

DEGREE IN AEROSPACE VEHICLES ENGINEERING

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER)

ANNEXES

Student: Durán Gómez, Núria

Director: Pérez Llera, Luís Manuel

Delivery date: 12/06/2015

Index of contents

Index of tables	3
Index of figures	10
Annex 1: Number of flights per week on different European destinations	11
Annex 2: Leasing prices of the different airplanes obtaining	13
Annex 3: Block hours obtaining	17
Annex 4: Fuel cost obtaining	20
A4.1 Converting from Gal/BH to \$/BH	20
A4.2 Converting from <i>lb/BH</i> to \$/ <i>BH</i>	21
Annex 5: Aircrew costs per block hour obtaining	25
A5.1 Cabin Crew Costs	28
A5.2 Cockpit crew costs	31
Annex 6: Average cargo per passenger permitted and available cargo for invoicing	
obtaining	34
A6.1 Average cargo per passenger permitted obtaining	34
A6.2 Available cargo for invoicing	37
Annex 7: Number of existing airplanes in the European airlines	40
Annex 8: Ordered Weighted Average (OWA)	61
A8.1 Aspects to consider in the OWA method	62
A8.2 Weight of the aspects	62
A8.3 Rate of the aspects	64
A8.4 Relative weights obtaining	81
A8.5 OWA obtaining	99
Annex 9: Number of flights per day obtaining	. 102
A9.1 Current flight schedule on the different routes	102
A9.2 Number of flights per week of the current airlines	114
Annex 10: Number of AVE trips per week obtaining	. 119

Annex 11: Number passengers carried per week by each company and in total on the A11.4 Number of passengers carried by each company and in total on the selected Annex 13: Economical feasibility study 139 Annex 16: Iteration of the feasibility study...... 164 A16.1 Initial investment......164 A16.8 Net Present Value (NPV)......175 A16.9 Internal Rate of Return (IRR)......175 Annex 17: Characteristic parameters of the environmental impact of different ways of

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Index of tables

Table 1. Possible destiny cities and the correspondent flights per week from and to the
central airport
Table 2. Current airplanes and leasing prices (\$/month)
Table 3. Current airplanes leasing prices (€/month)16
Table 4. Block hours on the route BCN-STN of the current airplanes 19
Table 5. Current jet fuel price in Europe 20
Table 6. Fuel consumption of some of the current airplanes and their corresponding cost
of fuel21
Table 7. Aviation fuel conversion parameters 22
Table 8. Conversion from lbs to Imperial Gallons for airplanes of ATR family
Table 9. Total Fuel Cost per block hour of the current airplanes on the route BCN-STN 24
Table 10. Minimum cabin crew and cockpit crew members of the current airplanes 27
Table 11. Yearly cabin crew costs of the current airplanes 29
Table 12. Cabin Crew Cost per Block Hour of the current airplanes 30
Table 13. Yearly cockpit crew costs of the current airplanes
Table 14. Cockpit Crew Costs per Block Hour of the current airplanes 33
Table 15. Cargo per passenger permitted in some of the current airplanes 36
Table 16. MZFW and OEW from the Airbus family
Table 17. Cargo per passenger permitted in the different models of the Airbus family 37
Table 18. Available cargo destined to invoicing of the different airplanes
Table 19. European airlines operating in the same airports as the new LCC
Table 20. Fleet of Adria Airways 43
Table 21. Fleet of Aegean Airlines
Table 22. Fleet of Aer Lingus 43
Table 23. Fleet of Aeroflot
Table 24. Fleet of Aigle Azur
Table 25. Fleet of Air Baltic 44
Table 26. Fleet of Air Berlin
Table 27. Fleet of Air Europa 45
Table 28. Fleet of Air France
Table 29. Fleet of Air Moldova 46

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Table 30. Fleet of Air Nostrum	
Table 31. Fleet of Alitalia	. 46
Table 32. Fleet of Aurigny	. 47
Table 33. Fleet of Austrian Airlines	. 47
Table 34. Fleet of BA Cityflyer	. 47
Table 35. Fleet of Belavia	. 48
Table 36. Fleet of Blue Air	. 48
Table 37. Fleet of British Airways	. 48
Table 38. Fleet of Brussels Airlines	. 49
Table 39. Fleet of Bulgaria Air	. 49
Table 40. Fleet of Croatia Airlines	. 49
Table 41. Fleet of EasyJet	. 50
Table 42. Fleet of EasyJet Switzerland	. 50
Table 43. Fleet of Enter Air	. 50
Table 44. Fleet of Evelop	. 50
Table 45. Fleet of Finnair	. 51
Table 46. Fleet of FlyBe	. 51
Table 47. Fleet of FreeBird Airlines	. 51
Table 48. Fleet of Germanwings	. 52
Table 49. Fleet of Iberia	. 52
Table 50. Fleet of Jet2	. 52
Table 51. Fleet of Jetairfly	. 52
Table 52. Fleet of KLM	. 53
Table 53. Fleet of Lufthansa	. 53
Table 54. Fleet of Luxair	. 53
Table 55. Fleet of Monarch Airlines	. 54
Table 56. Fleet of Nordwind Airlines	. 54
Table 57. Fleet of Norwegian Airlines	. 54
Table 58. Fleet of Pegasus Airlines	. 54
Table 59. Fleet of Royal Jordanian Airlines	. 55
Table 60. Fleet of Ryanair	. 55
Table 61. Fleet of Smartwings	. 55
Table 62. Fleet of Swiass International Airlines	66
	. 55

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Table 64. Fleet of Tarom	56
Table 65. Fleet of Thomas Cook	56
Table 66. Fleet of Thomson Airways	56
Table 67. Fleet of TransAero Airlines	57
Table 68. Fleet of Transavia Airlines	57
Table 69. Fleet of Transavia France	57
Table 70. Fleet of Turkish Airlines	57
Table 71. Fleet of Ukraine International Airlines	58
Table 72. Fleet of Vueling	58
Table 73. Fleet of WizzAir	58
Table 74. Number of existences of each model of airplane in Europe	60
Table 75. Aspects taken into account in the OWA method	62
Table 76. Weight of each aspect of the OWA method	64
Table 77. Best model of airplane according to leasing costs	65
Table 78. Rate of the airplanes according to their leasing cost	67
Table 79. Best model of airplane according to fuel costs	67
Table 80. Rate of the airplanes according to their fuel cost	69
Table 81. Best model of airplane according to maintenance costs	69
Table 82. Rate of the airplanes according to their maintenance costs	70
Table 83. Best model of airplane according to crew costs costs	71
Table 84. Rate of the airplanes according to their crew costs	72
Table 85. Best airplanes according to their MTOW	73
Table 86. Rate of the airplanes according to their MTOW	74
Table 87. Best airplane according to its available cargo destined to invoicing	75
Table 88. Rate of the airplanes according to their available weight for invoicing	76
Table 89. Best model of airplane according to the cruise speed	77
Table 90. Rate of the airplanes according to their cruise speed	78
Table 91. Best airplane model according to the existences	79
Table 92. Rate of the airplanes according to their existences	80
Table 93. Relative weight of A318	81
Table 94. Relative weight of A319	82
Table 95. Relative weight of A320	82
Table 96. Relative weight of A321	83
Table 97. Relative weight of 717	83

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Table 98. Relative weight of 737-300	84
Table 99. Relative weight of 737-400	84
Table 100. Relative weight of 737-500	85
Table 101. Relative weight of 737-600	85
Table 102. Relative weight of 737-700	86
Table 103. Relative weight of 737-800	86
Table 104. Relative weight of ATR 72-200	87
Table 105. Relative weight of ATR 72-210	88
Table 106. Relative weight of ATR 42-500	88
Table 107. Relative weight of ATR 72-500	89
Table 108. Relative weight of ATR 42-600	89
Table 109. Relative weight of ATR 72-600	90
Table 110. Relative weight of ERJ 135	90
Table 111. Relative weight of ERJ 140	91
Table 112. Relative weight of ERJ 145	91
Table 113. Relative weight of E 170	92
Table 114. Relative weight of E 175	92
Table 115. Relative weight of E 190	93
Table 116. Relative weight of E 195	93
Table 117. Relative weight of Q100	94
Table 118. Relative weight of Q200	95
Table 119. Relative weight of Q300.	95
Table 120. Relative weight of Q400	96
Table 121. Relative weight of CRJ 100	96
Table 122. Relative weight of CRJ 200	97
Table 123. Relative weight of CRJ 700	97
Table 124. Relative weight of CRJ 705	98
Table 125. Relative weight of CRJ 900	98
Table 126. Relative weight of CRJ 1000	99
Table 127. OWA of the different analysed airplanes 1	01
Table 128. Timetable of the flights on the route Barcelona-Madrid	04
Table 129. Timetable of the flights on the route Madrid-Barcelona 1	06
Table 130. Timetable of the flights on the route Barcelona-London	80
Table 131. Timetable of the flights on the route London-Barcelona	09

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Table 132. Timetable of the flights on the route Barcelona-Paris
Table 133. Timetable of the flights on the route Paris-Barcelona
Table 134. Timetable of the flights on the route Barcelona-Mallorca 112
Table 135. Timetable of the flights on the route Mallorca-Barcelona 113
Table 136. Number of flights per week offered by easyJet on the different destinations 114
Table 137. Number of flights offered by Iberia
Table 138. Number of flights offered by Ryanair on the different routes 116
Table 139. Number of flights offered by Transavia on the different routes
Table 140. Number of flights offered per week by Vueling on the different routes 118
Table 141. Number of trips offered by AVE on the different routes consulted from [91] 119
Table 142. Characteristics of the model of train of AVE on the selected routes
Table 143. Characteristics of easyJet's fleet on the selected routes
Table 144. Characteristics of Iberia's fleet on the selected routes
Table 145. Characteristics of Ryanair's fleet on the selected routes 123
Table 146. Characteristics of Transavia's fleet on the selected routes 123
Table 147. Characteristics of Vueling's fleet on the selected routes 123
Table 148. Typical ticket prices from AVE 124
Table 149. Typical ticket prices from easyJet 124
Table 150. Typical ticket prices from Iberia 125
Table 151. Typical ticket prices from Ryanair 125
Table 152. Typical ticket prices form Transavia
Table 153. Typical ticket prices from Vueling 126
Table 154. Number of sold seats per trip of the different companies 128
Table 155. Movement of passengers per company and in total on the different routes. 130
Table 156. Percentage of the market taken by each company on the different routes 132
Table 157. New low cost company prices and target of passengers per week
Table 158. Number of flights per week and per day required by the new company 135
Table 159. Duration of the flight on the different routes
Table 160. Number of flights per day a single airplane can do on the different routes 137
Table 161. Number of airplanes required by the company on the different routes 138
Table 162. Installation costs
Table 163. Bureaucratic costs
Table 164. Initial airplane's cost
Table 165. Study cost

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Table 166. Contingencies 142	
Table 167. Initial investment 143	5
Table 168. Total income of the company per year	
Table 169. Total leasing costs of the company per year	,
Table 170. Total fuel costs of the company per year	;
Table 171. Total aircrew costs of the company per year	;
Table 172. Total maintenance costs of the company per year	,
Table 173. Total airport costs per year	;
Table 174. Total on-route costs of the company per year)
Table 175. Total other direct costs of the company per year)
Table 176. Total direct costs of the company per year)
Table 177. Total indirect direct costs of the company per year 151	
Table 178. Cash flow of the company per year	
Table 179. Main airport taxes	
Table 180. Total airport costs on taxes of airplane 1 155	;
Table 181. Total airport costs on taxes of airplane 2 156	;
Table 182. Total airport costs on taxes of airplane 3	,
Table 183. Total airport costs on taxes of airplane 4	;
Table 184. Total airport costs on taxes of airplane 5)
Table 185. Q200 weight factor)
Table 186. Distance factor son the route Barcelona-Paris 161	
Table 187. Distance factor son the route Paris-Barcelona 161	
Table 188. Distance factor son the route Barcelona-London 162	
Table 189. Distance factor son the route London-Barcelona 162	
Table 190. Distance factor son the route Barcelona-Mallorca	
Table 191. Distance factor son the route Mallorca-Barcelona	5
Table 192. Adjusted unit rates 163	5
Table 193. Recalculated initial investment	
Table 194. Recalculated total income of the company per year	,
Table 195. Recalculated total leasing costs of the company per year 166	;
Table 196. Recalculated total fuel costs of the company per year 166	i
Table 197. Total aircrew costs of the company per year	,
Table 198. Recalculated total maintenance costs of the company per year 167	,
Table 199. Recalculated total airport costs per year	,

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Table 200. Recalculated total on-route costs of the company per year 168
Table 201. Recalculated total other direct costs of the company per year
Table 202. Recalculated total direct costs of the company per year
Table 203. Recalculated total indirect costs of the company per year
Table 204. Recalculated cash flow of the company per year
Table 205. Updated cash flow of the company per year
Table 206. Breakeven point in number of passengers 172
Table 207. Maximum target of passengers admitted
Table 208. Accumulated updated cash flow between year 2020 and 2021 174
Table 209. Net Present Value of the company
Table 210. Internal rate of return

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Index of figures

Figure 1. LCC airlines costs breakdown	63
Figure 2. PayBack Time	. 174
Figure 3. EI of NOx of the different airplanes	. 176
Figure 4. EI of CO of the different airplanes	. 177
Figure 5. EI of HC of the different airplanes	. 177
Figure 6. Noise level of the different airplanes	. 178

Annex 1: Number of flights per week on different European destinations

According to the section *Selection of the flight routes*, it have been researched the nearest European cities to Barcelona (less than $2h \ 30min$ of flight in a typical airplane), so as to reduce the time flight as much as possible; and the number of flights from and to Barcelona, which are detailed in the following table, in order to make a final decision of the routes where the company will operate [9]:

Central airport	City	Route	Flights/week
Barcelona	Amsterdam (The	Amsterdam (The Barcelona-Amsterdam 77	
El Prat	Netherlands)	Amsterdam-Barcelona	
	Athens (Greece)	Barcelona-Athens	8
	Amens (Greece)	Athens-Barcelona	0
	Berlin (Germany)	Barcelona-Berlin	33
	Bennin (Germany)	Berlin-Barcelona	
	Bern (Switzerland)	Barcelona-Bern	2
	Denn (Switzenand)	Bern-Barcelona	2
	Bilbao (Spain)	Barcelona-Bilbao	37
	Bibao (Spairi)	Bilbao-Barcelona	57
	Bratislava (Slovakia)	Barcelona-Bratislava	2
	Dialisiava (Siovakia)	Bratislava-Barcelona	2
	Brussels (Belgium)	Barcelona-Brussels	69
		Brussels-Barcelona	03
	Budapest (Hungary)	Barcelona-Budapest	10
	Dudapest (Hungary)	Budapest-Barcelona	10
	Dublin (Ireland)	Barcelona-Dublin	26
		Dublin-Barcelona	20
	Florence (Italy)	Barcelona-Florence	8
		Florence-Barcelona	5
	Hamburg	Barcelona-Hamburg	16
	riamburg	Hamburg-Barcelona	10

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Lisbon (Portugal)	Barcelona-Lisbon Lisbon-Barcelona	49
London (United Kingdom)	Barcelona-London London-Barcelona	189 187
Luxemburg (Luxemburg)	Barcelona-Luxemburg Luxemburg-Barcelona	8
Madrid (Spain)	Barcelona-Madrid Madrid-Barcelona	258 260
Mallorca (Spain)	Barcelona-Mallorca Mallorca-Barcelona	112
Milan (Italy)	Barcelona-Milan Milan-Barcelona	80
Munich (Germany)	Barcelona-Munich Munich-Barcelona	52
Naples (Italy)	Barcelona-Naples Naples-Barcelona	7
Paris (France)	Barcelona-Paris Paris-Barcelona	172
Prague (Czech Republic)	Barcelona-Prague Prague-Barcelona	12
Rome (Italy)	Barcelona-Rome Rome-Barcelona	75
Seville (Spain)	Barcelona-Seville Seville-Barcelona	57
Toulouse (France)	Barcelona-Toulouse Toulouse-Barcelona	2
Venice (Italy)	Barcelona-Venice Venice-Barcelona	23
Vienna (Austria)	Barcelona-Vienna Vienna-Barcelona	27
Zagreb (Croatia)	Barcelona-Zagreb Zagreb-Barcelona	2

Table 1. Possible destiny cities and the correspondent flights per week from and to the central airport

Annex 2: Leasing prices of the different airplanes obtaining

Following hypothesis from section *Aircraft price*, next table shows the aircrafts involved in the analysis and their leasing prices:

Airplane model	Range of leasing prices (\$/month)	
AIRBUS Family		
Airbus A318	95.000-65.000	
Airbus A319	300.000-75.000	
Airbus A320	355.000-40.000	
Airbus A321	410.000-185.000	
BOEING Family		
Boeing 717	135.000-100.000	
Boeing 737-300	73.000-35.000	
Boeing 737-400	83.000-55.000	
Boeing 737-500	55.000-40.000	
Boeing 737-600	145.000-90.000	
Boeing 737-700	250.000-130.000	
Boeing 737-800	375.000-218.000	
ATR Family		
ATR 72-200	80.000-45.000	
ATR 72-210	800.00-45.000	
ATR 42-500	140.000-70.000	
ATR 72-500	160.000-75.000	
ATR 42-600	160.000-150.000	
ATR 72-600	2-600 190.000-165.000	
EMBRAER Family		
ERJ 135	63.000-48.000	
ERJ 140	52.000-50.000	

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ERJ 145	64.000-50.000
E 170	230.000-100.000
E 175	240.000-130.000
E 190	270.000-160.000
E 195	275.000-175.000
BOMBARDIER Family	
Q100	80.000-48.000
Q200	98.000-75.000
Q300	110.000-68.000
Q400	190.000-100.000
CRJ-100	45.000-30.000
CRJ-200	67.000-51.000
CRJ-700	200.000-90.000
CRJ-705	215.000-140.000
CRJ-900	230.000-133.000
CRJ-1000	245.000-215.000

*Data of leasing costs consulted from [19].

Table 2. Current airplanes and leasing prices (\$/month)

As it is seen, leasing cost of a same model of aircraft can vary depending on, for instance, its age, total flight hours done or the leaser conditions. On the one hand, minimum leasing price could refer to the most used airplane, which for this reason could need more maintenance works and have a minor number of remaining flight hours than a newly one. On the other hand, maximum leasing costs could be from an expensive leaser, which not either interests to the company. Due to these two reasons, it will be done an average between the minimum and maximum lease market costs, so the company will probably be considering leasing airplanes with a compromise between a proper number of flight hours and leaser price conditions.

Next table shows the leasing costs that will be taken into account when carrying out the OWA method:

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane model	Average leasing cost (\$/month)	Average leasing $cost (\in/month)$	Leasing cost $(\in/month)$
AIRBUS Family			
Airbus A318	80.000	75.460,31	75.000
Airbus A319	187.500	176.860,10	177.000
Airbus A320	197.500	186.292,64	186.000
Airbus A321	297.500	280.618,02	281.000
BOEING Family			
Boeing 717	117.500	110.832,33	111.000
Boeing 737-300	54.000	50.935,71	51.000
Boeing 737-400	69.000	65.084,52	65.000
Boeing 737-500	47.500	44.804,56	45.000
Boeing 737-600	117.500	110.832,33	111.000
Boeing 737-700	190.000	179.218,23	179.000
Boeing 737-800	296.500	279.674,77	280.000
ATR Family			
ATR 72-200	62.500	58.953,37	59.000
ATR 72-210	62.500	58.953,37	59.000
ATR 42-500	105.000	99.041,65	99.000
ATR 72-500	117.500	110.832,33	111.000
ATR 42-600	155.000	146.204,35	146.000
ATR 72-600	177.500	167.427,56	167.000
EMBRAER Family	-		
ERJ 135	55.500	52.350,59	52.000
ERJ 140	51.000	48.105,95	48.000
ERJ 145	57.000	53.765,47	54.000
E 170	165.000	155.636,89	156.000
E 175	185.000	17.4501,96	175.000
E 190	215.000	202.799,58	203.000
E 195	101.250	95.504,45	96.000
BOMBARDIER Family			
Q100	64.000	60.368,25	60.000

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Q300	89.000	83.949,59	84.000
Q400	145.000	136.771,81	137.000
CRJ-100	37.500	35.372,02	35.000
CRJ-200	59.000	55.651,98	56.000
CRJ-700	145.000	136.771,81	137.000
CRJ-705	177.500	167.427,56	167.000
CRJ-900	181.500	171.200,57	171.000
CRJ-1000	230.000	216.948,39	217.000

*Leasing costs will be given in Euros instead of American Dollars due to the study considers the incorporation of a European low cost company and the majority of the costs will be paid in Euros. Conversion rate applied: $1\$ = 0.943253848 \in$.

*Leasing costs will have to be approximated to an integer that represents in a realistic and proper way the values, due to there is no certainty of the decimal digits.

Table 3. Current airplanes leasing prices (€/month)

Annex 3: Block hours obtaining

Block hour is defined as the time an airplane needs to go from one airport to another, including its takeoff and landing, and so follows the next equation [20]:

$$t = \frac{R}{v} + 20'$$
 [*h*];

where R/v corresponds to the on-route time, and the added 20 min correspond to an approximation of the time required to takeoff and landing.

As not all airplanes studied have the same cruise speed, it can be seen they will not require the same time to carry out their flight, and so this will result in a variation of block hours.

To compare costs between airplanes (see section *Costs depending on the number of block hours*) it will be enough to have knowledge of the costs on a single route.

At the time to select the route where the block hours and so the costs will be calculated, it will be chosen the longest route the company has to cover. In this way, the variation between costs will be better distinct.

The longest distance the company will have to fly is the route from Barcelona-El Prat to London-Stansted or vice versa, which is a route of 1185 km [13] [21]. Then the different typical cruise speeds from all the analysed airplanes so as to finally find the block hours have been searched:

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane model	Cruise speed (km/h)	Range (km)	Block hours (<i>h</i>)
AIRBUS Family			
Airbus A318	828	1.185	1,76
Airbus A319	828	1.185	1,76
Airbus A320	828	1.185	1,76
Airbus A321	828	1.185	1,76
BOEING Family			
Boeing 717	811	1.185	1,79
Boeing 737-300	780	1.185	1,85
Boeing 737-400	780	1.185	1,85
Boeing 737-500	780	1.185	1,85
Boeing 737-600	823	1.185	1,77
Boeing 737-700	823	1.185	1,77
Boeing 737-800	823	1.185	1,77
ATR Family			
ATR 72-200	515	1.185	2,63
ATR 72-210	517	1.185	2,63
ATR 42-500	556	1.185	2,47
ATR 72-500	510	1.185	2,66
ATR 42-600	556	1.185	2,47
ATR 72-600	510	1.185	2,66
EMBRAER Family			
ERJ 135	828	1.185	1,76
ERJ 140	828	1.185	1,76
ERJ 145	828	1.185	1,76
E 170	850	1.185	1,73
E 175	850	1.185	1,73
E 190	850	1.185	1,73
E 195	890	1.185	1,67
BOMBARDIER Family			
Q100	500	1.185	2,70
Q200	537	1.185	2,54
Q300	528	1.185	2,58
Q400	667	1.185	2,11

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

CRJ-100	785	1.185	1,84
CRJ-200	785	1.185	1,84
CRJ-700	829	1.185	1,76
CRJ-705	829	1.185	1,76
CRJ-900	850	1.185	1,73
CRJ-1000	827	1.185	1,77

* Data of the cruise speed of each airplane model consulted from [34], [35], [60], [36], [37], [39], [51], [61], [62], [63], [64] and [65].

Table 4. Block hours on the route BCN-STN of the current airplanes

Annex 4: Fuel cost obtaining

Between the bibliography found about fuel costs, some of them were directly given in BH, while others in *Imperial* (*UK*) *Gal/BH* or *lb/h* and had to be converted to BH.

A4.1 Converting from *Gal/BH* to \$/*BH*

Some of the data given provided the amount of fuel consumed by the airplane each hour, so it was necessary to know the actual fuel price in order to have this value in BH.

Fuel price usually vary every day, so it will be important to use always the same value during all the study [66]:

In this way, it is only needed to do the next equation:

$$\frac{Fuel \ cost}{Block \ hours} = \frac{Fuel \ consumption \ (Gal)}{Block \ hour} \cdot \frac{Cost}{Gallon} \ [\$/BH]$$

Some examples are shown in the next table:

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane model	Fuel consumption (Gal/BH)	Fuel cost (\$/Gal)	Fuel cost (\$/BH)
AIRBUS Family			
Airbus A318	655,50	1,79	1.174,66
Airbus A319	703,00	1,79	1.259,78
BOEING Family			
Boeing 737-400	715,35	1,79	1.281,91
Boeing 737-700	720,10	1,79	1.290,42
ATR Family			
ATR 42-500	223,00	1,79	399,62
ATR 72-500	220,35	1,79	394,87
EMBRAER Family			
ERJ 145	384,00	1,79	688,13
E 170	655,50	1,79	1.174,66
BOMBARDIER Family			
Q300	227,00	1,79	406,78
CRJ-200	395,00	1,79	707,84

* Data of the fuel consumption per block hour of each airplane model consulted from [22] and given in Imperial Gallons.

Table 6. Fuel consumption of some of the current airplanes and their corresponding cost of fuel

A4.2 Converting from *lb/BH* to \$/*BH*

Fuel consumption of the ATR family was given in each model of airplane brochure in lb/BH, so it was necessary converting these lbs in imperial gallons, to then carrying out the previous conversion to obtain the cost in BH.

