
corresponding taxes to the country.

10. Shows total cost and asks for payment
type (cash, credit card)

11. The clerk asks the customer for
payment type and number of credit
card to be charged in case of car
damages.

12. The clerk introduces customer data
and the customer pays the rental.

13. The rental is closed.

SUCCESS EXIT
Extensions:
4a. The rental doesn’t exist: FAILURE EXIT
5a. The car has not been returned to the agreed drop-off branch.

Actor action System responsibility
 5a.1. Adds a drop-off penalty to the total

cost of the rental.
CONTINUE

6a. The car has been returned substantially before the agreed drop-off time/day.

Actor action System responsibility
 6a.1. Takes it into account to calculate the

rental charge of the actual period of rental.
CONTINUE

 53

6b. The car has been returned after the agreed drop-off time/day.

Actor action System responsibility
 6b.1. The cost is incremented by one of

this ways:
• An hourly charge up to 6 hours

delay
• A daily charge upon 6 hours delay

6b.2. A bad experience is recorded with
seriousness depending on the delay
interval.
6b.3. If the customer was member of the
Loyalty Incentive Scheme, he loses his
membership.
6b.4. Check criteria to be blacklisted

a. If they are achieved, initiate
Cancel all reservations of the
customer due to blacklisting

CONTINUE

Use case: Control late returns
Actors: Clerk, Customer,
Overview: At the end of each day, status of late returns is checked.
Type: Essential, temporal
Typical course of events:

Actor action System responsibility
1. At the end of each working day, an

automatic process is initiated to
control the state of cars which should
have been returned and are not.

2. Obtain rentals which should have been

returned during that day in that branch
and have not been returned to that or
any other.

3. Select one rental and show the details
(and also customer details).

4. A clerk contacts with the customer.
5. Repeat 3 and 4 while there are rentals

from 2 whose renter has not been
contacted.

6. Obtain rentals which should have been
returned during 3 days before in that
branch and have not been returned to
that or any other.

7. Show their data.
8. The clerk contacts the police and

tells them the data of the
disappeared renters.
SUCCESS EXIT

Extensions:
4a. The customer can’t be contacted: CONTINUE with the other rentals

 54

Car management

Use case: Buy a car
Actors: Clerk (initiator)
Overview: A car is bought
Type: Abstract
Typical course of events:

Actor action System responsibility
1. The use case begins when a car

need to be purchased.
2. The clerk specifies the model

required to buy.

3. Order a car of this model to the

supplier. Save order details.
SUCCESS EXIT

Extensions:
3a. The model is not in the authorization list: FAILURE EXIT

Use case: Receive a car
Actors: Clerk (initiator)
Overview: An ordered car arrives
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when an

ordered car arrives to a branch.
2. The clerk specifies order ID and car

data (registration number)

3. Verifies that exists a pendant order and

the information is consistent. Close the
order.

4. A new car is recorded with the
information supplied. The car is
available and the branch has its
ownership.
SUCCESS EXIT

Extensions:
3a. The order ID doesn’t exist: FAILURE EXIT
3b. The information is not consistent (existing registration number): FAILURE EXIT

Use case: Sell a car
Actors: -
Overview: A car is sold.
Type: Abstract

 55

Typical course of events:
Actor action System responsibility

1. The use case begins when a car
need to be sold.

2. Verifies that branch has car ownership

and the car is not assigned to any
current rental.

3. The car is available to be sold.
SUCCESS EXIT

Extensions:
3a. The car doesn’t exist: FAILURE EXIT
3b. Branch doesn’t have car ownership: FAILURE EXIT
3c. Car is assigned to a current rental: FAILURE EXIT

Use case: Control number of cars
Actors: Branch manager (initiator)
Overview: From time to time, number of cars in each branch is controlled: cars are bought,
sold or transferred if necessary.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when the

branch manager decides to control
the number of cars of the branch.

2. The branch manager asks for car
number control.

3. Calculates number of cars which are
owned by the branch (taking also into
account ordered cars)

4. For each car group,
a. If there is a surplus over 10%,

Initiate Reduce number of cars
b. If there is a lack over 10%,

Initiate Increase number of
cars

SUCCESS EXIT

Use case: Increase number of cars
Actors: Branch manager
Overview: Number of branch cars of a certain car group is increased by transferring cars
from other branches or buying new ones.
Type: Abstract

 56

Typical course of events:
Actor action System responsibility

1. Obtain availability of branches with a
transfer agreement by distance/time
priority.

2. Select the first one with surplus of this
car group.

3. Order exceeding cars while there is
provider surplus and the receiver
branch is below 10% of its quota.
Notify the transferring branch.

4. Repeat 2 and 3 while the branch is still
below 10% of its quota and there are
branches with a transfer agreement
with surplus of the car group.

5. Check if the car group quota is below
10%:

a. If it is, asks for a model to buy.
b. SUCCESS EXIT

6. The branch manager selects a
model of the car group

7. Initiate Buy a car of the model
8. GOTO 5.

Use case: Reduce number of cars
Actors: -
Overview: Number of branch cars of a certain car group is decreased by transferring cars to
other branches or selling cars.
Type: Abstract
Typical course of events:

Actor action System responsibility

1. Obtain availability of branches with a
transfer agreement by distance/time
priority.

2. Select the first one with lack of this car
group.

3. Mark cars as pending of transfer while
the provider branch is over 10% of its
quota (and there are available cars) of
that car group and the receiver has a
lack of this car group.

4. Repeat 2 and 3 while the branch is still
over 10% of its quota (and there are
available cars) and there are branches
with a transfer agreement with lack of
the car group.

5. While the car group quota is over 10%,
initiate Sell a car with the oldest car in
the car group.

SUCCESS EXIT

 57

Use case: Confirm car sale
Actors: Manager (initiator)
Overview: The branch manager approves the sale of a car to be sold
Type: Primary, essential
Typical course of events:

Actor action System responsibility
1. The use case begins when

managers decide to sell a car.
2. The manager specifies the car he

wants to sell.

3. Checks that the car belongs to the

branch and that it is pending to be sold
4. The state of the car changes to sold,

with current date as disposal date.
Extensions:
3a. The car does not belong to the branch: FAILURE EXIT
3b. The car is not to be sold: FAILURE EXIT

Branch management

Use case: Create a branch
Actors: Manager (initiator)
Overview: EU-Rent decides to open a new branch
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when

managers decide to establish a new
branch.

2. A manager specifies the location of
the new branch.

3. Checks if information about the country

exists.
a. If it doesn’t, initiate Record

country information.
4. The manager introduces the

characteristics of the new branch
(name, type, country, quota per car
group)

5. Verifies that the branch doesn’t already

exist.
6. Create a new branch with the

information provided.
SUCCESS EXIT

Extensions:
3a. The branch already exists: FAILURE EXIT

Use case: Record country information
Actors: Manager (initiator)
Overview: Record information of a new country with EU-Rent branches.
Type: Abstract

 58

Typical course of events:
Actor action System responsibility

1. A manager specifies the
characteristics of the country of the
new branch (name, requirements for
mechanical condition and emissions)

2. Verifies that the country doesn’t

already exist.
3. Create a new country with the

information provided.
SUCCESS EXIT

Extensions:
2a. The country already exists: FAILURE EXIT

Car group and models management

Use case: Create a new car group
Actors: Manager (initiator)
Overview: Record information of a new car group.
Type: Primary and essential.
Typical course of events:

Actor action System responsibility
1. The use case begins when

managers decide to create a new car
group

2. A manager specifies characteristics
of the new car group (name,
previous –immediately worse- group
if there is one)

3. Verifies that preceding car group

exists, unless it is not provided (then,
it’s the first).

4. Verifies that the new car group doesn’t
already exist.

5. Create the car group and insert it in the
appropriate place

6. Introduce one car model for the
group.

7. Check if the car model exists,

a. If it exists, changes the car
model of group

b. Initiate Add a car model and
establish as its car group the
newly created, otherwise.

8. Repeat 5 and 6 while more models
are wanted to be assigned.

9. For each branch, establish a (default)

minimum quota of the new car group.
SUCCESS EXIT

Extensions:
3a. The preceding car group doesn’t exist: FAILURE EXIT
4a. The car group already exists: FAILURE EXIT

 59

Use case: Add a car model
Actors: Manager (initiator)
Overview: Record information of a new car model.
Type: Abstract
Typical course of events:

Actor action System responsibility
1. The use case begins when it is

decided to create a new car model
2. A manager specifies characteristics

of the new car model (name,
technical characteristics)

3. Verifies that the new car model doesn’t

already exist.
4. Create the car model with the supplied

information
SUCCESS EXIT

Extensions:
3a. The car model already exists: FAILURE EXIT

Use case: Change a car model group
Actors: Manager (initiator)
Overview: Change car model group.
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when it is

decided to change a model of car
group

2. A manager specifies the model and
the new car group.

3. Change the car model of group.

SUCCESS EXIT
Extensions:
3a. The car model doesn’t exist: FAILURE EXIT
3b. The car group doesn’t exist: FAILURE EXIT

Use case: Change car group quota
Actors: Branch manager (initiator)
Overview: Establish quota for a car group in an EU-rent branch
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when the

branch manager decides to change
a car group quota.

2. The manager specifies the car group
and the new quota.

3. Change the quota for the car group.

SUCCESS EXIT
Extensions:
3a. The car group doesn’t exist: FAILURE EXIT

 60

Performance indicators management

Use case: Add a performance indicator
Actors: Manager (initiator)
Overview: Add a performance indicator for a country and type of branch
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when

managers decide to introduce a new
performance indicator for a country
and type of branch.

2. A manager introduces the country
name and type of branch.

3. Verifies that the type of branch exists

in the country.
4. The manager introduces the

indicator’s name.

5. Checks if the indicator exists.

a. If it doesn’t exist, section Describe
indicator

6. The manager introduces target
value.

7. Verifies that the indicator hasn’t been

already defined for this country and
type of branch

8. Record the information for the new
target value of the indicator.

SUCCESS EXIT
Extensions:
3a. The type of branch doesn’t exist in the country (or the country or type of branch don’t
exist): FAILURE EXIT
7a. The indicator has already been defined for this combination: FAILURE EXIT

Section: Describe indicator

Actor action System responsibility
1. The manager introduces a

description for the indicator.

2. Records new indicator information.

Use case: Change a target value for a performance indicator
Actors: Manager (initiator)
Overview: Change a target value for a performance indicator for a country and type of
branch
Type: Primary and essential

 61

Typical course of events:
Actor action System responsibility

1. The use case begins when
managers decide to change target
value for a performance indicator for
a country and type of branch.

2. A manager introduces the country
name and type of branch.

3. Verifies that the type of branch exists

in the country.
4. The manager introduces the name

for the indicator and its new target
value.

5. Verifies that the indicator already

exists.
6. Modify the target value for the

indicator.
SUCCESS EXIT

Extensions:
3a. The type of branch doesn’t exist in the country (or the country or type of branch doesn’t
exist): FAILURE EXIT
5a. The indicator doesn’t exist: FAILURE EXIT

Use case: List information of a performance indicator
Actors: Branch Manager (initiator)
Overview: List information of a concrete performance indicator in a branch
Type: Primary and essential
Typical course of events:

Actor action System responsibility
1. The use case begins when the

branch manager wants to get
information of a certain performance
indicator.

2. The manager introduces the name of
the indicator

3. Verifies that the indicator exists.
4. List information of the concrete

indicator.
SUCCESS EXIT

Extensions:
3a. The indicator doesn’t exist: FAILURE EXIT

Use case: Get alert indicators and execute actions
Actors: Branch Manager (initiator)
Overview: List indicator which doesn’t meet the target and apply actions trying to solve the
problems
Type: Primary and essential

 62

Typical course of events:
Actor action System responsibility

1. The use case begins when the
branch manager wants to get
indicators which don’t meet the
target.

2. List information of indicators which

doesn’t meet the target.
3. The branch manager decides to

apply a certain action to solve a
problem.

4. Executes the action
5. Repeat 3 and 4 while there are

problems to be solved.
SUCCESS

Note: Executes the action is a quite general term and could be: sell a car, buy a car, change
quota for a car group…

 63

5. STATIC MODEL

Overview

The central part of the static model is the class diagram where concepts relevant to the
system and their relationships are represented.

On the other hand, a complete conceptual schema must include the definition of all relevant
integrity constraints. One simple way to do so is by assigning an operation with the
stereotype <<IC>> to each constraint, as suggested in [IC-Ol03]. This technique is the one
applied in this project together with an analogous mechanism for the definition of derived
elements as described in [DR-Ol03].

Diagrams

The class diagram is divided in thematic areas to ease understanding. These are the
following:
- Branch
- Rental Agreement
- Rental Agreement subclasses
- Cars, Discounts and Enumerations

 64

Branch

 65

Rental Agreement

LoyaltyMember
membershipDate : Date
/ availablePoints : Natural

<<IC>> meetsLoyalPermanence()
availablePoints()

Blacklisted

blacklistedDate : Date

<<IC>> noRentals()

AssignedCar
expectedPreparedTime : Time

<<creationIC>> pickUpBbranchIsResponsible()

Prepared
actualTime : Time

FaultSeriousness

Branch

DrivingLicense
number : Natural
issue : Date
expiration : Date

<<IC>> validLicense()
<<IC>> numberIsKey()

Customer

<<IC>> rentalsDoNotOverlap()

Country CarGroupDurationPrice

EU_RentPerson
name : String
id : String
birthDate : Date
address : String
telephone : Integer

<<IC>> is25OrOlder()
<<IC>> idIsKey()
faults()
belongingBranch()

0..n

1

+faults0..n

1
/HasFaults

1

0..n

+belongingBranch
1

+branchCustomer
0..n

/BelongsTo >

1

1

1

1Has
RentalDuration

Discount

DateTime

1..n 0..n

+beginning

1..n

+renter

0..n

MakesRental

CarGroup

Car

registrationNumber : String

<<IC>> onlyOneAssignment()
<<IC>> registrationNumberIsKey()
carGroup()

1

1..n

+carGroup

1

1..n/IsGroup

RentalAgreement
/ basicPrice : Money
/ bestPrice : Money
/ lastModification : DateTime
/ onRentInterval : Duration

<<IC>> correctInterval()
<<IC>> visitsBranchCountries()
basicPrice()
bestPrice()
lastModification()
onRentInterval()
bestDurationPrices()
agreedEnding()
applicableDiscountPerDuration()
rentGroup()

1..n

0..n

1..n

0..n

Visits
1..n

0..n

+bestDurationPrices
1..n

0..n

/BestDurations

1..n
1..n

+driver

1..n

+rentalsAsDriver
1..n < Drive

0..n0..n

0..n

0..n

0..n

+applicableDiscountPerDuration
0..n

/ApplicableDiscount

1

0..n

+initEnding

1

0..n

InitialEnding

1

0..n

+agreedEnding

1

0..n

/AgreedEnding

1

0..n

+rentGroup1

0..n

/

0..1

0..n

0..1

0..n

Assignment

Branch 1

0..n

+dropOffBranch1

0..n

DropOff

0..n

1

0..n

+pickUpBranch

1

Pick-up

 66

Rental Agreement subclasses

Branch

CanceledCustomer

CanceledCompany

motivation : CancellingMotivation

OpenedRental

actualPick-upTime : Time

GuaranteedReservation
creditCardNumber : Natural

guaranteed?

