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Abstract

In this work we present a dynamic, control-oriented, concentrated parameter

model of an open-cathode Proton Exchange Membrane fuel cell system for

the study of stability and efficiency improvement with respect to thermal

management. The system model consists of two dynamic states which are

the fuel cell temperature and the liquid water saturation in the cathode

catalyst layer. The control action of the system is the inlet air velocity of

the cathode air flow manifold, set by the cooling fan, and the system output

is the stack voltage. From the model we derive the equilibrium points and

eigenvalues within a set of operating conditions and subsequently discuss

stability and the possibility of efficiency improvement. The model confirms

the existence of a temperature-dependent maximum power in the moderate

temperature region. The stability analysis shows that the maximum power

line decomposes the phase plane in two parts, namely stable and unstable
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equilibrium points. The model is capable of predicting the temperature of

a stable steady-state voltage maximum and the simulation results serve for

the design of optimal thermal management strategies.

Keywords: Open-cathode PEM fuel cell, Modeling, Stability analysis,

Efficiency improvement

1. Introduction

Over the last decades great advancement in terms of materials, com-

ponent design, production and system power density of Proton Exchange

Membrane (PEM) fuel cells has been achieved. However, operating strate-

gies for improving performance and durability by manipulation of operating

conditions, such as temperature, humidity and reactant flow rates, have still

not been sufficiently explored. One reason is the complex interconnection

of performance, efficiency and durability of PEM fuel cells, which demands

for an in-depth understanding of the competing effects when it comes to the

design of proper control strategies.

In order to provide this deep understanding, experimental work is

needed as well as a mathematical model that describes the involved

physical phenomena. Mathematical modeling is an important tool in the

development of fuel cells and control strategies, since the interplay of

the involved phenomena is not always observable experimentally. Many

detailed Computational Fluid Dynamics (CFD) models [1, 2, 3, 4, 5] have

be developed and published over the last decade, that allow for numerical

simulation of the detailed interactions between flow structure geometry, fluid

dynamics, heat transfer and the electrochemical reactions, taking advantage
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of the steadily improving computational power. These modelling techniques

provide insight into cell-internal spatially-resolved water distribution and its

effect on fuel cell performance and durability. Furthermore they can support

fuel cell designers in optimizing fuel cells before ever testing them in the

laboratory.

Although most physical phenomena occurring in a PEM fuel cell can be

incorporated in the macroscopic CFD models, it leads to time-consuming

simulations with high computational costs, which makes them inconvenient

for model-based controller development. A famous example of a dynamic fuel

cell system model specially developed for control engineering was presented

by [6]. The model describes the transient behaviour of the air compressor, the

manifold filling dynamics, the reactant partial pressures and the membrane

humidity. Stack voltage is calculated as a function of stack current, cathode

pressure, reactant partial pressures, fuel cell temperature and membrane

water content. However, the model neglects the electrochemical reaction

kinetics and their dependence on the operating conditions. Moreover, stack

temperature is treated as a constant parameter due to its slow time constant.

Thus, system stability and robustness with respect to manipulation of the

operating conditions, such as dynamic temperature changes, cannot be

predicted.

Optimal water management in PEM fuel cells for optimized performance,

always has to consider thermal management, as the fuel cell temperature

has a strong effect on the water content in the ionomer of the membrane

and the Catalyst Layers (CL): Water diffusion through the membrane as

well as the water uptake dynamics of the ionomer are strong functions of
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temperature as shown by the experiments of [5] and [7], respectively. The

temperature effects on water transport in the CLs are based on absorption

and desorption of water into and from the ionomer, as well as evaporation

and condensation in the pores of the CL. Water content in the catalyst layer

has a direct effect on the electrochemical active surface area as analyzed

by steady-state modeling of electrode structure effects on performance of [8]

and [9]. If water is evacuated from the pores of the CL, the protons may

not reach the active sites for the electrochemical reaction with the reactant

gases and the electrons, which is the key factor of PEM fuel cell performance.

This effect has also been shown experimentally by [10], explaining that the

higher water evaporation flux at elevated temperature causes a reduction in

active platinum sites. Even though many steady- state agglomerate models

have shown up in the literature, a complete dynamic analysis of temperature-

dependent water transport, including pore-filling dynamics, in relation with

the electrode structure and its effects on performance is still not available,

especially if embedded in a closed-loop fuel cell system model.

Optimal thermal management related to humidification is a crucial

issue in every PEM fuel cell-based system. In this context, the use of

external reactant gas humidification is intended to be avoided because the

required humidifiers consume space and power, which decreases the overall

system efficiency. [11] experimentally demonstrated the strong effects of

low humidity operation on fuel cell performance. However, there is still a

lack of information on how to control the temperature of a fuel cell system

that works without reactant humidification with respect to performance

optimization. The important links between temperature management and
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fundamental understanding of the catalyst layer humidification and activity

for low humidity operation have not sufficiently been explored. As a first

attempt to elucidate this problem, the work of [12] combines experimental

analysis and theoretical studies of temperature effects on the performance

of open-cathode PEM fuel cell systems for the design of optimal control

strategies. The experimental analysis shows the great potential of improving

the system performance by proper thermal management over the entire

operation range. Especially at the higher current densities a significant

system performance gain can be obtained due to improved reaction kinetics

at higher temperatures. Dynamic, control-oriented models for fuel cell

temperature, liquid water transport and the related electrochemistry have

been developed and validated against the experiment. The authors concluded

that performance improvement by temperature control means optimizing

the tradeoff between increasing reaction kinetics and decreasing liquid water

content in the catalyst layer.