So as to carry out this conversion it will be necessary to know the density of the fuel. As it was found in lbs/US Gal it will be necessary to know as well, the conversion rate from US Gal to Imp Gal.

Aviation fuel conversion parameters			
Density 6,71 lb/US Gal			
Conversion factor 0,83267 Imp Gal/US Gal			
* Data consulted from [67] and [68]			

Table 7. Aviation fuel conversion parameters

The operation that will be carried out so, will be the following:

$$(x)lb \cdot \frac{1 US Gal}{6,71 lb} \cdot \frac{0,83267 imp Gal}{1 US Gal} \quad [Imp Gal];$$

where (x) is the corresponding quantity of fuel of the different model of airplanes.

Airplane model	Fuel consumption (<i>lbs/BH</i>)	Fuel consumption (Gal/BH)
ATR Family		
ATR 72-200	1.587	196,94
ATR 72-210	1.675	207,86
ATR 42-500	1.788	221,88
ATR 72-500	1.680	208,48
ATR 42-600	1.788	221,88
ATR 72-600	1.680	208,48

* Data of the fuel consumption per block hour of each airplane model consulted from [34], [35], [60] and [36].

Table 8. Conversion from lbs to Imperial Gallons for airplanes of ATR family

Once this result is reached, the procedure to obtain the fuel cost in BH is the same as in the previous section.

In this way, fuel costs per block hour of each different airplane are the following:

Airplane model	Fuel cost (\$/BH)	Fuel cost (€/BH)	Fuel cost (€/BH)
AIRBUS Family			
Airbus A318	1.174,66	1.108,00	1108
Airbus A319	1.259,78	1.188,29	1188
Airbus A320	1.462,27	1.379,29	1379
Airbus A321	1.449,73	1.367,46	1367
BOEING Family			
Boeing 717	1.226,62	1.157,02	1157
Boeing 737-300	1.651,33	1.557,62	1558
Boeing 737-400	1.281,91	1.209,16	1209
Boeing 737-500	1.601,98	1.511,07	1511
Boeing 737-600	1.234,24	1.164,20	1164
Boeing 737-700	1.290,42	1.217,19	1217
Boeing 737-800	1.483,95	1.399,74	1400
ATR Family			
ATR 72-200	352,91	332,88	333
ATR 72-210	372,48	351,34	351
ATR 42-500	397,61	375,05	375
ATR 72-500	373,59	352,39	352
ATR 42-600	397,61	375,05	375
ATR 72-600	373,59	352,39	352
EMBRAER Family			
ERJ 135	845,00	797,05	797
ERJ 140	812,00	765,92	766
ERJ 145	688,13	649,08	649
E 170	854,78	806,28	806
	854,78	806,28	806

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

E 190	1.277,00	1.204,54	1205
E 195	1.277,00	1.204,54	1205
BOMBARDIER Family			
Q100	276,90	261,18	261
Q200	276,90	261,18	261
Q300	406,78	383,70	384
Q400	672,54	634,37	634
CRJ-100	707,84	667,67	668
CRJ-200	707,84	667,67	668
CRJ-700	774,14	730,21	730
CRJ-705	784,50	739,99	740
CRJ-900	784,50	739,99	740
CRJ-1000	774,14	730,21	730

* Fuel costs per block hour are an average between all the costs found in the different consulted data.

* Fuel costs per block hour have to be approximated to an integer which represents properly the value, due to there is not enough certainty of the decimal digits, and in addition, these costs will have to be added to another ones which there is even less certainty about.

* Fuel costs will be given in Euros instead of American dollars due to the study considers the incorporation of a European low cost company and the majority of the costs will be paid in Euros. Conversion rate applied: $1\$ = 0.943253848 \in$.

* Data of the fuel costs per block hour of each airplane model consulted from [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [60] and [36].

Table 9. Total Fuel Cost per block hour of the current airplanes on the route BCN-STN

Annex 5: Aircrew costs per block hour obtaining

As mentioned before, crew costs are given by the data consulted in cost per year, so it will be necessary to know how many hours crew usually flies per year, as well as the number of aircrew required by each aircraft, so as to find the cost of crew per block hour. Taking into account EASA codes, it is found:

- i. The total flight time of the sectors on which an individual crew member is assigned as an operating crew member shall not exceed 900 hours of flight time in any calendar year [69].
- ii. There must be one cabin crew member for every 50, or fraction of 50 passenger seats [70].

Number of cabin crew and cockpit crew required for each of the different model of airplanes analysed will be:

Airplane model	Number of seats	Cabin crew members (minimum)	Cockpit members
AIRBUS Family			
Airbus A318	132	3	 (1) First Officer (1) Captain
Airbus A319	156	4	(1) First Officer(1) Captain
Airbus A320	180	4	(1) First Officer(1) Captain
Airbus A321	236	5	 (1) First Officer (1) Captain
BOEING Family			
Boeing 717	117	3	(1) First Officer

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER). Annexes Núria Durán Gómez

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

			(1) Captain
Decing 727 200	140	2	(1) First Officer
Boeing 737-300	149	3	(1) Captain
Paging 727 400	189	4	(1) First Officer
Boeing 737-400	169	4	(1) Captain
Boeing 737-500	149	3	(1) First Officer
Doeing 757-500	149	5	(1) Captain
Boeing 737-600	132	3	(1) First Officer
Docing 707-000	152	5	(1) Captain
Boeing 737-700	149	3	(1) First Officer
Dooling for foo	110	U U	(1) Captain
Boeing 737-800	189	4	(1) First Officer
			(1) Captain
ATR Family			
ATR 72-200	74	2	(1) First Officer
ATK 72-200	74	2	(1) Captain
ATR 72-210	74	2	(1) First Officer
ATT 72-210	74	2	(1) Captain
ATR 42-500	50	1	(1) First Officer
7111142 000	00		(1) Captain
ATR 72-500	74	2	(1) First Officer
		-	(1) Captain
ATR 42-600	50	1	(1) First Officer
			(1) Captain
ATR 72-600	74	2	(1) First Officer
			(1) Captain
EMBRAER Family			
ERJ 135	37	1	(1) First Officer
	51		(1) Captain
ERJ 140	44	1	(1) First Officer
			(1) Captain
ERJ 145	50	1	(1) First Officer
2.10 1.10			(1) Captain
E 170	78	2	(1) First Officer
			(1) Captain
E 175	88	2	(1) First Officer

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER). Annexes Núria Durán Gómez

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

			(1) Captain
E 190	114	3	(1) First Officer
E 190	114	3	(1) Captain
E 195	124	3	(1) First Officer
E 195	124	5	(1) Captain
BOMBARDIER Family			
Q100	39	1	(1) First Officer
Q100	39	Ι	(1) Captain
Q200	39	1	(1) First Officer
Q200	59	Ι	(1) Captain
Q300	56	2	(1) First Officer
0000	50	Z	(1) Captain
Q400	86	2	(1) First Officer
QTUU	00	L	(1) Captain
CRJ-100	50	1	(1) First Officer
	00	•	(1) Captain
CRJ-200	50	1	(1) First Officer
	00	·	(1) Captain
CRJ-700	78	2	(1) First Officer
	10	-	(1) Captain
CRJ-705	86	2	(1) First Officer
	00	2	(1) Captain
CRJ-900	90	2	(1) First Officer
		2	(1) Captain
CRJ-1000	104	3	(1) First Officer
	104	0	(1) Captain

* Low cost companies' seat configuration is normally the one with highest density as possible on the model of aircraft they operate with in order to reduce CASM's costs. In this way, all the aircraft analysed will be supposed to have their maximum number of passengers' seats. * Data of the maximum seats of each airplane model consulted from [38], [40], [51], [61], [62],

^a Data of the maximum seats of each airplane model consulted from [38], [40], [51], [61], [62], [71] and [72].

Table 10. Minimum cabin crew and cockpit crew members of the current airplanes

Taking into account the maximum 900 h per year, both cockpit crew and cabin crew must work, it can be found the cost per block hour of cabin crew and cockpit crew of each analysed airplane.

A5.1 Cabin Crew Costs

Cabin crew costs which will be used in this study are an average between the maximum and minimum salary of a flight attendant. Cabin crew person costs usually remain constant between different airplanes, so the only thing that has to be taken into consideration is the total number of cabin crew attendants.

Airplane model	Cabin crew members	Cabin Crew Cost (ϵ /person · year)	Cabin crew Cost (€/year)
AIRBUS Family			
Airbus A318	3	25.000	75.000
Airbus A319	4	25.000	100.000
Airbus A320	4	25.000	100.000
Airbus A321	5	25.000	125.000
BOEING Family			
Boeing 717	3	25.000	75.000
Boeing 737-300	3	25.000	75.000
Boeing 737-400	4	25.000	100.000
Boeing 737-500	3	25.000	75.000
Boeing 737-600	3	25.000	75.000
Boeing 737-700	3	25.000	75.000
Boeing 737-800	4	25.000	100.000
ATR Family			
ATR 72-200	2	25.000	50.000
ATR 72-210	2	25.000	50.000
ATR 42-500	1	25.000	25.000
ATR 72-500	2	25.000	50.000
ATR 42-600	1	25.000	25.000
ATR 72-600	2	25.000	50.000
EMBRAER Family			
ERJ 135	1	25.000	25.000
ERJ 140	1	25.000	25.000

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ERJ 145	1	25.000	25.000
E 170	2	25.000	50.000
E 175	2	25.000	50.000
E 190	3	25.000	75.000
E 195	3	25.000	75.000
BOMBARDIER Family			
Q100	1	25.000	25.000
Q200	1	25.000	25.000
Q300	2	25.000	50.000
Q400	2	25.000	50.000
CRJ-100	1	25.000	25.000
CRJ-200	1	25.000	25.000
CRJ-700	2	25.000	50.000
CRJ-705	2	25.000	50.000
CRJ-900	2	25.000	50.000
CRJ-1000	3	25.000	75.000

* Data of cabin crew attendants costs consulted from [32].

Table 11. Yearly cabin crew costs of the current airplanes

Cabin crew costs per block hour will be the next ones:

Cabin crew Cost $(\mathbf{\epsilon}/year)$ Total Block Hours		Cabin Crew Cost (€/BH)
75.000	900	83
100.000	900	111
100.000 900		111
125.000 900		139
75.000	900	83
75.000	900	83
100.000	900	111
75.000 900		83
	(€/year) 75.000 100.000 100.000 125.000 75.000 75.000 100.000	Total Block Hours (€/year) 75.000 900 100.000 900 100.000 900 125.000 900 75.000 900 75.000 900 100.000 900 100.000 900 100.000 900 100.000 900

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Boeing 737-600	75.000 900		83
Boeing 737-700	75.000 900		83
Boeing 737-800	100.000	900	111
ATR Family			
ATR 72-200	50.000	900	56
ATR 72-210	50.000	900	56
ATR 42-500	25.000	900	28
ATR 72-500	50.000	900	56
ATR 42-600	25.000	900	28
ATR 72-600	50.000	900	56
EMBRAER Family			
ERJ 135	25.000	900	28
ERJ 140	25.000	900	28
ERJ 145	25.000	900	28
E 170	50.000 900		56
E 175	50.000 900		56
E 190	75.000 900		83
E 195	75.000	900	83
BOMBARDIER Family			
Q100	25.000	900	28
Q200	25.000	900	28
Q300	50.000	900	56
Q400	50.000	900	56
CRJ-100	25.000	900	28
CRJ-200	25.000	900	28
CRJ-700	50.000	900	56
CRJ-705	50.000	900	56
CRJ-900	50.000	900	56
CRJ-1000	75.000	900	83

*Cabin crew costs per block hour have to be approximated to an integer which properly represents the value due to there is not enough certainty of the decimal digits.

Table 12. Cabin Crew Cost per Block Hour of the current airplanes

A5.2 Cockpit crew costs

Cockpit crew costs that will be used in this study are an average between the maximum and minimum salary of a first officer and a captain. First officer and captain salaries usually vary with the aircraft model, tending to be higher when aircrafts dimensions increase. There can be, however, families of airplanes where cockpit crew salaries remain constant.

Aimlana madal	First Officer	Captain salary	Cockpit crew Cost
Airplane model	Salary (ϵ /year)	(€/year)	(€/year)
AIRBUS Family			
Airbus A318	51.500	96.500	148.000
Airbus A319	51.500	96.500	148.000
Airbus A320	51.500	96.500	148.000
Airbus A321	51.500	96.500	148.000
BOEING Family			
Boeing 717	56.000	97.500	153.500
Boeing 737-300	61.500	114.500	176.000
Boeing 737-400	61.500	114.500	176.000
Boeing 737-500	61.500	114.500	176.000
Boeing 737-600	70.000	116.000	186.000
Boeing 737-700	70.000	116.000	186.000
Boeing 737-800	70.000	116.000	186.000
ATR Family			
ATR 72-200	40.000	75.000	115.000
ATR 72-210	40.000	75.000	115.000
ATR 42-500	38.000	73.000	111.000
ATR 72-500	40.000	75.000	115.000
ATR 42-600	38.000	73.000	111.000
ATR 72-600	40.000	75.000	115.000
EMBRAER Family			
ERJ 135	38.000	79.000	117.000

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ERJ 140	40.000	83.700	123.700
ERJ 145	40.000	83.700	123.700
E 170	43.700	95.000	138.700
E 175	43.700	95.000	138.700
E 190	47.500	98.000	145.500
E 195	47.500	98.000	145.500
BOMBARDIER Family			
Q100	40.000	67.500	107.500
Q200	40.000	67.500	107.500
Q300	40.000	67.500	107.500
Q400	41.800	82.700	124.500
CRJ-100	38.000	80.800	118.800
CRJ-200	38.000	80.800	118.800
CRJ-700	43.700	96.000	139.700
CRJ-705	43.700	96.000	139.700
CRJ-900	47.500	98.000	145.500
CRJ-1000	47.500	98.000	145.500

* Data of cockpit crew salaries consulted from [32] and [73].

Table 13. Yearly cockpit crew costs of the current airplanes

Cockpit crew costs per block hour will be the following:

Cockpit crew Cost (€/year)	Total Block Hours	Cockpit Crew Cost $(\mathbf{\epsilon}/BH)$
148.000	900	164
148.000	900	164
148.000	900	164
148.000	900	164
153.500	900	171
176.000	900	196
176.000	900	196
176.000	900	196
	(€/year) 148.000 148.000 148.000 148.000 148.000 153.500 176.000 176.000	Hours (€/year) Hours 148.000 900 148.000 900 148.000 900 148.000 900 148.000 900 148.000 900 148.000 900 176.000 900 176.000 900

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER). Annexes Núria Durán Gómez 32

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Boeing 737-600 186.000 900 207 Boeing 737-700 186.000 900 207 Boeing 737-800 186.000 900 207 ATR Family				
Boeing 737-800 186.000 900 207 ATR Family	Boeing 737-600	186.000	900	207
ATR Family ATR 72-200 115.000 900 128 ATR 72-210 115.000 900 128 ATR 42-500 111.000 900 123 ATR 72-500 115.000 900 128 ATR 72-600 115.000 900 123 ATR 72-600 115.000 900 123 ATR 72-600 115.000 900 128 EMBRAER Family 128 128 ERJ 135 117.000 900 130 ERJ 140 123.700 900 137 ERJ 145 123.700 900 137 ERJ 145 123.700 900 137 E 170 138.700 900 154 E 175 138.700 900 162 E 195 145.500 900 162 BOMBARDIER Family 119 0 0 119 Q100 107.500 900 119 0 Q400 124.500 900 <td>Boeing 737-700</td> <td>186.000</td> <td>900</td> <td>207</td>	Boeing 737-700	186.000	900	207
ATR 72-200 115.000 900 128 ATR 72-210 115.000 900 128 ATR 42-500 111.000 900 123 ATR 72-500 115.000 900 123 ATR 72-600 111.000 900 123 ATR 72-600 115.000 900 123 ATR 72-600 115.000 900 128 EMBRAER Family ERJ 135 117.000 900 130 ERJ 140 123.700 900 137 ERJ 145 123.700 900 137 ERJ 145 123.700 900 154 E 157 138.700 900 154 E 175 138.700 900 162 E 162 E 195 145.500 900 162 E 195 145.500 900 162 E BOMBARDIER Family U U Q100 107.500 900 119 Q300 107.500 900 119 Q400 124.500	Boeing 737-800	186.000	900	207
ATR 72-210115.000900128ATR 42-500111.000900123ATR 72-500115.000900123ATR 72-600111.000900123ATR 72-600115.000900128EMBRAER FamilyERJ 135117.000900130ERJ 140123.700900137ERJ 145123.700900137ERJ 145123.700900154E 170138.700900154E 190145.500900162E 195145.500900162BOMBARDIER Family107.500900119Q100107.500900119Q300107.500900138CRJ-100118.800900132CRJ-200139.700900155CRJ-705139.700900155CRJ-900145.500900162	ATR Family			
ATR 42-500111.000900123ATR 72-500115.000900128ATR 42-600111.000900123ATR 72-600115.000900128EMBRAER FamilyERJ 135117.000900130ERJ 140123.700900137ERJ 145123.700900137ERJ 145123.700900154E 170138.700900154E 190145.500900162E 195145.500900162BOMBARDIER FamilyUUUUQ100107.500900119Q200107.500900138CRJ-100118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	ATR 72-200	115.000	900	128
ATR 72-500115.000900128ATR 42-6001111.000900123ATR 72-600115.000900128EMBRAER FamilyERJ 135117.000900130ERJ 140123.700900137ERJ 145123.700900137E 170138.700900154E 190145.500900162E 195145.500900162E 195107.500900119Q100107.500900119Q300107.500900138CRJ-100118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900155	ATR 72-210	115.000	900	128
ATR 42-600111.000900123ATR 72-600115.000900128EMBRAER FamilyERJ 135117.000900130ERJ 140123.700900137ERJ 145123.700900137E 170138.700900154E 175138.700900162E 190145.500900162E 195145.500900162BOMBARDIER Family107.500900119Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	ATR 42-500	111.000	900	123
ATR 72-600115.000900128EMBRAER FamilyERJ 135117.000900130ERJ 140123.700900137ERJ 145123.700900137E 170138.700900154E 175138.700900154E 190145.500900162E 195145.500900162BOMBARDIER Family900119Q100107.500900119Q300107.500900138CRJ-100118.800900132CRJ-705139.700900155CRJ-900145.500900155	ATR 72-500	115.000	900	128
EMBRAER FamilyERJ 135117.000900130ERJ 140123.700900137ERJ 145123.700900137E 170138.700900154E 175138.700900154E 190145.500900162E 195145.500900162BOMBARDIER Family900119Q100107.500900119Q300107.500900138CRJ-100118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	ATR 42-600	111.000	900	123
ERJ 135117.000900130ERJ 140123.700900137ERJ 145123.700900137E 170138.700900154E 175138.700900154E 190145.500900162E 195145.500900162BOMBARDIER Family900119Q100107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	ATR 72-600	115.000	900	128
ERJ 140123.700900137ERJ 145123.700900137E 170138.700900154E 175138.700900154E 190145.500900162E 195145.500900162BOMBARDIER Family900119Q100107.500900119Q300107.500900119Q400124.500900132CRJ-100118.800900132CRJ-700139.700900155CRJ-705139.700900162	EMBRAER Family			
ERJ 145123.700900137E 170138.700900154E 175138.700900154E 190145.500900162E 195145.500900162BOMBARDIER FamilyQ100107.500900119Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-200139.700900155CRJ-705139.700900162	ERJ 135	117.000	900	130
E 170138.700900154E 175138.700900154E 190145.500900162E 195145.500900162BOMBARDIER FamilyQ100107.500900119Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-200119.700900155CRJ-705139.700900155CRJ-900145.500900162	ERJ 140	123.700	900	137
E 175138.700900154E 190145.500900162E 195145.500900162BOMBARDIER FamilyQ100107.500900119Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-200118.700900155CRJ-705139.700900155CRJ-900145.500900162	ERJ 145	123.700	900	137
E 190145.500900162E 195145.500900162BOMBARDIER FamilyQ100107.500900119Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	E 170	138.700	900	154
E 195145.500900162BOMBARDIER FamilyQ100107.500900119Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-200118.800900155CRJ-705139.700900155CRJ-900145.500900162	E 175	138.700	900	154
BOMBARDIER Family Q100 107.500 900 119 Q200 107.500 900 119 Q300 107.500 900 119 Q400 124.500 900 138 CRJ-100 118.800 900 132 CRJ-200 118.800 900 155 CRJ-705 139.700 900 155 CRJ-900 145.500 900 162	E 190	145.500	900	162
Q100107.500900119Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-200118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	E 195	145.500	900	162
Q200107.500900119Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-200118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	BOMBARDIER Family			
Q300107.500900119Q400124.500900138CRJ-100118.800900132CRJ-200118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	Q100	107.500	900	119
Q400124.500900138CRJ-100118.800900132CRJ-200118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	Q200	107.500	900	119
CRJ-100118.800900132CRJ-200118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	Q300	107.500	900	119
CRJ-200118.800900132CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	Q400	124.500	900	138
CRJ-700139.700900155CRJ-705139.700900155CRJ-900145.500900162	CRJ-100	118.800	900	132
CRJ-705139.700900155CRJ-900145.500900162	CRJ-200	118.800	900	132
CRJ-900 145.500 900 162	CRJ-700	139.700	900	155
	CRJ-705	139.700	900	155
CRJ-1000 145.500 900 162	CRJ-900	145.500	900	162
	CRJ-1000	145.500	900	162

* Cockpit crew costs per block hour have to be approximated to an integer which properly represents the value due to there is not enough certainty of the decimal digits.

Table 14. Cockpit Crew Costs per Block Hour of the current airplanes

Annex 6: Average cargo per passenger permitted and available cargo for invoicing obtaining

A6.1 Average cargo per passenger permitted obtaining

The average of cargo permitted per passenger follows the next equation:

 $Cargo \ permitted = \frac{Total \ Cargo}{Number \ of \ passengers} \ [kg/pax]$

So as to obtain the total cargo permitted by the airplane, it is necessary to have knowledge of the MPL of each airplane, and then subtracting to this value, the weight corresponding to passengers:

Total Cargo = MPL - Passengers' Weight [kg]

It will be considered an average weight of 77kg per passenger [74], so:

Total Cargo = MPL - 77(number of passengers) [kg]

However, between the data consulted, it had not been possible to find the MPL of all the analysed airplanes and it was needed then, the MZFW and the OEW, in order to find the cargo.

Having knowledge of the MZFW and the OEW of an airplane, it is also possible to find the MPL and then the weight of cargo, following the equation:

 $MZFW = OEW + MPL \rightarrow MPL = MZFW - OEW$

Cargo obtaining from MPL

In order to obtain the cargo from a MPL given, it will only be necessary to know the maximum number of passengers each airplane can carry.

Airplane model	MPL (<i>kg</i>)	Passengers	Total cargo (kg)	Cargo permitted (kg/pax)
BOEING Family				
Boeing 717	12.020	117	3.011	25,7
Boeing 737-300	15.404	149	3.931	26,4
Boeing 737-400	19.881	189	5.328	28,2
Boeing 737-500	15.182	149	3.709	25,0
Boeing 737-600	15.558	132	5.394	40,9
Boeing 737-700	17.554	149	6.081	40,8
Boeing 737-800	21.319	189	6.766	35,8
ATR Family				-
ATR 72-200	7.000	74	1.302	17,6
ATR 72-210	7.000	74	1.302	17,6
ATR 42-500	5.300	50	1.450	29,0
ATR 72-500	7.200	74	1.502	20,3

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ATR 42-600	5.300	50	1.450	29,0
ATR 72-600	7.500	74	1.802	24,3
EMBRAER Family				
ERJ 135	4.198	37	1.349	36,5
ERJ 140	5.284	44	1.896	43,1
ERJ 145	5.786	50	1.936	38,7
E 170	9.100	78	3.094	39,7
E 175	10.080	88	3.304	37,5
E 190	13.080	114	4.302	37,7
E 195	13.650	124	4.102	33,1
BOMBARDIER Family				
Q100	4.215	39	1.212	31,1
Q200	4.647	39	1.644	42,2
Q300	6.124	56	1.812	32,3
Q400	8.670	86	2.048	23,8
CRJ-100	6.124	50	2.274	45,5
CRJ-200	5.942	50	2.092	41,9
CRJ-700	8.527	78	2.521	31,3
CRJ-705	10.319	86	3.697	43,0
CRJ-900	10.319	90	3.389	37,7
CRJ-1000	11.975	104	3.967	38,1

* Data of the fuel costs per block hour of each airplane model consulted from [34], [35], [60], [36], [37], [38], [39], [41], [42], [43], [44] and [45].

Table 15. Cargo per passenger permitted in some of the current airplanes

Cargo obtaining from MZWF and OEW

Operating with the MZFW and the OEW given from the different airplanes, MPL

can be obtained following the equation mentioned above:

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane model	MZFW (<i>kg</i>)	OEW (<i>kg</i>)	MPL (<i>kg</i>)
AIRBUS Family	-	-	
Airbus A318	54.500	39.500	15.000
Airbus A319	58.500	40.800	17.700
Airbus A320	62.500	42.600	19.900
Airbus A321	73.800	48.500	25.300

* Data of the MZFW and OEW of each airplane model consulted from [63]. Table 16. MZFW and OEW from the Airbus family

Once MPL is found, the procedure is the same as in section above:

Airplane model	MPL (<i>kg</i>)	Passengers	Total cargo (kg)	Cargo permitted (kg/pax)
AIRBUS Family	-			
Airbus A318	15.000	132	4.836	36,6
Airbus A319	17.700	156	5.688	36,5
Airbus A320	19.900	180	6.040	33,6
Airbus A321	25.300	236	7.128	30,2

Table 17. Cargo per passenger permitted in the different models of the Airbus family

A6.2 Available cargo for invoicing

The available cargo for invoicing is calculated to have knowledge of the cargo that would provide benefits to the company in each flight, as this cargo could be used to carry luggage which is heavier than the permitted on the passenger cabin, and this would suppose an additional charge in the ticket price.