FaultSeriousness

degree : Level CanceledReservation
cancellingDate : DateTime

<<IC>> correctCancellation()

/ GuaranteedCanceled

/ fine : Money {frozen}

fine()
allInstances()

/ LateReturn
/ extraInterval : Duration
/ extraCostWithTax : Money {frozen}

allInstances()
extraInterval()
extraCostWithTax()

/ EarlyReturn

onRentInterval()
allInstances()

{disjoint,incomplete}

DamageCost
price : Money

{subset}

/ PaidWithPointsRental

<<IC>> enoughInAdvance()
<<creationIC>> customerIsLoyaltyMember()
allInstances()
bestPrice()

Extension

extensionDone : DateTime

PointsPaymentReservation

<<IC>> 14DaysInAdvance()

ReservationWithSpecialDiscount

bestPrice()

CarGroup
Reservation

reservationDate : DateTime

<<IC>> onTimeReservation()
<<IC>> modelIsInGroup()

1

0..n

1

0..n RequestedGroup

0..*

0..1

+nextDayR
0..*

0..1

/NextDayReservations

RentalAgreement
/ basicPrice : Money
/ bestPrice : Money
/ lastModification : DateTime
/ onRentInterval : Duration

<<IC>> correctInterval()
<<IC>> visitsBranchCountries()
basicPrice()
bestPrice()
lastModification()
onRentInterval()
bestDurationPrices()
agreedEnding()
applicableDiscountPerDuration()
rentGroup()

CarModel

0..n

0..1

0..n

0..1

RequestedModel

ExtendedRental

<<IC>> trueExtensions()
lastModification()
agreedEnding()

BadExperience

type : BadExpType

<<IC>> typeIsKey()

/CarDamage

allInstances()

Branch

DateTime

0..1

0..n

+lastNewEnding

0..1

0..n

Extended

ClosedRental
paymentType : PayType
creditCardNumberDamages : Natural
/ rentalPriceWithTax : Money {frozen}

rentalPriceWithTax()

0..n

0..n

+badExp
0..n

0..n

< Qualifies

0..n

0..1

0..n

0..1

< QualifiesDamage

1

1..n

+actualReturnBranch

1

1..n

ReturnedTo

1

0..n

+actualReturn

1

0..n

ReturnedAt

 67

Cars, Discounts and Enumerations

Longer >

SoldCar
disposalDate : DateRepairsScheduled

beginningDate : Date

ClosedDiscount
endingDate : Date

<<IC>> correctEnding()

EndDurationPrice
endingDate : Date

<<IC>> correctEnding()

/NeedsMaintenance

<<IC>> notOver10PerCent()
allInstances()

Period
hour
day
week
month

<<enumeration>>

CarGroupDurationPrice
price : Money

BadExpType
lateReturn
carDamage
paymentProblem

<<enumeration>>
PayType

points
cash
creditCard

<<enumeration>>

MaintenanceRequirements
mileageForService : Double = 10,000
timeForService : Duration = (month,3)

CancellingMotivation
no-show
blacklisting

<<enumeration>>

/NeedToBeSoldCar

allInstances()

BranchTypeName
onTheRoad
bigCity
mediumCity
airport

<<enumeration>> Level
very high
high
medium
low
very low

<<enumeration>>

Duration
unit : Period
numberOfUnits : Natural

ToBeSoldCar

<<IC>> notAssignedToReservation()

DateTime

RentalDuration
name : String
minimumDuration : Natural
maximumDuration : Natural
timeUnit : Period

<<IC>> nameIsKey()
<<IC>> coherentPrices()
<<IC>> totalOrder()

0..n+beginning 0..n

0..1

0..1

+longer
0..1

+shorter

0..1

Discount
name : String
effect : String
description : String
beginningDate : Date
reservationTime? : Boolean

<<IC>> nameIsKey()

1..n

0..n

1..n

0..n

ApplicableDurations

BeingTransferredCar

ServiceDepot
name : String
capacity : Natural

<<IC>> nameIsKey()

MaintenanceScheduled
beginningDate : Date

serviceDepot()

1

n

1

n

/In

CarGroup

PendantCarOrder
id : Integer

<<IC>> idIsKey()

CarGroup
name : String

<<IC>> nameIsKey()
<<IC>> totalOrder()
<<IC>> quotaForAllBranches()

0..1

0..1

+better

0..1

CategoryOrder

+worse
0..1

0..n

0..n

0..n

0..nCarGroupDurationPrice

0..n

1..n

0..n

1..n

ApplicableGroups

Branch

0..n

1

0..n

1

<Orders

1

0..*

+destination
1

+carsToBeReceived0..*

TransferredTo >

n
1

n
1

Serves

OwnCar
currentMileage : Double
mileageFromLastService : Double
lastMaintenanceDate : Date
acquisitionDate : Date
/ available? : Boolean
/ assigned? : Boolean

available?()
assigned?()

Car
registrationNumber : String

<<IC>> onlyOneAssignment()
<<IC>> registrationNumberIsKey()
carGroup()

1

1..n

+carGroup

1

1..n

/IsGroup

CarModel
name : String
carachteristics : Sequence(String)

<<IC>> nameIsKey()

1 0..n1 0..n

OfModel

1

1..n

1

1..n

IsIn
1

0..n

1

0..n IsOfA >

 68

Complete specification of operations associated to derived
elements and integrity constraints

Branch

context Branch:: validAgreements() : Boolean
post:
 result=self.receiver->excludes(self) and self.transferor->

excludes(self) and self.receiver->forAll(b|b.receiver->
includes(self) implies

 let tA1:TransferAgreement=TransferAgreement.allInstances()->
select(tA| (tA.receiver=self and tA.transferor=b))

 let tA2:TransferAgreement=TransferAgreement.allInstances() ->
select(tA| tA.transferor=self and tA.receiver=b)

 in
 tA1.distance(km)=tA2.distance(km) and tA1.expectedTime(h)=
 tA2.expectedTime(h)

context Branch:: nameIsKey() : Boolean
post:
 result=Branch.allInstances()->

select(b|b.name=self.name)->size()=1

context Branch:: modelsAvailableNow() : Set(CarModel)
post:
 result= self.carsAvailableNow.carModel->asSet()

context Branch:: carsAvailableNow(car : Car) : Set(Car)
post:
 result=self.car->select(oclIsKindOf(OwnCar))->

select(c:Car| c.oclAsType(OwnCar).available?)

context Branch:: groupsAvailableNow() : Set(CarGroup)
post:
 result=self.modelsAvailableNow.carGroup->asSet()

context Branch:: carModelDemand() : Set(CarModel)
post:
 result=carModel.allInstances()

context Branch:: carGroupDemand() : Set(CarGroup)
post:
 result=CarGroup.allInstances()

context Branch:: nextDayR() : Set(Reservation)
post:

Reservation.allInstances()->select(r|r.beginning.date()=
tomorrow())->select(r|r.pickUpBranch=self)

BranchType

context BranchType:: nameIsKey() : Boolean

 69

post:
 result=BranchType.allInstances()->

select(b|b.name=self.name)->size()=1

Country

context Country:: nameIsKey() : Boolean
post:
 result=Country.allInstances->

select(b|b.name=self.name)->size()=1

context Country:: branchType() : Set(BranchType)
post:
 result=self.branch.branchType->asSet()

PerformanceIndicator

context PerformanceIndicator:: nameIsKey() : Boolean
post:
 result=PerformanceIndicator.allInstances()->

select(b|b.name=self.name)->size()=1

ModelAvailability

context ModelAvailability:: quantity() : Natural
post:
 result=self.branch.carsAvailableNow->

select(carModel=self.carModel)->size()

GroupAvailability

context GroupAvailability:: quantity() : Integer
post:
 return= self.branch.modelAvailability->
 select(mA |mA.carModel.carGroup= self.carGroup)->sum(quantity)

DemandXModel

context DemandXModel:: demand() : Integer
post:
 let pendantRes:Reservation= Reservation.allInstances()->
 select(r|r.beginning.date()=tomorrow())->select(r|

r.pickUpBranch=self.branch and r.car->isEmpty())
 in
 result=pendantRes.requestedModel->select(m|m=d.carModel)->size()

 70

DemandXGroup

context DemandXGroup:: demand() : Integer
post:
 let pendantRes:Reservation= Reservation.allInstances()->
 select(r|r.beginning.date()=tomorrow())->select(r|

r.pickUpBranch=self.branch and r.car->isEmpty())
 in
 result=pendantRes.requestedGroup->select(m|m=d.carGroup)->size()

RentalAgreement

context RentalAgreement:: correctInterval() : Boolean
post:
 result=self.beginning< self.initEnding and self.actualReturn>

self.beginning
documentation:
 Ending date-time of a rental (actual and expected) must be

after the beginning dates-times (actual and expected) of the
rental

context RentalAgreement:: visitsBranchCountries() : Boolean
post:
 result = self.Countries->includes(self.PickUpBranch.Country) and

self.Countries->includes(self.DropOffBranch.Country)

context RentalAgreement:: basicPrice() : Money
post:
 result= self.bestDurationPrices-> iterate(elem;
 tup : Tuple {accInterval: Duration=self.onRentInterval,

accPrice: Money=0} |
let timeMax:Duration= durationT(elem.timeUnit,
elem.maximumDuration)
let timeMin:Duration= durationT(elem.timeUnit,
elem.minimumDuration)

 let numInt:Integer =
 if tup.accInterval >= timeMax then
 tup.accInterval/timeMax
 else
 tup.accInterval/timeMin
 in
 Tuple {accInterval:Duration=
 (if tup.accInterval >= timeMax then
 tup.accInterval%timeMax
 else
 tup.accInterval%timeMin
 endif),
 accPrice:Money= tup.accPrice+numInt*elem.price}
).accPrice
documentation:
 Best price for the rental duration since the last modification

(rental duration was changed) without discounts

 71

context RentalAgreement:: bestPrice() : Money
post:
 let bestRentalDiscountPerDuration(rd:RentalDuration, basicPrice:

 Money): Set(Discount)= self.applicableDiscountPerDuration(rd)
->reject(disAct: Discount|
self.applicableDiscountPerDuration(rd) ->

 exists(disOther:Discount| apply(disOther, basicPrice) <
apply(disAct, basicPrice))

 in
 result= self.bestDurationPrices->iterate(elem;
 tup : Tuple {accInterval: Duration=self.onRentInterval,

accPrice: Money=0} |
let timeMax:Duration= durationT(elem.timeUnit,
elem.maximumDuration)
let timeMin:Duration= durationT(elem.timeUnit,
elem.minimumDuration)

 let numInt:Integer =
 if tup.accInterval >= timeMax then
 tup.accInterval/timeMax
 else
 tup.accInterval/timeMin
 in
 Tuple {accInterval:Duration=
 (if tup.accInterval >= timeMax then

 tup.accInterval%timeMax
 else
 tup.accInterval%timeMin
 endif),
 accPrice:Money= tup.accPrice+

 numInt*self.bestRentalDiscountPerDuration
 (elem.rentalDuration, elem.price)->any()}).accPrice

context RentalAgreement:: lastModification() : DateTime
post:
 result =
 if self.oclIsTypeOf(Resevation) then
 self.reservationDate
 else
 self.beginning
 end if

context RentalAgreement:: onRentInterval() : Duration
post:
 result= self.agreedEnding-self.beginning

 72

context RentalAgreement:: bestDurationPrices() :
 Set(CarGroupDurationPrice)
post:
 let applicableDuration: Set(CarGroupDurationPrice)=
 self.rentGroup.carGroupDurationPrice->
 select(cg: CarGroupDurationPrice | cg.beginning<= self.ending
 and (cg.oclIsTypeOf(EndDurationPrice) implies

cg.oclAsType(EndDurationPrice).endingDate >=
self.lastModification)

 let bestCurrentDuration: Set(CarGroupDurationPrice)=
 applicableDuration->reject(cgCur: CarGroupDurationPrice|

applicableDuration-> exists(cgOther:CarGroupDurationPrice|
cgOther.rentalDuration=cgCur.rentalDuration and
cgOther.carGroup= cgCur.carGroup and
cgOther.price<cgCur.price))

 in
 result= self.bestCurrentDuration->
 sortedBy(rentalDuration.shorter)

context RentalAgreement:: agreedEnding() : DateTime
post:
 result= initEnding

context RentalAgreement:: applicableDiscountPerDuration(rd :
RentalDuration) : Set(Discount)
post:
 let rentalApplicableDiscount: Set(Discount)=
 self.rentGroup.discount->select(dis: Discount |

 dis.beginningDate<= self.ending and
 (dis.oclIsTypeOf(ClosedDiscount) implies
 dis.oclAsType(ClosedDiscount).endingDate >=

 self.lastModification and applicable(dis, self.renter)
 in
 result= self.rentalApplicableDiscount->
 select(dis:Discount| dis.rentalDuration=rd)
documentation:
 Defining operation of the association applicable
 Discount

context RentalAgreement:: rentGroup() : carGroup
post:
 if self.oclIsKindOf(Reservation) then
 if self.car->isEmpty() or self.car.carGroup<>

 self.carGroup.worse then
 result=self.carGroup
 else
 result=self.carGroup.worse
 end if
 else
 result=self.car.carGroup
 end if

 73

Reservation

context Reservation:: onTimeReservation() : Boolean
post:
 Result=self.reservationDate < self.beginning
documentation:
 Reservation date of a rental must be previous to the
 beginning date.

context Reservation:: modelIsInGroup() : Boolean
post:
 result=self.carModel->notEmpty() implies
 self.carModel.carGroup=self.carGroup

PointsPaymentReservation

context PointsPaymentReservation:: 4DaysInAdvance() : Boolean
post:
 result=self.beginning-self.reservationDate>=day(14)

ReservationWithSpecialDiscount

context ReservationWithSpecialDiscount:: bestPrice() : Money
post:
 let reservationTimeDiscountPerDuration(rd: RentalDuration)
 =self.applicableDiscountPerDuration->select(d|d.reservationTime)
 let bestRentalDiscountPerDuration(rd:RentalDuration,

 basicPrice: Money): Discount=
self.rentalApplicableDiscountPerDuration(rd)->

 reject(disAct: Discount|
 self.rentalApplicableDiscountPerDuration(rd)->
 exists(disOther:Discount|

apply(disOther, rd).isBetter(apply(disAct, rd)))->any()
 in
 result= self.bestDurationPrices->iterate(elem;
 tup : Tuple {accInterval: Duration=self.onRentInterval,

accPrice: Money=0} |
 let timeMax:Duration= durationT(elem.timeUnit,

 elem.maximumDuration)
 let timeMin:Duration= durationT(elem.timeUnit,

 elem.minimumDuration)
 let numInt:Integer =
 if tup.accInterval >= timeMax then
 tup.accInterval/timeMax
 else
 tup.accInterval/timeMin
 in
 Tuple {accInterval:Duration=
 (if tup.accInterval >= timeMax then

 tup.accInterval%timeMax
 else
 tup.accInterval%timeMin
 endif),
 accPrice:Money= tup.accPrice+numInt*

apply(self.bestRentalDiscountPerDuration(elem.rentalDuration,
elem.price), elem.rentalDuration)}).accPrice

 74

CanceledReservation

context CanceledReservation:: correctCancellation() : Boolean
post:
 result=self.cancellingDate>=self.reservationDate and
 self.cancellingDate <=self.beginning
documentation:
 Cancelling date of a reservation must be after or equal to the
 reservation date and before the beginning date or equal to it.

GuaranteedCanceled

context GuaranteedCanceled:: fine() : Money
post:
 if self.beginning=self.cancellingDate then
 result= self.bestDurationPrices->select(cGDP |
 not(cGDP.oclIsTypeOf(EndDurationPrice)) and

 cGDP.RentalDuration.timeUnit= Period::day and
cGDP.RentalDuration.minimumDuration=1)->first().price

 else
 result=0
 end if
documentation:
 A fine of one day rental must be paid if the rental
 was guaranteed and the cancelling date is the same day
 as the expected beginning of the rental.
 Otherwise, no fine must be paid.

context GuaranteedCanceled:: allInstances() :
 Set(GuaranteedCanceled)
post:
 result=CanceledCustomer.allInstances()->

intersection(GuaranteedReservation.allInstances())

ExtendedRental

context ExtendedRental:: trueExtensions() : Boolean
post:
 let extensions:Extension=self.newEndings
 in
 result= extensions.extension->sortedBy(e|

e.extensionDone.dateTime).newEndings= extensions
 and extensions->forAll(ext| ext.extensionDone > self.beginning)

and self.newEndings->forAll(d|d>self.initEnding)

context ExtendedRental:: lastModification() : DateTime
post:
 result=self.Extension->sortedBy(extensionDone)->last()

context ExtendedRental:: agreedEnding() : DateTime
post:
 result=self.newEndings->last()

 75

ClosedRental

context ClosedRental:: rentalPriceWithTax() : Money
post:
 result= self.bestPrice * self.actualReturnBranch.country.carTax

PaidWithPointsRental

context PaidWithPointsRental:: enoughInAdvance() : Boolean
post:
 result= self.oclIsTypeOf(Reservation) and (self.beginning.day()-

self.oclAsType(Reservation).reservationDate.day())>=day(14)

context PaidWithPointsRental:: customerIsLoyaltyMember() : Boolean
post:
 result= self.renter.oclIsType(LoyaltyMember)

context PaidWithPointsRental:: allInstances():
 Set(PaidWithPointsRental)
post:
 result= ClosedRental.allInstances->select(cR|cR.paymentType=

 payType::points)

context PaidWithPointsRental:: bestPrice() : Money
post:
 result=basicPrice

LateReturn

context LateReturn:: allInstances() : Set(LateReturn)
post:
 result= ClosedRental.allInstances()->select(cR|

cR.actualReturn > cR.agreedEnding)

context LateReturn:: extraCostWithTax() : Money
post:
 let timeUnit: Period=
 if self.extraInterval.unit=Period::hour and
 self.extraInterval.numberOfUnits <= 6 then
 Period::hour
 else
 Period::day
 endif
 in
 let durationPrice: Money= self.bestDurationPrices->

select(cGDP | not(cGDP.oclIsTypeOf(EndDurationPrice)) and
cGDP.timeUnit= timeUnit and minimumDuration=1)->first().price

 let extraPrice: Money= durationPrice*(extraInterval/
durationT(timeUnit,1))+ durationPrice*(extraInterval%
durationT(timeUnit,1))

 in
 result= extraPrice * self.actualReturnBranch.country.carTax

 76

context LateReturn:: extraInterval() : Duration
post:
 result= self.actualReturn-self.ending

EarlyReturn

context EarlyReturn:: onRentInterval() : Duration
post:
 result= self.actualReturn-self.beginning

context EarlyReturn:: allInstances() : Set(EarlyReturn)
post:
 ClosedRental.allInstances()->select(initEnding-

actualReturn> hour(1))

BadExperience

context BadExperience:: typeIsKey() : DateTime
post:
 result=BadExperience.allInstances()->select(b|

b.name=self.name)->size()=1

CarDamage

context CarDamage:: allInstances() : Set(CarDamage)
post:
 result=BadExperience.allInstances()->

select(b|b.type=BadExpType::carDamage)

AssignedCar

context AssignedCar:: pickUpBbranchIsResponsible() : Boolean
post:
 result= (self.RentalAgreement.oclIsTypeOf(OpenedRental) and

not(oclIsTypeOf(ClosedRental)) implies
 self.car.branch= self.rentalAgreement.pickUpBranch
documentation:
 When a car is assigned to a reservation, the pick-up
 branch is resposible for it

Car

context Car:: onlyOneAssignment() : Boolean
post:
 result= car.rentalAgreement->select(rA |

not(rA.oclIsTypeOf(CanceledReservation) and
not(rA.oclIsTypeOf(ClosedRental)))->size()<=1

documentation:
 A car can only be assigned to a reservation in a
 certain date.