First step to obtain the available cargo is to establish the maximum weight of cargo permitted for free to passengers. This weight will be fixed at 10 kg, due to it is the typical weight permitted to passengers of the majority of airliners, and so, the expected by passengers when buying a flight.

In this way, in order to know the remaining cargo which the company could take advantage of and have so, more earnings, it will be carried out the following equation:

```
Invoicing = Total Cargo -10 \cdot Number of passengers [kg]
```

Carrying out the equation above for every model of airplane, it is obtained the following table:

Airplane model	Total cargo (kg)	Free cargo (kg/pax)	Passengers	Invoicing (kg)
AIRBUS Family				
Airbus A318	4.836	10	132	3.516
Airbus A319	5.688	10	156	4.128
Airbus A320	6.040	10	180	4.240
Airbus A321	7.128	10	236	4.768
BOEING Family	-	-		
Boeing 717	3.011	10	117	2.798
Boeing 737-300	3.931	10	149	2.441
Boeing 737-400	5.328	10	189	3.438
Boeing 737-500	3.709	10	149	2.219
Boeing 737-600	5.394	10	132	4.074
Boeing 737-700	6.081	10	149	4.591
Boeing 737-800	6.766	10	189	4.876
ATR Family				
ATR 72-200	1.302	10	74	562
ATR 72-210	1.302	10	74	562

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

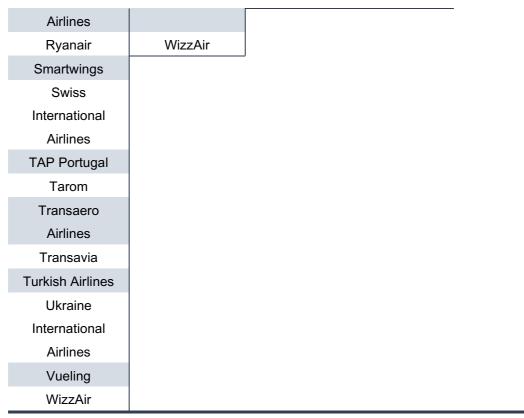
ATR 42-500	1.450	10	50	950
ATR 72-500	1.502	10	74	762
ATR 42-600	1.450	10	50	950
ATR 72-600	1.802	10	74	1.062
EMBRAER Family	-		-	-
ERJ 135	1.349	10	37	979
ERJ 140	1.896	10	44	1.456
ERJ 145	1.936	10	50	1.436
E 170	3.094	10	78	2.314
E 175	3.304	10	88	2.424
E 190	4.302	10	114	3.162
E 195	4.102	10	124	2.862
BOMBARDIER Family			-	
Q100	1.212	10	39	822
Q200	1.644	10	39	1.254
Q300	1.812	10	56	1.252
Q400	2.048	10	86	1.188
CRJ-100	2.274	10	50	1.774
CRJ-100 CRJ-200			50 50	1.774 1.592
	2.274	10		
CRJ-200	2.274 2092	10 10	50	1.592
CRJ-200 CRJ-700	2.274 2092 2.521	10 10 10	50 78	1.592 1.741

Table 18. Available cargo destined to invoicing of the different airplanes

Annex 7: Number of existing airplanes in the European airlines

First step to know the number of existing airplanes, and so, possible airplanes that could be borrowed in case of necessity as well as spare parts that could be used, will be making a search of the European airlines that usually work on the five airports the new company will operate at (see section *2.2.1*).

European Airlines operating in the same airports as the new LCC				CC
Airport Barcelona-El Prat	Airport Madrid-Barajas	Airport London- Stansted	Airport Paris-Orly	Airport Mallorca-Son Sant Joan
Adria Airways	Aegean Airlines	Aegean Airlines	Aigle Azur	Adria Airways
Aegean Airlines	Aer Lingus	Air Berlin	Air Berlin	Air Berlin
Aer Lingus	Aeroflot	Air Moldova	Air Europa	Air Europa
Aeroflot	Air Berlin	Aurigny	Air France	Air Nostrum
Air Baltic	Air Europa	EasyJet	Alitalia	BA Cityflyer
Air Berlin	Air France	FlyBe	British Airways	British Airways
Air Europa	Air Moldova	FreeBird Airlines	EasyJet	Bulgaria Air
Air France	Air Nostrum	Germanwings	Finnair	easyJet
Air Moldova	Alitalia	Pegasus Airlines	FlyBe	Evelop
Air Nostrum	BA Cityflyer	Ryanair	Iberia	Germanwings
Alitalia	Blue Air	Thomas Cook	Jetairfly	Iberia
Austrian Airlines	British Airways	Thomson Airways	KLM	Jet2.com
BA Cityflyer	Brussels Airlines		Norwegian Airlines	Jetairfly
Belavia	Bulgaria Air		Pegasus Airlines	Lufthansa


Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Blue Air British Airways Brussels Airlines Bulgaria Air	EasyJet EasyJet Switzerland Enter Air
Croatia Airlines	Finnair
EasyJet	Germanwings
EasyJet Switzerland	Iberia
Enter Air	KLM
Evelop	Lufthansa
Finnair	Luxair
Germanwings	Norwegian Airlines
Iberia	Pegasus Airlines
Jet2.com	Rojal Jordanian Airlines
	Airlines
Jet2.com Jetairfly KLM	-
Jetairfly	Airlines Ryanair Swiss International
Jetairfly KLM	Airlines Ryanair Swiss International Airlines
Jetairfly KLM Lufthansa	Airlines Ryanair Swiss International Airlines TAP Portugal
Jetairfly KLM Lufthansa Luxair	Airlines Ryanair Swiss International Airlines TAP Portugal Tarom
Jetairfly KLM Lufthansa Luxair Monarch Airlines	Airlines Ryanair Swiss International Airlines TAP Portugal Tarom Transavia Transavia
Jetairfly KLM Lufthansa Luxair Monarch Airlines Nordwind Airlines Norwegian	Airlines Ryanair Swiss International Airlines TAP Portugal Tarom Transavia Transavia France

TAP Portugal	Luxair
Transaero	Monarch
Airlines	Airlines
Transavia France	Ryanair
	Swiss
Vueling	International
	Airlines
	Thomas Cook
	Thomson
	Airways
	Transavia
	Vueling

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

* Data of airlines operating in the airports consulted from from [75], [76], [77], [78] and [79]. Table 19. European airlines operating in the same airports as the new LCC

Next, it will be studied the fleet of each of these airlines, from [4], [80] and [81], in order to know how many active or in storage airplanes of the different models analysed they have.

As companies' fleets vary very frequently, it is important to note that according to the data consulted, next fleets correspond to the ones of March 2015, date of the last actualization of the web pages at the moment when they were consulted.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Adria Airways

Airplane model	Active	Stored
Airbus A319	2	-
Airbus A320	-	2
CRJ-100	-	1
CRJ-200	2	2
CRJ-900	6	-
T 11 00 EL 1 (A 1		

Table 20. Fleet of Adria Airways

Fleet of Aegean Airlines

Airplane model	Active	Stored
Airbus A319	-	1
Airbus A320	28	-
Airbus A321	6	-

Table 21. Fleet of Aegean Airlines

Fleet of Aer Lingus

Airplane model	Active	Stored
Airbus A319	4	-
Airbus A320	29	-
Airbus A321	3	-
ATR 42-600	11	-

Table 22. Fleet of Aer Lingus

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Aeroflot

Airplane model	Active	Stored
Airbus A319	7	-
Airbus A320	63	-
Airbus A321	26	1
Boeing 737-800	8	-

Table 23. Fleet of Aeroflot

Fleet of Aigle Azur

Airplane model	Active	Stored
Airbus A319	3	1
Airbus A320	7	-

Table 24. Fleet of Aigle Azur

Fleet of Air Baltic

Airplane model	Active	Stored
Boeing 737-300	7	1
Boeing 737-500	5	1
Q400	12	-

Table 25. Fleet of Air Baltic

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Air Berlin

Airplane model	Active	Stored
Airbus A319	4	-
Airbus A320	31	-
Airbus A321	15	-
Boeing 737-700	3	-
Boeing 737-800	25	-
Table 26 Elect of A	. Dealin	

Table 26. Fleet of Air Berlin

Fleet of Air Europa

Airplane model	Active	Stored
ATR 72-210	1	-
ATR 72-500	2	
Boeing 737-800	20	-
ERJ 145	1	-
E 195	11	-

Table 27. Fleet of Air Europa

Fleet of Air France

Airplane model	Active	Stored
Airbus A318	18	-
Airbus A319	39	1
Airbus A320	43	34
Airbus A321	18	1

Table 28. Fleet of Air France

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Air Moldova

Airplane model	Active	Stored
Airbus A320	2	1
Airbus A321	1	1
E 190	2	34

Table 29. Fleet of Air Moldova

Fleet of Air Nostrum

Airplane model	Active	Stored
ATR 72-600	5	-
CRJ-100	13	-
CRJ-200	7	9
CRJ-900	12	-
CRJ-1000	10	-

Table 30. Fleet of Air Nostrum

Fleet of Alitalia

Airplane model	Active	Stored
Airbus A319	22	-
Airbus A320	48	6
Airbus A321	12	10
ATR 72-500	-	1

Table 31. Fleet of Alitalia

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Aurigny

Airplane model	Active	Stored
ATR 72-210	1	-
ATR 72-500	2	
E 195	1	-

Table 32. Fleet of Aurigny

Fleet of Austrian Airlines

Airplane model	Active	Stored
Airbus A319	7	-
Airbus A320	16	-
Airbus A321	3	-
Boeing 737-600	-	2
Boeing 737-700	-	2
CRJ-100	-	1
Q400	17	-

Table 33. Fleet of Austrian Airlines

Fleet of BA Cityflyer

Airplane model	Active	Stored
E 170	6	-
E 190	11	-

Table 34. Fleet of BA Cityflyer

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Belavia

Airplane model	Active	Stored
Boeing 737-300	9	-
Boeing 737-500	6	-
Boeing 737-800	2	-
CRJ-200	5	-
E 175	2	-
E 195	2	-

Table 35. Fleet of Belavia

Fleet of Blue Air

Airplane model	Active	Stored
Boeing 737-300	- 1	-
Boeing 737-400	8	-
Boeing 737-500	1	-

Table 36. Fleet of Blue Air

Fleet of British Airways

Airplane model	Active	Stored
Airbus A318	2	-
Airbus A319	44	-
Airbus A320	61	5
Airbus A321	18	-
Boeing 737-300	-	2
Boeing 737-400	4	15

Table 37. Fleet of British Airways

Fleet of Brussels Airlines

Airplane model	Active	Stored
Airbus A319	18	-
Airbus A320	6	-
Boeing 737-400	-	1
Q400	3	-

Table 38. Fleet of Brussels Airlines

Fleet of Bulgaria Air

Airplane model	Active	Stored
Airbus A319	3	-
Airbus A320	2	-
Boeing 737-300	-	2
E 190	4	-

Table 39. Fleet of Bulgaria Air

Fleet of Croatia Airlines

Airplane model	Active	Stored
Airbus A319	4	-
Airbus A320	2	1
Q400	6	-

Table 40. Fleet of Croatia Airlines

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of EasyJet

Airplane model	Active	Stored
Airbus A319	135	-
Airbus A320	67	-
Boeing 737-700	-	3

Table 41. Fleet of EasyJet

Fleet of EasyJet Switzerland

Active	Stored
12	-
11	-
	12

Table 42. Fleet of EasyJet Switzerland

Fleet of Enter Air

Airplane model	Active	Stored
Boeing 737-400	6	2
Boeing 737-800	7	-

Table 43. Fleet of Enter Air

Fleet of Evelop

Airplane model	Active	Stored
Airbus A320	1	-

Table 44. Fleet of Evelop

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Finnair

Airplane model	Active	Stored
Airbus A319	9	-
Airbus A320	10	-
Airbus A321	11	-
E 170	6	-
E 190	12	-
Table 45. Fleet of Finnair		

Fleet of FlyBe

Airplane model	Active	Stored
ATR 72-500	2	-
Q400	42	4
ERJ 145	-	3
E 175	11	-
E 195	4	5

Table 46. Fleet of FlyBe

Fleet of FreeBird Airlines

Airplane model	Active	Stored
Airbus A320	7	2
Airbus A321	-	1

Table 47. Fleet of FreeBird Airlines

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of Germanwings

Airplane model	Active	Stored
Airbus A319	43	-
Airbus A320	17	-
T 11 40 EL 1 60		

Table 48. Fleet of Germanwings

Fleet of Iberia

Airplane model	Active	Stored
Airbus A319	12	-
Airbus A320	13	2
Airbus A321	17	1

Table 49. Fleet of Iberia

Fleet of Jet2

Airplane model	Active	Stored
Boeing 737-300	29	3
Boeing 737-800	15	-

Table 50. Fleet of Jet2

Fleet of Jetairfly

Airplane model	Active	Stored
Boeing 737-700	4	-
Boeing 737-800	9	-
E 190	2	-

Table 51. Fleet of Jetairfly

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of KLM

Airplane model	Active	Stored
Boeing 737-300	-	6
Boeing 737-400	-	5
Boeing 737-700	18	-
Boeing 737-800	25	-

Table 52. Fleet of KLM

Fleet of Lufthansa

Airplane model	Active	Stored
Airbus A319	30	-
Airbus A320	51	1
Airbus A321	44	-
Boeing 737-300	9	22
Boeing 737-500	12	18

Table 53. Fleet of Lufthansa

Fleet of Luxair

Airplane model	Active	Stored
Boeing 737-700	2	1
Boeing 737-800	3	-
Q400	7	-
ERJ 145	6	-

Table 54. Fleet of Luxair

Fleet of Monarch Airlines

Airplane model	Active	Stored
Airbus A320	8	3
Airbus A321	24	1
		•

Table 55. Fleet of Monarch Airlines

Fleet of Nordwind Airlines

Airplane model	Active	Stored
Airbus A320	-	1
Airbus A321	8	-
Boeing 737-800	5	-

Table 56. Fleet of Nordwind Airlines

Fleet of Norwegian Airlines

Airplane model	Active	Stored
Boeing 737-300	-	12
Boeing 737-800	85	-

Table 57. Fleet of Norwegian Airlines

Fleet of Pegasus Airlines

Airplane model	Active	Stored
Airbus A320	5	-
Boeing 737-400	-	1
Boeing 737-800	48	-

Table 58. Fleet of Pegasus Airlines

Fleet of Royal Jordanian Airlines

Airplane model	Active	Stored
Airbus A319	4	-
Airbus A320	6	-
Airbus A321	2	-
E 175	3	-
E 195	4	1

Table 59. Fleet of Royal Jordanian Airlines

Fleet of Ryanair

Airplane model	Active	Stored
Boeing 737-800	304	-

Table 60. Fleet of Ryanair

Fleet of Smartwings

Airplane model	Active	Stored
Airbus A320	1	2
Boeing 737-500	-	2
Boeing 737-700	2	-
Boeing 737-800	1	-

Table 61. Fleet of Smartwings

Fleet of Swiss International Airlines

Airplane model	Active	Stored
Airbus A319	5	-
Airbus A320	23	-
Airbus A321	2	-

Table 62. Fleet of Swiass International Airlines

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Fleet of TAP Portugal

Airplane model	Active	Stored
Airbus A319	21	-
Airbus A320	19	1
Airbus A321	3	-

Table 63. Fleet of TAP Portugal

Fleet of Tarom

Airplane model	Active	Stored
Airbus A318	4	-
ATR 42-500	7	-
ATR 72-500	2	-
Boeing 737-300	3	2
Boeing 737-700	4	-
Boeing 737-800	1	-

Table 64. Fleet of Tarom

Fleet of Thomas Cook

Airplane model	Active	Stored
Airbus A319	1	-
Airbus A320	3	3

Table 65. Fleet of Thomas Cook

Fleet of Thomson Airways

Airplane model	Active	Stored
Boeing 737-800	24	-

Table 66. Fleet of Thomson Airways

Fleet of TransAero Airlines

Active	Stored
3	1
5	-
14	1
7	-
17	-
	3 5 14 7

Table 67. Fleet of TransAero Airlines

Fleet of Transavia Airlines

Airplane model	Active	Stored
Boeing 737-700	9	-
Boeing 737-800	21	-

Table 68. Fleet of Transavia Airlines

Fleet of Transavia France

Airplane model	Active Stored
Airbus A320	2 -
Boeing 737-800	11 -
Boeing 737-800	11 -

Table 69. Fleet of Transavia France

Fleet of Turkish Airlines

Airplane model	Active	Stored
Airbus A319	14	-
Airbus A320	33	-
Airbus A321	44	-
Boeing 737-700	3	-

Table 70. Fleet of Turkish Airlines

Fleet of Ukraine International airlines

Airplane model	Active	Stored
Boeing 737-300	4	1
Boeing 737-400	1	2
Boeing 737-500	7	2
E 190	5	-

Table 71. Fleet of Ukraine International Airlines

Fleet of Vueling

A	irplane model	Active	Stored
	Airbus A319	5	-
	Airbus A320	84	6
		C .	(

Table 72. Fleet of Vueling

Fleet of WizzAir

Airplane model	Active	Stored
Airbus A320	53	-

Table 73. Fleet of WizzAir

It can be then known, the total number of each different model of airplanes that exist in Europe:

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane model	Number of existences in Europe
AIRBUS Family	
Airbus A318	24
Airbus A319	450
Airbus A320	822
Airbus A321	214
BOEING Family	
Boeing 717	0
Boeing 737-300	117
Boeing 737-400	50
Boeing 737-500	63
Boeing 737-600	2
Boeing 737-700	33
Boeing 737-800	602
ATR Family	
ATR 72-200	0
ATR 72-210	2
ATR 42-500	7
ATR 72-500	9
ATR 42-600	11
ATR 72-600	5
EMBRAER Family	
ERJ 135	0
ERJ 140	0
ERJ 145	10
E 170	12
E 175	16
E 190	36
E 195	28
BOMBARDIER Family	
Q100	0
Q200	0
Q300	0
Q400	91
CRJ-100	15

ł

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

CRJ-200	25
CRJ-700	0
CRJ-705	0
CRJ-900	18
CRJ-1000	10

Table 74. Number of existences of each model of airplane in Europe

Annex 8: Ordered Weighted Average (OWA)

The Ordered Weighted Average (OWA) is the most commonly used method of decision taking because of its simplicity and robustness, and follows the next steps [50]:

- i. Define the factors to consider in the method.
- ii. Weight each of the defined factors by assigning a weight (W_i) .
- iii. Rate each of the factors (P_i) .
- iv. Calculate the relative weight by carrying out the next operation:

Relative Weight =
$$P_i \cdot W_i$$

v. Add all weighted marks for each aspect and divide it by the sum of weights and the highest possible rating:

$$OWA = \frac{\sum_{i=1}^{n} P_i \cdot W_i}{P_{max} \cdot \sum_{i=1}^{n} W_i}$$

A8.1 Aspects to consider in the OWA method

The aspects which will be considered in the method in order to find the most suitable model of airplane will be the ones analysed in the section *Selection of the most suitable model of airplane.*

	Aspects of the OWA method		
(1)	(1) Direct Operational Costs		
	(1.1)	Aircraft leasing cost	
	(1.2)	Fuel cost	
	(1.3)	Maintenance cost	
	(1.4)	Crew cost	
	(1.5)	Airport charges	
	(1.6)	On-route fees	
(2)	(2) Invoicing		
(3)	Flight o	duration	
(4)	(4) Number of existences in the operating geographical area		
Table 75 Aspects taken into account in the OWA method			

Table 75. Aspects taken into account in the OWA method

A8.2 Weight of the aspects

Once aspects have been defined, next step will be giving them a weight according to their importance to the company.

The most suitable airplane tends to be the more profitable for the company in terms of costs. In this sense, costs of the analysed airplanes will be a determinant aspect when taking the decision, and so given a greater weight than the rest of aspects.

In order to rate each of the *DOC's* properly, some data has been consulted to find the importance of each of them inside an airline [82]. Next figure shows the percentages each *DOC* represents to the company:

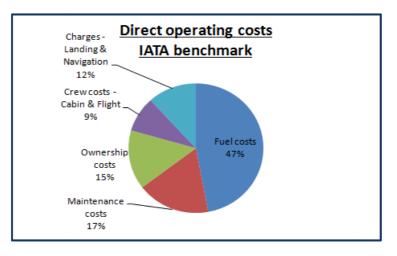


Figure 1. LCC airlines costs breakdown

In this way, it can be seen that the order of importance between all the *DOC's* will be:

Fuel > Maintenance > Leasing > Taxes > Crew

Between the remaining aspects, the company will suppose to give the following order of importance:

Invoicing > Existences > Duration

Giving numbers to these weights:

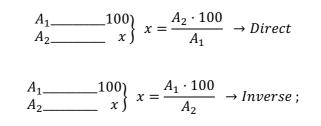
Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

	Aspects of the OWA method	Weight (W_i)
(1)	(1) Direct Operational Costs	
((1.1) Aircraft leasing cost	43
	(1.2) Fuel cost	75
	(1.3) Maintenance cost	37
((1.4) Crew cost	45
	(1.5) Airport charges	20
	(1.6) On-route fees	20
(2)	Invoicing	8
(3)	(3) Flight duration	
(4)	(4) Number of existences in the operating geographical area	
	Total Weight	257

*Weight of *DOC's* maintain the difference between percentages of the *Figure 1. LCC airlines costs breakdown*. The percentages of the figure have been increased in order to be able to contemplate the rest of aspects which are not costs.

Table 76. Weight of each aspect of the OWA method

A8.3 Rate of the aspects


Following, it will be given a rate to each of the aspects of every model of airplane taken into account on the OWA method.

In order to rate each model of airplane according to each aspect, it will be necessary:

- i. Identifying the best aircraft according to the company interests.
- Giving to the best aircraft the highest rate. This rate will have to be normalised to a maximum value. In this case, it is chosen a highest rate of 100.
- iii. Finding the rest of the airplanes rates by carrying out a simple direct or inverse rule of three. It will have to have knowledge of the value which is

being analysed of the best airplane (corresponding to a rate of 100) and the value of the different airplanes:

where, A_1 corresponds to the best value according to the company interests, A_2 to the value which its rating is wanted and *x* the mentioned rating.

Aircraft leasing cost

As mentioned in the section *Aircraft price*, the most suitable airplane for the company will be the one with the lowest leasing cost. In this way, this cost will be rated with $P_i = 100$, and rest of the ratings will have to be found by carrying out a rule of three.

Airplane model	Leasing cost $(\notin/month)$	Rate (P_i)
CRJ-100	35.000	100

Table 77. Best model of airplane according to leasing costs

The rule of three that will be made is an inverse one, due to at a lowest leasing cost, highest rate.

The rating of the different model of airplanes according to their leasing costs will be the following:

Airplane model	Leasing cost $(\in/month)$	Rate (P_i)
AIRBUS Family		
Airbus A318	75.000	46,667
Airbus A319	177.000	19,774
Airbus A320	186.000	18,817
Airbus A321	281.000	12,456
BOEING Family		
Boeing 717	111.000	31,532
Boeing 737-300	51.000	68,627
Boeing 737-400	65.000	53,846
Boeing 737-500	45.000	77,778
Boeing 737-600	111.000	31,532
Boeing 737-700	179.000	19,553
Boeing 737-800	280.000	12,500
ATR Family		
ATR 72-200	59.000	59,322
ATR 72-210	59.000	59,322
ATR 42-500	99.000	35,354
ATR 72-500	111.000	31,532
ATR 42-600	146.000	23,973
ATR 72-600	167.000	20,958
EMBRAER Family		
ERJ 135	52.000	67,308
ERJ 140	48.000	72,917
ERJ 145	54.000	64,815
E 170	156.000	22,436
E 175	175.000	20,000
E 190	203.000	17,241
E 195	96.000	36,458

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

BOMBARDIER Family	,	
Q100	60.000	58,333
Q200	82.000	42,683
Q300	84.000	41,667
Q400	137.000	25,547
CRJ-100	35.000	100,000
CRJ-200	56.000	62,500
CRJ-700	137.000	25,547
CRJ-705	167.000	20,958
CRJ-900	171.000	20,468
CRJ-1000	217.000	16,129

Table 78. Rate of the airplanes according to their leasing cost

Fuel cost

Similar to the previous section and having a look to the section *Fuel costs*, the most suitable model of airplane according to fuel costs can be found and given the maximum rating.