 77

context Car:: registrationNumberIsKey() : Boolean
post:
 result=Car.allInstances()->select(b|b.registrationNumber=
 self.registrationNumber)->size()=1

context Car:: carGroup() : CarGroup
post:
 result=self.carModel.carGroup

OwnCar

context OwnCar:: available?() : Boolean
post:
 result= not(self.oclIsTypeOf(NeedsMaintenance)) and
 not(self.oclIsTypeOf(RepairsScheduled)) and
 not(self.oclIsKindOf(ToBeSoldCar)) and not(self.assigned?)
 and not(self.oclIsTypeOf(BeingTransferredCar)) and

 not(self.oclIsTypeOf(NeedToBeSoldCar))

context OwnCar:: assigned?() : Boolean
post:
 result= car.rentalAgreement->exists(rA |

not(rA.oclIsTypeOf(CanceledReservation) and
not(rA.oclIsTypeOf(ClosedRental)))

NeedToBeSoldCar

context NeedToBeSoldCar:: allInstances() : Set(NeedToBeSoldCar)
post:
 OwnCar.allInstances()->select(c|today()-c.acquisitionDate>=

year(1) or self.currentMileage>=40,000)

NeedsMaintenance

context NeedsMaintenance:: notOver10PerCent() : Boolean
post:
 result= currentMileage -mileageFromLastService
 <=1,1*mileageForService or Now() - lastMaintenanceDate
 <= 1,1*timeForService

context NeedsMaintenance:: allInstances() : Set(NeedsMaintenance)
post:
 result= OwnCar.allInstances()->select(currentMileage
 -mileageFromLastService >=
 MaintenanceRequirements.mileageForService or Now() –

 lastMaintenanceDate > MaintenanceRequirements.timeForService)
documentation:
 A car needs maintenance if it was serviced more than 3
 months ago or has accumulated more than 10,000 km
 since the last service.

 78

ToBeSoldCar

context ToBeSoldCar:: notAssignedToReservation() : Boolean
post:
 self.rentalAgreement->forAll(r| r.oclIsKindOf(ClosedRental) or

 r.oclIsKindOf(CanceledReservation))

MaintenanceScheduled

context MaintenanceScheduled:: serviceDepot() : ServiceDepot
post:
 let sd:ServiceDepot=self.Branch.ServiceDepot
 in
 let occupation:Natural=sd.MaintenanceScheduled->
 select(ms|ms.beginningDate=self.beginningDate)->size()
 in
 capacity>occupation implies result=sd

ServiceDepot

context ServiceDepot:: nameIsKey() : Boolean
post:
 result=ServiceDepot.allInstances()->

select(s|s.name=self.name)->size()=1

CarModel

context CarModel:: nameIsKey() : Boolean
post:
 result=CarModel.allInstances->

select(b|b.name=self.name)->size()=1

CarGroup

context CarGroup:: nameIsKey() : Boolean
post:
 result=CarGroup.allInstances()->

select(b|b.name=self.name)->size()=1

context CarGroup:: totalOrder() : Boolean
post:
 let isWorse(w,b:CarGroup):Boolean= b.worse=w or
isWorse(w,b.worse)
 let isBetter(b,w:CarGroup):Boolean= w.better=b or

isBetter(b,w.better)
 in

 result = CarGroup.allInstances()->one(cg|cg.worse->isEmpty())
 and CarGroup.allInstances()->one(cg|cg.better->isEmpty()) and
 CarGroup.allInstances()->forall(cg1,cg2| isWorse(cg1,cg2)

 implies not isBetter(cg1,cg2) and isBetter(cg1,cg2) implies
 not isWorse(cg1,cg2))

context CarGroup:: quotaForAllBranches() : Boolean
post:
 result=self.carGroupQuota->size()=Branch.allInstances()->size()

 79

PendantCarOrder

context PendantCarOrder:: idIsKey() : Boolean
post:
 result=PendantCarOrder.allInstances()->

select(b|b.id=self.id)->size()=1

EU_RentPerson

context EU_RentPerson:: is25OrOlder() : Boolean
post:
 result= (now()- self.birthdate) >=year(25)
documentation:
 Eu-rent persons must be 25 years old or older.

context EU_RentPerson:: idIsKey() : Boolean
post:
 result=EU_RentPerson.allInstances()

->select(p|p.id=self.id)->size()=1

context EU_RentPerson:: faults() : set(FaultSeriousness)
post:
 let faultsAsDriver: FaultSeriousness= self.rentalsAsDriver->

select(rA| rA.oclIsTypeOf(ClosedRental)).faultSeriousness
 let faultsAsRenter: FaultSeriousness= self.RentalAgreement->

select(rA| rA.oclIsTypeOf(ClosedRental)).faultSeriousness
 in
 result= self.faultsAsDriver->oclAsType(Set)->
 union(self.faultsAsRenter)->asSet()

context EU_RentPerson:: belongingBranch() : Branch
post:
 let firstRental:RentalAgreement=self.rentalsAsDriver->
 union(self.rentalsAsRenter)->sortedBy(beginning)->first()
 in
 result=firsRental.pickUpBranch

Customer

context Customer:: rentalsDoNotOverlap() : Boolean
post:
 result=self.RentalAgreement-> reject(rA|

rA.oclIsKindOf(CanceledReservation)->notExists(rA |
self.rentalAgreement->select(rAOther | rAOther.beginning.day()>
rA.beginning.day())->exists(rAOther| rAOther.beginning.day() <=
rA.agreedEnding.day()))

documentation:
 A customer's rental periods cannot overlap

 80

LoyaltyMember

context LoyaltyMember:: availablePoints() : Natural
post:

let candidateRentals: Set(ClosedRental)= self.RentalAgreement->
 select(rA| rA.oclIsTypeOf(ClosedRental) and (now()- rA.ending)<

year(3) and rA.ending > (membershipDate - year(1))->
oclAsType(Set(ClosedRental))

 let earnRentals: Set(ClosedRental)= candidateRentals->
reject(cR|cR.oclIsTypeOf(PaidWithPointsRental)

 let accumulatedPoints: Integer= earnRentals->forAll(r |
result->including(pointsEarned(r.bestPrice)))->sum()

 let spendRentals: Set(ClosedRental)=
 candidateRental->select(oclIsTypeOf(PaidWithPointsRental))
 let spentPoints: Integer= spendRentals->forAll(r |

result->including (pointsSpent(r.bestPrice)))->sum()
 in
 result= accumulatedPoints-spentPoints

context LoyaltyMember:: meetsLoyalPermanence() : Boolean
post:
 result= self.RentalAgreement.beginning->exists(dT| dT>
 (now()-year(1))) and self.faults->isEmpty()
documentation:
 A member of the loyalty incentive scheme has done at
 least a rental during a year and has not recorded any
 bad experience.

Blacklisted

context Blacklisted:: noRentals() : Boolean
post:
 result= self.rentalsAsDriver->select(rA| rA.beginning
 > self.blacklistedDate)->

forAll(rA|ra.oclIsTypeOf(CanceledReservation))
documentation:
 Once an EU-rent person has been blacklisted, cannot
 participate in a rental or make a rental.

DrivingLicense

context DrivingLicense:: validLicense() : Boolean
post:

result=today()-self.issue>year(1) and
self.eu_RentPerson.rentalsAsDriver.agreeEnding->
forAll(d|d<self.expiration)

context DrivingLicense:: numberIsKey() : Boolean
post:
 result=DrivingLicense.allInstances()->

select(d|d.number=self.number)->size()=1

 81

RentalDuration

context RentalDuration:: nameIsKey() : Boolean
post:
 result=RentalDuration.allInstances()->

select(b|b.name=self.name)->size()=1

context RentalDuration:: coherentPrices() : Boolean
post:
 let curCGDPrices: Set(CarGroupDurationPrice) =
 self.carGroupDurationPrice->reject(cgdp|

cgdp.oclIsTypeOf(EndDurationPrice))
 in
 result = curCGDPrices->forAll(cgdp|cgdp.price>=
 curCGDPrices.CarGroup.worse.CarGroupDurationPrice->
 select(cg|cg.RentalDuration=self).price)

context RentalDuration:: totalOrder() : Boolean
post:
 let isShorter(s,l:RentalDuration):Boolean= l.shorter=s or

 isShorter(s,l.shorter)
 let isLonger(l,s:RentalDuration):Boolean= s.longer=l or

 isLonger(l,s.longer)
 in

result = RentalDuration.allInstances()->one(rd|
rd.shorter->isEmpty()) and RentalDuration.allInstances()->
one(rd|rd.longer->isEmpty()) and RentalDuration.allInstances()
->forAll(rd1,rd2| isShorter(rd1,rd2) implies not
isLonger(rd1,rd2) and isLonger(rd1,rd2) implies not
isShorter(rd1,rd2))

Discount

context Discount:: nameIsKey() : Boolean
post:
 result=Discount.allInstances()->

select(b|b.name=self.name)->size()=1

ClosedDiscount

context ClosedDiscount:: correctEnding() : Boolean
post:
 result= self.endingDate >= self.beginningDate

EndDurationPrice

context EndDurationPrice:: correctEnding() : Boolean
post:
 result= self.beginning <= self.endingDate

 82

6. STATE MODEL

Overview

State diagrams are used to clarify the acceptable transitions between the states. Although it
is not a crucial part in the development of this project, it has been considered appropriate
and clarifying to define the state diagrams for some of the main entities of the system.

Diagrams

Car

* CarAllocationAutomatic / CarAllocationExceptionOption / CarAllocationExtremisOption

InUseCar

Checking

BeingUsed

RepairsScheduled

Available

Assigned

ReceiveCar

MaintenanceNeeded

MaintenanceScheduled

ExternalCar

Assigned BeingUsed

ToBeSoldCar
SellCar

BeingTransferred

SoldCar

ConfirmCarSale

*

DoTransfer

EndOfMaintenance

Checking

ScheduleMaintenanceBeingUsed

CarReturn

OpenRental / MakeWalkInRental

RepairsScheduled

ScheduleMaintenance

 83

EU_RentPerson

Renter

AdditionalDriver

RecordDriverData

MakeRental

LoyaltyMember

Normal BlacklistedBlacklistCustomer

BlacklistCustomer

context Customer:: meetsLoyalCriteria(): Boolean
post:

let closedRentals: Set(ClosedRental)=
self.rentalAgreement->select(oclIsTypeOf(ClosedRental))

 in
result= self.faults->isEmpty() and self.closedRentals->select(cR| Now() -
cR.beginning < Year(1))->size() >=4

[not(meetsLoyalPermanence())]

MakeRental

JoinLoyaltyIncentiveScheme[meetsLoyalCriteria()]

RentalAgreement

CanceledReservation

Reservation

MakeReservation

Guaranteed

Walk-in rental

MakeWalkInRental

OpenRental

NonGuaranteed

OpenRental

OpenRental

ClosedRental

CarReturn
CanceledCustomer CanceledCompany

CancelReservation CancelNoShowReservations

 84

7. EVENTS MODELLING

Overview

Once the system use cases have been defined, system events are obtained analyzing
carefully and identifying the interactions between the system and the actors. The typical
approach to model events is via the so-called system operations.

However, in this document a different approach has been aimed to be tested. This approach
consists in modelling the events as objects as explained in [EE] and so, exploit the
characteristics of the OO to avoid, for example, the rewriting of the same constraint in
different events.

This technique has been combined with the already introduced ones to specify constraints
and derivation rules and so, being consistent with the static model.

Previous remarks

In EU-Rent Rentals case there are some events of a considerable difficulty and importance.
For convenience, this events have been split up in smaller events to favour understanding
and self-description, because otherwise would be almost impossible to describe some of the
events formally.

Event diagrams

The events modelling has been divided in packages, corresponding to thematic areas, in
order to ease understanding. These are the following:

Reservation
Management Events

Existance
Events

Customer
Management Events

Pricing and Discounting
Management Events

Car Allocation
Events

Car Preparation and
Maintenance Events

Car Management
Events

Car Pick-Up and
Return Events

Branch, CarGroup and
Models Management

Performance Indicators
Management Events

 85

Events hierarchy

Existance Events

Event
time : DateTime

apply()

<<<<event>>>>

ExistingCarGroup
carGroup : String

carG()

CarGroup

CarModel

ExistingCarModel
carModel : String

carM()

EU_RentPerson

ExistingPerson

id : String

person()

RentalAgreement

ExistingRental

beginning : DateTime

rental()

Discount

ExistingDiscount
discountName : String

discount()

RentalDuration

ExistingRentalDuration

durationName : String

duration()
ExistingBranch

branchName : String

branch()

Branch

TransferAgreement

ExistingTransferAgreement

branchName1 : String
branchName2 : String

transferAg()

Car
ExistingCar

regNumber : String

car()

PendantCarOrder

ExistingPendantOrder

id : Integer

pendantOrder()

PerformanceIndicator

ExistingPerformanceIndicator

name : String

perfInd()

1
+carG

1

/ Identifies

1+carM 1

/ Identifies

1
+person

1

/ Identifies

1+rental 1

/ Identifies

1
+discount

1

/Identifies

1+duration 1

/Identifies

1+branch1

/Identifies

1..2 +transferAg1..2

/Identifies

1

+car

1/ Identifies

1
+pendantOrder

1

/Identifies

1+perfInd 1

/Identifies

Event
time : DateTime

apply()

<<<<event>>>>

ExternalDomainEvent ExternalQueryEvent ActionRequestEvent

GeneratedDomainEvent GeneratedQueryEvent

 86

Reservation Management Events

ExternalQueryEvent ActionRequestEvent

MakeReservationWithCarModel

apply()

ExistingCarModel

carModel : String

MakeWalkInRentalWithCarModel

candidateCars()

EndWalkInRental

apply()
ExistingCarGroup

carGroup : String

Car
(from EU-Rent entities)

MakeWalkInRental

candidateCars()
apply()

1..n

+candidateCars

1..n

/CandidateToBeAssigned

ExistingPersonCheck

id : String
answerExists : Boolean

apply()

EU_RentPerson
(from EU-Rent entities)

0..1+answerPerson 0..1

Branch
(from EU-Rent entities)

MakeRental
beginning : DateTime
ending : DateTime
pickUpBranch : String
dropOffBranch : String
countries : Set(String)

<<IC>> countriesExists()
<<IC>> branchesInCountries()
<<IC>> availability()
pickUpBranch()
dropOffBranch()
apply()

1

+renter

1

1
+pickUpBranch

1

/ PickUpIdentifies

1
+dropOffBranch

1

/ DropOffIdentifies

CancelCurrentRental

apply()

RentalAgreement

1
+answerRental

1

AnswerRental

1

+rental

1

EndCurrentRental

1

+rental

1

MakeReservation

apply()

GuaranteeReservation
creditCard : Natural

apply()

Reservation
(from EU-Rent entities)

1

+answerRental

1

AnswerRental
1

+reservation
1

EndReservation

1+rental 1

 87

RentalExtension

newEnd : DateTime

<<IC>> openedRentalExists()
<<IC>> maintenanceNotNeeded()
apply()

Reservation
(from EU-Rent entities)

GetReservation

<<IC>> reservationExists()
apply()

1 +answerReservation1

CancelResevation

apply()

GuaranteedReservation
(from EU-Rent entities)

/CancelGuaranteedReservation

allInstances()
apply()

+reservation

Event
(from EU-Rent events)

<<<<event>>>>

CheckTodayResWithoutCarDerived

/ CheckTodayReservationWithoutCar

allInstances()
apply()

CheckTodayResWithoutCarBasic

Reservation
(from EU-Rent entities)

1

+reservation

1

/

ExistingCar

regNumber : String

CheckTodayResWithoutCarBasic
ActionRequestEvent

(from EU-Rent events)

ExistingRental

beginning : DateTime
ExternalQueryEvent

(from EU-Rent events)

 88

Customer Management Events

JoinLoyaltyIncentiveScheme

apply()

ActionRequestEvent
(from EU-Rent events)RecordDriverData

drivingLicenseNumber : Natural
issue : Date
expiration : Date

apply()

EU_RentPerson
(from EU-Rent entities)

1
+person

1

RecordCustomer
id : String
name : String
address : String
birthdate : Date

apply()

1

+answerPerson

1

ExistingPerson
id : String

CancelLoyaltyMembership

<<IC>> isMember()
apply()

DefaultingCustomer
problemSeriousness : Level
answerToBeBlacklisted : Boolean

apply()

ExternalDomainEvent
(from EU-Rent events)

ExistingRental
(from Existance Events)

ExternalQueryEvent
(from EU-Rent events)

GeneratedDomainEvent
(from EU-Rent events)

BlacklistCustomer

apply()

CancelCustomersReservations
motivation : CancellingMotivation

apply()

GetLoyaltyCandidates

apply()

EU_RentPerson
(from EU-Rent entities)

1 +person1

0..*
+answerCustomers

0..*

GetTodayBlacklisted

apply()

0..*

+answerCustomers

0..*

 89

Pricing and Discounting Management Events

GeneratedQueryEvent
(from EU-Rent events)

OfferPaymentWithPoints
answerOptions : Sequence(TupleType(id:String,desc:Integer))

apply()

ActionRequestEvent
(from EU-Rent events)

OfferSpecialAdvantatges
answerSOptions : Sequence(TupleType(id:String,desc:Money))

apply()

ChooseDiscountOption
selectedOption : String

<<IC>> validOption()
apply()

ShowBestBasePrice
answerPrice : Money

apply()

Reservation

1
+reservation

1

1+reservation1

1

+reservation

1

ShowBestPrice
answerPrice : String

apply()

1

+reservation

1

RecordNewDiscount
name : String
effect : String
description : String
reservationTime : Boolean
applicableDurations : Set(String)
applicableGroups : Set(String)

<<IC>> durationsExist()
<<IC>> groupsExist()
apply()

CloseDiscount

apply()

ExistingDiscount
discountName : String

ActionRequestEvent
(from EU-Rent events)RecordNewRentalDuration

name : String
minimumDuration : Natural
maximumDuration : Natural
timeUnit : Period
previousName[0..1] : String

<<IC>> previousExists()
apply()

ExistingCarGroup
carGroup : String

SpecifiyCarGroupDurationPrice
price : Money

NewCarGroupDurationPrice

apply()

ExistingRentalDuration
(from Existance Events)

RentalDuration
(from EU-Rent entities)

NewCGDPForNewDuration

apply()

1
+duration

1

ChangeCarGroupDurationPrice

apply()

 90

Car Allocation Events

ExternalQueryEvent

ExternalDomainEvent

In many events, the branch where the
transaction is done is passed as an
entry parameter. However, it would be
logical that this could be obtained as a
"global" parameter in the environment
where the transaction is done.