Airplane model	Fuel costs (ϵ)	Rate (P_i)
Q200	663	100
Table 70 Best model of similars according to first easts		

Table 79. Best model of airplane according to fuel costs

In order to find the ratings of the other airplanes, the utilised rule of three will be an inverse one, due to as lower fuel costs, the better, and so a higher rating. In this manner, it is obtained:

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane model	Fuel costs (€)	Rate (P_i)
AIRBUS Family		
Airbus A318	1.955	33,913
Airbus A319	2.097	31,617
Airbus A320	2.434	27,239
Airbus A321	2.413	27,476
BOEING Family		
Boeing 717	2.076	31,936
Boeing 737-300	2.886	22,973
Boeing 737-400	2.240	29,598
Boeing 737-500	2.799	23,687
Boeing 737-600	2.064	32,122
Boeing 737-700	2.158	30,723
Boeing 737-800	2.482	26,712
ATR Family		
ATR 72-200	877	75,599
ATR 72-210	922	71,909
ATR 42-500	924	71,753
ATR 72-500	936	70,833
ATR 42-600	922	71,909
ATR 72-600	936	70,833
EMBRAER Family		
ERJ 135	1.406	47,155
ERJ 140	1.351	49,075
ERJ 145	1.145	57,904
E 170	1.393	47,595
E 175	1.393	47,595
E 190	2.081	31,860
E 195	2.005	33,067
BOMBARDIER Family		
Q100	706	93,909
Q200	663	100,000
Q300	989	67,037
Q400	1.338	49,552

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER). Annexes Núria Durán Gómez

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

CRJ-100	1.230	53,902
CRJ-200	1.230	53,902
CRJ-700	1.287	51,515
CRJ-705	1.304	50,844
CRJ-900	1.278	51,878
CRJ-1000	1.290	51,395

Table 80. Rate of the airplanes according to their fuel cost

Maintenance costs

Similar to the two previous sections and taking into account the table from the section *Maintenance costs*:

Airplane model	Maintenance Cost (ϵ)	Rate (P_i)
Airbus A318	451	100

Table 81. Best model of airplane according to maintenance costs

As a lower maintenance cost, the highest the rate of the airplane, it will be carried out an inverse rule of three to obtain the ratings of the other airplanes:

Airplane model	Maintenance Cost $(\boldsymbol{\epsilon})$	Rate (P_i)
AIRBUS Family		
Airbus A318	451	100,000
Airbus A319	1.093	41,263
Airbus A320	1.174	38,416
Airbus A321	1.176	38,350
BOEING Family		
Boeing 717	1.202	37,521

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Boeing 737-300	1.178	38,285
Boeing 737-400	1.384	32,587
Boeing 737-500	1.062	42,467
Boeing 737-600	1.051	42,912
Boeing 737-700	1.051	42,912
Boeing 737-800	1.051	42,912
ATR Family		-
ATR 72-200	1.155	39,048
ATR 72-210	1.152	39,149
ATR 42-500	928	48,599
ATR 72-500	1165	38,712
ATR 42-600	928	48,599
ATR 72-600	1.165	38,712
EMBRAER Family		
ERJ 135	666	67,718
ERJ 140	715	63,077
ERJ 145	669	67,414
E 170	600	75,167
E 175	599	75,292
E 190	832	54,207
E 195	786	57,379
BOMBARDIER Family		
Q100	1.020	44,216
Q200	958	47,077
Q300	1.289	34,988
Q400	1.103	40,888
CRJ-100	716	62,989
CRJ-200	716	62,989
CRJ-700	592	76,182
CRJ-705	582	77,491
CRJ-900	536	84,142
CRJ-1000	549	82,149

Table 82. Rate of the airplanes according to their maintenance costs

Crew costs

Equal to the previous sections and taking into account the crew costs obtained in the section *Aircrew costs*:

Airplane model	Crew Cost (ϵ)	Rate (P_i)
ERJ 135	279	100

Table 83. Best model of airplane according to crew costs costs

Another time, the rule of three has to be an inverse one, for the same reason as in all the costs. In this way, the rating of each airplane will be the following:

Airplane model	Crew Cost (€)	Rate (P_i)
AIRBUS Family		
Airbus A318	436	63,991
Airbus A319	485	57,526
Airbus A320	485	57,526
Airbus A321	535	52,150
BOEING Family		
Boeing 717	456	61,184
Boeing 737-300	517	53,965
Boeing 737-400	569	49,033
Boeing 737-500	517	53,965
Boeing 737-600	514	54,280
Boeing 737-700	514	54,280
Boeing 737-800	564	49,468
ATR Family		
ATR 72-200	485	57,526
ATR 72-210	483	57,764

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ATR 42-500	372	75,000
ATR 72-500	489	57,055
ATR 42-600	372	75,000
ATR 72-600	489	57,055
EMBRAER Family		
ERJ 135	279	100,000
ERJ 140	291	95,876
ERJ 145	291	95,876
E 170	363	76,860
E 175	363	76,860
E 190	423	65,957
E 195	408	68,382
BOMBARDIER Family		
Q100	397	70,277
Q200	373	74,799
Q300	451	61,863
Q400	409	68,215
CRJ-100	295	94,576
CRJ-200	295	94,576
CRJ-700	372	75,000
CRJ-705	372	75,000
CRJ-900	377	74,005
CRJ-1000	433	64,434

Table 84. Rate of the airplanes according to their crew costs

Airport and on-route charges

Similar to the previous sections and having a look to the table from section *Airport and on-route fees,* where different MTOW are given:

Airplane model	MTOW (kg)	Rate (P_i)
Q100	16.470	100
Q200	16.470	100

Table 85. Best airplanes according to their MTOW

Remember that in this case costs are not yet given due to it is an initial study and it will only be necessary having knowledge of each airplane's MTOW, as airport taxes and on route fees vary in a proportional way with the MTOW (see annexes *14* and *15*).

As a higher MTOW the aircraft has, the higher airport and on-route fees, and so the lower rating, the carried out rule of three will have to be an inverse one.

In this way:

Airplane model	MTOW (kg)	Rate (P_i)
AIRBUS Family		
Airbus A318	68.000	24,221
Airbus A319	75.500	21,815
Airbus A320	78.000	21,115
Airbus A321	93.500	17,615
BOEING Family		
Boeing 717	49.845	33,042
Boeing 737-300	61.235	26,896

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Boeing 737-400	68.039	24,207
Boeing 737-500	60.555	27,198
Boeing 737-600	66.000	24,955
Boeing 737-700	70.080	23,502
Boeing 737-800	79.010	20,845
ATR Family		
ATR 72-200	21.500	76,605
ATR 72-210	21.500	76,605
ATR 42-500	18.600	88,548
ATR 72-500	22.800	72,237
ATR 42-600	18.600	88,548
ATR 72-600	23.000	71,609
EMBRAER Family		
ERJ 135	19.000	86,684
ERJ 140	21.000	78,429
ERJ 145	22.000	74,864
E 170	36.000	45,750
E 175	37.500	43,920
E 190	47.790	34,463
E 195	48.790	33,757
BOMBARDIER Family		
Q100	16.470	100,000
Q200	16.470	100,000
Q300	19.500	84,462
Q400	29.260	56,288
CRJ-100	24.041	68,508
CRJ-200	23.133	71,197
CRJ-700	33.000	49,909
CRJ-705	36.505	45,117
CRJ-900	36.505	45,117
CRJ-1000	40.084	41,089

Table 86. Rate of the airplanes according to their MTOW

Available cargo destined to invoicing

Having a look to the section *Passengers facilities and invoicing* and carrying out the same procedure as the previous sections, but analysing now the available cargo destined to invoicing:

Airplane model	Available cargo for invoicing (kg)	Rate (P_i)
Boeing 737-800	4.876	100
Table 07. Dest similar a seconding to its sucilable source destination in using		

Table 87. Best airplane according to its available cargo destined to invoicing

Opposite to all the previous sections, now as higher the weight destined to invoicing is, the higher the rate of the airplane. In this sense, the rule of three that will be used to find the rest of ratings will be a direct one:

Airplane model	Invoicing weight (kg)	Rate (P_i)
AIRBUS Family		
Airbus A318	3.516	72,108
Airbus A319	4.128	84,660
Airbus A320	4.240	86,957
Airbus A321	4.768	97,785
BOEING Family		
Boeing 717	2.798	57,383
Boeing 737-300	2.441	50,062
Boeing 737-400	3.438	70,509
Boeing 737-500	2.219	45,509
Boeing 737-600	4.074	83,552
Boeing 737-700	4.591	94,155
Boeing 737-800	4.876	100,000

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ATR Family		
ATR 72-200	562	11,526
ATR 72-210	562	11,526
ATR 42-500	950	19,483
ATR 72-500	762	15,628
ATR 42-600	950	19,483
ATR 72-600	1.062	21,780
EMBRAER Family		
ERJ 135	979	20,078
ERJ 140	1.456	29,861
ERJ 145	1.436	29,450
E 170	2.314	47,457
E 175	2.424	49,713
E 190	3.162	64,848
E 195	2.862	58,696
BOMBARDIER Family		
Q100	822	16,858
Q200	1.254	25,718
Q300	1.252	25,677
Q400	1.188	24,364
CRJ-100	1.774	36,382
CRJ-200	1.592	32,650
CRJ-700	1.741	35,705
CRJ-705	2.837	58,183
CRJ-900	2.489	51,046
CRJ-1000	2.927	60,029

Table 88. Rate of the airplanes according to their available weight for invoicing

Flight duration

By having a look to the different cruise speeds of the different airplanes from the section *Flight duration* and following the same procedure as in the previous sections, the highest cruise speed can be found:

Airplane model	Cruise speed (km/h)	Rate (P_i)
E 195	890	100
Table 00 Destandelst	the law a second second second	

Table 89. Best model of airplane according to the cruise speed

At a higher cruise speed, the less flight time required, and so the higher rate. The rule of three which will be used is then, a direct one.

Airplane model	Cruise speed (km/h)	Rate (P_i)
AIRBUS Family		
Airbus A318	828	93,034
Airbus A319	828	93,034
Airbus A320	828	93,034
Airbus A321	828	93,034
BOEING Family		
Boeing 717	811	91,124
Boeing 737-300	780	89,213
Boeing 737-400	780	91,348
Boeing 737-500	780	89,326
Boeing 737-600	823	95,730
Boeing 737-700	823	95,730
Boeing 737-800	823	95,730

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ATR Family		
ATR 72-200	515	57,865
ATR 72-210	517	58,090
ATR 42-500	556	62,472
ATR 72-500	510	57,303
ATR 42-600	556	62,472
ATR 72-600	510	57,303
EMBRAER Family		
ERJ 135	828	93,034
ERJ 140	828	93,034
ERJ 145	828	93,034
E 170	850	95,506
E 175	850	95,506
E 190	850	95,506
E 195	890	100,000
BOMBARDIER Family		
Q100	500	56,180
Q200	537	60,337
Q300	528	59,326
Q400	667	74,944
CRJ-100	785	88,202
CRJ-200	785	88,202
CRJ-700	829	93,146
CRJ-705	829	93,146
CRJ-900	850	95,506
CRJ-1000	827	92,921

Table 90. Rate of the airplanes according to their cruise speed

Number of existences in the operating geographical area

Equal to the previous sections and having a look to the table from section *Number of airplane existences on the selected area*:

Airplane model	Number of existences in Europe	Rate (P_i)
Airbus A320	822	100

Table 91. Best airplane model according to the existences

As a higher number of existences, a higher rate, it will be carried out a direct rule of three. In this way:

Airplane model	Number of existences in Europe	Rate (P_i)
AIRBUS Family		
Airbus A318	24	2,920
Airbus A319	450	54,745
Airbus A320	822	100,000
Airbus A321	214	26,034
BOEING Family		
Boeing 717	0	0,000
Boeing 737-300	117	14,234
Boeing 737-400	50	6,083
Boeing 737-500	63	7,664
Boeing 737-600	2	0,243
Boeing 737-700	33	4,015
Boeing 737-800	602	73,236
ATR Family		

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ATR 72-200	0	0,000
ATR 72-210	2	0,243
ATR 42-500	7	0,852
ATR 72-500	9	1,095
ATR 42-600	11	0,000
ATR 72-600	5	0,608
EMBRAER Family		
ERJ 135	0	0,000
ERJ 140	0	0,000
ERJ 145	10	1,217
E 170	12	1,460
E 175	16	1,946
E 190	36	4,380
E 195	28	3,406
BOMBARDIER Family		
Q100	0	0,000
Q200	0	0,000
Q300	0	0,000
Q400	91	11,071
CRJ-100	15	1,825
CRJ-200	25	3,041
CRJ-700	0	0,000
CRJ-705	0	0,000
CRJ-900	18	2,190
CRJ-1000	10	1,217

Table 92. Rate of the airplanes according to their existences

A8.4 Relative weights obtaining

Airbus family

A318

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	46,667	2.006,667
Fuel costs	75	33,913	2.543,478
Crew costs	37	63,991	2.367,661
Maintenance costs	45	100,000	4.500,000
Airport charges	20	24,221	484,412
On-route fees	20	24,221	484,412
Invoicing	8	20,749	165,993
Flight duration	3	93,034	279,101
Number of existences	6	2,920	14,599
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			12.849,241

Table 93. Relative weight of A318

A319

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	19,774	850,282
Fuel costs	75	31,617	2.371,245
Crew costs	37	57,526	2.128,454
Maintenance costs	45	41,263	1.856,816
Airport charges	20	21,815	436,291

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	-		8.852,109
Number of existences	6	54,745	273,723
Flight duration	3	93,034	279,101
Invoicing	8	20,645	165,161
On-route fees	20	21,815	436,291

Table 94. Relative weight of A319

A320

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	18,817	809,140
Fuel costs	75	27,239	2.042,933
Crew costs	37	57,526	2.128,454
Maintenance costs	45	38,416	1.728,705
Airport charges	20	21,115	422,308
On-route fees	20	21,115	422,308
Invoicing	8	17,631	141,047
Flight duration	3	93,034	279,101
Number of existences	6	100,000	500,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			8.573,995

Table 95. Relative weight of A320

A321

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	12,456	535,587
Fuel costs	75	27,476	2.060,713
Crew costs	37	52,150	1.929,533
Maintenance costs	45	38,350	1.725,765

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			7.504,277
Number of existences	6	26,034	130,170
Flight duration	3	93,034	279,101
Invoicing	8	14,097	112,774
On-route fees	20	17,615	352,299
Airport charges	20	17,615	352,299

Table 96. Relative weight of A321

Boeing family

Boeing 717

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	31,532	1.355,856
Fuel costs	75	31,936	2.395,231
Crew costs	37	61,184	2.263,816
Maintenance costs	45	37,521	1.688,436
Airport charges	20	33,042	660,849
On-route fees	20	33,042	660,849
Invoicing	8	9,419	75,355
Flight duration	3	91,124	273,371
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			9.373,762

Table 97. Relative weight of 717

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Boeing 737-300

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	68,627	2.950,980
Fuel costs	75	22,973	1.722,973
Crew costs	37	53,965	1.996,712
Maintenance costs	45	38,285	1.722,835
Airport charges	20	26,896	537,928
On-route fees	20	26,896	537,928
Invoicing	8	10,147	81,176
Flight duration	3	89,213	267,640
Number of existences	6	14,234	71,168
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	-		9.903,573

Table 98. Relative weight of 737-300

Boeing 737-400

Aspect taken into account	$\begin{array}{c} \textbf{Weight} \\ (W_i) \end{array}$	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	53,846	2.315,385
Fuel costs	75	29,598	2.219,866
Crew costs	37	49,033	1.814,236
Maintenance costs	45	32,587	1.466,402
Airport charges	20	24,207	484,134
On-route fees	20	24,207	484,134
Invoicing	8	12,018	96,143
Flight duration	3	91,348	274,045
Number of existences	6	6,083	30,414
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			9.190,841

Table 99. Relative weight of 737-400

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Boeing 737-500

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	77,778	3.344,444
Fuel costs	75	23,687	1.776,527
Crew costs	37	53,965	1.996,712
Maintenance costs	45	42,467	1.911,017
Airport charges	20	27,198	543,968
On-route fees	20	27,198	543,968
Invoicing	8	8,692	69,534
Flight duration	3	89,326	267,978
Number of existences	6	7,664	38,321
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	-		10.500,134

Table 100. Relative weight of 737-500

Boeing 737-600

43 75	31,532 32,122	1.355,856
75	32 122	
	52,122	2.409,157
37	54,280	2.008,366
45	42,912	1.931,018
20	24,955	499,091
20	24,955	499,091
8	25,219	201,749
3	95,730	287,191
6	0,243	1,217
		9.192,978
	37 45 20 20 8 3	37 54,280 45 42,912 20 24,955 20 24,955 8 25,219 3 95,730 6 0,243

Table 101. Relative weight of 737-600

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Boeing 737-700

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	19,553	840,782
Fuel costs	75	30,723	2.304,217
Crew costs	37	54,280	2.008,366
Maintenance costs	45	42,912	1.931,018
Airport charges	20	23,502	470,034
On-route fees	20	23,502	470,034
Invoicing	8	25,115	200,918
Flight duration	3	95,730	287,191
Number of existences	6	4,015	20,073
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	-		8.536,647

Table 102. Relative weight of 737-700

Boeing 737-800

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	12,500	537,500
Fuel costs	75	26,712	2.003,425
Crew costs	37	49,468	1.830,319
Maintenance costs	45	42,912	1.931,018
Airport charges	20	20,845	416,909
On-route fees	20	20,845	416,909
Invoicing	8	19,918	159,341
Flight duration	3	95,730	287,191
Number of existences	6	73,236	366,180
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			8.022,028

Table 103. Relative weight of 737-800

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ATR family

ATR 72-200

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	59,322	2.550,847
Fuel costs	75	75,599	56.69,897
Crew costs	37	57,526	2.128,454
Maintenance costs	45	39,048	1.757,143
Airport charges	20	76,605	1.532,093
On-route fees	20	76,605	1.532,093
Invoicing	8	1,000	8,000
Flight duration	3	57,865	173,596
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			15.352,123

Table 104. Relative weight of ATR 72-200

ATR 72-210

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	59,322	2.550,847
Fuel costs	75	71,909	5.393,167
Crew costs	37	57,764	2.137,267
Maintenance costs	45	39,149	1.761,719
Airport charges	20	76,605	1.532,093
On-route fees	20	76,605	1.532,093
Invoicing	8	1,000	8,000
Flight duration	3	58,090	174,270

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Number of existences	6	0,243	1,217
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$		1	5.090,916

Table 105. Relative weight of ATR 72-210

ATR 42-500

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	35,354	1.520,202
Fuel costs	75	71,753	5.381,494
Crew costs	37	75,000	2.775,000
Maintenance costs	45	48,599	2.186,961
Airport charges	20	88,548	1.770,968
On-route fees	20	88,548	1.770,968
Invoicing	8	12,849	102,796
Flight duration	3	62,472	187,416
Number of existences	6	0,852	4,258
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	-		15.700,913

Table 106. Relative weight of ATR 42-500

ATR 72-500

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	31,532	1.355,856
Fuel costs	75	70,833	5.312,500
Crew costs	37	57,055	2.111,043
Maintenance costs	45	38,712	1.742,060
Airport charges	20	72,237	1.444,737
On-route fees	20	72,237	1.444,737
Invoicing	8	3,806	30,452

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			13.619,864
Number of existences	6	1,095	5,474
Flight duration	3	57,303	171,910

Table 107. Relative weight of ATR 72-500

ATR 42-600

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	23,973	1.030,822
Fuel costs	75	71,909	5.393,167
Crew costs	37	75,000	2.775,000
Maintenance costs	45	48,599	2.186,961
Airport charges	20	88,548	1.770,968
On-route fees	20	88,548	1.770,968
Invoicing	8	12,849	102,796
Flight duration	3	62,472	187,416
Number of existences	6	1,338	8,029
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			15.226,126

Table 108. Relative weight of ATR 42-600

ATR 72-600

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	20,958	901,198
Fuel costs	75	70,833	5.312,500
Crew costs	37	57,055	2.111,043
Maintenance costs	45	38,712	1.742,060
Airport charges	20	71,609	1.432,174
On-route fees	20	71,609	1.432,174

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER). Annexes Núria Durán Gómez

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$		1	3.170,421
Number of existences	6	0,608	3,041
Flight duration	3	57,303	171,910
Invoicing	8	7,964	63,713

Table 109. Relative weight of ATR 72-600

Embraer family

ERJ 135

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	67,308	2.894,231
Fuel costs	75	47,155	3.536,629
Crew costs	37	100,000	3.700,000
Maintenance costs	45	67,718	3.047,297
Airport charges	20	86,684	1.733,684
On-route fees	20	86,684	1.733,684
Invoicing	8	20,645	165,161
Flight duration	3	93,034	279,101
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			17.089,788

Table 110. Relative weight of ERJ 135

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

ERJ 140

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	72,917	3.135,417
Fuel costs	75	49,075	3.680,607
Crew costs	37	95,876	3.547,423
Maintenance costs	45	63,077	2.838,462
Airport charges	20	78,429	1.568,571
On-route fees	20	78,429	1.568,571
Invoicing	8	27,505	220,043
Flight duration	3	93,034	279,101
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			16.838,195

Table 111. Relative weight of ERJ 140

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	64,815	2.787,037
Fuel costs	75	57,904	4.342,795
Crew costs	37	95,876	3.547,423
Maintenance costs	45	67,414	3.033,632
Airport charges	20	74,864	1.497,273
On-route fees	20	74,864	1.497,273
Invoicing	8	22,953	183,622
Flight duration	3	93,034	279,101
Number of existences	6	1,217	6,083
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			17.175,454

ERJ 145

Table 112. Relative weight of ERJ 145

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

E 170

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	22,436	964,744
Fuel costs	75	47,595	3.569,634
Crew costs	37	76,860	2.843,802
Maintenance costs	45	75,167	3.382,500
Airport charges	20	45,750	915,000
On-route fees	20	45,750	915,000
Invoicing	8	23,971	191,771
Flight duration	3	95,506	286,517
Number of existences	6	1,460	7,299
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	-		13.077,726

Table 113. Relative weight of E 170

E 175

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	20,000	860,000
Fuel costs	75	47,595	3.569,634
Crew costs	37	76,860	2.843,802
Maintenance costs	45	75,292	3.388,147
Airport charges	20	43,920	878,400
On-route fees	20	43,920	878,400
Invoicing	8	21,685	173,477
Flight duration	3	95,506	286,517
Number of existences	6	1,946	9,732
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			12.890,055

Table 114. Relative weight of E 175

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

E 190

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	17,241	741,379
Fuel costs	75	31,860	2.389,476
Crew costs	37	65,957	2.440,426
Maintenance costs	45	54,207	2.439,303
Airport charges	20	34,463	689,266
On-route fees	20	34,463	689,266
Invoicing	8	21,892	175,140
Flight duration	3	95,506	286,517
Number of existences	6	4,380	21,898
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			9.877,049

Table 115. Relative weight of E 190

E 195

Aspect taken into account	Weight (W _i)	Rate (P_i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	36,458	1.567,708
Fuel costs	75	33,067	2.480,050
Crew costs	37	68,382	2.530,147
Maintenance costs	45	57,379	2.582,061
Airport charges	20	33,757	675,138
On-route fees	20	33,757	675,138
Invoicing	8	17,111	136,889
Flight duration	3	100,000	300,000
Number of existences	6	3,406	17,032
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			10.967,570

Table 116. Relative weight of E 195

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Bombardier family

Q100

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	58,333	2.508,333
Fuel costs	75	93,909	7.043,201
Crew costs	37	70,277	2.600,252
Maintenance costs	45	44,216	1.989,706
Airport charges	20	100,000	2.000,000
On-route fees	20	100,000	2.000,000
Invoicing	8	15,032	120,258
Flight duration	3	56,180	168,539
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$		

Table 117. Relative weight of Q100

Q200

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	42,683	1.835,366
Fuel costs	75	100,000	7.500,000
Crew costs	37	74,799	2.767,560
Maintenance costs	45	47,077	2.118,476
Airport charges	20	100,000	2.000,000
On-route fees	20	100,000	2.000,000
Invoicing	8	26,570	212,559
Flight duration	3	60,337	181,011

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			18.614,973

Table 118. Relative weight of Q200

Q300

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	41,667	1.791,667
Fuel costs	75	67,037	5027,806
Crew costs	37	61,863	2.288,914
Maintenance costs	45	34,988	1.574,476
Airport charges	20	84,462	1.689,231
On-route fees	20	84,462	1.689,231
Invoicing	8	16,280	130,237
Flight duration	3	59,326	177,978
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	-		14.369,538

Table 119. Relative weight of Q300.