ExistingBranch
branchName : String

ActionRequestEvent

ChangeTransferAgreementData
distance : Integer
expectedTime : Double

apply()

ExistingTransferAgreement

branchName1 : String
branchName2 : String

IntroduceTransferData
distance : Natural
expectedTime : Double

apply()
TransferAgreement

GetCarsToBeTransferred

answerTransfers : Sequence(TupleType(carRegN: String, destination: String))

apply()

TransferOwnership

<<IC>> validCar()
<<IC>> validBranch()
apply()

CreateTransferAgreement

answerDataNeeded : Boolean

<<IC>> notPreviousAgreement()
apply()

Branch

CancelTransferAgreement

<<IC>> transferAgExists()
apply()

CarAllocationExceptionOption

option : String

<<IC>> validOption()
apply()

CarAllocationExtremisOption
option : String

<<IC>> validOption()
apply()

Reservation
CarAllocationWithAnExtremisRule

answerOptions : Set(String)

apply()

ExistingCar

regNumber : String

ExternalQueryEvent

+transAg
11

+answerTransAg11

+branch

11
+branch11

+receiverBranch

11+receiverBranch
11

+reservation
11 +reservation

11

+reservation
11

 91

CarAllocationWithAnExceptionRule
answerOptions : Set(String)

apply()

CarAllocationAutomatic

apply()

ActionRequestEvent

ExternalQueryEvent

CarAllocationKind
answerKind : AllocationType

apply()

CarGroup
name : String

ExtendedCarAllocationDefinitions
/ upWalkInPossible : Boolean
/ 2upgradePossible : Boolean
/ downgradePossible : Boolean
/ transferPossible : Boolean
/ servicePossible : Boolean

downgradeGroup()
2upgradeGroup()
upWalkInPossible()
2upgradePossible()
downgradePossible()
transferPossible()
servicePossible()

ExtendedCarAllocationDefinitions

Branch

/ GroupAvailability

CarGroup

Natural

DemandXModel
/ demand : Natural

demand()

CarAllocationDefinitions
/upgradePossible : Boolean

curBranch()
curGroup()
upgradeGroup()
groupQuota()
groupAvail()
upgradePossible()
demXModel()
demXGroup()

DemandXGroup
/ demand : Natural

demand()

AllocationType
automatic
exception
inExtremis

<<enumeration>>

ExternalQueryEvent

SellCarsInNeed

apply()

AllocationEstimators

apply()

Branch

CancelNoShowReservations

apply()

+2upgradeGroup

0..1

0..1

+downgradeGroup

0..1

0..1

+curGroup
1

+upgradeGroup

0..1

+demXModel
0..*

+curBranch

1
/

1 +groupAvail1

/GroupAvail

11

/GroupQuota

0..*+demXGroup
0..n0..n

+branch

1
+branch
1

1

Reservation

+answerGuaranteedReservation {ordered}

0..n
+answerLoyaltyReservation {ordered}

0..n

+answerOtherReservation {ordered}

0..n

+reservation

1

 92

Car Preparation and Maintenance Events

CarPrepared

apply()

ExternalQueryEvent
(from EU-Rent events)

ExternalDomainEvent
(from EU-Rent events)

ExistingRental

beginning : DateTime

ExistingCar
regNumber : String

EndOfMaintenance
answerSellCar? : Boolean

<<IC>> carWasBeingMaintained()
apply()

EndOfRepairs
answerSellCar? : Boolean

<<IC>> carWasBeingRepaired()
apply()

OwnCar
(from EU-Rent entities)

RecordNewMileage
newMileage : Double
damagesDetected? : Boolean
answerSellCar? : Boolean

<<IC>> validMileage()
apply()

1
+car

1

Branch
(from EU-Rent entities)

GetCarsToBePrepared

apply()

1+branch 1

Car
(from EU-Rent entities)

0..n

+answerCar {ordered}

0..n

DamagesEvaluation

damagesDetected? : Boolean
answerOwnCar? : Boolean

apply()

1
+answerCar

1

Car
(from EU-Rent entities)

RecordDamages
damageDegree : Level
cost : Money
answerToBeBlacklisted : Boolean

<<IC>> rentalIsClosed()
apply()

1 +answerCar1

CheckTodayResWithoutCarDerived
(from Reservation Management Events)

ExternalQueryEvent
(from EU-Rent events)

ScheduleMaintenance
beginning : Date

<<IC>> carNeedsMaintenance()
apply()

ExternalDomainEvent
(from EU-Rent events)

 93

Car Pick-up and Return Events

ExternalQueryEvent
(from EU-Rent events)

ExistingPerson
id : String

ExistingReservationForToday
answerExpectLatePrep : Boolean

<<IC>> reservationExists()
apply()

ApologiseForLatePreparation

apply()

Reservation
(from EU-Rent entities)

1

+answerReservation

1

1

+reservation

1

ApologisePlusReimbursement

apply()

ApologisePlusCancelation

apply()

RentalDetails
answerDetails : TupleType

apply()

RentalAgreement
1

+rental
1

NonReturnedRentals

apply()

0..*

+answerRentals

0..*

Branch
(from EU-Rent entities)

+1 branch

NonReturned3DayRentals
answerDetails : Sequence(TupleType)

apply()

1+branch 1

ActionRequestEvent
(from EU-Rent events)

ActionRequestEvent
(from EU-Rent events)

ExternalDomainEvent
(from EU-Rent events)

ExistingRental
beginning : DateTime

ClosedRental
(from EU-Rent entities)

PaymentData

payType : PayType
creditCardDamages : Integer

apply()

1 +rental1

OpenRental
answerLatePreparation : Boolean

apply()

EU_RentPerson

RentalAgreement
(from EU-Rent entities)

1
+rental

1

AddDriverToRental

apply()

1
+driver

1

1

+rental

1

ExternalQueryEvent
(from EU-Rent events)

FreeCarsInNotPickedUpR

apply()

Branch
(from EU-Rent entities)

1+branch 1

CarReturn
answerCost : Money

apply()

1

+branch

1

 94

Car Management Events

ActionRequestEvent
(from EU-Rent events)

ExistingCarModel
carModel : String

OrderCar

apply()

Branch
(from EU-Rent entities)

1

+branch

1

CarGroup
(from EU-Rent entities)

CalculateOwnCars
/ ownCars : Natural
/ quota : Natural
/ carsAvailable : Natural
answerSurplus : Boolean
answerLack : Boolean

apply()
ownCars()
quota()
carsAvailable()

1
+branch

1

1

+carGroup

1

BranchesWithSurplusOfCarGroup

apply()

BranchesWithLackOfCarGroup

apply()

ActionRequestEvent
(from EU-Rent events)

BranchesTransfers
answerTransfers : Sequence(TupleType)

Branch
(from EU-Rent entities)

1
+branch

1

CarGroup

1

+carGroup

1

MoveCars
neededCars : Natural
answerNeededCars : Natural
carsOtherBranchCanMove : Natural
/ movedCars : Natural

movedCars()
apply()

1+otherBranch1

1

+askingBranch

1

1
+carGroup

1
RequestTransfer

apply()

DoTransfer

apply()

/WithSurplus
answerSurplusQ : Natural

allInstances()
apply()

/WithLack
answerLackQ : Natural

allInstances()
apply()

ExternalQueryEvent
(from EU-Rent events)

Car
(from EU-Rent entities)

SellCar

<<IC>> notAssigned()
apply()

1 +car1

Car
(from EU-Rent entities)

ConfirmCarSale

<<IC>> carToBeSold()
apply()

11
ExternalQueryEvent

(from EU-Rent events)

ExternalDomainEvent
(from EU-Rent events)

ReceiveCar
regNumber : String

apply()

ExistingPendantOrder
id : Integer

 95

Branch, Car Group and Models Management Events

Branch
(from EU-Rent entities)

ExternalQueryEvent
(from EU-Rent events)

Country
(from EU-Rent entities)

ExistingCountryCheck

countryName : String
answerCountryExists : Boolean

apply()
0..1

+answerCountry

0..1

CreateBranch

branchName : String
branchType : BranchTypeName
quotas : TupleType

<<IC>> branchesExists()
apply()

Country

1+country 1

RecordCountryInformation

name : String
mechanicalCondReq : Set(String)
emissionsReq : Set(String)
carTax : Double

apply()

1

+answerCountry

1

CarModel
(from EU-Rent entities)

ExistingCarModelCheck

modelName : String
answerCarModelExists : Boolean

apply()

0..1

+answerModel

0..1

ChangeModelGroup

apply()

CreateCarGroup
carGroupName : String
previousGroupName[0..1] : String
defaultQuota : Natural

apply()

CarGroup
(from EU-Rent entities)

1

+answerNewCarGroup

1 0..1

+previousCarGroup

0..1

AddModelToGroup

apply()

1
+group

1

CreateCarModel

name : String
techChars : Sequence(String)

apply()

CarModel

1

+model

1

1

+answerModel

1

ExistingCarModel

carModel : String

ExistingCarGroup

carGroup : String

ActionRequestEvent
(from EU-Rent events)

ChangeCarGroupQuota

newQuota : Natural

apply()

1
+branch

1

 96

Performance Indicators Events

ExistingPerformanceIndicator
name : String

ExternalQueryEvent
(from EU-Rent events) ActionRequestEvent

(from EU-Rent events)

ExistingCountryBranchType
countryName : String
branchType : BranchTypeName

<<IC>> CountryBranchTypeExists()
apply()

ChangeTargetForConcreteIndicator
newTarget : Object

apply()

/ CountryBranchType
(from EU-Rent entities)

1

+answerCountryBranchType

1

1+countryBranchType1

PerfomanceIndicatorCheck

name : String
answerPerformanceIndExists : Boolean

apply()

DefineTargetForConcreteIndicator
target : Object

<<IC>> notPreviousTarget()
apply()

1

+countryBranchType

1

CreateIndicator

name : String
description : String

apply()

PerformanceIndicator

0..1+answerPerformanceIndicator0..1

1+perfIndicator1

1

+answerPerformanceIndicator

1

 97

Complete specification of defining event operations and their
auxiliary associated to derived elements and integrity
constraints

EXISTANCE EVENTS

ExistingBranch

context ExistingBranch:: branch() : Branch
post:
 let br:Set(Branch)=Branch.allInstances()->
 select(b|b.name=self.branchName)
 in
 br->notEmpty() implies result=br->any()

ExistingTransferAgreement

context ExistingTransferAgreement:: transferAg() : TransferAgreement
post:
 let transAg: Set(TransferAgreement)=TransferAgreement.

allInstances()->select(tA|
(tA.transferor.name=self.branchName1 and tA.receiver.name=
self.branchName2) or (tA.transferor.name= self.branchName2
and tA.receiver.name= self.branchName1))

 in
 transAg->isNotEmpty() implies result=transAg->any()

ExistingPerson

context ExistingPerson:: person() : Branch
post:
 let euPerson:Set(EU_RentPerson)=
EU_RentPerson.allInstances()

->select(p | p.id= self.id)
 in
 euPerson->notEmpty() implies result=euPerson->any()

ExistingRental

context ExistingRental:: rental() : RentalAgreement
post:
 let rent: Set(RentalAgreement)= self.person.RentalAgreement

->select(r|r.beginning=self.beginning)
 in
 rent->notEmpty() implies result=rent->any()

ExistingCar

context ExistingCar:: car() : Car
post:
 let carI: Set(Car)=Car.allInstances()->
 select(c|c.registrationNumber=self.regNumber)
 in

 98

 carI->notEmpty() implies result=carI->any()

ExistingCarGroup

context ExistingCarGroup:: carG() : CarGroup
post:
 let carGr:Set(CarGroup)= carGroup.allInstances()->
 select(cG| cG.name=self.carGroup)
 in
 carGr->notEmpty() implies result=carGr->any()

ExistingCarModel

context ExistingCarModel:: carM() : CarModel
post:
 let carMod: Set(CarModel)=CarModel.allInstances()->
 select(cM| cM.name=self.carModel)
 in
 carMod->notEmpty() implies result=carMod->any()

ExistingDiscount

context ExistingDiscount:: discount() : Discount
post:
 let dis: Set(Discount)= Discount.allInstances()->

select(d|d.name=self.discountName)
 in
 dis->notEmpty() implies result= dis->any()

ExistingRentalDuration

context ExistingRentalDuration:: duration() : RentalDuration
post:
 let rentDuration:Set (RentalDuration)=RentalDuration.

allInstances()->select(rd| rd.name=self.durationName)
 in
 rentDuration->notEmpty() implies result= rentDuration->any()

ExistingPendantOrder

context ExistingPendantOrder:: pendantOrder() : PendantCarOrder
post:
 let pendantOrd: Set(pendantCarOrder)=
 pendantCarOrder.allInstances()->select(p| p.id=self.id)
 in
 pendantOrd->size()=1 implies result=pendantOrd->any()

ExistingPerformanceIndicator

context ExistingPerformanceIndicator:: perfInd() :
 PerformanceIndicator
post:
 let perf: Set(PerformanceIndicator)= PerformanceIndicator.
 allInstances()->select(pi|pi.name=self.name)

 99

 in
 perf->notEmpty() implies result=perf->any()

RESERVATION MANAGEMENT EVENTS

MakeRental

context MakeRental:: countriesExists() : Boolean
post:
 self.countries-> forAll(name | Country.allInstances()->

exists(c|c.name=name))

context MakeRental:: ranchesInCountries() : Boolean
post:
 let pickUpCountryN: String= self.pickUpBranch.country.name
 let dropOffCountryN: String= self.dropOffBranch.country.name
 in
 result = self.countries->includes(pickUpCountryN) and
 self.countries->includes(dropOffCountryN)

context MakeRental:: availability() : Boolean
post:
 let todayAvailability: Integer= self.pickUpBranch.

groupAvailability->select(gA|gA.carGroup=
self.carG).quantity

 let validRental:RentalAgreement=Reservation.allInstances()
 ->reject(r|r.oclIsTypeOf(CanceledReservation))->
 select(r|r.carGroup=self.carGroup)-
>forAll(r|r.car=isEmpty)->
 union(RentalAgreement.allInstances()->select(r.car->
 isNotEmpty() and r.isGroup=self.carG)
 let sumReservation=validReservation->
 select(r|not(r.pickUpBranch=self.pickUpId)
 and r.dropOffBranch=self.pickUpId and
r.agreedEnding.date()

 < self.beginning and not(r.oclIsTypeOf(ClosedRental))
 let decReservation=validReservation->select(r|r.beginning >

 now() and r.pickUpBranch=self.pickUpId and
 (not(r.dropOffBranch=self.pickUpId) or

 r.agreedEnding.date() < self.date))
 in
 result=(todayAvailability+sumReservation) > decReservation

context MakeRental:: pickUpBranch() : Branch
post:
 let branches:Set(Branch) = Branch.allInstances()->

select(name=self.pickUpId)
 in
 branches->size()=1 implies result=branches->any()

context MakeRental:: dropOffBranch() : Branch
post:
 let branches:Set(Branch) = Branch.allInstances()->

select(name=self.dropOffId)