Q400

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	25,547	1.098,540
Fuel costs	75	49,552	3716,368
Crew costs	37	68,215	2.523,961
Maintenance costs	45	40,888	1.839,982
Airport charges	20	56,288	1.125,769
On-route fees	20	56,288	1.125,769

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$			11.781,199
Number of existences	6	11,071	55,353
Flight duration	3	74,944	224,831
Invoicing	8	7,444	59,556

Table 120. Relative weight of Q400

CRJ 100

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$	
Aircraft leasing cost	43	100,000	4.300,000	
Fuel costs	75	53,902	4042,683	
Crew costs	37	94,576	3.499,322	
Maintenance costs	45	62,989	2.834,497	
Airport charges	20	68,508	1.370,159	
On-route fees	20	68,508	1.370,159	
Invoicing	8	30,000	240,000	
Flight duration	3	88,202	264,607	
Number of existences	6	1,825	9,124	
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$		17.932,376		

Table 121. Relative weight of CRJ 100

CRJ 200

Aspect taken into account	Weight (W _i)	Rate (P _i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	62,500	2.687,500
Fuel costs	75	53,902	4042,683
Crew costs	37	94,576	3.499,322
Maintenance costs	45	62,989	2.834,497

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$		16.404,801	
Number of existences	6	3,041	15,207
Flight duration	3	88,202	264,607
Invoicing	8	26,258	210,065
On-route fees	20	71,197	1.423,940
Airport charges	20	71,197	1.423,940

Table 122. Relative weight of CRJ 200

CRJ 700

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	25,547	1.098,540
Fuel costs	75	51,515	3863,636
Crew costs	37	75,000	2.775,000
Maintenance costs	45	76,182	3.428,209
Airport charges	20	49,909	998,182
On-route fees	20	49,909	998,182
Invoicing	8	15,240	121,921
Flight duration	3	93,146	279,438
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$		13.563,109	

Table 123. Relative weight of CRJ 700

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

CRJ 705

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	20,958	901,198
Fuel costs	75	50,844	3813,267
Crew costs	37	75,000	2.775,000
Maintenance costs	45	77,491	3.487,113
Airport charges	20	45,117	902,342
On-route fees	20	45,117	902,342
Invoicing	8	27,401	219,211
Flight duration	3	93,146	279,438
Number of existences	6	0,000	0,000
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	1	3.279,912	

Table 124. Relative weight of CRJ 705

CRJ 900

Aspect taken into account	Weight (W _i)	Rate (P_i)	Relative weight $(P_i \cdot W_i)$
Aircraft leasing cost	43	20,468	880,117
Fuel costs	75	51,878	3890,845
Crew costs	37	74,005	2.738,196
Maintenance costs	45	84,142	3.786,381
Airport charges	20	45,117	902,342
On-route fees	20	45,117	902,342
Invoicing	8	21,892	175,140
Flight duration	3	95,506	286,517
Number of existences	6	2,190	10,949
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$	1	3.575,019	

Table 125. Relative weight of CRJ 900

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

CRJ 1000

Aspect taken into account	Weight (W _i)	Rate (<i>P</i> _{<i>i</i>})	Relative weight $(P_i \cdot W_i)$		
Aircraft leasing cost	43	16,129	693,548		
Fuel costs	75	51,395	3854,651		
Crew costs	37	64,434	2.384,065		
Maintenance costs	45	82,149	3.696,721		
Airport charges	20	41,089	821,774		
On-route fees	20	41,089	821,774		
Invoicing	8	22,308	178,466		
Flight duration	3	92,921	278,764		
Number of existences	6	1,217 6,083			
Relative weight $(\sum_{i=1}^{n} P_i \cdot W_i)$		12.737,063			

Table 126. Relative weight of CRJ 1000

A8.5 OWA obtaining

As mentioned before, in order to obtain the OWA it will be necessary to carry out the following equation:

$$OWA = \frac{\sum_{i=1}^{n} P_i \cdot W_i}{P_{max} \cdot \sum_{i=1}^{n} W_i}$$

The only value that is still not known is P_{max} , which corresponds to the highest rate between all the treated aspects, in this case:

$$P_{max} = 100$$

Carrying out the equation of the OWA it is obtained the next table:

Airplane model	OWA
AIRBUS Family	
Airbus A318	0,5000
Airbus A319	0,3444
Airbus A320	0,3336
Airbus A321	0,2920
BOEING Family	
Boeing 717	0,3647
Boeing 737-300	0,3854
Boeing 737-400	0,3576
Boeing 737-500	0,4086
Boeing 737-600	0,3577
Boeing 737-700	0,3322
Boeing 737-800	0,3121
ATR Family	
ATR 72-200	0,5974
ATR 72-210	0,5872
ATR 42-500	0,6109
ATR 72-500	0,5300
ATR 42-600	0,5925
ATR 72-600	0,5125
EMBRAER Family	
ERJ 135	0,6650
ERJ 140	0,6551
ERJ 145	0,6683
E 170	0,5089
E 175	0,5016
E 190	0,3843
E 195	0,4268
BOMBARDIER Family	
Q100	0,7171

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Q200	0,7243
Q300	0,5591
Q400	0,4584
CRJ-100	0,6978
CRJ-200	0,6383
CRJ-700	0,5277
CRJ-705	0,5167
CRJ-900	0,5282
CRJ-1000	0,4856

Table 127. OWA of the different analysed airplanes

Annex 9: Number of flights per day obtaining

A9.1 Current flight schedule on the different routes

First step in order to analyse the existent traffic between the selected cities, it will be searching the number of flights per day in each of the routes.

_										
Departure	Arrival	Flight			Ti	metal	ble			Airport
6:50	8:10	Iberia 2739	-	Мо	Tu	We	Th	-	-	BCN-MAD
6:50	8:10	Iberia 651	-	Мо	Tu	We	Th	-	-	BCN-MAD
7:00	8:15	Vueling 1001	-	Мо	Tu	We	Th	-	-	BCN-MAD
7:25	8:45	Iberia 2703	-	Мо	Tu	We	Th	Fr	-	BCN-MAD
7:25	8:45	Iberia 725	-	Мо	Tu	We	Th	Fr	-	BCN-MAD
7:30	8:50	Vueling 1003	-	Мо	Tu	We	Th	Fr	-	BCN-MAD
8:00	9:20	Vueling 1005	-	Мо	Tu	We	-	-	Sa	BCN-MAD
8:05	9:25	Iberia 805	-	Мо	Tu	We	Th	-	-	BCN-MAD
8:05	9:25	Iberia 2741	-	Мо	Tu	We	Th	-	-	BCN-MAD
8:30	9:50	Vueling 1007	-	Мо	Tu	-	-	-	-	BCN-MAD
8:45	10:05	Iberia 2723	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
8:45	10:05	Iberia 845	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
8:50	10:10	Vueling 1007	-	-	-	-	Th	-	-	BCN-MAD
9:15	10:40	Iberia 2725	-	-	Tu	We	Th	Fr	-	BCN-MAD
9:15	10:40	Iberia 915	-	-	-	We	Th	Fr	-	BCN-MAD
9:30	10:50	Vueling 1009	-	Мо	-	We	-	Fr	-	BCN-MAD
9:45	11:05	Iberia 2727	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD

Route Barcelona-Madrid

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

	9:45	11:05	Iberia 945	Su	Мо	Tu	-	Th	-	Sa	BCN-MAD
	10:10	11:35	Iberia 1011	-	Мо	Tu	We	-	Fr	-	BCN-MAD
1	10:10	11:35	Iberia 2729	-	Мо	Tu	We	Th	Fr	-	BCN-MAD
	11:30	12:55	Iberia 2737	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
1	11:30	12:55	Iberia 1131	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
	12:00	13:20	Vueling 1007	-	-	-	-	-	-	Sa	BCN-MAD
	12:15	13:35	Air Europa 2057	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
	12:30	13:50	Vueling 1007	-	-	-	We	-	-	-	BCN-MAD
	12:30	13:50	Vueling 1009	-	-	-	-	Th	-	-	BCN-MAD
	13:15	14:40	Iberia 2731	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
	13:15	14:40	Iberia 1315	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
	14:00	15:20	Vueling 1011	Su	Мо	-	-	-	Fr	-	BCN-MAD
	14:45	16:05	Iberia 2709	-	Мо	Tu	We	Th	-	-	BCN-MAD
	14:45	16:05	Iberia 1445	-	Мо	Tu	We	Th	-	-	BCN-MAD
	15:30	16:50	Vueling 1013	-	-	-	-	Th	-	-	BCN-MAD
	15:35	16:55	Vueling 1025	Su	-	-	-	-	-	-	BCN-MAD
	16:00	17:20	Vueling 1013	Su	Мо	Tu	We	-	Fr	-	BCN-MAD
	16:10	17:35	Iberia 1611	Su	Мо	Tu	We	Th	Fr	-	BCN-MAD
	16:10	17:35	Iberia 2705	Su	Мо	Tu	We	Th	Fr	-	BCN-MAD
	17:00	18:20	Vueling 1025	-	-	Tu	We	-	-	-	BCN-MAD
	17:10	18:35	Iberia 1711	-	-	-	We	Th	-	-	BCN-MAD
	17:10	18:35	Iberia 2711	-	-	-	We	Th	-	-	BCN-MAD
	17:30	18:50	Vueling 1025	-	Мо	-	-	Th	-	-	BCN-MAD
	17:30	18:50	Vueling 1081	-	-	-	-	-	-	Sa	BCN-MAD
	17:45	19:05	Vueling 1031	Su	-	-	-	-	-	-	BCN-MAD
	17:45	19:10	Iberia 2735	-	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
	17:45	19:10	Iberia 1745	-	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
	18:10	19:30	Vueling 1081	Su	-	Tu	-	-	-	-	BCN-MAD
	18:10	19:35	Iberia 2713	Su	-	Tu	We	Th	-	-	BCN-MAD
	18:10	19:35	Iberia 1811	Su	-	Tu	We	Th	-	-	BCN-MAD
	18:50	20:10	Vueling 1017	Su	Мо	-	-	Th	-	-	BCN-MAD
	19:00	20:20	Vueling 1023	-	-	-	-	-	Fr	-	BCN-MAD
	19:10	20:35	Iberia 1911	-	Мо	Tu	We	-	Fr	-	BCN-MAD
	19:10	20:35	Iberia 2717	-	Мо	Tu	We	-	Fr	-	BCN-MAD
	19:25	20:45	Vueling 1029	-	-	-	-	Th	-	-	BCN-MAD
	19:30	20:50	Vueling 1031	-	-	-	We	-	-	-	BCN-MAD

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

19:45	21:05	Vueling 1019	Su	-	-	-	Th	-	-	BCN-MAD
20:10	21:35	Iberia 2011	Su	-	Tu	We	-	-	-	BCN-MAD
20:10	21:35	Iberia 2719	Su	-	Tu	We	Th	-	-	BCN-MAD
20:35	21:55	Air Europa 2159	Su	Мо	Tu	We	Th	Fr	Sa	BCN-MAD
20:35	21:55	Vueling 1015	Su	-	Tu	We	-	-	-	BCN-MAD
20:50	22:10	Vueling 1023	-	Мо	-	-	-	-	-	BCN-MAD
20:50	22:10	Vueling 1021	-	-	-	-	Th	-	-	BCN-MAD
21:15	22:35	Vueling 1023	-	-	-	-	Th	-	-	BCN-MAD
21:30	22:55	Iberia 2131	-	Мо	Tu	We	Th	-	Sa	BCN-MAD
21:30	22:55	Iberia 2733	-	Мо	Tu	We	Th	-	Sa	BCN-MAD
22:30	23:50	Vueling 1023	-	-	Tu	We	-	-	-	BCN-MAD
23:35	0:55+1	Vueling 1021	Su	-	-	-	-	-	-	BCN-MAD

* Data of the timetable on the route Barcelona-Madrid consulted from [83].

Table 128. Timetable of the flights on the route Barcelona-Madrid

Route Madrid-Barcelona

Departure	Arrival	Flight	Timetable							Airport
6:50	8:00	Iberia 2712	-	Мо	Tu	We	Th	-	-	MAD-BCN
6:50	8:00	Iberia 650	-	Мо	Tu	We	Th	-	-	MAD-BCN
7:00	8:15	Vueling 1020	-	-	-	-	Th	-	-	MAD-BCN
7:15	8:30	Iberia 2748	-	-	Tu	We	Th	-	-	MAD-BCN
7:15	8:30	Iberia 716	-	-	-	We	Th	-	-	MAD-BCN
7:30	8:45	Vueling 1008	-	Мо	-	We	Th	Fr	-	MAD-BCN
7:30	8:55	Air Europa 2001	Su	Мо	Tu	We	Th	Fr	Sa	MAD-BCN
7:45	9:00	Iberia 746	Su	Мо	Tu	-	Th	-	Sa	MAD-BCN
7:45	9:00	Iberia 2730	Su	Мо	Tu	We	Th	-	Sa	MAD-BCN
8:00	9:15	Vueling 1022	-	Мо	Tu	We	-	-	-	MAD-BCN
8:10	9:25	Iberia 810	-	Мо	Tu	We	-	Fr	-	MAD-BCN
8:10	9:25	Iberia 2702	-	Мо	Tu	We	Th	Fr	-	MAD-BCN
8:55	10:10	Vueling 1002	-	Мо	Tu	We	Th	-	-	MAD-BCN
9:30	10:45	Iberia 930	Su	Мо	Tu	We	Th	-	Sa	MAD-BCN
9:30	10:45	Iberia 2704	Su	Мо	Tu	We	Th	Fr	Sa	MAD-BCN
9:30	10:45	Vueling 1004	-	-	Tu	We	Th	Fr	-	MAD-BCN

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

10:00	11:15	Vueling 1024	-	Мо	Tu	We	-	-	Sa	MAD-BCN
10:30	11:45	Vueling 1006	Su	-	-	-	-	-	-	MAD-BCN
11:00	12:15	Vueling 1006	-	Мо	-	-	Th	Fr	-	MAD-BCN
11:15	12:30	Iberia 1116	Su	Мо	Tu	We	Th	Fr	Sa	MAD-BCN
11:15	12:30	Iberia 2708	Su	Мо	Tu	We	Th	Fr	Sa	MAD-BCN
11:30	12:45	Vueling 1010	Su	-	-	-	-	-	-	MAD-BCN
12:00	13:15	Vueling 1020	-	Мо	-	-	-	-	-	MAD-BCN
12:10	13:25	Vueling 1010	-	-	Tu	-	-	Fr	-	MAD-BCN
12:45	14:00	Iberia 1246	Su	Мо	Tu	We	Th	-	-	MAD-BCN
12:45	14:00	Iberia 2714	Su	Мо	Tu	We	Th	-	-	MAD-BCN
14:10	15:25	Vueling 1010	-	Мо	-	-	-	-	Sa	MAD-BCN
14:15	15:25	Iberia 1416	-	Мо	Tu	We	Th	Fr	-	MAD-BCN
14:30	15:45	Vueling 1012	-	-	-	We	Th	-	-	MAD-BCN
14:45	16:05	Iberia 2718	Su	Мо	Tu	We	Th	Fr	-	MAD-BCN
15:10	16:25	Air Europa 2006	Su	Мо	Tu	We	Th	Fr	Sa	MAD-BCN
15:10	16:25	Iberia 2722	-	-	-	We	Th	-	-	MAD-BCN
15:10	16:25	Iberia 1510	-	-	-	We	Th	-	-	MAD-BCN
15:25	16:40	Vueling 1020	-	-	-	We	-	-	-	MAD-BCN
15:45	17:00	Iberia 1546	Su	Мо	Tu	We	Th	Fr	Sa	MAD-BCN
15:45	17:00	Iberia 2720	Su	Мо	Tu	We	Th	Fr	Sa	MAD-BCN
16:00	17:15	Vueling 1012	Su	Мо	Tu	-	-	Fr	-	MAD-BCN
16:10	17:25	Iberia 2734	-	-	Tu	We	Th	-	-	MAD-BCN
16:10	17:25	Iberia 1610	-	-	Tu	We	Th	-	-	MAD-BCN
17:10	18:25	Iberia 2732	Su	Мо	Tu	We	-	Fr	Sa	MAD-BCN
17:10	18:25	Iberia 1710	Su	Мо	Tu	We	-	Fr	Sa	MAD-BCN
17:30	18:40	Vueling 1024	Su	-	-	-	-	-	-	MAD-BCN
17:30	18:45	Vueling 1014	-	-	-	-	Th	-	-	MAD-BCN
17:35	18:50	Iberia 1736	-	-	-	-	Th	-	-	MAD-BCN
17:35	18:50	Iberia 2732	-	-	-	-	Th	-	-	MAD-BCN
18:00	19:15	Vueling 1014	Su	-	Tu	We	-	-	-	MAD-BCN
18:10	19:25	Iberia 1810	-	-	Tu	We	-	-	-	MAD-BCN
18:10	19:25	Iberia 2750	-	-	Tu	We	-	-	-	MAD-BCN
18:45	20:00	Iberia 2736	Su	Мо	Tu	We	Th	Fr	-	MAD-BCN
18:45	20:00	Iberia 1846	Su	Мо	Tu	We	Th	Fr	-	MAD-BCN
18:55	20:10	Vueling 1026	-	-	Tu	-	-	-	-	MAD-BCN
19:10	20:25	Iberia 2744	-	-	Tu	We	Th	-	-	MAD-BCN

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

19:10	20:25	Iberia 1910	-	-	Tu	We	Th	-	-	MAD-BCN
19:25	20:40	Vueling 1026	-	Мо	-	-	Th	-	-	MAD-BCN
19:40	20:55	Vueling 1022	Su	-	-	-	-	-	Sa	MAD-BCN
19:55	21:10	Iberia 1956	-	Мо	-	-	-	-	Sa	MAD-BCN
19:55	21:10	Iberia 2738	-	Мо	-	-	-	-	Sa	MAD-BCN
20:00	21:15	Vueling 1082	-	-	Tu	We	-	-	-	MAD-BCN
20:20	21:35	Iberia 2020	Su	-	Tu	We	Th	-	-	MAD-BCN
20:20	21:35	Vueling 1082	Su	-	-	-	-	-	-	MAD-BCN
20:20	21:35	Iberia 2738	Su	-	Tu	We	Th	-	-	MAD-BCN
20:45	22:00	Vueling 1016	Su	-	-	-	Th	-	-	MAD-BCN
20:45	22:00	Iberia 2046	-	Мо	-	-	-	-	-	MAD-BCN
20:45	22:00	Iberia 2742	-	Мо	-	-	-	-	-	MAD-BCN
21:00	22:15	Vueling 1082	-	Мо	-	-	-	-	-	MAD-BCN
21:20	22:35	Iberia 2740	-	-	Tu	-	-	-	-	MAD-BCN
21:25	22:40	Vueling 1030	-	-	-	We	-	-	-	MAD-BCN
21:30	22:45	Iberia 2130	-	-	-	We	Th	-	-	MAD-BCN
21:40	22:55	Iberia 2742	-	-	-	-	Th	-	-	MAD-BCN
21:45	23:00	Iberia 2146	Su	Мо	-	-	-	-	-	MAD-BCN
21:45	23:00	Iberia 2740	Su	Мо	-	We	Th	-	-	MAD-BCN
21:50	23:05	Vueling 1018	-	-	-	-	Th	-	-	MAD-BCN
22:35	23:45	Vueling 1018	Su	-	-	-	-	-	-	MAD-BCN
22:45	23:59	Vueling 1022	-	-	-	-	Th	-	-	MAD-BCN

* Data of the timetable on the route Madrid-Barcelona consulted from [84].

Table 129. Timetable of the flights on the route Madrid-Barcelona

Route Barcelona-London

Departure	Arrival	Flight	Timetable							Airport
6:20	7:50	Ryanair 9811	Su	Мо	Tu	We	Th	Fr	Sa	BCN-STN
6:45	8:00	Vueling 7822	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LGW
7:10	8:35	British Airways 477	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
7:20	8:35	easyJet 8570	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LGW
9:55	11:05	Norwegian 5162	Su	-	-	-	-	-	-	BCN-LGW
10:15	11:35	British Airways 473	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
10:20	11:35	Vueling 7820	-	-	-	-	-	-	Sa	BCN-LGW

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

10:30	11:50	British Airways 2707	Su	-	-	We	Th	-	-	BCN-LGW
10:40	11:55	easyJet 8572	-	-	-	-	-	-	Sa	BCN-LGW
10:45	12:15	Ryanair 9045	Su	Мо	Tu	We	Th	Fr	Sa	BCN-STN
10:50	12:25	Monarch 279	-	Мо	Tu	We	Th	Fr	Sa	BCN-LGW
11:10	12:20	British Airways 2707	-	-	-	-	-	-	Sa	BCN-LGW
11:10	12:25	easyJet 8572	Su	Мо	Tu	We	Th	Fr	-	BCN-LGW
11:30	12:50	British Airways 2707	-	-	-	-	-	Fr	-	BCN-LGW
11:40	13:00	British Airways 479	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
12:25	13:40	Vueling 7826	Su	-	-	-	-	-	-	BCN-LGW
12:50	14:05	Vueling 7826	-	Мо	Tu	We	Th	Fr	-	BCN-LGW
13:15	14:40	British Airways 485	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
14:00	15:30	Ryanair 9015	Su	Мо	Tu	We	Th	Fr	Sa	BCN-STN
14:05	15:20	easyJet 2264	Su	-	-	-	-	-	-	BCN-LTN
14:25	15:40	easyJet 2264	-	Мо	Tu	We	Th	Fr	Sa	BCN-LTN
14:45	16:00	easyJet 8574	-	-	-	-	-	-	ds	BCN-LGW
14:50	16:10	British Airways 2709	Su	-	-	-	-	-	ds	BCN-LGW
15:10	16:25	easyJet 8574	-	Мо	Tu	We	Th	Fr	-	BCN-LGW
15:15	16:35	British Airways 2709	-	Мо	Tu	-	-	-	-	BCN-LGW
15:40	17:00	easyJet 8574	Su	-	-	-	-	-	-	BCN-LGW
16:00	17:20	British Airways 475	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
16:45	18:00	easyJet 8576	-	Мо	Tu	We	Th	Fr	Sa	BCN-LGW
17:10	18:25	easyJet 8576	Su	-	-	-	-	-	-	BCN-LGW
17:25	18:40	Norwegian 5164	-	Мо	Tu	We	Th	Fr	Sa	BCN-LGW
17:30	18:45	Vueling 7824	Su	Мо	Tu	We	Th	Fr	-	BCN-LGW
18:20	19:35	British Airways 481	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
18:40	20:10	Ryanair 9815	Su	Мо	Tu	We	Th	Fr	Sa	BCN-STN
18:45	20:10	easyJet 8578	Su	-	-	-	-	-	Sa	BCN-LGW
19:05	20:25	Vueling 7820	Su	Мо	Tu	We	Th	Fr	-	BCN-LGW
20:20	21:40	easyJet 8578	-	Мо	Tu	We	Th	Fr	-	BCN-LGW
20:35	21:45	British Airways 487	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
21:00	22:35	Monarch 275	Su	-	-	-	-	-	-	BCN-LGW
21:20	22:30	British Airways 471	-	Мо	Tu	We	Th	Fr	Sa	BCN-LHR
21:25	22:40	easyJet 2268	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LTN
21:50	23:10	British Airways 2711	-	-	Tu	-	-	-	-	BCN-LGW
22:10	23:35	British Airways 2711	-	-	-	-	-	Fr	-	BCN-LGW
22:15	23:30	easyJet 8580	Su	Мо	Tu	We	Th	Fr	Sa	BCN-LGW

22:35	23:45	British Airways 2711	Su Mo	-	-	Th	-	-	BCN-LGW
22:50	0:05+1	British Airways 2705		-	We	-	-	-	BCN-LGW

* Data of the timetable on the route Barcelona-London consulted from [85].

Table 130. Timetable of the flights on the route Barcelona-London

Route London-Barcelona

Departure	Arrival	Flight			Tim	etabl	е			Airport
6:25	9:25	British Airways 472	Su	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
6:40	9:45	British Airways 2706	Su	-	-	We	Th	-	-	LGW-BCN
6:40	9:50	Monarch 278	-	Мо	Tu	We	Th	Fr	Sa	LGW-BCN
7:00	10:05	easyJet 8571	-	-	-	-	-	-	Sa	LGW-BCN
7:25	10:25	British Airways 2706	-	-	-	-	-	-	Sa	LGW-BCN
7:25	10:30	easyJet 8571	Su	Мо	Tu	We	Th	Fr	-	LGW-BCN
7:35	10:45	British Airways 2706	-	-	-	-	-	Fr	-	LGW-BCN
7:50	10:55	British Airways 478	Su	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
8:15	11:30	Ryanair 9810	Su	Мо	Tu	We	Th	Fr	Sa	STN-BCN
8:50	11:55	Vueling 7823	Su	Мо	Tu	We	Th	Fr	Sa	LGW-BCN
9:20	12:30	British Airways 484	Su	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
10:20	13:30	easyJet 2263	Su	-	-	-	-	-	-	LTN-BCN
10:40	13:50	easyJet 2263	-	Мо	Tu	We	Th	Fr	Sa	LTN-BCN
11:05	14:05	British Airways 2708	Su	-	-	-	-	-	Sa	LGW-BCN
11:20	14:25	easyJet 8573	-	Мо	Tu	We	Th	Fr	Sa	LGW-BCN
11:20	14:25	British Airways 474	Su	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
11:30	14:30	British Airways 2708	-	Мо	Tu	-	-	-	-	LGW-BCN
11:35	14:35	Norwegian 5163	Su	-	-	-	-	-	-	LGW-BCN
11:50	14:55	easyJet 8573	Su	-	-	-	-	-	-	LGW-BCN
12:25	15:25	Vueling 7821	-	-	-	-	-	-	Sa	LGW-BCN
12:45	16:00	Ryanair 9044	Su	Мо	Tu	We	Th	Fr	Sa	STN-BCN
13:05	16:10	easyJet 8575	-	Мо	Tu	We	Th	Fr	Sa	LGW-BCN
13:30	16:35	easyJet 8575	Su	-	-	-	-	-	-	LGW-BCN
14:20	17:20	Vueling 7827	Su	-	-	-	-	-	-	LGW-BCN
14:30	17:35	British Airways 480	Su	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
14:45	17:45	Vueling 7827	-	Мо	Tu	We	Th	Fr	-	LGW-BCN
15:05	18:10	easyJet 8577	Su	-	-	-	-	-	Sa	LGW-BCN

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

16:10	19:25	Ryanair 9014	Su	Мо	Tu	We	Th	Fr	Sa	STN-BCN
16:35	19:45	British Airways 486	Su	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
16:40	19:45	easyJet 8577	-	Мо	Tu	We	Th	Fr	-	LGW-BCN
17:00	20:10	Monarch 274	Su	-	-	-	-	-	-	LGW-BCN
17:20	20:25	British Airways 470	-	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
17:45	20:50	easyJet 2267	Su	Мо	Tu	We	Th	Fr	Sa	LTN-BCN
18:00	21:05	British Airways 2710	-	-	Tu	-	-	-	-	LGW-BCN
18:20	21:25	British Airways 2710	-	-	-	-	-	Fr	-	LGW-BCN
18:35	21:40	easyJet 8579	Su	Мо	Tu	We	Th	Fr	Sa	LGW-BCN
18:40	21:50	British Airways 2710	Su	-	-	-	Th	-	-	LGW-BCN
19:00	22:05	British Airways 2710	-	Мо	-	We	-	-	-	LGW-BCN
19:05	22:10	British Airways 482	Su	Мо	Tu	We	Th	Fr	Sa	LHR-BCN
19:15	22:25	Norwegian 5165	-	Мо	Tu	We	Th	Fr	Sa	LGW-BCN
19:25	22:25	Vueling 7825	Su	Мо	Tu	We	Th	Fr	-	LGW-BCN
19:55	23:00	easyJet 8581	-	Мо	Tu	We	Th	Fr	Sa	LGW-BCN
20:35	23:50	Ryanair 9814	Su	Мо	Tu	We	Th	Fr	Sa	STN-BCN
20:40	23:45	easyJet 8581	Su	-	-	-	-	-	-	LGW-BCN
21:05	0:10+1	Vueling 7821	Su	Мо	Tu	We	Th	Fr	-	LGW-BCN

* Data of the timetable on the route London-Barcelona consulted from [86].