 100

 in
 branches->size()=1 implies result=branches->any()

context MakeRental:: apply()
post:
 let getCountries:Set(Country) =self.countries-> forAll(name
|

 Country.allInstances()->select(c|c.name=name))
 in
 renter.oclIsTypeOf(Customer) and rental.oclIsNew() and
 rental.oclIsTypeOf(RentalAgreement) and

 rental.beginning=beginning and rental.renter=renter and
rental.initEnding=self.ending and
rental.pickUpBranch=self.pickUpBranch and

 rental.dropOffBranch=self.dropOffBranch and
 rental.country= getCountries and answerRental=r

MakeWalkInRental

context MakeWalkInRental:: candidateCars() : CarGroup
post:
 let carsAv: Set(Car)= self.pickUpBranch.carsAvailableNow
 let carsFreed: Set(Car)= self.pickUpBranch.car->

select(c|c.assigned? and c.rentalAgreement->
exists(r|r.beginning.date()=today() and

 not(r.oclIsTypeOf(OpenedRental)) and
not(r.oclIsTypeOf(GuaranteedRental)) and now –beginning
>(minute(90))))

 result= carsAv->union(self.carsFreed)->select(c|c.carGroup=
 self.carG)

context MakeWalkInRental:: apply()
post:
 self.oclAsType(MakeRental).^apply and self.beginning >
 self.time and self.beginning.day()=self.time.day()
 and self.answerRental.car=

candidateCars->sortedBy(mileageFromLastService)->first()

MakeWalkInRentalWithCarModel

context MakeWalkInRentalWithCarModel:: candidateCars() : CarModel
post:
 let carsAv: Set(Car)= self.pickUpBranch.carsAvailableNow
 in
 let carsModAv: Set(Car)= carsAv-
>select(c|c.carModel=self.carM)
 in
 result=
 if carsModAv->notEmpty() then
 carsModAv
 else
 carsAv-> select(c|c.carGroup= self.carG)
 end if

 101

MakeReservation

context MakeReservation:: apply()
post:
 self.oclAsType(MakeRental).^apply() and
 self.answerRental.reservationDate=self.time and
 self.answerRental.carGroup=carG

MakeReservationWithCarModel

context MakeReservationWithCarModel:: apply()
post:
 self.oclAsType(MakeReservation).^apply() and
 self.answerRental.carModel=self.carM

ExistingPersonCheck

context ExistingPersonCheck:: apply()
post:
 let pers: Set(Person)= EU_RentPerson.allInstances()->

select(p|p.id=self.id)
 in
 self.answerExists=pers->isNotEmpty() and pers->isNotEmpty()

implies self.answerPerson=pers->any()

CancelCurrentRental

context CancelCurrentRental:: apply()
post:
 RentalAgreement.allInstances()->excludes(self.rental)

GuaranteeReservation

context GuaranteeReservation:: apply()
post:
 self.reservation.oclIsTypeOf(GuaranteedReservation)
 and self.reservation.oclAsType(GuaranteedReservation).

 creditCardNumber=self.creditCard

EndWalkInRental

context EndWalkInRental:: apply
post:

GetReservation

context GetReservation:: reservationExists() : Boolean
post:
 result=self.rental.oclIsKindOf(Reservation) and
 not(self.rental.oclIsKindOf(CanceledReservation))

context GetReservation:: apply()
post:

 102

 answerReservation= self.person.Rental
 Agreement->select(r| r.beginning=self.beginning)

RentalExtension

context RentalExtension:: openedRentalExists() : Boolean
post:
 result=self.rental.oclIsKindOf(OpenedRental) and
 not(self.rental.oclIsKindOf(CanceledReservation))

context RentalExtension:: maintenanceNotNeeded() : Boolean
post:
 result=not(self.rental.car.oclIsTypeOf(NeedsMaintenance))

context RentalExtension:: apply()
post:
 let newExtension:Extension =

self.openedRental.newEndings.last().extension
 in
 self.rental.oclIsTypeOf(ExtendedRental) and

 self.newExtension.oclIsNew() and self.newExtension.extension
 Done=self.time and self.newExtension.dateTime=self.newEnd

CancelReservation

context CancelResevation:: apply()
post:
 self.reservation.oclIsTypeOf(CanceledCustomer)

CancelGuaranteedReservation

context CancelGuaranteedReservation:: allInstances() : Boolean
post:
 CancelReservation.allInstances()->select(cr
 |cr.reservation.oclIsKindOf(GuaranteedReservation) and
 cr.reservation.beginning.date()=today())

context CancelGuaranteedReservation:: apply()
post:
 self.oclAsType(CancelReservation).^apply() and
 charge(self.reservation.oclAsType(GuaranteedCanceled).fine,
 self.oclAsType(GuaranteedReservation).creditCardNumber)

CheckTodayReservationWithoutCar

context CheckTodayReservationWithoutCar:: allInstances() : Boolean
post:
 result=CheckTodayResWithoutCarBasic.allInstances()->

union(CheckTodayResWithoutCarDerived.allInstances())

 103

context CheckTodayReservationWithoutCar:: apply()
post:
 let pendantReservation: Set(Reservation)=
 Reservation.allInstances-
>select(r|r.beginning.date()=today() and
 r.car->isEmpty)-> select(r|r.pickUpBranch=
 self.reservation.pickUpBranch)
 let carG: CarGroup=self.reservation.car.carGroup
 let pendGroupR:Set(Reservation)=self.pendantReservation
 ->select(r|r.carGroup=self.carG or
r.carGroup=self.carG.better or

r.carGroup=self.carG.worse)
 in
 if self.reservation.beginning.date()=today and

self.pendGroup->isNotEmpty() then
 self.pendGroup->any().car=self.reservation.car
 end if

CUSTOMER MANAGEMENT EVENTS

RecordCustomer

context RecordCustomer:: apply()
post:
 p.oclIsNew() and and p.oclIsTypeOf(EU_RentPerson) and
 p.id=self.id and p.name=self.name and p.address=self.address
 and p.birthdate= self.birthdate and answerPerson=p

RecordDriverData

context RecordDriverData:: apply()
post:
 dl.oclIsNew() and dl.oclIsTypeOf(DrivingLicense) and
 dl.number=self.drivingLicenseNumber and
 dl.issue=self.issue and dl.expiration=self.expiration
 and dl.EU_RentPerson = self. person

JoinLoyaltyIncentiveScheme

context JoinLoyaltyIncentiveScheme:: apply() : Branch
post:
 self.person.oclIsTypeOf(LoyaltyMember) and
 self.person.oclAsType(LoyaltyMember).membershipDate=today()

CancelLoyaltyMembership

context CancelLoyaltyMembership:: isMember() : Boolean
post:
 self.person.oclIsTypeOf(LoyaltyMember)

context CancelLoyaltyMembership:: apply() : Boolean
post:
 not(self.person.oclIsTypeOf(LoyaltyMember))

 104

DefaultingCustomer

context DefaultingCustomer:: apply() : Boolean
post:
 let fault:FaultSeriousness= self.rental.faultSeriousnes->
 select(f|f.badExperience.type=paymentProblem)
 in
 self.fault.oclIsNew and self.fault.degree= self.problem

 Seriousness and self.answerToBeBlacklisted=
blacklistingCriteriaAchieved(self.person)

 and not self.person.oclIsTypeOf(LoyaltyMember)

CancelCustomersReservations

context CancelCustomersReservations:: apply()
post:

 let openRes: Reservation= self.person.rentalsAsRenter@pre->
 select(r| r.oclIsTypeOf(Reservation))->

reject(r.oclIsTypeOf(OpenedRental) or
r.oclIsTypeOf(CanceledReservation))

 in
 openRes->forAll(r| r.oclIsTypeOf(CanceledReservation)
 and r.oclAsType(CanceledReservation).motivation=
self.motivation)

BlacklistCustomer

context BlacklistCustomer:: apply()
post:
 self.person.oclIsTypeOf(Blacklisted) and
 self.person.oclAsType(Blacklisted).blacklistedDate=today()
and

 self.oclAsType(CancelCustomersReservations).^apply()

GetLoyaltyCandidates

context GetLoyaltyCandidates:: apply()
post:
 let curBranch:Branch= Branch.allInstances()->
 select(b|b.name=currentBranchName())
 let closedRentalsLastYear(p:EU_RentPerson)=
p.RentalAgreement->

select(oclIsTypeOf(ClosedRental))->select(cR| Now() –
cR.beginning < Year(1))

 in
 answerCustomers= curBranch.branchCustomer->reject(

oclIsTypeOf(LoyaltyMember) or oclIsTypeOf(Blacklisted))->
select(p| p.faults->isEmpty() and

self.closedRentalsLastYear(p)
->count>=4 and self.closedRentalsLastYear(p).actualReturn->
collect(d|d.date())->includes(today()))

GetTodayBlacklisted

context GetTodayBlacklisted:: apply()
post:
 answerCustomers= Blacklisted.all

 105

 Instances()->select(b|b.blacklistedDate=today())

PRICING AND DISCOUNTING MANAGEMENT EVENTS

OfferSpecialAdvantatges

context OfferSpecialAdvantatges:: apply()
post:
 let basePr:Money=self.reservation.basicPrice
 let bestPrice:Money=self.reservation.bestPrice
 let reservationTimeDiscountPerDuration(rd: RentalDuration)
 =self.reservation.applicableDiscountPerDuration

->select(d|d.reservationTime)
 let bestRentalDiscountPerDuration(rd:RentalDuration,

 basicPrice: Money) : Discount=
self.rentalApplicableDiscountPerDuration(rd)->
reject(disAct: Discount|
self.rentalApplicableDiscountPerDuration(rd)->

 exists(disOther:Discount| apply(disOther,
 rd).isBetter(apply(disAct, rd)))->any()
 let bestSpD: Money = self.bestDurationPrices->iterate(elem;
 tup : Tuple {accInterval: Duration=self.onRentInterval,

accPrice: Money=0} |
 let timeMax:Duration= durationT(elem.timeUnit,
 elem.maximumDuration)
 let timeMin:Duration= durationT(elem.timeUnit,

 elem.minimumDuration)
 let numInt:Integer =
 if tup.accInterval >= timeMax then
 tup.accInterval/timeMax
 else
 tup.accInterval/timeMin
 in
 Tuple {accInterval:Duration=
 (if tup.accInterval >= timeMax then

 tup.accInterval%timeMax
 else
 tup.accInterval%timeMin
 endif),
 accPrice:Money= tup.accPrice+
 numInt*apply(self.bestRentalDiscountPerDuration

 (elem.rentalDuration, elem.price),
elem.rentalDuration)}).accPrice

 in
 answerSOptions=Sequence{}->append(Tuple{id="Base price",

desc= basePr.toString})->
 append(Tuple{id="Best price", desc=bestPr.toString}) ->

append(Tuple{desc="Special Advantatges", desc=bestSpD})

 106

OfferPaymentWithPoints

context OfferPaymentWithPoints:: apply()
post:
 let basePr:Money=self.reservation.basicPrice
 let points:Integer=points(basePr)
 in
 self.oclAsType(OfferSpecialAdvantatges).^apply() and
 if (self.reservation.renter.oclIsTypeOf(LoyaltyMember)
 and self.oclAsType(LoyaltyMember).availablePoints>=points
and
 (self.reservation.beginning.day()-
 self.reservation.reservationDate.day()) >=day(14))
 self.answerOptions=self.answerSOptions->

 append(Tuple(id="Points", desc=points)
 else
 self.answerOptions=self.answerSOptions
 end if
documentation:
 Accuracy is difficult to define in this operation,
 because of a non automatic definition of
 discounts...etc

ChooseDiscountOption

context ChooseDiscountOption:: validOption() : Boolean
post:
 result= (self.selectedOption="Special Advantatges") or
 (self.selectedOption="Best Price") or
(self.selectedOption=

 "Points")

context ChooseDiscountOption:: apply() : Boolean
post:
 if (selectedOption="Special Advantatges") then

self.reservation.oclIsTypeOf(ReservationWithSpecialDiscount)
 else
 if (selectedOption=" Points") then

self.reservation.oclIsTypeOf(PointsPaymentReservation)
 end if
 end if

ShowBestBasePrice

context ShowBestBasePrice:: apply() : Boolean
post:
 self.answerPrice=self.reservation.bestPrice.toString()

ShowBestPrice

context ShowBestPrice:: apply() : Boolean
post:
 self.answerPrice=self.reservation.basicPrice

 107

RecordNewDiscount

context RecordNewDiscount:: durationsExist() : Boolean
post:

self.applicableDurations->forAll(dur |
 RentalDuration.allInstances() ->exists(d|d.name=dur))

context RecordNewDiscount:: groupsExist() : Boolean
post:
 self.applicableGroups->forAll(group |
CarGroup.allInstances()

 ->exists(g|g.name=group))

context RecordNewDiscount:: apply() : Boolean
post:
 let getDurations:Set(RentalDuration)=
self.applicableDurations->

forAll(name|RentalDuration.allInstances()-
>select(r|r.name=name)

 let getGroups:Set(CarGroup) = self.applicableGroups->
forAll(name| CarGroup.allInstances()-

>select(cg|cg.name=name)
 in

dis.oclIsNew() and dis.oclIsTypeOf(Discount) and dis.name=
 self.name and dis.effect=self.effect and dis.description=

self.description and
dis.reservationTime=self.reservationTime

and dis.beginningDate=self.time.date() and dis.carGroup=
self.getGroups and dis.rentalDuration=self.getDurations

CloseDiscount

context CloseDiscount:: apply() : Boolean
post:
 self.discount.oclIsTypeOf(ClosedDiscount) and
 self.discount.oclAsType(ClosedDiscount).endingDate

=self.time.date()

RecordNewRentalDuration

context RecordNewRentalDuration:: previousExists() : Boolean
post:
 previousName->notEmpty() implies
RentalDuration.allInstances()

->exists(rd| rd.name= self.durationName)

context RecordNewRentalDuration:: apply() : Boolean
post:
 let previousRC:RentalDuration= RentalDuration.allInstances()

->select(r|r.name=self.previousName)
 in

rc.oclIsNew() and rc.oclIsTypeOf(RentalDuration) and
rc.name=

 self.name and rc.minimumDuration=self.minimumDuration and
rc.maximumDuration= self.maximumDuration and
rc.timeUnit=self.timeUnit and

 108

 if previousRC->notEmpty() then
 rc.shorter=self.previousRC->any() and
 rc.longer=self.previousRC->any().longer@pre
 else
 rc.shorter->isEmpty() and rc.longer=RentalCategory.

allInstances() ->any(r|r.shorter@pre->isEmpty)
 end if

NewCarGroupDurationPrice

context NewCarGroupDurationPrice:: apply() : CarGroup
post:
 cgdp.oclIsNew() and cgdp.oclIsTypeOf(CarGroupDurationPrice)
and

cgdp.price=self.price and cgdp.carGroup=self.carG and
cgdp.rentalDuration=duration

NewCGDPForNewDuration

context NewCGDPForNewDuration:: apply()
post:
 cgdp.oclIsNew() and cgdp.oclIsTypeOf(CarGroupDurationPrice)
and
 cgdp.price=self.price and cgdp.carGroup=self.carG and
 cgdp.rentalDuration=duration

ChangeCarGroupDurationPrice

context ChangeCarGroupDurationPrice:: apply()
post:
 CarGroupDurationPrice.allInstances()->select(cgdp|
 cgdp.carGroup=self.carG and

 cgdp.rentalDuration=duration).price=self.price

CAR ALLOCATION EVENTS

CarAllocationWithAnExceptionRule

context CarAllocationWithAnExceptionRule:: apply()
post:
 if upWalkInPossible then
 answerOptions->includes("walk-in")
 end if
 if 2upgradePossible then
 answerOptions->includes("bumped-upgrade")
 end if
 if downgradePossible then
 answerOptions->includes("downgrade")
 end if

 if transferPossible then
 answerOptions->include("transfer")
 end if
 if servicePossible then
 answerOptions->include("service")
 end if

 109

CarAllocationAutomatic

context CarAllocationAutomatic:: apply()
post:
 let modelAvail(m:CarModel): ModelAvailability=
self.curBranch.

modelAvailability@pre-> select (mA| mA.carModel=m)
 in
 if (groupAvail(self.curGroup)->isEmpty() or (groupAvail

(self.curGroup).quantity@pre<(self.demXGroup->select
(self.curGroup).demand@pre)) and self.upgradePossible then

 -- Do upgrade
 self.reservation.car->isNotEmpty() and self.curBranch.

carsAvailable@pre->select(c|c.carGroup=
 self.upgradeGroup)->includes(self.reservation.car)
 else
 if self.curModel->isNotEmpty() and

 self.modelAvail(self.curModel) then
 -- Model desired
 self.reservation.car->isNotEmpty() and self.curBranch.

carsAvailable@pre->select(c|c.carModel=
 self.curModel)->includes(self.reservation.car)
 else
 -- Model with lower demand
 if self.availGroup(curGroup)->isNotEmpty then
 self.reservation.car->isNotEmpty() and

 self.reservation.car.carModel=
self.curGroup.carModels->

 sortedBy(cM|self.availModel(cM)@pre-self.demXModel->
 select(d|d.carModel=cM).demand@pre)->first()
 end if
 end if
 end if

CarAllocationKind

context CarAllocationKind:: apply()
post:
 if self.upgradePossible or self.groupAvail(self.curGroup)
then
 answerKind=Automatic
 else
 if upWalkInPossible or 2upgradePossible or
downgradePossible or

 transferPossible or servicePossible then
 answerKind=Exception
 else
 answerKind=InExtremis
 end if
 enf if

CarAllocationExceptionOption

context CarAllocationExceptionOption:: validOption() : Boolean
post:
 result=(option="walk-in" and upWalkInPossible) or
 (option="bumped-upgrade" and 2upgradePossible) or
 (option= "downgrade" and downgradePossible) or
 (option="transfer" and transferPossible) or

 110

 (option="service" and servicePossible)

context CarAllocationExceptionOption:: apply()
post:
 let curGroup:CarGroup=self.reservation.carGroup
 let upgradeGroup:CarGroup=self.reservation.carGroup.better
 let downgradeGroup:CarGroup=self.reservation.carGroup.worse
 let 2upgradeGroup:CarGroup=
 if upgradeGroup->isEmpty then {}
 else upgradeGroup.better
 let curBranch: Branch= self.reservation.pickUpBranch
 in
 if option="walk-in" then
 self.reservation.car->isNotEmpty() and self.curBranch.

availableCars@pre->select(c|carGroup=self.upgradeGroup)->
includes(self.reservation.car)

 end if
 if option="bumped-upgrade" then
 self.reservation.car->isNotEmpty() and
 self.reservation.car.carGroup=self.upgradeGroup and
 let intermediateR: Reservation=self.curBranch.nextDayR->

 select(r|r.car@pre= self.reservation.car)
 in
 self.intermediateR.car.carGroup=self.2upgradeGroup
 and
 not(self.intermediateR.renter.oclIsKindOf(Loyalty
 Member)) implies self.curBranch.nextDayR-
>select(r|r.carGroup=
 upgradeGroup and r.renter.oclIsKindOf(LoyaltyMemeber))->

forAll(r|r.car.cargroup=2upgradeGroup)
 end if
 if option= "downgrade" then
 self.reservation.car->isNotEmpty() and
 self.reservation.car.carGroup= self.downgradeGroup
 end if
 if option="transfer" then
 self.reservation.car->isNotEmpty() and
 self.curBranch.transferAgreement[transferor]->select(
 tA.transferor.GroupAvailability->select(gA|ga.carGroup=

self.curGroup).quantity> tA.transferor.demandXGroup->
select(d|d.carGroup=self.curGroup).demand)->sortedBy
(tA|tA.expectedTime < self.reservation.beginning-now()-
preparingTime())->first().car-

>select(c|c.carGroup=self.curGroup)
 ->includes(self.reservation.car)
 end if

 if option="service" then
 self.reservation.car->isNotEmpty() and
 self.reservation.car.oclIsKindOf(maintenance
 Scheduled)@pre and self.reservation.car.ocllAsType
 (MaintenanceScheduled@pre.beginningDate <>tomorrow())
 and not(self.reservation.car.oclIsKindOf
(maintenanceScheduled))

and self.reservation.car.carGroup=self.reservation.carGroup
 end if

 111

CarAllocationExtremisOption

context CarAllocationExtremisOption:: validOption() : Boolean
post:
 result=(option="delay" or option="competitor")

context CarAllocationExtremisOption:: apply()
post:
 if option="delay" then
 self.reservation.car->isEmpty()
 end if
 if option="competitor" then
 not(self.reservation.car.oclIsTypeOf(OwnCar))
 end if

CarAllocationWithAnExtremisRule

context CarAllocationWithAnExtremisRule:: apply()
post:
 self.answerOptions.includes("delay") and
 self.answerOptions.includes("competitor")

CreateTransferAgreement

context CreateTransferAgreement:: notPreviousAgreement() :
 Boolean
post:
 result=self.receiverBranch.transferor->excludes(self.branch)

context CreateTransferAgreement:: apply()
post:
 let reverseTransAg:Set(TransferAgreement) =
TransferAgreement.

allInstances()->select(ta|ta.receiver=self.branch and
 ta.transferor=self.receiverBranch)
 in
 ta.oclIsNew() and ta.oclIsTypeOf(TransferAgreement)
 and ta.transferor=self.branch and
ta.receiver=self.receiverBranch

 and answerTransAg=ta
 and
 if reverseTransAg->notEmpty then

answerDataNeeded=false and
ta.distance=reverseTransAg.distance

 and ta.expectedTime=reverseTransAg.expectedTime
 else
 answerDataNeeded=true
 end if

CancelTransferAgreement

context CancelTransferAgreement:: transferAgExists() : Boolean
post:
 result=TransferAgreement.allInstances()->exists(ta|
 ta.transferor=self.branch and
ta.receiver=self.receiverBranch)

 112

context CancelTransferAgreement:: apply()
post:
 TransferAgreement.allInstances()->excludes(ta|
 ta.transferor=self.branch and
ta.receiver=self.receiverBranch)

ChangeTransferAgreementData

context ChangeTransferAgreementData:: apply()
post:
 self.transferAg.distance(km)=self.distance and
 self.transferAg.expectedTime(h)=self.expectedTime

IntroduceTransferData

context IntroduceTransferData:: apply()
post:
 self.transAg.distance=self.distance and
 self.transAg.expectedTime= self.expectedTime

GetCarsToBeTransferred

context GetCarsToBeTransferred:: apply()
post:
 let carsToBeTrans:Set(Car)= self.branch.car-
>select(c|c.rental
 Agreement->exists(r|r.beginning=tomorrow() and
 not(r.oclIsKindOf(CanceledReservation) and
 r.pickUpBranch<>self.branch)
 in
 self.answerTransfers=carsToBeTrans->forAll(c| Tuple(car

RegN=c.registrationNumber, destination= c.rentalAgreement->
select(r|r.beginning=tomorrow()).pickUpBranch.name))

TransferOwnership

context TransferOwnership:: validCar() : Boolean
post:
 result=self.car.rentalAgreement->exists(r| not(r.oclIsKindOf

(CanceledReservation)) and not(r.oclIsKindOf(OpenedRental))
and

 r.pickUpBranch=self.branch))

context TransferOwnership:: validBranch() : Boolean
post:
 result = self.car.Branch<>self.branch

context TransferOwnership:: apply()
post:
 self.car.branch@pre<>self.car.branch and

 self.car.branch=self.branch

 113

SellCarsInNeed

context SellCarsInNeed:: apply()
post:
 self.branch.carsAvailable@pre->select(c|

(today()-c.acquisitionDate>=year(1)) or
(c.currentMileage>40.000))-

>forAll(c|c.oclIsTypeOf(ToBeSoldCar))

CancelNoShowReservations

context CancelNoShowReservations:: apply()
post:
 Reservation.all
 Instances->select(r|r.beginning=today())->forall(

r.oclIsTypeOf(CanceledCompany) and r.oclAsType(
CanceledCompany).motivation= CancellingMoTivation::no-show)

CarAllocationDefinitions

context CarAllocationDefinitions:: curBranch() : Branch
post:
 result= self.reservation.pickUpBranch

context CarAllocationDefinitions:: curGroup() : CarGroup
post:
 result=self.reservation.carGroup

context CarAllocationDefinitions:: upgradeGroup() : CarGroup
post:
 result=self.reservation.carGroup.better

context CarAllocationDefinitions:: groupQuota(b : Branch) :
 Integer
post:
 result= curGroup.carGroupQuota-
>select(branch=curBranch).quota

context CarAllocationDefinitions:: groupAvail(g : CarGroup) :
 GroupAvailability
post:
 result= self.curBranch.groupAvailability@pre-> select
 (gA| gA.carGroup=g)

context CarAllocationDefinitions:: upgradePossible() : Boolean
post:
 result=self.groupAvail(self.upgradeGroup)->isNotEmpty()
 and self.groupAvail(self.upgradeGroup).quantity@pre -
 self.demXGroup-
>select(d|d.carGroup=self.upgradeGroup).demand@pre

>0.1*groupQuota(self.curBranch)

context CarAllocationDefinitions:: demXModel() : DemandXModel

 114

post:
 result=self.reservation.pickUpBranch.demandXModel

context CarAllocationDefinitions:: demXGroup() : DemandXGroup
post:
 result=self.reservation.pickUpBranch.demandXGroup

ExtendedCarAllocationDefinitions

context ExtendedCarAllocationDefinitions:: downgradeGroup() :
 CarGroup
post:
 result= self.reservation.carGroup.worse

context ExtendedCarAllocationDefinitions:: 2upgradeGroup() :
 CarGroup
post:
 result=
 if upgradeGroup->isEmpty then {}
 else upgradeGroup.better

context ExtendedCarAllocationDefinitions:: upWalkInPossible():
 Boolean
post:
 result= if self.upgradeGroup->isNotEmpty() then
 self.groupAvail(self.upgradeGroup)->isNotEmpty and
 self.groupAvail(self.upgradeGroup).quantity@pre -
 self.demXGroup->select

(d|d.carGroup=self.upgradeGroup).demand@pre >0
 else
 False

context ExtendedCarAllocationDefinitions:: 2upgradePossible():
 Boolean
post:
 result=

if self.2upgradeGroup->isNotEmpty() then
 (self.curBranch.nextDayR.car->collect(carGroup)->includes

 (upgradeGroup) or self.groupAvail(self.upgradeGroup)) and
 self.groupAvail(self.2upgradeGroup)->isNotEmpty and
 self.groupAvail(self.2upgradeGroup).quantity@pre -
 self.demXGroup->select(d|d.carGroup=self.2upgradeGroup).

demand@pre >0.1*self.groupQuota(self.curBranch,
self.2upgradeGroup)

 else
 False

context ExtendedCarAllocationDefinitions::
downgradePossible():Boolean
post:
 result=
 if self.downgradeGroup->isNotEmpty() then
 self.groupAvail(self.downgradeGroup)->isNotEmpty and
 self.groupAvail(self.downgradeGroup).quantity@pre -
 self.demXGroup->select(d|d.carGroup=self.downgradeGroup).

 115

demand@pre >0.1*self.groupQuota(self.curBranch,
self.downgradeGroup)

 else
 False

context ExtendedCarAllocationDefinitions:: transferPossible():
 Boolean
post:
 result=self.curBranch.transferAgreement[transferor]->exists

(tA|tA.expectedTime < self.reservation.beginning-now()-
preparingTime() and tA.transferor.GroupAvailability-

>select(
gA|ga.carGroup=self.curGroup).quantity >
tA.transferor.demandXGroup-> select(d|d.carGroup
=self.curGroup).demand)

context ExtendedCarAllocationDefinitions:: servicePossible() :
Boolean
post:
 result= self.curBranch.car-> exists(c|

c.oclIsKindOf(MaintenanceScheduled) and
 c.oclAsType(MaintenanceScheduled).beginningDate

<>tomorrow())

context ExtendedCarAllocationDefinitions:: downgradeGroup() :
 CarGroup
post:
 result= self.reservation.carGroup.worse

context ExtendedCarAllocationDefinitions:: 2upgradeGroup() :
 CarGroup
post:
 result=
 if upgradeGroup->isEmpty then {}
 else upgradeGroup.better

context ExtendedCarAllocationDefinitions:: upWalkInPossible():
 Boolean
post:
 result= if self.upgradeGroup->isNotEmpty() then
 self.groupAvail(self.upgradeGroup)->isNotEmpty and
 self.groupAvail(self.upgradeGroup).quantity@pre -
 self.demXGroup->

select(d|d.carGroup=self.upgradeGroup).demand@pre >0
 else
 False

context ExtendedCarAllocationDefinitions:: 2upgradePossible():
 Boolean
post:
 result=
 if self.2upgradeGroup->isNotEmpty() then
 (self.curBranch.nextDayR.car->collect(carGroup)->includes

(upgradeGroup) or self.groupAvail(self.upgradeGroup)) and
 self.groupAvail(self.2upgradeGroup)->isNotEmpty and

 116

 self.groupAvail(self.2upgradeGroup).quantity@pre -
 self.demXGroup->select(d|d.carGroup=self.2upgradeGroup).

demand@pre >0.1*self.groupQuota(self.curBranch,
self.2upgradeGroup)

 else
 False

context ExtendedCarAllocationDefinitions::
downgradePossible():Boolean
post:
 result=
 if self.downgradeGroup->isNotEmpty() then
 self.groupAvail(self.downgradeGroup)->isNotEmpty and
 self.groupAvail(self.downgradeGroup).quantity@pre -
 self.demXGroup->select(d|d.carGroup=self.downgradeGroup).

demand@pre >0.1*self.groupQuota(self.curBranch,
self.downgradeGroup)

 else
 False

context ExtendedCarAllocationDefinitions::
transferPossible():Boolean
post:
 result=self.curBranch.transferAgreement[transferor]->

exists(tA|tA.expectedTime < self.reservation.beginning-
now()-

preparingTime() and tA.transferor.GroupAvailability-
>select(

gA|ga.carGroup=self.curGroup).quantity>
tA.transferor.demandXGroup ->
select(d|d.carGroup=self.curGroup).demand)

context ExtendedCarAllocationDefinitions:: servicePossible() :
 Boolean
post:
 result= self.curBranch.car-> exists(c|c.oclIsKindOf

(maintenanceScheduled) and
c.oclAsType(MaintenanceScheduled). beginningDate
<>tomorrow())

AllocationEstimators

context AllocationEstimators:: apply()
post:
 let nextDayR:Set(Reservation)= self.branch.nextDayR
 in
 self.answerLoyaltyReservation=self.nextDayR->

select(r|r.renter.oclIsKindOf(LoyaltyMember))
 ->sortedBy(reservationDate) and
 self.answerGuaranteeReservation= self.nextDayR->

select(r|r.oclIsKindOf(GuaranteedRental))->
reject(r|self.answerLoyaltyReservation->includes(r))->
sortedBy(reservationDate) and

 self.answerOtherReservation= self.nextDayR->reject(r|
 self.answerLoyaltyReservation->includes(r) or
 self.answerGuaranteeReservation->includes(r))->

sortedBy(reservationDate)

 117

CAR PREPARATION AND MAINTENANCE EVENTS

GetCarsToBePrepared

context GetCarsToBePrepared:: apply() : Set(Reservation)
post:
 answerCar=self.branch.car->select(c|c.rentalAgreement->

exists(r| .beginning.date()=today())->sortedBy (c|c.rental
 Agreement.beginning->select(d|d.date()=today()))

CarPrepared

context CarPrepared:: apply()
post:
 AssignedCar.allInstances->select(ac|ac.car=self.car
 and
c.rentalAgreement.beginning=today()).oclIsKindOf(Prepared)

RecordNewMileage

context RecordNewMileage:: validMileage() : Boolean
post:
 self.newMileage > self.car.currentMileage@pre

context RecordNewMileage:: apply() : Boolean
post:
 self.car.oclAsType(OwnCar).currentMileage=newMileage
 and
self.answerSellCar=(not(self.car.oclIsKindOf(NeedMaintencance)

and not(damagesDetected?) and
self.car.oclIsKindOf(NeedToBeSoldCar))and

 if self.car.oclIsKindOf(NeedMaintenance) then
 self.car.oclIsKindOf(MaintenanceScheduled) and
 self.car.oclAsType(MaintenanceScheduled).beginningDate=

getMaintenanceDate()
 end if

DamagesEvaluation

context DamagesEvaluation:: apply() : CarGroup
post:
 self.answerOwnCar?=self.car.oclIsKindOf(OwnCar) and
 self.answerCar=self.car

RecordDamages

context RecordDamages:: rentalIsClosed() : CarGroup
post:
 result=self.rental.oclIsKindOf(ClosedRental)

context RecordDamages:: apply() : CarGroup

 118

post:
 let carDam:BadExperience= CarDamages.allInstances()->any()
 let closedR:closedRental=
self.rental.oclAsType(closedRental)
 in
 self.answerCar=self.rental.car and
 -- cost to the renter
 self.closedR.badExp->includes(carDam) and self.closedR.

faultSeriousness->select(fs|fs.badExp=carDam).degree=
self.damageDegree and self.closedR.damageCost=self.cost and
charge(self.closedR.creditCarNumberDamages, self.cost) and

 -- schedule reparations
 self.rental.car.oclIsKindOf(RepairsScheduled) and
 self.rental.car.oclAsType(RepairsScheduled).beginningDate=

scheduleReparations(self.rental) and
 self.answerToBeBlacklisted=blacklistingCriteriaAchieved

(self.rental.renter) and not
 self.rental.driver.oclIsTypeOf(LoyaltyMember)

ScheduleMaintenance

context ScheduleMaintenance:: carNeedsMaintenance() : Boolean
post:
 result=self.car.oclIsTypeOf(NeedsMaintenance)

context ScheduleMaintenance:: apply() : Boolean
post:
 self.car.oclIsTypeOf(MaintenanceScheduled) and
 self.car.oclAsType(MaintenanceScheduled).beginningDate=
beginning