Table 131. Timetable of the flights on the route London-Barcelona

Route Barcelona-Paris

Departure	Arrival	Flight			Tim	etabl	е			Airport
6:00	7:45	Vueling 8010	Su	Мо	-	We	Th	Fr	-	BCN-ORY
6:30	8:30	Ryanair 6374	Su	Мо	Tu	We	Th	Fr	Sa	BCN-BVA
6:45	8:40	Air France 1449	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG
7:00	8:45	Vueling 8012	Su	Мо	Tu	We	Th	Fr	Sa	BCN-ORY
7:20	9:20	Vueling 8242	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG
8:25	10:10	Vueling 8024	Su	Мо	Tu	We	Th	Fr	-	BCN-ORY
9:05	10:40	Transavia 3133	-	Мо	Tu	We	Th	Fr	-	BCN-ORY
9:10	10:55	Vueling 8008	Su	Мо	Tu	We	Th	Fr	Sa	BCN-ORY
9:20	11:25	easyJet 3916	-	-	-	-	-	-	Sa	BCN-CDG
9:45	11:50	easyJet 3916	Su	Мо	Tu	We	Th	Fr	-	BCN-CDG
10:15	12:10	Air France 1149	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

10:55	12:40	Vueling 8016	Su	Мо	Tu	We	Th	Fr	Sa	BCN-ORY
12:00	14:00	Vueling 8246	Su	Мо	Tu	We	Th	Fr	-	BCN-CDG
12:35	14:30	Air France 1349	Su	-	Tu	We	Th	Fr	Sa	BCN-CDG
13:00	14:45	Vueling 8014	Su	Мо	Tu	We	Th	Fr	-	BCN-ORY
14:20	15:55	Transavia 3135	-	Мо	Tu	We	Th	-	-	BCN-ORY
15:00	16:45	Vueling 8018	Su	Мо	Tu	We	Th	Fr	Sa	BCN-ORY
15:15	17:10	Air France 1649	Su	Мо	-	We	Th	Fr	Sa	BCN-CDG
16:50	18:50	easyJet 3920	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG
16:55	18:55	Vueling 8244	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG
17:35	19:20	Vueling 8020	Su	Мо	Tu	We	Th	Fr	Sa	BCN-ORY
18:00	19:55	Air France 1549	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG
18:35	20:20	Vueling 8028	-	Мо	-	-	-	-	-	BCN-ORY
19:10	21:10	Ryanair 6355	Su	Мо	Tu	We	Th	Fr	Sa	BCN-BVA
19:25	21:10	Vueling 8022	Su	-	Tu	We	Th	Fr	Sa	BCN-ORY
19:25	21:20	Air France 1049	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG
19:55	21:30	Transavia 3139	Su	Мо	Tu	We	Th	-	-	BCN-ORY
20:20	21:55	Transavia 3139	-	-	-	-	-	Fr	-	BCN-ORY
20:25	22:20	Air France 1249	Su	Мо	Tu	We	Th	Fr	-	BCN-CDG
20:40	22:25	Vueling 8028	Su	-	-	-	Th	Fr	-	BCN-ORY
20:50	22:50	easyJet 3922	Su	Мо	Tu	We	Th	Fr	Sa	BCN-CDG

* Data of the timetable on the route Barcelona-Paris consulted from [87].

Table 132. Timetable of the flights on the route Barcelona-Paris

Route Paris-Barcelona

Departure	Arrival	Flight			Tim	etabl	e			Airport
6:45	8:20	Transavia 3132	-	Мо	Tu	We	Th	Fr	-	ORY-BCN
7:00	8:35	Vueling 8007	Su	Мо	Tu	We	Th	Fr	Sa	ORY-BCN
7:00	8:45	easyJet 3915	-	-	-	-	-	-	Sa	CDG-BCN
7:20	9:05	easyJet 3915	Su	Мо	Tu	We	Th	Fr	-	CDG-BCN
7:40	9:20	Air France 1148	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN
8:20	9:55	Vueling 8011	Su	Мо	-	We	Th	Fr	-	ORY-BCN
8:55	10:45	Ryanair 6375	Su	Мо	Tu	We	Th	Fr	Sa	BVA-BCN
9:25	11:00	Vueling 8013	Su	Мо	Tu	We	Th	Fr	Sa	ORY-BCN
9:55	11:40	Vueling 8243	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

10:00	11:40	Air France 1348	Su	-	Tu	We	Th	Fr	Sa	CDG-BCN
10:50	12:25	Vueling 8015	Su	Мо	Tu	We	Th	Fr	-	ORY-BCN
12:00	13:35	Transavia 3134	-	Мо	Tu	We	Th	-	-	ORY-BCN
12:40	14:20	Air France 1648	Su	Мо	-	We	Th	Fr	Sa	CDG-BCN
13:25	15:00	Vueling 8017	Su	Мо	Tu	We	Th	Fr	Sa	ORY-BCN
14:30	16:15	easyJet 3919	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN
14:35	16:20	Vueling 8247	Su	Мо	Tu	We	Th	Fr	-	CDG-BCN
15:25	17:00	Vueling 8027	Su	Мо	Tu	We	Th	Fr	-	ORY-BCN
15:25	17:05	Air France 1548	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN
16:55	18:35	Air France 1048	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN
17:25	19:00	Vueling 8019	Su	Мо	Tu	We	Th	Fr	Sa	ORY-BCN
17:35	19:10	Transavia 3138	Su	Мо	Tu	We	Th	Fr	-	ORY-BCN
17:55	19:35	Air France 1248	Su	Мо	Tu	We	Th	Fr	-	CDG-BCN
18:20	19:55	Vueling 8029	Su	-	-	-	Th	Fr	-	ORY-BCN
18:30	20:15	easyJet 3921	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN
19:35	21:20	Vueling 8245	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN
19:55	21:30	Vueling 8021	Su	Мо	Tu	We	Th	Fr	Sa	ORY-BCN
20:55	22:30	Vueling 8029	-	Мо	-	-	-	-	-	ORY-BCN
21:00	22:40	Air France 1448	Su	Мо	Tu	We	Th	Fr	Sa	CDG-BCN
21:40	23:30	Ryanair 6356	Su	Мо	Tu	We	Th	Fr	Sa	BVA-BCN
21:45	23:20	Vueling 8023	Su	-	Tu	We	Th	Fr	Sa	ORY-BCN

* Data of the timetable on the route Paris-Barcelona consulted from [88].

Table 133. Timetable of the flights on the route Paris-Barcelona

Route Barcelona-Mallorca

Departure	Arrival	Flight			Tim	etabl	е			Airport
7:00	7:50	Vueling 3902	-	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
7:40	8:30	Vueling 3900	-	Мо	Tu	We	-	-	-	BCN-PMI
8:00	9:00	Ryanair 6362	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
8:35	9:25	Vueling 3916	-	-	Tu	We	Th	Fr	-	BCN-PMI
8:40	9:25	Air Europa 6007	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
9:10	10:00	Vueling 3924	-	Мо	Tu	We	Th	-	-	BCN-PMI
9:45	10:35	Vueling 3904	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
11:25	12:15	Vueling 3916	-	Мо	-	-	-	-	Sa	BCN-PMI

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

11:50	12:35	Air Europa 6037	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
13:00	13:50	Vueling 3906	Su	-	-	-	-	-	-	BCN-PMI
13:00	13:50	Vueling 3926	-	-	-	-	Th	-	-	BCN-PMI
14:30	15:30	Ryanair 6578	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
15:00	15:45	Air Europa 6071	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
15:40	16:30	Vueling 3912	Su	-	Tu	We	Th	Fr	Sa	BCN-PMI
16:00	16:45	Air Europa 6105	Su	-	-	-	Th	Fr	Sa	BCN-PMI
17:00	17:50	Vueling 3908	Su	Мо	Tu	We	Th	Fr	-	BCN-PMI
18:00	18:50	Vueling 3920	-	Мо	Tu	We	Th	Fr	-	BCN-PMI
18:10	18:55	Air Europa 6073	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
19:30	20:15	Air Europa 6015	-	-	-	-	-	Fr	-	BCN-PMI
19:40	20:30	Vueling 3910	Su	Мо	Tu	We	Th	Fr	-	BCN-PMI
20:30	21:15	Air Europa 6105	-	Мо	-	-	-	-	-	BCN-PMI
20:35	21:25	Vueling 3914	-	-	-	-	Th	Fr	-	BCN-PMI
21:05	21:55	Vueling 3910	-	-	-	-	-	-	Sa	BCN-PMI
21:25	22:15	Vueling 3916	Su	-	-	-	-	-	-	BCN-PMI
21:25	22:15	Vueling 3914	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
21:25	22:15	Vueling 3922	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
21:30	22:15	Air Europa 6103	-	Мо	-	-	-	-	-	BCN-PMI
21:55	22:45	Vueling 3914	Su	-	-	-	-	-	-	BCN-PMI
22:00	23:00	Ryanair 6368	Su	Мо	-	We	Th	Fr	Sa	BCN-PMI
22:30	23:30	Ryanair 6368	-	-	Tu	-	-	-	-	BCN-PMI
22:40	23:25	Air Europa 6015	Su	-	-	-	-	-	-	BCN-PMI

* Data of the timetable on the route Barcelona-Mallorca consulted from [89].

Table 134. Timetable of the flights on the route Barcelona-Mallorca

Route Mallorca-Barcelona

Departure	Arrival	Flight			Tim	etabl	е			Airport
7:00	7:50	Vueling 3902	-	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
7:40	8:30	Vueling 3900	-	Мо	Tu	We	-	-	-	BCN-PMI
8:00	9:00	Ryanair 6362	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
8:35	9:25	Vueling 3916	-	-	Tu	We	Th	Fr	-	BCN-PMI
8:40	9:25	Air Europa 6007	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
9:10	10:00	Vueling 3924	-	Мо	Tu	We	Th	-	-	BCN-PMI

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER). Annexes Núria Durán Gómez

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

9:45	10:35	Vueling 3904	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
11:25	12:15	Vueling 3916	-	Мо	-	-	-	-	Sa	BCN-PMI
11:50	12:35	Air Europa 6037	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
13:00	13:50	Vueling 3906	Su	-	-	-	-	-	-	BCN-PMI
13:00	13:50	Vueling 3926	-	-	-	-	Th	-	-	BCN-PMI
14:30	15:30	Ryanair 6578	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
15:00	15:45	Air Europa 6071	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
15:40	16:30	Vueling 3912	Su	-	Tu	We	Th	Fr	Sa	BCN-PMI
16:00	16:45	Air Europa 6105	Su	-	-	-	Th	Fr	Sa	BCN-PMI
17:00	17:50	Vueling 3908	Su	Мо	Tu	We	Th	Fr	-	BCN-PMI
18:00	18:50	Vueling 3920	-	Мо	Tu	We	Th	Fr	-	BCN-PMI
18:10	18:55	Air Europa 6073	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
19:30	20:15	Air Europa 6015	-	-	-	-	-	Fr	-	BCN-PMI
19:40	20:30	Vueling 3910	Su	Мо	Tu	We	Th	Fr	-	BCN-PMI
20:30	21:15	Air Europa 6105	-	Мо	-	-	-	-	-	BCN-PMI
20:35	21:25	Vueling 3914	-	-	-	-	Th	Fr	-	BCN-PMI
21:05	21:55	Vueling 3910	-	-	-	-	-	-	Sa	BCN-PMI
21:25	22:15	Vueling 3916	Su	-	-	-	-	-	-	BCN-PMI
21:25	22:15	Vueling 3914	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
21:25	22:15	Vueling 3922	Su	Мо	Tu	We	Th	Fr	Sa	BCN-PMI
21:30	22:15	Air Europa 6103	-	Мо	-	-	-	-	-	BCN-PMI
21:55	22:45	Vueling 3914	Su	-	-	-	-	-	-	BCN-PMI
22:00	23:00	Ryanair 6368	Su	Мо	-	We	Th	Fr	Sa	BCN-PMI
22:30	23:30	Ryanair 6368	-	-	Tu	-	-	-	-	BCN-PMI
22:40	23:25	Air Europa 6015	Su	-	-	-	-	-	-	BCN-PMI

* Data of the timetable on the route Mallorca-Barcelona consulted from [90].

Table 135. Timetable of the flights on the route Mallorca-Barcelona

A9.2 Number of flights per week of the current airlines

easyJet

easyJet, as mentioned in section *State of the art*, is the second largest European low cost company. It serves many destinations, including Barcelona, London and Paris at low fares.

	Νι	umber of flights p	er week offere	ed by easy	Jet											
		Route B	arcelona-Lond	lon												
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday										
8	8	8	8	8	8	8										
	Total nu	umber of flights p	er week		56	3										
		Route Lo	ondon-Barcelo	ona												
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday										
8	8	8	8	8	8	8										
	Total nu	mber of flights p	er week	-	56	3										
		Route I	Barcelona-Par	is	-											
Monday	Tuesday	Wednesday	Thursday	Friday												
3	3	3	3	3	3	3										
	Total nu	mber of flights p	er week		21											
		Route I	Paris-Barcelor	na												
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday										
3 3 3 3 3 3 3 3 3																
Total number of flights per week 21																

Table 136. Number of flights per week offered by easyJet on the different destinations

Iberia

Iberia is the Spanish airline that offers the major number of flights per day between the destinations Barcelona and Madrid. It offers, as well as low cost flight fares, the biggest shuttle service in Europe between these two cities.

Number of flights per week offered by Iberia						
		Route B	arcelona-Mad	rid		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
13	16	17	16	10	6	8
Total number of flights per week Route Madrid-Barcelona			86	3		
		Route N	ladrid-Barcelo	na		
Monday	Tuesday	Route M Wednesday	1adrid-Barcelo Thursday	na Friday	Saturday	Sunday
Monday 14	Tuesday 16				Saturday 6	Sunday 10

Table 137. Number of flights offered by Iberia

Ryanair

Ryanair, as said in section *State of the art*, is the Europe's largest low-cost company, offering very low fares in all the destinations it serves. Between all these destinations, this company flights from Barcelona-El Prat to London, Paris and Mallorca.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

	Number of flights per week offered by Ryanair					
		Route	Barcelona-Lor	ndon		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
4	4	4	4	4	4	4
	Total number of flights per week				28	}
-		Route	London-Barce	lona		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
4	4	4	4	4	4	4
	Total nu	umber of flights p	er week		28	3
		Route	Barcelona-Pa	aris		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
2	2	2	2	2	2	2
	Total n	umber of flights	per week	-	1	4
		Route	Paris-Barcelo	ona	-	
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
2	2	2	2	2	2	2
	Total n	umber of flights	per week		14	4
		Route E	Barcelona-Mal	lorca		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
3	3	3	3	3	3	3
	Total n	umber of flights	per week		2	1
		Route N	/lallorca-Barce	elona		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
3	3	3	3	3	3	3
	Total n	umber of flights	per week		2	1
	Table 4				1	

Table 138. Number of flights offered by Ryanair on the different routes

Transavia

Transavia is a French low cost company that offers, between others, daily flights between Barcelona and Paris.

Number of flights per week offered by Transavia						
		Route E	Barcelona-Par	is		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
3	3	3	3	2	0	1
	Total nu	umber of flights p	er week		15	5
		Route Paris-Barcelona				
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Monday 3	Tuesday 3	Wednesday 3	Thursday 3	Friday 2	Saturday 0	Sunday 1

Table 139. Number of flights offered by Transavia on the different routes

Vueling

Vueling, as mentioned in section *State of the art,* is the first Spanish low cost airline and it serves many destinations, including the four destinations the new company has in mind to do.

Number of flights per week offered by Vueling						
		Route B	arcelona-Madı	rid		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
10	9	10	11	5	3	9
Total number of flights per week			57	,		

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

		Route M	adrid-Barcelor	na		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
10	9	10	11	5	3	9
	Total nu	57	,			
	Route Barcelona-London					
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
4	4	4	4	4	2	4
	Total number of flights per week					3
		Route Lo	ndon-Barceloi	าล		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
4	4	4	4	4	3	4
	Total number of flights per week				27	7
		Route B	arcelona-Pari	S	-	
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
12	11	12	13	13	8	13
	Total nu	mber of flights p	er week	-	82	2
		Route P	aris-Barcelona	a		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
12	11	12	13	13	8	13
	Total nu	mber of flights p	er week	-	82	2
		Route Ba	rcelona-Mallor	rca	-	
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
9	9	9	10	9	5	7
	Total nu	mber of flights p	er week		58	3
		Route Ma	llorca-Barcelo	na		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
9	9	9	10	9	5	7
	Total nu	mber of flights p	er week		58	3

Table 140. Number of flights offered per week by Vueling on the different routes

Annex 10: Number of AVE trips per week obtaining

AVE

AVE (translating to English, *Spanish High Speed*) is the Spanish high speed train service that connects many of the most important cities in Spain. It is the most used ground service to travel between the cities Barcelona and Madrid, and it offers the following number of trips per week:

	Number of trips per week offered by AVE					
	Route Barcelona-Madrid					
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
32	32	32	32	22	19	23
	Total number of trips per week			-	19	2
		Route M	Adrid-Barcelo	ona		
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
32	32	32	32	22	19	23
	Total number of trips per week			19	2	

Table 141. Number of trips offered by AVE on the different routes consulted from [91]

Annex 11: Number passengers carried per week by each company and in total on the selected routes

Taking into account the hypotheses made in section *Analysis of the number of passengers carried on the selected routes*, the steps that will be carried out in order to know the total number of passengers carried on each route will be the following:

- i. First step will be having knowledge of the model of airplane, or train in case of AVE, used by each company to cover the selected routes so as to know the number of offered seats.
- ii. Giving an approximation of the occupied seats of each company on each route according to their ticket price.
- iii. By knowing the number of flights per week of each model of airplane of each company it will be finally obtained the number of passengers carried.

A11.1 Number of seats offered by the different companies

In this section it will be analysed the number of seats offered by each company to carry out each route, by knowing the model of airplane or train used on these routes.

AVE's trains capacity on the selected routes

AVE's capacity will be analysed taking into account the supposition that it is only important to know the number of seats destined to the tourist class. In this way, it will only be necessary to obtain the model of airplane that covers the routes from Barcelona to Madrid and vice versa, and the number of seats it has.

Characteristics of the model of AVE				
Route	Model of train	Number of seats		
Barcelona-Madrid	AVE 103	262		
Madrid-Barcelona	AVE 103	262		

* Data of the model of AVE and its number of seats consulted from [92] and [93]. Table 142. Characteristics of the model of train of AVE on the selected routes

easyJet's fleet capacity on the selected routes

Characteristics of the fleet of easyJet				
Route	Model of airplane	Number of seats		
Barcelona-London	A319	156		
Darceiona-London	A320	180		
London-Barcelona	A319	156		
London-Darcelona	A320	180		
Barcelona-Paris	A319	156		
Darceiona-Pans	A320	180		
Paris-Barcelona	A319	156		
Falls-Dal Celona	A320	180		

* Data of the model of airplane and its number of seats consulted from [85], [86], [94] and [95].

Table 143. Characteristics of easyJet's fleet on the selected routes

Iberia's fleet capacity on the selected routes

Similarly to AVE, Iberia airplanes are divided in 2 classes (business and tourist), so it will be only taken into account the capacity of the fleet destined to the low cost class.

Characteristics of the fleet of Iberia				
Route	Model of airplane	Number of seats		
	A319	90		
Barcelona-Madrid	A320	144		
	A321	124		
	A319	90		
Madrid-Barcelona	A320	144		
	A321	124		

* Data of the model of airplane and its number of seats consulted from [83], [84] and [96].

Table 144. Characteristics of Iberia's fleet on the selected routes

Ryanair's fleet capacity on the selected routes

Ryanair's fleet, as it can be seen in *Fleet of Ryanair* is based in one model of airplane, the Boeing 737-800.

Characteristics of the fleet of Ryanair				
Route	Model of airplane	Number of seats		
Barcelona-London	737-800	189		
London-Barcelona	737-800	189		
Barcelona-Paris	737-800	189		
Paris-Barcelona	737-800	189		
Barcelona-Mallorca	737-800	189		

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Mallorca-Barcelona	737-800	189

* Data of the model of airplane and its number of seats consulted from [97]. Table 145. Characteristics of Ryanair's fleet on the selected routes

Transavia's fleet capacity on the selected routes

Characteristics of the fleet of Transavia				
Route	Model of airplane	Number of seats		
Barcelona-Paris	737-800	186		
Paris-Barcelona	737-800	186		

* Data of the model of AVE and its number of seats consulted from [87], [88] and [98].

Table 146. Characteristics of Transavia's fleet on the selected routes

Vueling's fleet capacity on the selected routes

Characteristics of the fleet of Vueling						
Route	Model of airplane	Number of seats				
Barcelona-Madrid	A320	180				
Madrid-Barcelona	A320	180				
Barcelona-London	A320	180				
London-Barcelona	A320	180				
Barcelona-Paris	A320	180				
Paris-Barcelona	A320	180				
Barcelona-Mallorca	A320	180				
Mallorca-Barcelona	A320	180				

* Data of the model of AVE and its number of seats consulted from [83], [84] and [99].

Table 147. Characteristics of Vueling's fleet on the selected routes

A11.2 Analysis of the current typical fares on the selected routes

In the next lines, it will be shown the typical flight prices of the different companies on the selected routes, in order to have knowledge of the range of fares so as to estimate the number of passengers they carry per flight in each route. In addition, these fares will be then used to establish competitive prices for the new company and estimate the target of passengers it will have.

As ticket price can vary depending on the month or day of the flights, the days left before the flight, company facilities, etc, it will be chosen the three most typical fares of each company.

Route	Турі	cal fare	es (€)
Barcelona-Madrid	41,8	57,9	84,3
Madrid-Barcelona	41,8	57,9	84,3

* Data consulted from [91].

Table 148. Typical ticket prices from AVE

easyJet

Route	Турі	ical fare	s (€)
Barcelona-London	30,99	36,99	52,99
London-Barcelona	30,99	42,67	48,67
Barcelona-Paris	36,99	43,99	49,99
Paris-Barcelona	46,23	53,23	55,23

* Data consulted from [100].

Table 149. Typical ticket prices from easyJet

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Iberia

Route	Туріс	cal fare	es (€)
Barcelona-Madrid	35	49	63
Madrid-Barcelona	35	49	63

* Data consulted from [101].

Table 150. Typical ticket prices from Iberia

Ryanair

Route	Тур	ical fare:	s (€)
Barcelona-London	24,99	29,99	42,99
London-Barcelona	24,99	29,99	42,99
Barcelona-Paris	22,99	32,99	39,99
Paris-Barcelona	22,99	32,99	39,99
Barcelona-Mallorca	23,69	30,57	37,79
Mallorca-Barcelona	20,39	23,69	27,61

* Data consulted from [102], [103] and [104].

Table 151. Typical ticket prices from Ryanair

Transavia

Route	Туріс	cal fare	es (€)
Barcelona-Paris	28	36	46
Paris-Barcelona	35	46	56

* Data consulted from [105].

Table 152. Typical ticket prices form Transavia

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Vueling

Route	Тур	ical fare:	s (€)
Barcelona-Madrid	29,99	39,99	49,99
Madrid-Barcelona	29,99	39,99	49,99
Barcelona-London	29,99	39,99	49,99
London-Barcelona	39,99	44,99	49,99
Barcelona-Paris	29,99	39,99	49,99
Paris-Barcelona	39,99	49,99	
Barcelona-Mallorca	29,99	34,99	39,99
Mallorca-Barcelona	29,99	34,99	39,99

* Data consulted from [106].