EndOfMaintenance

context EndOfMaintenance:: carWasBeingMaintained() : Boolean
post:
 result=self.car.oclIsTypeOf(MaintenanceScheduled) and
 self.car.oclAsType(MaintenanceScheduled).beginningDate<
now())

context EndOfMaintenance:: apply() : Boolean
post:
 self.car.mileageFromLastService= self.car.currentMileage and

self.car.lastMaintenanceDate= today() and
 not(self.car.oclIsKindOf(NeedMaintenance)) and

self.answerSellCar=(not(self.car.oclIsKindOf(RepairsScheduled)

and self.car.oclIsKindOf(NeedToBeSold))

EndOfRepairs

context EndOfRepairs:: carWasBeingRepaired() : Boolean
post:
 result=self.car.oclIsTypeOf(RepairsScheduled) and
 self.car.oclAsType(RepairsScheduled).beginningDate< now())

 119

context EndOfRepairs:: apply() : Boolean
post:
 not(self.car.oclIsKindOf(RepairsScheduled)) and

self.answerSellCar=(not(self.car.oclIsKindOf(MaintenanceScheduled)

and self.car.oclIsKindOf(NeedToBeSold))

CAR PICK-UP AND RETURN EVENTS

ExistingReservationForToday

context ExistingReservationForToday:: reservationExists() :
 Boolean
post:
 Reservation.allInstances->exists(r|r.beginning=today() and

r.renter=self.person and
r.oclIsNotKindOf(CanceledReservation))

context ExistingReservationForToday:: apply() : Boolean
post:
 let res:Reservation= Reservation.allInstances()->

select(r|r.beginning=today() and r.renter=self.person)
 in
 self.answerReservation=res and self.answerExpectLatePrep?=

not(self.answerReservation.assignedCar->notEmpty() and
(self.answerReservation.assignedCar.expectedPreparedTime<=
self.rental.beginning) and
self.answerReservation.assignedCar.
oclIsKindOf(Prepared) implies self.answerReservation.
assignedCar.oclAsType(Prepared).actualTime<=
self.rental.beginning))))

AddDriverToRental

context AddDriverToRental:: apply() : carGroup
post:
 self.rental.driver->includes(self.driver)

OpenRental

context OpenRental:: apply() : Money
post:
 self.rental.oclIsKindOf(OpenedRental) and
 self.rental.oclAsType(OpenedRental).actualPick-UpTime=now()
and

not(self.rental.oclIsKindOf(ClosedRental)) and
not(self.rental.oclIsKindOf(ExtendedRental)) and

 self.answerLatePreparation= self.rental.AssignedCar.
oclAsType(Prepared).actualTime-self.rental.beginning

>hour(1)

ApologiseForLatePreparation

context ApologiseForLatePreparation:: apply() : Boolean
post:

 120

 sendApologiseLetter(self.reservation.renter)

ApologisePlusReimbursement

context ApologisePlusReimbursement:: apply() : Boolean
post:
 let hourlyPaid: Money= self.reservation.bestDurationPrices->

select(b|b.rentalDuration.minimumDuration=1
 and b.rentalDuration.timeUnit=hour).price
 let hours: Integer= self.reservation.AssignedCar.

oclAsType(Prepared).actualTime -
 self.reservation.beginning.Time()).floor()
 in
 self.oclAsType(ApologiseForLatePreparation).^apply()
 and reimburse(self.reservation.renter,
self.hours*self.hourlyPaid)

ApologisePlusCancelation

context ApologisePlusCancelation:: apply() : Boolean
post:
 self.oclAsType(ApologiseForLatePreparation).^apply()
 and self.reservation.oclIsKindOf(CanceledReservation)

RentalDetails

context RentalDetails:: apply() : carGroup
post:
 answerDetails=Tuple(beginning=self.rental.beginning,
 agreedEnding= self.rental.agreedEnding, pickUpBranch=
 self.rental.pickUpBranch.name,
rentersID=self.rental.renter.id,

otherBadExp=self.rental.renter.faults->size()>1)

FreeCarsInNotPickedUpR

context FreeCarsInNotPickedUpR:: apply() : Set(Reservation)
post:
 RentalAgreement.allInstances()->select(r| r.pickUpBranch=
 self.branch and r.beginning=today())->reject(r|

r@pre.oclIsKindOf(OpenedRental) or
r@pre.oclIsKindOf(CanceledReservation)) ->forAll(r|
r.oclIsKindOf(CanceledCompany) and
r.oclAsType(CanceledCompany).motivation=
CancellingMotivation::no-show and
r.oclIsKindOf(GuaranteedReservation) implies

 charge(r.oclAsType(GuaranteedReservation).creditCardNumber,
r.oclAsType(GuaranteedCanceled).fine)

NonReturnedRentals

context NonReturnedRentals:: apply() : carGroup
post:
 self.answerRentals=RentalAgreement.all
 Instances->select(r|r.returnBranch=self.branch and

 121

 r.agreedEnding=today() and
not(r.oclIsKindOf(CanceledReservation))

 and not(r.oclIsKindOf(ClosedRental))) and
 self.answerRentals->forAll(r|rd.oclIsNew() and
 rd.oclIsKindOf(RentalDetails) and rd.rental=r)

NonReturned3DayRentals

context NonReturned3DayRentals:: apply() : Set(Reservation)
post:
 let rentals: Set(OpenedRental)= OpenedRental.all
 Instances()->select(r|r.returnBranch=self.branch and
 not(self.oclIsKindOf(ClosedRental)) and not

self.oclIsTypeOf(CanceledReservation) and today()-
self.agreedEnding.date() =3)

 in
 Sequence{1..rentals->size()}->forall(i|answerDetails->at(i)=
 Tuple(beginning=rentals->at(i).beginning, agreedEnding=

rentals->at(i).agreedEnding, pickUpBranch=
rentals->at(i).pickUpBranch.name, rentersID=
rentals->at(i).renter.id, rentersName
=rentals->at(i).renter.name,rentersTelephone=
rentals->at(i).renter.telephone)

CarReturn

context CarReturn:: apply() : Set(Reservation)
post:
 let closedR:closedRental=
self.rental.oclAsType(ClosedRental)
 in
 let lateRCost:Money= self.closedR.rentalPriceWithTax+
 self.closedR.oclAsType(LateReturn).extraCostWithTax
 let dropPenalty: Boolean= self.rental.returnBranch<>
 self.rental.actualReturnBranch
 in
 self.rental.oclIsKindOf(ClosedRental) and
 self.closedR.actualReturn= now() and

self.closedR.actualReturnBranch=self.branch and
self.closedR.actualReturnBranch<> self.closedR.pickUpBranch

 implies self.branch.car->includes(self.closedR.car) and
 if (self.closedR.oclIsKindOf(LateReturn)) then
 FaultSeriousness.allInstances-
>exists(fs.badExperience.type=
 lateReturn and fs.closedRental=self.closedR and fs.degree=
 degree(self.rental.oclAsType(LateReturn).extraInterval))
and

not self.closedR.driver.oclIsTypeOf(LoyaltyMember) and
 if dropPenalty then
 self.answerCost=self.lateRCost+dropOffPenalty()
 else
 self.answerCost=self.lateRCost
 end if
 else
 if dropPenalty then
 self.answerCost=self.closedR.rentalPriceWithTax+
 dropOffPenalty()
 else
 self.answerCost=self.closedR.rentalPriceWithTax

 122

 end if
 end if

PaymentData

context PaymentData:: apply() : Money
post:
 self.rental.paymentType=self.payType and
 self.rental.creditCarNumberDamages=self.creditCardDamages

CAR MANAGEMENT EVENTS

MoveCars

context MoveCars:: movedCars() : Boolean
post:
 if self.neededCars>self.carsOtherBranchCanMove then
 result=self.carsOtherBranchCanMove
 else
 result=neededCars

context MoveCars:: apply() : Boolean
post:
 self.answerNeededCars=self.neededCars-self.movedCars

ReceiveCar

context ReceiveCar:: apply() : CarModel
post:
 c.oclIsNew() and c.oclIsKindOf(OwnCar) and
 c.registrationNumber=self.regNumber and
self.currentMileage=0 and

self.mileageFromLastService=0 and
self.lastMaintenanceDate=today() and
self.acquisitionDate=today() and self.branch.car-

>includes(c)

RequestTransfer

context RequestTransfer:: apply() : Boolean
post:
 self.oclAsType(MoveCars).^apply() and self.otherBranch.

carsAvailable@pre->intersection(self.otherBranch.car->
select(c|c.oclIsKindOf(BeingTransferredCar) and
c.oclAsType(BeingTransferredCar).destination=

 self.askingBranch))->size()=movedCars

DoTransfer

context DoTransfer:: apply() : Boolean
post:
 self.oclAsType(MoveCars).^apply() and self.askingBranch.

carsAvailable@pre->intersection(self.askingBranch.car->

 123

select(c|c.oclIsKindOf(BeingTransferredCar) and
c.oclAsType(BeingTransferredCar).destination=

 self.otherBranch))->size()=movedCars

CalculateOwnCars

context CalculateOwnCars:: apply() : Boolean
post:
 answerLack=self.ownCars< 1.1*self.quota and answerSuperplus=

 self.ownCars >1.1*self.quota and carsAvailable>0

context CalculateOwnCars:: ownCars() : Boolean
post:
 result=self.branch.car->select(c|c.oclIskindOf(OwnCar)
 and c.carGroup=self.carGroup)->size()

context CalculateOwnCars:: quota() : Boolean

post:
 result=self.branch.carGroupQuota->select(cGQ|

cgQ.carGroup= self.carGroup).quota

context CalculateOwnCars:: carsAvailable() : Natural
post:
 self.branch.groupAvailability->select(ga|

ga.carGroup=self.carGroup).quantity

WithSurplus

context WithSurplus:: allInstances() : Boolean
post:
 CalculateOwnCars.allInstances()->select(c|c.answerSurplus)

context WithSurplus:: apply() : Boolean
post:
 self.oclAsType(CalculateOwnCars).^apply() and
 self.answerSurplusQ= self.carsAvailable.min(self.ownCars

-self.quota*1.1)

WithLack

context WithLack:: allInstances() : Boolean
post:
 CalculateOwnCars.allInstances()->select(c|c.answerLack)

context WithLack:: apply() : Boolean
post:
 self.oclAsType(CalculateOwnCars).^apply() and
 self.answerSurplusQ=self.quota*1.1- self.ownCars

 124

BranchesWithSurplusOfCarGroup

context BranchesWithSurplusOfCarGroup:: apply() : Natural
post:
 let own(b:branch)=b.car->select(c|c.oclIskindOf(OwnCar) and

c.carGroup=self.carGroup)->size()
 let quant(b:Branch,cg:carGroup):Natural= GroupAvailability.

allInstances()->select(ga|ga.branch=b and
ga.carGroup=cg).quantity

 let CGquota(b:Branch,cg:carGroup):Natural= CarGroupQuota.
allInstances->select(ga|ga.branch=b and

ga.carGroup=cg).quota
 in
 let branches: Set(Branch)=self.branch.receiver->
 select(quant(b,self.carGroup)>0 and
own(b)<CGquota(b,self.car))
 in
 Sequence{1..branches->size()}->forall(i|answersTransfers->
 at(i)=Tuple(branch=branches->at(i), numCars=

(CGquota(branches->at(i),self.car)-
quant(branches->at(i).self.car)))

BranchesWithLackOfCarGroup

context BranchesWithLackOfCarGroup:: apply() : Natural
post:
 let own(b:branch)=b.car->select(c|c.oclIskindOf(OwnCar) and
 c.carGroup=self.carGroup)->size()
 let quant(b:Branch,cg:carGroup):Natural= GroupAvailability.

allInstances()->select(ga|ga.branch=b and
ga.carGroup=cg).quantity

 let CGquota(b:Branch,cg:carGroup):Natural= CarGroupQuota.
allInstances()->select(ga|ga.branch=b and ga.carGroup=cg)
.quota

 let branches: Set(Branch)=self.branch.receiver->
 select(own(b)>CGquota(b,self.car))
 in
 Sequence{1..branches->size()}->forall(i| answersTransfers->

at(i)=Tuple(branch=branches->at(i), numCars=
(own(branches->at(i).self.car) -

 CGquota(branches->at(i).self.car)))

OrderCar

context OrderCar:: apply() : PendantCarOrder
post:
 pco.oclIsNew() and pco.oclIsKindOf(PendantCarOrder)
 and self.branch->includes(pco) and pco.id=

PendantCarOrder.getNewId()

SellCar

context SellCar:: notAssigned() : Boolean
post:
 result=self.Car.RentalAgreement->select(ra|

ra.oclIsTypeOf(OpenedRental)->isEmpty()

 125

context SellCar:: apply() : Boolean
post:
 self.car.oclIsTypeOf(ToBeSoldCar)

ConfirmCarSale

context ConfirmCarSale:: carToBeSold() : Boolean
post:
 result = self.Car.oclIsTypeOf(ToBeSoldCar)

context ConfirmCarSale:: apply() : Boolean
post:
 self.Car.oclIsTypeOf(SoldCar) and self.Car.oclAs
 Type(SoldCar).disposalDate=today()

BRANCH, CAR GROUP AND MODELS MANAGEMENT EVENTS

ExistingCountryCheck

context ExistingCountryCheck:: apply() : Set(BranchType)
post:
 let count: Set(Country)=Country.allInstances()->
 select(c|c.name=self.countryName)
 in
 self.answerCountryExists=count->notEmpty() and
 count->notEmpty implies self.answerCountry=count->any()

RecordCountryInformation

context RecordCountryInformation:: apply() : Set(BranchType)
post:
 c.oclIsNew() and c.oclIsTypeOf(Country) and
 c.name=self.name and c.mechanicalConditionsRequirements=

self.mechanicalCondReq and c.emissionsReq=self.emissionsReq
and

c.carTax=self.carTax and answerCountry=c

CreateBranch

context CreateBranch:: branchesExists() : Boolean
post:
 self.quotas->forAll(q|CarGroup->allInstances()->

exists(cg|cg.name=q.carGroupName))

context CreateBranch:: apply() : Boolean
post:
 br.oclIsNew() and br.oclIsTypeOf(Branch) and
 br.name=self.branchName and br.branchType=BranchType.
 allInstances()->select(bt|bt.name=self.branchType)
 and self.quotas->forAll(q|br.carGroupQuota->
 includes(cgq|cgq.oclIsNew() and
cgq.oclIsTypeOf(CarGroupQuota)
 and cgq.carGroup=CarGroup.allInstances()->
 select(cg| cg.name=q.carGroupName) and cgp.branch=br)

 126

CreateCarGroup

context CreateCarGroup:: apply() : Boolean
post:
 let previousCarGroup:CarGroup=CarGroup.allInstances()->

select(cg|cg.name=self.previousGroupName)
 in
 cg.oclIsNew() and cg.oclIsTypeOf(CarGroup) and
 cg.name=self.carGroupName and
 if (self.previousCarGroup->notEmpty()) then
 self.previousCarGroup.better=cg and cg.better=
 self.previousCarGroup.better@pre
 else -- is the worst
 cg.better=CarGroup.allInstances()->

select(cg|cg.worse@pre->isEmpty())
 end if
 --assign default quota of the new car group to all branches
 and Branch->allInstances()->forall(b|cgq.oclIsNew()

 and cgq.oclIsTypeOf(CarGroupQuota) and
 cgq.quota=self.defaultQuota and cgq.carGroup=cg

 and answerCarGroup=cg

CreateCarModel

context CreateCarModel:: apply() : Boolean
post:
 self.answerModel.oclIsNew() and self.answerModel.name=
 self.name and self.answerModel.characteristics=techCars

ExistingCarModelCheck

context ExistingCarModelCheck:: apply() : Boolean
post:
 let carM:Set(CarModel)= CarModel.allInstances()->

select(cM|cM.name=self.modelName)
 in
 self.answerCarModelExists= self.carM->notEmpty() and
 self.answerModel=self.carM->any()

AddModelToGroup

context AddModelToGroup:: apply() : Boolean
post:
 self.group.carModel->includes(self.model)

ChangeModelGroup

context ChangeModelGroup:: apply() : Boolean
post:
 self.carG.carModel->includes(self.carM)

ChangeCarGroupQuota

context ChangeCarGroupQuota:: apply() : Set(Reservation)

 127

post:
 self.branch.carGroupQuota->any(cgq| cgq.carGroup=self.carG).

quota=self.newQuota

PERFORMANCE INDICATORS EVENTS

ExistingCountryBranchType

context ExistingCountryBranchType:: CountryBranchTypeExists() :
Boolean
post:

result=CountryBranchType.allInstances()->exists(cbt|
cbt.branchType.name=self.branchType and
cbt.country.name=self.countryName)

context ExistingCountryBranchType:: apply() : Boolean
post:

self.answerCountryBranchType=CountryBranchType.allInstances()

->select(cbt|cbt.branchType.name=self.branchType and
cbt.country.name=self.countryName)

PerfomanceIndicatorCheck

context PerfomanceIndicatorCheck:: apply() : Boolean
post:
 let perfInd:Set(PerformanceIndicator)=PerformanceIndicator.

allInstances()->select(pi|pi.name=self.name)
 in
 self.answerPerformanceIndExist=perfInd->notEmpty() and

 perfInd->notEmpty() implies
 self.answerPerformanceIndicator= perfInd->any()

CreateIndicator

context CreateIndicator:: apply() : Boolean
post:
 pi.oclIsNew() and pi.oclIsTypeOf(PerformanceIndicator)
 and pi.name=self.name and pi.description=self.description
and

self.answerPerformanceIndicator=pi

DefineTargetForConcreteIndicator

context DefineTargetForConcreteIndicator:: notPreviousTarget() :
Boolean
post:
 result=self.perfIndicator.countryBranchType->

excludes(self.countryBranchType)

context DefineTargetForConcreteIndicator:: apply() : Boolean
post:
 ci.oclIsNew() and ci.oclIsKindOf(ConcreteIndicator)
 and ci.countryBranchType=self.countryBranchType and

 128

 ci.performanceIndicator=self.perfIndicator and
 ci.targetValue=self.target

ChangeTargetForConcreteIndicator

context ChangeTargetForConcreteIndicator:: apply() : Boolean
post:
 self.perfInd.targetValue=self.newTarget

 129

8. SEQUENCE DIAGRAMS

Notation

To elaborate the sequence diagrams I have considered appropriate and interesting to
adopt UML 2.0 style. The main contribution, respect UML 1.5, for this project needs is
the definition of an easy-to-use and clear mechanism to represent include relationships
from use cases (which as far as I am concerned there was not a standard notation for it
before). Moreover, this mechanism is part of an homogeneous frame to represent
loops, alternatives and exception among others, via the definition of a general frame of
interaction (the combined fragment) and a descriptor of the specific type of interaction
(the interaction operator).