Table 153. Typical ticket prices from Vueling

A11.3 Number of occupied seats per flight on the selected routes

Following the hypotheses given previously that all the companies should have at least a 95% of their seats occupied, and taking the typical prices from section above to estimate the number of seats sold of each company it is obtained the next table:

Number of sold seats per trip of the different companies						
AVE sellings per trip						
Route Model Seats Typical fares (€) Sold sea					Sold seats	
Barcelona-Madrid	AVE 103	262	41,8	57,9	84,3	250
Madrid-Barcelona	AVE 103	262	41,8	57,9	84,3	250
easyJet sellings per flight						
Route	Model	Seats Typical fares (€) Sold sea				Sold seats

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Barcelona-London	A319	156	30,99	36,99	52,99	153
	A320	180	50,99		52,99	176
London-Barcelona	A319	156	30,99	40.67	7 48,67	153
	A320	180	30,99	42,67		175
Paraolona Daria	A319	156	26.00	42.00	40.00	151
Barcelona-Paris	A320	180	36,99	43,99	49,99	175
Daria Daraalana	A319	156	46.00	E2 02	FF 00	149
Paris-Barcelona	A320	180	46,23	3 53,23	3 55,23	171

Iberia sellings per flight								
Route	Model	Seats	Тур	oical fares	Sold seats			
	A319	90				89		
Barcelona-Madrid	A320	144	35	49	63	140		
	A321	124				121		
	A319	90				89		
Madrid-Barcelona	A320	144	35	44	63	140		
	A321	124				121		

Ryanair sellings per flight							
Route	Model	Seats	Тур	oical fares	Sold seats		
Barcelona-London	737-800	189	24,99	29,99	42,99	188	
London-Barcelona	737-800	189	24,99	29,99	42,99	188	
Barcelona-Paris	737-800	189	22,99	32,99	39,99	188	
Paris-Barcelona	737-800	189	22,99	32,99	39,99	188	
Barcelona-Mallorca	737-800	189	23,69	30,57	37,79	188	
Mallorca-Barcelona	737-800	189	20,39	23,69	27,61	188	

Transavia sellings per flight						
Route	Model	Seats	Тур	oical fares	(€)	Sold seats
Barcelona-Paris	737-800	186	28	36	46	182
Paris-Barcelona	737-800	186	35	46	56	180

Vueling sellings per flight						
Route	Model	Seats	Тур	ical fares	(€)	Sold seats
Barcelona-Madrid	A320	180	29,99	39,99	49,99	179
Madrid-Barcelona	A320	180	29,99	39,99	49,99	179
Barcelona-London	A320	180	29,99	39,99	49,99	176

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

London-Barcelona	A320	180	39,99	44,99	49,99	171
Barcelona-Paris	A320	180	29,99	39,99	49,99	176
Paris-Barcelona	A320	180	39,99	49,99		171
Barcelona-Mallorca	A320	180	29,99	34,99	39,99	178
Mallorca-Barcelona	A320	180	29,99	34,99	39,99	175

Table 154. Number of sold seats per trip of the different companies

A11.4 Number of passengers carried by each company and in total on the selected routes

Once it is known the number of passengers carried per flight (or trip, in the case of AVE), it can be then calculated the total movement of passengers of each company and in total on the different routes. This value will be obtained by multiplying the passengers carried per trip by the total number of trips done in a week.

Num	Number of passengers carried per week on the selected routes			
		Route Barcelona	-Madrid	
Company	Model	Sold seats	Days/week	Passengers/week
AVE	AVE 103	250	192	48.000
	A319	89	6	
Iberia	A320	140	45	11.069
	A321	121	35	
Vueling	A320	179	57	10.203
Total nu	Total number of passengers (Barcelona-Madrid)69.272			
	l	Route Madrid-Ba	arcelona	

70.061

18.730

18.432

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Company	Model	Sold seats	Days/week	Passengers/week
AVE	AVE 103	250	192	48.000
	A319	89	7	
Iberia	A320	140	50	11.858
	A321	121	35	
Vueling	A320	179	57	10.203

Total number of passengers (Madrid-Barcelona)

Route Barcelona-London				
Company	Model	Sold seats	Days/week	Passengers/week
ooov lot	A319	153	42	8.890
easyJet	A320	176	14	0.090
Ryanair	737-800	188	28	5.264
Vueling	A320	176	26	4.576

Total number of passengers (Barcelona-London)

	Route London-Barcelona				
Company	Model	Sold seats	Days/week	Passengers/week	
ooov lot	A319	153	49	8.722	
easyJet	A320	175	7	0.722	
Ryanair	737-800	188	28	5.264	
Vueling	A320	171	26	4.446	

Total number of passengers (London-Barcelona)

	Route Barcelona-Paris				
Company	Model	Sold seats	Days/week	Passengers/week	
ooov lot	A319	151	7	3.507	
easyJet	A320	175	14	5.507	
Ryanair	737-800	188	14	2.632	
Transavia	737-800	182	15	2.730	
Vueling	A320	176	82	14.432	
Total nu	Total number of passengers (Barcelona-Paris)				
	Route Paris-Barcelona				
Company	Model	Sold seats	Days/week	Passengers/week	

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

a a v lat	A319	149	14	3.283	
easyJet	A320	171	7	3.283	
Ryanair	737-800	188	14	2.632	
Transavia	737-800	180	15	2.700	
Vueling	A320	171	82	14.022	
Total n	umber of passe	ngers (Paris-Baro	celona)	22.637	
	Route Barcelona-Mallorca				
Company	Model	Sold seats	Days/week	Passengers/week	
Ryanair	737-800	188	21	3.948	
Vueling	A320	178	58	10.324	
Total nun	nber of passeng	ers (Barcelona-N	Mallorca)	14.272	
	R	oute Mallorca-Ba	rcelona		
Company	Model	Sold seats	Days/week	Passengers/week	
Ryanair	737-800	188	21	3.948	
Vueling	A320	175	58	10.150	
Total nur	Total number of passengers (Mallorca-Barcelona)				

Table 155. Movement of passengers per company and in total on the different routes

Percentage of the market carried by each company

Having knowledge of the passengers carried by each company on the different routes, and the total number of existent passengers on these routes, it can be obtained the percentage of the carried demand corresponding to each company, by carrying out a direct rule of three.

$$\begin{array}{ccc} A_1 & & & \\ A_2 & & & \\ \end{array} \begin{array}{c} 100 \\ x \end{array} \Big\} \ x = \frac{A_2 \cdot 100}{A_1} \ ; \end{array}$$

where A_1 corresponds to the total number of passengers on the analysed route, and A_2 , to the number of passengers carried by the analysed company on the same route.

% o	f the market taken by each comp	any
	Route Barcelona-Madrid	
Total number of passe	engers (Barcelona-Madrid)	69.272
Company	Passengers/week	% of the market
AVE	48.000	69
Iberia	11.069	16
Vueling	10.203	15
	Route Madrid-Barcelona	
Total number of passe	engers (Madrid-Barcelona)	70.061
Company	Passengers/week	% of the market
AVE	48.000	69
Iberia	11.858	17
Vueling	10.203	14
-	Route Barcelona-London	-
Total number of passe	ngers (Barcelona-London)	18.730
Company	Passengers/week	% of the market
easyJet	8.890	48
Ryanair	5.264	28
Vueling	4.576	24
-	Route London-Barcelona	-
Total number of passe	ngers (London-Barcelona)	18.432
Company	- Passengers/week	% of the market
easyJet	8.722	47
Ryanair	5.264	29
Vueling	4.446	24

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Total number of pass	engers (Barcelona-Paris)	23.301				
Company	Passengers/week	% of the market				
easyJet	3.507	15				
Ryanair	2.632	11				
Transavia	2.730	12				
Vueling	14.432	62				
	Route Paris-Barcelona					
Total number of pass	engers (Paris-Barcelona)	22.637				
Company	Passengers/week	% of the market				
easyJet	3.283	14				
Ryanair	2.632	12				
Transavia	2.700	11				
Vueling	14.022	62				
	Route Barcelona-Mallorca					
Total number of passer	ngers (Barcelona-Mallorca)	14.272				
Company	Passengers/week	% of the market				
Ryanair	3.948	28				
Vueling	10.324	72				
	Route Mallorca-Barcelona					
Total number of passer	ngers (Mallorca-Barcelona)	14.098				
Company	Passengers/week	% of the market				
Ryanair	3.948	28				
Vueling	10.150	72				

Table 156. Percentage of the market taken by each company on the different routes

Annex 12: Number of airplanes required obtaining

A12.1 Establishment of the ticket price and target of passengers

First step to obtain the number of airplanes required is to establish a feasible target of passengers according to ticket price. In order to do that, some aspects will be taken into account:

- Prices will be supposed to remain constant between hours of the days, days of the week and months in order to facilitate the study.
- ii. The target of passengers will be estimated from the % of the existent market the new company can take. This means that the % of passengers is supposed to be taken out from the % of passengers of the current companies, as it is considered that for the moment, total demand remains constant.
- iii. The % of the market taken by the new company will not surpass the % of the already existent companies unless it can offer prices significantly below them. It is supposed that already known companies will be preferred in front of a new company because they transmit more confidence to clients.
- iv. The % of the market will be transformed to number of passengers per week in order to facilitate the operations that will be carried out after.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

New LCC target of passengers and prices per week					
Route	Price (€)	Target of passengers (%)	Target of passengers		
Barcelona-Madrid	40	6	4.156		
Madrid-Barcelona	40	6	4.203		
Barcelona-London	45	5	936		
London-Barcelona	45	5	921		
Barcelona-Paris	39	8	1.864		
Paris-Barcelona	39	8	1.811		
Barcelona-Mallorca	32	9	1.284		
Mallorca-Barcelona	30	9	1.268		

Table 157. New low cost company prices and target of passengers per week

Calculation of the number of required flights per day

The number of airplanes can be easily obtained by having knowledge of the model of airplane of the company (see *Airplane model obtaining: OWA*) and making the supposition that airplanes are in active service the seven days of the week, due to economical reasons. An active airplane gives more benefits than a stored one, which does not provide any.

The total number of passengers per week will be divided by the number of seats the model of airplane has to know the required flights per week, and then, this result will be divided by the number of days per week when the route will be covered to know the required flights per day.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

New LCC required number of flights				
Model of airplane Number of seats				seats
	Q 200			
Route	Passengers/week	Flights/we	eek Days/week	Flights/day
Barcelona-Madrid	4.156	106,56	6 7	15,22
Madrid-Barcelona	4.203	107,77	7 7	15,40
Barcelona-London	936	24 3		8
London-Barcelona	921	23,62	3	7,87
Barcelona-Paris	1.864	47,79	4	11,95
Paris-Barcelona	1.811	46,41	4	11,60
Barcelona-Mallorca	1.284	32,92	7	4,70
Mallorca-Barcelona	1.268	32,51	7	4,64

* However having decimals in the number of flights per week and per day has not physical sense, these values have not been approximated to an integer because they are an average, and so as to not to accumulate an error to obtain the final number of airplanes required. In addition, tourist class is not very demanding with the dates of their flights so they do not have inconvenient to fly one day before or after.

Table 158. Number of flights per week and per day required by the new company

Number of airplanes required obtaining

Number of airplanes required by the company to cover the selected routes and accomplish with the target of passengers established will be obtained by dividing the number of flights per day required by the number of flights a single airplane can do in a specific route.

Number of flights per day covered by a single airplane

The number of flights a single airplane can cover of a same route will be estimated by having knowledge of the flight time of each route, and the typical range of hours when there is more demand of flights. In this way, it will be estimated the number of times a single airplane can go and return on the same route in the whole day.

Flight time on the different routes

So as to obtain the duration of each flight, it will be necessary to know the distance between the destinations covered by each route and the cruise speed of the airplane. Then, following the same procedure as in *Annex 3*, time of each flight can be obtained.

Route	Range (km)	Cruise speed (km/h)	Flight duration (<i>h</i>)	Flight duration (h and min)
BCN-MAD	490,78	537	1,25	1h 15min
MAD-BCN	494,484	537	1,25	1h 15min
BCN-STN	872,292	537	1,96	1h 58min
STN-BCN	831,548	537	1,88	1h 53min
BCN-ORY	1.263,064	537	2,69	2h 42min
ORY-BCN	1.220,468	537	2,61	2h 37min
BCN-PMI	201,868	537	0,71	43min
PMI-BCN	214,832	537	0,73	44min

* Data of the range of each route consulted from [107]. Range can vary between go and back routes due to they do not have to follow exactly the same aerial path.

Table 159. Duration of the flight on the different routes

Range of more demanded service hours

Having a look to the typical flights timetable (see *Annex 9*), the range of hours when the new company will offer flights will be between 06:00h and 00:01h.

Taking into account a waiting time (or handling time) between flights of approximately one hour in all the airports, it is finally obtained the number of flights a same airplane can cover. In addition, it will have to take into account this number of flights per day is a reasonable one according to the existent demand on the route, which means that, for instance, although the airplane can make 8 flights per day from Barcelona to Mallorca, there is no sense to carry out such a high number of them if there is not enough demand.

Route	Daily flights/airplane
BCN-MAD / MAD-BCN	(4) BCN-MAD
	(4) MAD-BCN
	(3) BCN-STN
BCN-STN / STN-BCN	(3) STN-BCN
	(2) BCN-ORY
BCN-ORY / ORY-BCN	(2) ORY-BCN
	(5) BCN-PMI
BCN-PMI / PMI-BCN	(5) PMI-BCN

* Note that as the company uses a star-type network with Barcelona as the hub airport and it is supposed all airplanes return to Barcelona, the flights per day an airplane can make has to be an even number. An airplane will not end in another airport different from Barcelona-El Prat. Table 160. Number of flights per day a single airplane can do on the different routes

Route	Flights/day	Daily flights per airplane	Number of airplanes
BCN-MAD	15,22	4	3,81 → 4
MAD-BCN	15,40	4	$3,85 \rightarrow 4$
BCN-STN	8	3	$3,98 \rightarrow 4$
STN-BCN	7,87	3	3,87 → 4
BCN-ORY	11,95	2	4
ORY-BCN	11,60	2	$3,94 \rightarrow 4$
BCN-PMI	4,70	5	0,94 → 1
PMI-BCN	4,64	5	0,93 → 1
Total number of airplanes required			13

Then it can be calculated the number of required airplanes by the company.

Table 161. Number of airplanes required by the company on the different routes

Annex 13: Economical feasibility study

In order to carry out the economical feasibility study of the new company, it will be necessary to take into account the following parameters:

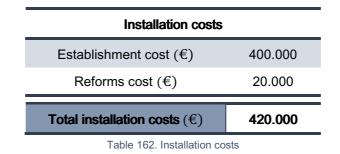
- i. Initial investment
- ii. Income of the company per year
- iii. Costs of the company per year
- iv. Cash flow
- v. Updated cash flow
- vi. Breakeven point
- vii. Payback time
- viii. Net Present Value (NPV)
- ix. Internal Rate of Return (IRR)

Feasibility study will be carried to analyse if the company will have benefits, and so if it will be a feasible inversion. So as to evaluate the economical feasibility of the company, it will be analysed the first 10 years of existence.

A13.1 Initial investment

The initial investment of the company, which will be the total amount of money required of the investors of the company to set it up, will consist on the next parameters:

- i. Installations costs
- ii. Bureaucratic aspects

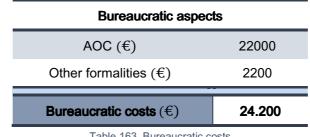

- iii. First payment of the leased airplanes
- iv. Study cost
- v. Contingencies

Installation costs

Installation costs refer to the cost of having an initial space destined to the offices of the company, which could be its headquarters. This includes the purchasing price of this property as well as any initial building reform it needs so as to adequate the space to the company necessities.

The headquarters of the company will be situated near its hub airport, so, in El Prat de Llobregat. Making the supposition that it will have an area of approximated $1000 m^2$ and that the price per m^2 is around $400 \in$, this gives a total of $400000 \in [108]$.

Initial building reforms which include utilities installations, change in the distribution of the space, necessary materials for the office like computers, etc., will be considered a 5% of the total cost of the property.



Bureaucratic aspects

Bureaucratic aspects include all the legal formalities required to set up a new enterprise (in this case an airline) such as the Air Operator Certificate (AOC) or other licenses, certificates, royalties, etc.

According to [109], in order to obtain the AOC for the company it will be required 22000 €. Rest of the possible bureaucratic formalities will be recorded as a 10% of the AOC cost.

Table 163. Bureaucratic costs

First payment of airplanes

Inside the initial investment the company will contemplate the first year payment of all its leased airplanes so as to be able to commence operations.

Initial cost of airplanes co	st
Airplane prive $(\in/month)$	82.000
Number of airplanes	5
Number of months	12
Total airplanes costs (\in)	4.920.000

Table 164. Initial airplane's cost

Study cost

Study cost corresponds to the expenses that come from the realization of the whole study carried out during the project, in other words, the value corresponding to the hours worked.

In order to establish this cost, it is necessary to know the typical cost per hour of a junior consultant, due to the carried out study is typical from consultancies and it will be considered to have been carried out by an inexperienced person in this area.

Study cost			
Junior consultant cost (\notin /hour)	45		
Number of worked hours	580		
Total study cost (f)	26.100		
* Data consulted from BOE (Boletín Oficia	al del Estado),		
corresponding to a junior consultant working on determinate			
interventions in the city of Barcelona (same characteristics as			
these <i>TFG</i>) [110].			
Table 165. Study cost			

Contingencies

Contingencies correspond to a % of money reserved which takes into account any possible initial loss which was not contemplated. This cost will represent a 5% of total initial costs.

Table 166. Contingencies

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Escola Tècnica Superior d'Enginyeries

Industrial i Aeronàutica de Terrassa

Initial investment

Finally, initial investment will be of 5.633.605 €.

Initial investment			
420.000			
24.200			
4.920.000			
26.100			
269.405			
5.633.605			

Table 167. Initial investment

A13.2 Income

The income of the company per year will correspond to the number of sold tickets and the possible cargo invoicing (especially luggage). Having knowledge of the number of passengers carried per week and the ticket's price on each route (see *Annex 12*), and supposing around a 15% of the passengers carry a hold luggage, the total income can be easily obtained.

Income of the company per year				
Income corresponding to the tickets sold				
Route	Fare (€)	Passengers/week	Weeks/year	Income (€)
Barcelona-Paris	39	1.864	48	3.489.408
Paris-Barcelona	39	1.810	48	3.388.320
Barcelona-London	45	936	48	2.021.760

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

London-Barcelona	45	921 48		48	1.989.360
Barcelona-Mallorca	32	1.2	84	48	1.972.224
Mallorca-Barcelona	30	1.2	68	48	1.825.920
	Incom	e correspon	ding to invoicing	3	
Route	Fare (€)	Suitcases	Flights/week	Weeks/year	Income (€)
Barcelona-Paris	20	5	47,79	48	229.415
Paris-Barcelona	20	5	46,41	48	222.769
Barcelona-London	20	5	24	48	115.200
London-Barcelona	20	5	23,62	48	113.353
Barcelona-Mallorca	20	5	32,92	48	158.030
Mallorca-Barcelona	20	5	32,51	48	156.061
Total income $(\in /year)$					681.820

Table 168. Total income of the company per year

A13.3 Costs

Between all the costs the company will have each year, it can be divided into Direct Costs or Indirect Costs [20].

Direct costs

Direct costs include all the costs that depend in a direct way of the airplane of the company:

- i. Leasing price of the airplanes
- ii. Fuel costs
- iii. Aircrew costs
- iv. Maintenance costs

- v. Airport taxes and on-route fees
- vi. Other costs, which include services to passengers, handling of the airplane, insurances associated to the airplane and interests, depreciation and amortisation.

Leasing costs

Leasing costs				
Airplane price $(\in/month)$	82.000			
Number of airplanes	5			
Total leasing costs ($€/year$)4.920.000				
* First annual payment of the airplanes will be already taken into				

account in the initial investment, so during the first year total leasing costs will be a $4.920.000 \in$ lower.

Table 169. Total leasing costs of the company per year

Fuel costs

Fuel costs are obtained by having knowledge of the fuel costs per block hour of the model of airplane (see *Fuel costs*), the total number of block hours on each route (see *Annex 3*) and the number of flights per week.

Fuel costs per year					
Route	Fuel cost (€/ <i>flight</i>)	Flights/week	Weeks/year	Fuel costs (€/year)	
Barcelona-Paris	511	47,79	48	1.172.228	
Paris-Barcelona	491	46,41	48	1.094.154	
Barcelona-London	701	24	48	807.427	

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Total fuel costs $(\in/year)$				4.436.093
Mallorca-Barcelona	191	32,51	48	298.726
Barcelona-Mallorca	185	32,92	48	292.538
London-Barcelona	680	23,62	48	771.020

Table 170. Total fuel costs of the company per year

Aircrew costs

Similarly to fuel costs, but now knowing the aircrew costs per block hour of the model of airplane of the company (see *Aircrew costs*), these costs per year will be the following:

Aircrew costs per year					
Route	Crew cost (€/flight)	Flights/week	Weeks/year	Crew costs (€/year)	
Barcelona-Paris	288	47,79	48	660.220	
Paris-Barcelona	277	46,41	48	616.248	
Barcelona-London	395	24	48	454.758	
London-Barcelona	383	23,62	48	434.252	
Barcelona-Mallorca	104	32,92	48	164.763	
Mallorca-Barcelona	108	32,51	48	168.248	
Tota	2	.498.489			

Table 171. Total aircrew costs of the company per year

Maintenance costs

Similar to fuel and crew costs, maintenance costs are obtained by having knowledge of the maintenance costs of the model of airplane per block hour (see *Maintenance costs*).

Maintenance costs per year						
Route	Maintenance cost (€/flight)	Flights/week	Weeks/year	Maintenance costs (€/year)		
Barcelona-Paris	738	47,79	48	1.693.218		
Paris-Barcelona	709	46,41	48	1.580.444		
Barcelona-London	1012	24	48	1.166.283		
London-Barcelona	982	23,62	48	1.113.695		
Barcelona-Mallorca	267	32,92	48	422.555		
Mallorca-Barcelona 276 32,51 48				431.493		
Tot		6.407.689				

Table 172. Total maintenance costs of the company per year

Airport taxes

Airport taxes include landing fees, parking of aircraft fees and other services the company takes from the airport like on-ground services, invoicing stands, etc.

Landing and parking fees will be directly obtained by having knowledge of the number of landings each airplane does, as well as the number of hours during the week it is parked at the hub airport of Barcelona.

Rest of possible taxes the company should pay will be supposed as a 4% of each airport total taxes.

In this way, in order to obtain the total airport taxes per year, it will be analysed each airplane separately to find the number of landings per week carried out on each airport and the total number of fractions of 15min it has been parked at Barcelona-El Prat (see *Annex 14*). These parameters will be found by having a look on the timetable of each airplane (see section *Flight schedule*).

Total airport costs				
Airplane	Airport costs			
Airplane 1	309.442			
Airplane 2	307.193			
Airplane 3	307.663			
Airplane 4	304.999			
Airplane 5	440.853			
Total airport costs $(\in/year)$	1.670.150			

Table 173. Total airport costs per year

On route fees

On route fees will be calculated according to the following equation:

$$C = AWF \cdot Df \cdot u;$$

where AWF corresponds to the Aircraft Weight Factor, Df corresponds to the distance factor and u to the unit rate of charge (see Annex 15).

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Overflight costs per year						
Route	On-route cost (€/flight)	Flights/week	Weeks/year	On-route costs (€/year)		
Barcelona-Paris	353	47,79	48	808.703		
Paris-Barcelona	336	46,41	48	747.952		
Barcelona-London	560	24	48	645.276		
London-Barcelona	542	23,62	48	613.832		
Barcelona-Mallorca	83	32,92	48	131.461		
Mallorca-Barcelona	89	32,51	48	138.160		
Tota		3.085.384				

Table 174. Total on-route costs of the company per year

Other costs

Rest of the direct costs of a company: services to passengers, handling of the airplane, insurances, interests, depreciation and amortisation can be supposed as a 5% of the already known direct costs.

Other direct costs per year						
F	First year					
Type of cost	Percentage (%)	Cost (€)				
Services to passengers	1	189.978				
Handling of the airplane	1	189.978				
Insurances of the airplane	2	361.956				
Interests, depreciation and amortisation	1	189.978				
Total costs ($€/year$)904.890						
Following years						

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Type of cost	Percentage (%)	Cost (€)
Services to passengers	1	230.178
Handling of the airplane	-	-
Insurances of the airplane	2	460.356
Interests, depreciation and amortisation	1	230.178
Total costs (€/yea	920.712	

* Handling of the airplane refers to the costs of carrying the airplane from the place where the leaser/seller has it to the desired place, and so will be only taken into account the years when an airplane is leased/bought.

Table 175. Total other direct costs of the company per year

Total direct costs per year

Total direct costs per year					
First year		Following year			
Type of cost	Cost (€)	Type of cost	С	ost (€)	
Aircraft cost	-	Aircraft cost	4.9	20.000	
Fuel costs	4.436.093	Fuel costs	4.4	36.093	
Crew costs	2.498.489	Crew costs	2.4	98.489	
Maintenance costs	6.407.689	Maintenance costs	6.4	07.689	
Airport charges	1.670.150	Airport charges	1.6	70.150	
On-route charges	3.085.384	On-route charges	3.0	85.384	
Other costs	904.890	Other costs	92	20.712	
Total direct costs $(f/year)$	19.002.696	Total direct costs (\notin/y)	ear)	23.017.805	

Table 176. Total direct costs of the company per year

Indirect costs

Indirect costs are those which depend of the airline and are divided in:

- i. Publicity and commercialisation
- ii. General and administration expenses
- iii. Handling of the payload

All these costs will represent a 5% of the total direct costs.

Indirect costs per year				
	First year			
Type of cost	Percentage (%)	Cost (€)		
Publicity and commercialisation	3	570.081		
General and administration expenses	1	190.027		
Handling of the payload	1	190.027		
Total indirect costs (€/y	Total indirect costs $(\notin/year)$			
Fol	lowing years			
Type of cost	Percentage (%)	Cost (€)		
Publicity and commercialisation	3	718.156		
General and administration expenses	1	239.385		
Handling of the payload	1	239.385		
Total indirect costs (€/y	vear)	1.196.926		

Table 177. Total indirect direct costs of the company per year

A13.4 Cash flow

Cash flow is an indicator for money movements in the way that when cash flow is positive means the enterprise incomes are higher than the expenses, and so, when cash flow is negative, means expenses are higher and there is a deficit on the company.

It can be simply calculated by subtracting the already calculated expenses, which correspond to the yearly costs calculated in last section, to the yearly incomes:

$$Cash Flow = Incomes - Expenses \rightarrow CF = I - E$$

	Cash flow per year				
Year	Income (€)	Expenses (€)	Cash Flow (€)		
2015	-	5.633.605	-5.633.605		
2016	15.681.820	19.952.830	-4.271.010		
2017	15.681.820	25.135.443	-9.453.623		
2018	15.681.820	25.135.443	-9.453.623		
2019	15.681.820	25.135.443	-9.453.623		
2020	15.681.820	25.135.443	-9.453.623		
2021	15.681.820	25.135.443	-9.453.623		
2022	15.681.820	25.135.443	-9.453.623		
2023	15.681.820	25.135.443	-9.453.623		
2024	15.681.820	25.135.443	-9.453.623		
2025	15.681.820	25.135.443	-9.453.623		

* Note that it is being considered that during the first year the company only works on the installations, licences obtaining and other aspects (web page, publicity, etc.) and does not start operations until next year.

* Note that the first year of operations the expenses are a bit lower due to the first year lease of the airplanes is covered on the initial investment. In addition, next of the year will not have costs on handling of the airplane.

Table 178. Cash flow of the company per year

As it is seen, costs of the company will be always higher than benefits if nothing changes, and so the company will not be feasible and will have to close.

In this way, there will have to be made some iterations where the company strategy of routes and number of airplanes will be changing until it is reached a configuration that gives benefits to the company (see *Annex 16*).

Annex14:Airportchargescorrespondingtoeachairplaneobtaining

Every airport has its own policy of landing and parking fares, so it will have to be searched the fares on each of the airports the company will operate:

Main airport taxes				
Airport	Landing fee	Parking fee		
		$E = e \cdot MTOW \cdot t$		
Barcelona-El Prat	7,45535 <i>€/MTOW</i> <i>MTOW</i> in <i>Tm</i>	e = 0,122978 €/15min t on fractions of 15min <i>MTOW</i> in Tm		
	122,27 €			
		2,0168392 € / <i>t</i>		
Mallorca-Son Sant Joan	7,072182 <i>€/MTOW</i> 116 <i>€</i>	Not necessary		
London-Stansted	162 £	Not necessary		
Paris-Orly	178,92 €	Not necessary		

* Data consulted from [11], [12] and [15].

* No charges per noise due to the characteristics of the model of airplane according to ICAO. Table 179. Main airport taxes

Taking into account each airport charges and the timetables of the 5 airplanes of the company (see section *Flight schedule*), it can be known the number of landings per week, and so per year of each airplane on each airport and its corresponding cost, as well as the number of hours each airplane is parked at Barcelona-El Prat and its corresponding cost.

Airplane 1

Airport taxes Airplane 1						
	Landing costs					
Airport	Cost/Landin (€)	g Landing	s/week	Weeks/year	Landing costs (€)	
Barcelona-E Prat	122,27	18	3	48	105.639	
London-Stanst	ied 224	6		48	64.512	
Paris-Orly	178,92	12	2	48	103.057	
Parking costs						
Airport	Parking cost (€/15min) Mi	inutes/week	Fractions 15/weeł	Weeks/year	Parking costs (€)	
Barcelona- El Prat	2,0168392	3770	251,3	48	24.331	
Rest of airport taxes						
Percen	tage of the main a	irport taxes ('	%)	2	1	
Airport Rest of taxes			Rest of taxes cos	sts (€)		
Barcelona-El Prat 5.199						
L	ondon-Stansted	2.580				
Paris-Orly 4.122						
Total airport costs airplane 1 ($(fyear)$)				309.442		

Table 180. Total airport costs on taxes of airplane 1

Airplane 2

Airport taxes Airplane 2					
Landing costs					
Airport	Cost/Landir (€)	ng Landing	s/week	- Weeks/year	Landing costs (€)
Barcelona-E Prat	122,27	18	3	48	105.639
London-Stans	ted 224	6		48	64.512
Paris-Orly	178,92	12	2	48	103.057
Parking costs					
Airport	Parking cost (€/15min)	1inutes/week	Fractions of 15/week	Weeks/year	Parking costs (€)
Barcelona- El Prat	2,0168392	3435	229	48	22.169
Rest of airport taxes					
Percer	ntage of the main a	airport taxes ('	%)	2	1
Airport			F	Rest of taxes cos	sts (€)
Barcelona-El Prat 5.112					
L	London-Stansted 2.580				
Paris-Orly				4.122	
Total airport	t costs airplane 2 ((€/ year)		307.193	

Table 181. Total airport costs on taxes of airplane 2

Airplane 3

Airport taxes Airplane 3					
		Landing	l costs		
Airport	Cost/Landin (€)	g Landing	s/week	Weeks/year	Landing costs (€)
Barcelona-E Prat	122,27	122,27 18		48	105.639
London-Stans	ted 224	6		48	64.512
Paris-Orly	178,92	12	2	48	103.057
Parking costs					
Airport	Parking cost (€/15min) Mi	nutes/week	Fractions 15/wee	Weeks/vea	Parking rr costs (€)
Barcelona- El Prat	2,0168392	3505	233,7	, 48	22.621
Rest of airport taxes					
Percen	tage of the main a	irport taxes ('	%)		4
Airport				Rest of taxes co	sts (€)
Barcelona-El Prat			5.130		
London-Stansted			2.580		
Paris-Orly			4.122		
Total a	irport costs airplan	e 3 (€/year	·)	307	.663

Table 182. Total airport costs on taxes of airplane 3

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane 4

Airport taxes Airplane 4					
Landing costs					
Airport	Cost/Land (€)	ding Landing	s/week	Weeks/year	Landing costs (€)
Barcelona-E Prat	El 122,27	122,27 18		48	105.639
London-Stans	ted 224	6	;	48	64.512
Paris-Orly	178,92	2 12	2	48	103.057
Parking costs					
Airport	Parking cost (€/15min)	Minutes/week	Fraction 15/wee	Weeks/yea	Parking r costs (€)
Barcelona- El Prat	2,0168392	3490	232,7	7 48	22.524
Rest of airport taxes					
Percer	ntage of the main	n airport taxes ('	%)		4
Airport Rest of taxes costs (€)				sts (€)	
Barcelona-El Prat 5.127					
London-Stansted			2.580		
Paris-Orly			_	4.122	
Total a	irport costs airpl	lane 4 (€/year	.)	304.	999

Table 183. Total airport costs on taxes of airplane 4

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Airplane 5

	Airport taxes Airplane 5					
	Landing costs					
Airport	Cost/Landing (€)	Landings/v	veek	Weeks/year	Landing costs (€)	
Barcelona-E Prat	122,27	35		48	205.410	
Mallorca-Sor Sant Joan	116	35		48	194.853	
Parking costs						
Airport	Parking cost (€/15min) Min	F utes/week	ractions of 15/week	of Weeks/yea	Parking r costs (€)	
Barcelona- El Prat	2,0168392	3662	244,1	48	23.634	
	Rest of airport taxes					
Percen	tage of the main air	port taxes (%)		4	4	
Airport				Rest of taxes c	osts (€)	
Barcelona-El Prat				9.162		
Mallorca-Son Sant Joan				7.794		
Total a	irport costs airplane	e 5 (€/year)		440	.853	

Table 184. Total airport costs on taxes of airplane 5

Annex 15: Parameters of the onroute fees obtaining

On route fees will be calculated according to the following equation:

$$C = AWF \cdot Df \cdot u;$$

where AWF corresponds to the Aircraft Weight Factor; Df to the distance factor and u to the unit rate of charge [111].

Aircraft Weight Factor

The AWF (expressed to two decimals) is determined by the following equation [111]:

$$AWF = \sqrt{MTOW/50}$$
;

where the MTOW is expressed in metric tonnes.

In this way, the AWF of the Q200, which has an MTOW of 16400 kg will be 0,57.

Distance factor

The distance factor by charging area is obtained by dividing the number of kilometres in the great circle distance between the aerodrome of departure or entry point of the charge area and the aerodrome of arrival or the exit point of the

charge area, by 100. This operation has to be repeated for each charging zone overflown [111].

In order to know the kilometres flown over the different charging zones it will be necessary to have an idea of a typical flight plan of the route where it can be seen the point where the airplane enters to a different charging zone [112].

Route Barcelona-Paris

Distance factor					
Charging zone	Distance (km)	Distance factor			
Spain	155,57	1,56			
France	716,72	7,17			

Table 186. Distance factor son the route Barcelona-Paris

Route Paris-Barcelona

Distance factor					
Charging zone	Distance (km)	Distance factor			
France	713,02	7,13			
Spain	118,53	1,19			

Table 187. Distance factor son the route Paris-Barcelona

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Route Barcelona-London

Distance factor					
Charging zone	Distance (km)	Distance factor			
Spain	168,53	1,69			
France	813,03	8,13			
United Kingdom	281,50	2,82			

 Table 188. Distance factor son the route Barcelona-London

Route London-Barcelona

Distance factor					
Charging zone	Distance (km)	Distance factor			
United Kingdom	275,95	2,76			
France	826,00	8,26			
Spain	118,53	1,19			

Table 189. Distance factor son the route London-Barcelona

Route Barcelona-Mallorca

Distance factor				
Charging zone	Distance (km)	Distance factor		
Spain	201,87	2,02		

Table 190. Distance factor son the route Barcelona-Mallorca

Route Mallorca-Barcelona

Distance factor					
Charging zone Distance (<i>km</i>) Distance factor					
Spain	214,83	2,15			

Table 191. Distance factor son the route Mallorca-Barcelona

Unit Rate of Charge

The unit rate of charge is the charge in Euro applied by a charging zone to a flight operated by an aircraft of 50 metric tonnes (weight factor of 1,00) and flying 100 km (distance factor of 1.00) in the charge area of that state [111].

Adjusted unit rates				
Zone	Unit Rate			
France	70,11			
Spain	71,8			
United Kingdom	101,22			

* Data consulted from [113].

Table 192. Adjusted unit rates

Annex 16: Iteration of the feasibility study

Iteration on the economical feasibility study is necessary in order to find a configuration of routes and fleet the company becomes profitable with.

First step was eliminating the route that suppose major operational costs (route of London) and then a second route had to be eliminated too (route of Paris) due to the company was still not being economically feasible. In this way, in the following pages it will be carried out the feasibility study with the route of Mallorca and a single airplane on the fleet.

A16.1 Initial investment

Initial investment is obtained in the same way as *Annex 13*, with the difference that the cost represented by the first payment of airplanes will be lower, due to the company only has to lease one airplane now. This fact will change the investment destined to contingencies, and so the final initial investment (see *Budget*).

Initial investment	
Installation cost (€)	420.000
Bureaucratic aspects (\mathbf{f})	24.200
First payment of airplanes (\mathbf{f})	984.000
Study cost (€)	26.100
Contingencies (€)	72.715
Total initial investment (€)	1.527.015

Table 193. Recalculated initial investment

A16.2 Income

Similar to Annex 13, next table shows the income per year of the company:

Income of the company per year							
	Income corresponding to the tickets sold						
Route Fare (\in) Passengers/week Weeks/year Income (\in)							
Barcelona-Mallorca	32	128	34	48	1.972.224		
Mallorca-Barcelona	30	120	1268 48		1.825.920		
	Incom	e correspon	ding to invoicir	Ig			
Route	Fare (€)	Suitcases	Flights/week	Weeks/year	Income (€)		
Barcelona-Mallorca	20	5	32,92	48	158.030		
Mallorca-Barcelona	20	5	32,51	48	156.061		
Тс	Total income (€/year)						

Table 194. Recalculated total income of the company per year

A16.3 Costs

Following the same procedure as in *Annex 13*, costs of the company per year can be easily obtained.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Direct costs

Leasing costs

Leasing costs			
Airplane price $(\in/month)$	82.000		
Number of airplanes	1		
Total leasing costs $(\in/year)$	984.000		

* First annual payment of the airplanes will be already taken into account in the initial investment, so during the first year total leasing costs will be 984.000 € lower.

Table 195. Recalculated total leasing costs of the company per year

Fuel costs

Fuel costs per year					
Route	Fuel cost (€/ <i>flight</i>)	Flights/week	Weeks/year	Fuel costs (€/year)	
Barcelona-Mallorca	185	32,92	48	292.538	
Mallorca-Barcelona	191	32,51 48		298.726	
Тс		591.264			

Table 196. Recalculated total fuel costs of the company per year

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Aircrew costs

Aircrew costs per year						
Route	Crew cost (€/flight)	Flights/week	Weeks/year	Crew costs (€/year)		
Barcelona-Mallorca	104	32,92	48	164.763		
Mallorca-Barcelona	108	32,51 48		168.248		
Total aircrew costs ($\notin/year$)333.011						

Table 197. Total aircrew costs of the company per year

Maintenance costs

Maintenance costs per year						
Route	Maintenance cost $(\notin/flight)$	Flights/week	Weeks/year	Maintenance costs (€/year)		
Barcelona-Mallorca	267	32,92	48	422.555		
Mallorca-Barcelona	276	32,51	48	431.493		
Total		854.048				

Table 198. Recalculated total maintenance costs of the company per year

Airport taxes

Total airport costs				
Airplane	Airport costs			
Airplane 5	440.853			
Total airport costs $(\notin /year)$	440.853			

Table 199. Recalculated total airport costs per year

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

On route fees

Overflight costs per year						
Route	On-route cost (€/flight)	Flights/week	Weeks/year	On-route costs (€/year)		
Barcelona-Mallorca	83	32,92	48	131.461		
Mallorca-Barcelona	89	32,51	48	138.160		
Total on-route costs ($€/year$)269.620						

Table 200. Recalculated total on-route costs of the company per year

Other costs

Other direct costs per year					
First year					
Type of cost	Percentage (%)	Cost (€)			
Services to passengers	1	24.068			
Handling of the airplane	1	24.068			
Insurances of the airplane	2	48.136			
Interests, depreciation and amortisation	1	24.068			
Total costs (€/year)	120.340			
Foll	owing years				
Type of cost	Percentage (%)	Cost (€)			
Services to passengers	1	34.728			
Handling of the airplane	-	-			
Insurances of the airplane	2	69.456			
Interests, depreciation and amortisation	1	34.728			
Total costs (€/yea	ur)	138.912			

* Handling of the airplane refers to the costs of carrying the airplane from the place where the

Industrial i Aeronàutica de Terrassa

leaser/seller has it to the desired place, and so will be only taken into account the years when an airplane is leased/bought.

Table 201. Recalculated total other direct costs of the company per year

Total direct costs per year

Total direct costs per year					
First year		Following year			
Type of cost	Cost (€)	Type of cost	Co	ost (€)	
Aircraft cost	-	Aircraft cost	98	4.000	
Fuel costs	591.264	Fuel costs	59	1.264	
Crew costs	333.011	Crew costs	33	3.011	
Maintenance costs	854.048	Maintenance costs	85	4.048	
Airport charges	432.375	Airport charges	43	2.375	
On-route charges	269.620	On-route charges	26	9.620	
Other costs	120.340	Other costs 138.912		8.912	
Total direct costs (\notin /year)	2.609.136	Total direct costs (\notin /y)	ear)	3.611.708	

Table 202. Recalculated total direct costs of the company per year

Indirect costs

Indirect costs per year					
	First year				
Type of cost	Percentage (%)	Cost (€)			
Publicity and commercialisation	3	78.274			
General and administration expenses	1	26.091			
Handling of the payload	26.091				
Total indirect costs (€/y	Total indirect costs ($\notin/year$)130.45				

STUDY OF THE OPTIMUM FLEET FOR A LCC (LOW-COST-CARRIER). Annexes Núria Durán Gómez

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Following years			
Type of cost	Percentage (%)	Cost (€)	
Publicity and commercialisation	3	108.351	
General and administration expenses	1	36.117	
Handling of the payload	36.117		
Total indirect costs (€/y	180.585		

Table 203. Recalculated total indirect costs of the company per year

A16.4 Cash flow

	Cash flow per year				
Year	Income (€)	Expenses (€)	Cash Flow (€)	Accumulated <i>CF</i> (€)	
2015	-	1.527.015	-1.527.015	-1.527.015	
2016	4.112.235	3.641.592	470.643	-1.056.372	
2017	4.112.235	3.792.293	319.942	-736.430	
2018	4.112.235	3.792.293	319.942	-416.488	
2019	4.112.235	3.792.293	319.942	-96.546	
2020	4.112.235	3.792.293	319.942	223.396	
2021	4.112.235	3.792.293	319.942	543.338	
2022	4.112.235	3.792.293	319.942	863.280	
2023	4.112.235	3.792.293	319.942	1.183.222	
2024	4.112.235	3.792.293	319.942	1.503.164	
2025	4.112.235	3.792.293	319.942	1.823.106	

* Note that it is being considered that during the first year the company only works on the installations, licences obtaining and other aspects (web page, publicity, etc.) and does not start operations until next year.

* Note that the first year of operations the expenses are a bit lower due to the first annual lease of the airplanes is covered on the initial investment. In addition, next of the years will not have costs on handling of the airplane, unless it decides to lease/buy a new one.

Table 204. Recalculated cash flow of the company per year

A16.5 Cash flow updated

Updated Cash Flow follows the next equation:

$$CFu = \frac{CF}{(1+d)^i};$$

where d is the discount rate and i is the number of years [114].

Discount rate takes into account the benefit given to the investor as well as a risk parameter, which corresponds to the insurance paid on property, personnel and merchandise in case any fire, theft, partial or total loss exists; and other not predictable situations like flight delays caused by aerial strikes (aircrew, aerial controllers...), bad weather conditions, temporary closing of an airport, breakdown of an airplane or part of it, etc. The study has been carried out with a percentage of discount rate which takes into account a 2% of risks, while the benefit given to the investor takes an 8%. In other words, total value of d corresponds to a 10%.

Having knowledge of the simple Cash Flow, parameter d and the years that have passed, updated Cash Flow can be easily calculated.

	Updated Cash flow per year				
	Applied disc	ount rate (%)			10
Year	<i>CF</i> (€)	nº years (i)	CFu	.(€)	Accumulated CFu (€)
2015	-1.527.015	0	-1.52	7.015	-1.527.015
2016	470.643	1	427.	857	-1.099.158
2017	319.942	2	264.	415	-834.743
2018	319.942	3	240.	377	-594.366
2019	319.942	4	218.	525	-375.841
2020	319.942	5	198.	659	-177.182

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

2021	319.942	6	180.599	3.416
2022	319.942	7	164.181	167.597
2023	319.942	8	149.255	316.853
2024	319.942	9	135.687	452.539
2025	319.942	10	123.351	575.891

Table 205. Updated cash flow of the company per year

A16.6 Breakeven point

Breakeven point is the number of passengers the company has to have so as to assure a positive cash flow. In order to find this target of passengers, percentage of the weekly demand will be modified until cash flow becomes negative, thing that occurs when demand is around 7,5%.

Breakeven point (number of passengers)			
Route	Target of passengers (%)	Number of passengers	
BCN-PMI	7,5	1070	
PMI-BCN	7,5	1057	
Breakeven	Breakeven point (number of passengers) 2127		

Table 206. Breakeven point in number of passengers

Another aspect that has to be taken into account is how far is the breakeven point from the maximum target of passengers admitted by the company's fleet, because as much far it is, less risks of having a negative cash flow. In order to analyse this aspect, it will be observed the target of passengers obtained when the airplane of the company flies full at every flight (it does not admit more

demand), in other words, the number of airplanes required by the company has to give exactly 1 (see *Annex 12*).

	Maximum target of passengers admitted			
Route	Estimated occupation	Estimated target of passengers (%)	Maximum occupation	Maximum target of passengers (%)
BCN-PMI	0,941	9	1	9,5
PMI-BCN	0,929	9	1	9,6
	Maximum target of passengers			2708

Table 207. Maximum target of passengers admitted

The company has a margin of 581 passengers, between its breakeven point and its maximum capacity of passengers.

A16.7 Payback time

Payback time is the number of years that have to pass until accumulated cash flow from the company becomes positive, in other words, how much time has to pass until the inversion is recovered [114].

Payback time will be analysed with accumulated updated cash flow because it takes into account the discount rate, and so it is more real than simple accumulated cash flow.

According to *Table 191*, the inversion will be recovered between years 2020 and 2021.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

Accumulated updated cash flow		
Year	Year Accumulated CFu (\in)	
2020	-177.182	
2021	3.416	

Table 208. Accumulated updated cash flow between year 2020 and 2021

By carrying out a lineal regression it can be found the exact number of years at which the inversion is recovered.

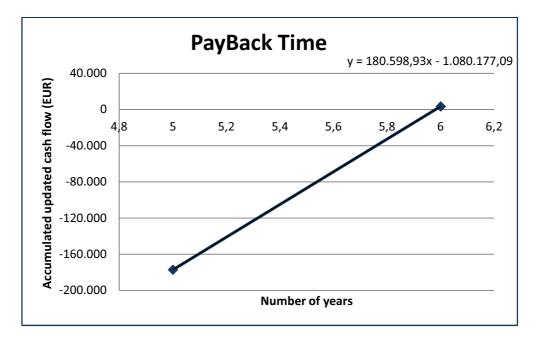


Figure 2. PayBack Time

Payback time is obtained when accumulated updated cash flow becomes cero:

$$CF_{u(Acc)} = 180.598,93 \cdot PBT - 1.080.177,09$$

 $0 = 180.598,93 \cdot PBT - 1.080.177,09$

PBT = 5,98 years

A16.8 Net Present Value (NPV)

Net present value (NPV) is the amount of money the company has at the end of the years [114]. It corresponds to the accumulated updated cash flow at the last year of the project, which in this case reaches to $575.891 \in$.

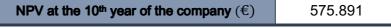


Table 209. Net Present Value of the company

A16.9 Internal Rate of Return (IRR)

Internal rate of return (IRR) is the maximum discount rate that the company can permit itself in order that at the last year of the economical feasibility study accumulated updated cash flow stills being positive [113].

Internal Rate of Return			
Discount rate (%)	NPV (€)		
18	38.544		
19	-12.158		

Table 210. Internal rate of return

As it is seen IRR reaches a percentage of 18%.

Annex 17: Characteristic parameters of the environmental impact of different ways of transport

A17.1 Aircraft engine emissions

Regarding the emission of the aircraft's engines, one of the main aspects in order to evaluate the environmental impact of an airplane is the quantity of polluting gases emitted by its engine. In this way, it will be analysed the emissions of hydrocarbon, oxides of nitrogen and carbon monoxide in the form of emission index, which is a ratio between the mass of the pollutant (HC, NOx or CO) in grams and the mass of fuel consumed in kilograms.

Following next three tables show the different kind of emissions:

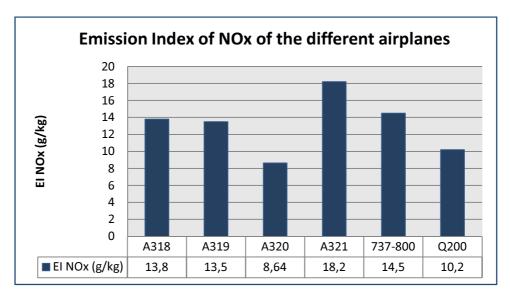


Figure 3. EI of NOx of the different airplanes (Data consulted from [115])

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

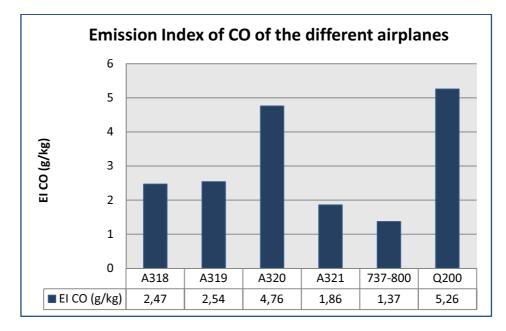


Figure 4. El of CO of the different airplanes (Data consulted from [115])

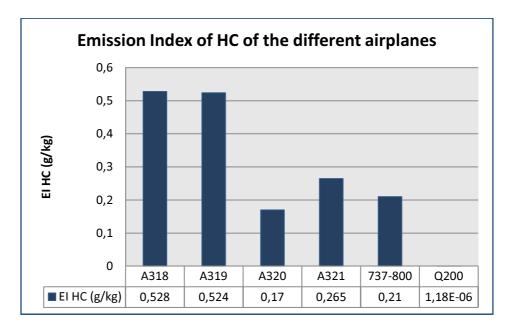


Figure 5. EI of HC of the different airplanes (Data consulted from [115])

A17.2 Aircraft noise pollution

In order to evaluate the noise pollution produced by the Q200 and its direct competitors, it will be had a look on the noise levels of each airplane in the three main manoeuvres: lateral/full power, approach and flyover.

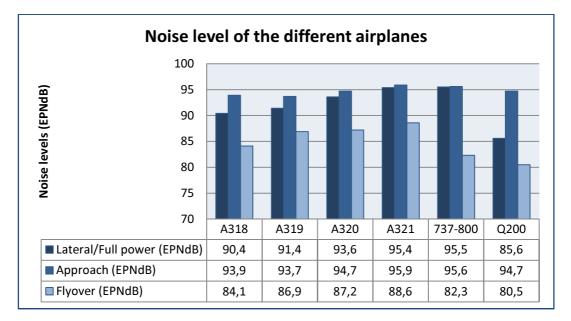


Figure 6. Noise level of the different airplanes (Data consulted from [43], [116], [117], [118], [119] and [120])