However, UML 2.0 mechanisms have not been enough for the expressivity and clarity
aimed for this project. As a consequence, a few non-standard extensions have been
used trying to follow, as far as possible, UML 2.0 style. A note is attached the first time
is used a non-standard structure.

The basic extension is an “interaction operator” forEach to allow defining a loop respect
a set of elements and having in each iteration a current element to be used as an entry
parameter in any of the events of the fragment.

Previous remarks

At the beginning of the events section, it was stated that events would be modelled as
objects. This modelling decision has an effect also in the sequence diagrams
appearance because instead of invoking so-called system operations, objects (the
events) will be created. However, it should be noticed that the basic semantic or what
both representations pretend is exactly the same.

Apart from this appearance change, the reader should be aware of the implicit
parameter passing between events via the attributes of the object as explained in [EE].
Concretely, it is assumed that “entrance” attributes or restriction expressions can take
its values from data entered by the actor, by an “answer” attribute of a previous event
or by the variable bind to a forEach structure.

However, it is not clear how to concisely write an expression in a loop (or forEach)
fragment where an attribute takes its value from a different instance in each iteration. In
these cases, the instance to which the attribute belongs to has been omitted of the
diagrams. It should be assumed that, this implicit instance corresponds to the event
instance just created before the loop in the first iteration, and to the last event instance
created in the loop for the rest of iterations (that is, what is logical).

Additionally, in some cases difficulty has been found to establish who sparks off an
event, belonging to a sequence of actions which are initially sparked off by a system
user, but where user interaction is really scarcely needed (only if some non common
conditions are achieved). Finally, the following convention has been decided: the first
action will be shown to be sparked off by the user, will return the result to the system
and the next events will be created by and returned to the system until user interaction
is needed.

However, it is not clear how this logical convention is applied when the first action is
inside a loop (or forEach structure). In this latter case, it has been decided that events

 130

inside the loop are shown to be created by and returned to the system, unless user
interaction needed. Moreover, to graphically show that the sequence of actions is
sparked off by a system user, a non standard notation is used consisting in an arrow
from the actor to the fragment.

 131

Reservation management

ePC: ExistingPersonCheck

opt [not(ePC.answerExists)]
 ref Introduce a new EU-RentCustomer/Driver

: MakeReservation

: GuaranteeReservation

ref
 Offer points payment

alt

: EndReservation

: CancelCurrentRental

: RentalExtension

sd Make a reservation

sd Extend a rental agreement

0..1

 132

: GetReservation

sd Cancel a reservation by customer demand

: CancelReservation

ePC: ExistingPersonCheck

opt [not(ePC.answerExists)]
 ref Introduce a new EU-RentCustomer/Driver

: MakeWalkInRental

ref
 Handover

alt

: EndWalkInRental

: CancelCurrentRental

sd Make a walk-in rental

 133

Customer management

(*) We are assuming that there exists a class EU-CoPerson in the common information system
of EU-Corporation, which encapsulates data of people who have had (or have) a contact with
any of the companies of the corporation.

sd Introduce a new EU-Rent customer/driver

opt [EU-COPerson.allInstances->notExists(c|c.id=id))] (*)

ref Introduce a new EU-Corporation Customer

: RecordDriverData

: RecordCustomer

sd Introduce a new EU-Corporation Customer

: JoinLoyaltyIncentiveScheme

sd Join the loyalty incentive scheme

 134

: CancelLoyaltyIMembership

sd Cancel membership of the loyalty incentive scheme

: GetLoyaltyCandidates

sd Get candidates for membership of the loyalty incentive scheme

: GetTodayBlacklisted

sd List customers being blacklisted

 135

: CancelCustomersReservations

sd Cancel all reservations

dC: DefaultingCustomer

sd Record defaulting customer

opt [dc.answerToBeBlacklisted]

: BlacklistCustomer

 : System

 136

Pricing and discounting management

: OfferPaymentWithPoints

sd Offer points payment

: ChooseDiscountOption

: OfferSpecialAdvantatges

sd Offer special advantatges

: ChooseDiscountOption

: ShowBestBasePrice

sd Show best base price

 : System

 : System

 137

sd Show best price

ref
Show best base price

: RecordDriverData

: RecordNewDiscount

sd Introduce a new discount

: CloseDiscount

sd Eliminate a discount

 138

: RecordNewRentalDuration

sd Create a new rental duration

: NewCGDPForNewDuration *

: NewCarGroupDurationPrice

sd Create a car group duration price

: ChangeCarGroupDurationPrice

sd Change price for a car group duration price

 139

Car allocation

(*) Note the use of the non-standard UML 2.0 forEach as well as the use of the system
actor.

: CancelNoShowReservations

aE : AllocationEstimators

forEach reservation:Reservation from aE.answerLoyaltyReservation (*)

sd Allocate cars to reservations

ref Allocate a car for a reservation

forEach reservation:Reservation from aE.answerGuaranteedReservation (*)

ref Allocate a car for a reservation

forEach reservation:Reservation from aE.answerGuaranteedReservation (*)

ref Allocate a car for a reservation

 : System

: SellCarsInNeed

 140

alt [cAK.answerKind=Automatic]

[cAK.answerKind =Exception]

[cAK.answerKind =InExtremis]

: CarAllocationAutomatic

sd Allocate a car for a reservation

: CarAllocationExceptionOption

cAK: CarAllocationKind

: CarAllocationWithAnExtremisRule

: CarAllocationWithAnExceptionRule

: CarAllocationExtremisOption

: GetCarsToBeTransferred

sd Transfer cars

 : System

 141

: TransferOwnership

sd Receive cars being transferred

*

cTA: CreateTransferAgreement

sd Establish a transfer agreement between branches

: IntroduceTransferData

 opt [cTA.answerDataNeeded]

 : Branch
Manager

: ChangeTransferAgreementData

sd Change data from a transfer agreement

 : Branch
Manager

 142

: CancelTransferAgreement

sd Cancel a transfer agreement

 : Branch
Manager

 143

opt [rD.answerToBeBlacklisted]

Car Preparation and maintenance management

sd End of car checking

dE: DamagesEvaluation

opt [dE.answerOwnCar?]

rNM: RecordNewMileage

opt [dE.damagesDetected?]

ref Detect damages

opt [rNM.answerSellCar?]

ref Sell a car

sd Detect damages

rD: RecordDamages

: BlacklistCustomer

 : System

 144

 : Mechanic

sd Get cars to be prepared

: CarPrepared

sd End of car preparation

: CarsToBePrepared

sd End of car maintenance

eOM: EndOfMaintenance

opt [eOM.answerSellCar]

ref Sell car

 145

sd End of car repairs

eOR: EndOfRepairs

opt [eOR.answerSellCar]

ref Sell car

 146

ref
 Handover

ref
 Handover

Car pick-up and return management

(*) Note: Handover will not begin until the car is prepared- the customer will wait-.
Consequently, the following expression will be satisfied on Handover:

eRFT.answerReservation.assignedCar.oclIsKindOf(Prepared)

eRFT: ExistingReservationForToday

alt [not(eRTF.answerExpectLatePrep)]

 [else]

: ApologisePlusReimbursement

: ApologisePlusCancellation

sd Pick-up a car

opt [oR.answerLatePreparation]

alt

: ApologisePlusReimbursement

opt [oR.answerLatePreparation]

 147

sd Handover

oR : OpenRental

loop

: AddDriverToRental

opt [not(ePC.answerExists)]

ePC : ExistingPersonCheck

ref Introduce a new EU-Rent customer

An additional driver is added
in each iteration

: CarReturn

sd Return of a car

: PaymentData

 : System

 148

: FreeCarsInNotPickedUpR

sd Free cars

nRR: NonReturnedRentals

: NonReturned3DaysRentals

sd Control late returns

 149

Car Management

: OrderCar

sd Buy a car

: ReceiveCar

sd Receive a car

: SellCar

sd Sell a car

 150

(*)Note the use of the non-standard UML 2.0 way to show that the sequence of events is
sparked off by a system user (the branch manager in this case)

sd Control number of cars

forEach group:CarGroup from CarGroup.allInstances()

alt [cOC.answerSurplus]

[cOC.answerLack]

cOC : CalculateOwnCars

ref Decrease number of cars

ref Increase number of cars

sd Increase number of cars

loop [answerNeededCars >0]

bWS : BranchesWithSurplusInCarGroup

ref Buy a car

loop [answerNeededCars >0]

rT : RequestTransfer

 : Branch
Manager

 : System

 : System

 151

sd Decrease number of cars

loop [answerNeededCars >0]

bWS : BranchesWithLackOfCarGroup

ref Sell a car

loop [answerNeededCars >0]

tC : DoTransfer

 : System

 152

Branch, Car Group and Models management

sd Create a branch

eCC : ExistingCountryCheck

opt [not(eCC.answerCountryExists)]

ref RecordCountryInformation

: CreateBranch

: CreateCarGroup

loop

: AddModelToGroup

opt [not(eCMC.answerCarModelExists)]

eCMC : ExistingCarModelCheck

ref Add a car model

sd Create a new car group

 : System

 : System

 153

sd Change car group quota

 : ChangeCarGroupQuota

 : Branch
Manager

: CreateCarModel

sd Add a car model

: ChangeModelGroup

sd Change a car model group

 154

Performance indicators management

: ExistingCountryBranchType

: DefineTargetForConcreteIndicator

opt [not(pIC.answerPerformanceIndExists)]

pIC : PerformanceIndicatorCheck

ref Create indicator

sd Add a performance indicator

: ExistingCountryBranchType

 : ChangeTargetForConcreteIndicators

sd Change a target value for a performance indicator

 155

9. CONCLUSIONS

When starting working with the case, the first problem to be solved was to clearly
define the case. However, the final version was not obtained until the use cases were
written, because it was not until then that we were conscious of the real needs of the
system and so, what should be clearly defined. As commented in the corresponding
section, the decisions made have tried to be as consistent as possible with the original
case and keep the size of the case treatable. Even so, when elaborating the
specification one should be very careful to be consistent with what was stated before
because the complexity of the case turned out to be considerable.

During the specification, the proposals made by Antoni Olivé in [IC-Ol03], [DR-Ol03]
and [EE] were generally useful, economic and easy-to-use.

For example, the approach to define the derivation rules associated to derived
elements based on operations definition, allowed the exploit of redefinition mechanism
in non-trivial attributes such as the calculation of the corresponding best price of a
rental agreement. Besides the mechanism was also useful for defining hybrid types
such as driver.

An analogous approach to define integrity constraints also proved to be useful in
defining integrity constraints in general, and creation time in particular, which otherwise
could not have been defined.
Furthermore, these techniques proved to be also very convenient when used jointly
with the proposal of modelling system events as objects, suggested in [EE].

One of the main advantages of this different approach to model events is the ease of
reuse of constraints such as existence constraints, which are very common. However,
the approach is also convenient to encapsulate “apply actions” (that is, postcondition
elements) by a hierarchy definition. This hierarchy takes basically two forms in the
project. In the first structure, the parent is abstract (or could be so) and defines some
conditions or changes common to possibly several events, which inherit this object.
While in the second structure, the parent is not abstract and defines some basic
conditions, which a derived child with special characteristics extends (and therefore we
minimize the use of conditional structure and clarify the model).

On the other hand, one difficulty found when defining the system events was how to
classify some of them. One example is in the context of car allocation, where the
system can request the user to choose among some options if an exception or an in
extremis rule has to be applied. In this case, it is not the user who decides to perform
an action, but the system, and so, it cannot be considered an action request event
strictly; however it has been considered so in this document. The idea to do it is taking
into account that the overall sequence of events, to which the event belongs, is
sparked off by the user and so, all the component events are, in a sense, caused by
the user. Anyway, it makes rethinking if a more accurate classification may be
convenient.

Finally, it should be noticed one drawback related to derived elements. The problem is
that in one system such as EU-Rent Rentals case, many convenient derived elements
or which just make sense can be defined. Therefore, the representation of these
elements joined with all the rest (the non-derived) can considerably enlarge the size of
the model and so, make the representation unclear or excessively heavy for a human
eye. This situation forces the specifier either to divide the model in coverable pieces or

 156

alternatively, have some way (preferably offered by the modelling tool) of hiding them
when convenient.
To sum up, we believe that this project not only has been generally successful on its
original objectives but has also served to experiment with some highly topical subjects
such as UML 2.0. and remark the importance of a clear diagram structure.

One possible future work line could consist on refining the event approach to be widely
used in practice. This refinement should consider the inclusion of new types or
subtypes of events, as well as some criteria or tips to split the events and determine
split events generating actor (in fact, this is a common problem of any event modelling
approach).

 157

10. REFERENCES

- Original Case Study:

[BRG95] Appendix D of the paper "Defining Business Rules ~ What Are They
Really?", produced by the Business Rules Group, 1995.
(http://www.businessrulesgroup.org/first_paper/br01ad.htm)

- Case Study Extensions:
• [BRF03] Business Rules Forum

(http://www.businessrulesforum.com/derby.html).
• [EBRC03] European Business Rules Conference, June 2003

(http://www.eurobizrules.org/eurent.htm)
• [PSZ00] Advances in object-oriented data modelling, M.P. Papazoglou, S.

Spaccapietra, Z. Tari Ed.), Cambridge, Massachusetts, USA, MIT Press, 2000.

- Use Cases:

• [Coc00] Writing Effective Use Cases . Alistair Cockburn, Octuber 2000.
• [Wei03] Adopting use cases. Part I: Understanding types of use cases and

artifacts. Pan-Wei Ng. The rational edge, May 2003.
http://www.therationaledge.com/may_03/m_ng.jsp

• [Gel03] Precise Use Cases. David Gelperin. Live Specs software.
http://www.livespecs.com/modules.php?op=modload&name=News&file=index&
catid=14&topic=&allstories=1&POSTNUKESID=57c8939a70d06566fd4ee4a69
cbd1aac

- Specification (general):

• [Lar02] UML y Patrones. Craig Larman. Prentice Hall, second edition, 2002.
• [OMG01] OMG. Unified Modelling Language Specification, version 1.5. March

2003. http://www.omg.org/technology/documents/formal/uml.htm
• [UMLS03] Unified Modelling Language: Superstructure. Version 2.0. (3rd

revised submission to OMG RFP ad/00-09-02), April 2003.
• [OCL03] Response to the UML 2.0 OCL RfP (ad/2000-09-03). Revised

Submission, Version 1.6, January 6, 2003. (OMG Document ad/2003-01-07).
• [XML01] XML Schema Part 0: Primer. W3C Recommendation, 2 May 2001.

http://www.w3.org/TR/xmlschema-0/
• [IC-Ol03] Integrity Constraints Definition in Object-Oriented Conceptual

Modelling Languages. Antoni Olivé, 2003.
• [DR-Ol03] Derivation Rules in Object-Oriented Conceptual Modelling

Languages. Antoni Olivé, 2003.
• [EE] Events and their effects.(Not definitive version) Antoni Olivé.

 158

12. ACKNOWLEDGEMENTS

This work has been partially supported by the Ministerio de Ciencia y Tecnologia and
FEDER under project TIC2002-00744.

 159

11. SUMMARY

1. Introduction and motivation…………………………………………. 1

2. THE CASE STUDY: EU-Rent Car Rentals……………………….. 2

3. General commentaries about the specification…………………… 16

4. Use cases……………………………………………………………. 17

5. Static Model…………………………………………………………. 63

6. State Model………………………………………………………….. 82

7. Events Modelling ……………………………………………………. 84

8. Sequence Diagrams………………………………………………… 136

9. Conclusions………………………………………………………….. 162

10. References………………………………………………………….. 164

11. Acknowledgments…………………………………………………… 165

12. Summary……………………………………………………………… 166