In this work we extend and adapt the model of [12] , described in

section two, in order to perform analyses of the system’s equilibrium points

at different perturbations. Based on these analyses we discuss the system

stability, dynamics and efficiency, shown in section three. Finally, applying

the knowledge gained from the analysis, a temperature controller is designed

in section four.
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2. Model Description

2.1. Model discussion

The modeled system in this work is the commercially available 100 W, 20-

cell PEM fuel cell system H-100 from Horizon Fuel Cells Technologies.This

compact open-cathode system with an active area of 22.5 cm2 per cell,

includes a single fan directly attached to the fuel cell housing, which removes

heat from the stack by forced convection and at the same time provides

oxygen to the cathode. Hence, the cathode reactant flow channels are as well

used for the stack cooling. The cooling therefore depends on the ambient

air temperature and the fan velocity. The fan power consumption directly

affects the net power of the fuel cell system. The pressure-regulated anode

inlet is supplied with dry hydrogen and the outlet features a normally-closed

electromagnetic valve for dead-ended operation and purging.

For the model-based analysis in this paper we use a previously-developed

model by the authors, presented in [12]. This baseline model consists of two

dynamic states which are the fuel cell temperature, Tfc, and the liquid water

saturation in the cathode catalyst layer, s. The liquid water saturation is

defined as the ratio of the liquid volume to the total volume of void space

in the porous structure [13]. The load current, I, and the cathode inlet air

temperature, Tamb, can be considered as external disturbances. The control

action of the system is the inlet air velocity vair of the cathode air flow

manifold, set by the cooling fan. A change to the baseline model of [12] is

that we define the output of the system as the fuel cell stack voltage Vstack

instead of the activation overpotential. The input variable, vair, and the

disturbance, I, can be measured or set. The output variable, Vstack, the first
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state variable, Tfc, and the disturbance, Tamb, can be measured. The only

variable which can not be measured directly is the second state variable, s.

The state space representation of the model results in:

Ṫfc = K1 · I −K ′1 · I · Vstack + (K2 · Tamb −K2 · Tfc) vair (1)

ṡ = K3 · I −K4 · fp (Tfc) · s− fd (s) (2)

Vstack = K7 −K6 · I −K5 · Tfc · fa (Tfc, s, I) (3)

The parameters (K1) to (K7), the functions (fp) and (fd) and the

parameter values are defined in Appendix A together with the governing

physical equations. The function (fa) describes a concentration-dependent

Tafel approach for the cathode overpotential:

fa (Tfc, s, I) = ln

(
I

Ageoi0
AECD

)
(4)

with

i0
AECD = i0

ref ·
( pO2

P ref

)0.5
· ECSA (s) · exp

[−∆G∗

RT

(
1− Tfc

T ref

)]
(5)

The apparent exchange current density i0
AECD combines the intrinsic

catalytic activity of the Pt catalyst at reference conditions (Tref and Pref)

i0
ref with the electrochemical active surface area (ECSA) and the dynamic

states Tfc and s [11, 14, 12]. The change of the partial pressure of oxygen

at the catalyst layer is assumed to be negligible due to operation at high

cathode stoichiometries (>20). ∆G∗ is the activation energy associated to

the oxygen reduction reaction (ORR). The relationship between activation

energy and the exchange current density follows an Arrhenius-type approach

[10, 14].
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As shown in Eq.(5), the electrochemical active surface area (ECSA) is

a function of the liquid water saturation. The relation between the ECSA

and the liquid water saturation has been updated compared to the baseline

model of [12] in order to include novel research results of the authors on the

pore structure of the CL. Hence, the dynamic change of the active platinum

surface area in the porous structure of the cathode CL is described by a

similar approach as presented in [15] for a single pore size:

ECSA (s) = Aopt ·
(

1− sopt − s
sopt

) 1
3

(6)

where Aopt is the optimally achievable ECSA at the optimal liquid water sat-

uration sopt under the systems’ restricted operating conditions. Accordingly,

at sopt the entire Pt surface area is available for the electrochemical reaction,

which can be estimated by the product of Pt loading and the specific catalyst

area [14], also known as electrode roughness factor. This closes the equation

system of the model. More details on the physical background of the baseline

model and parameter tuning are available in [12]. In the following sections

the updated baseline model is used to perform novel analyses of the system’s

equilibrium points.

2.2. Control action dicussion

In order to simplify equations (1)-(3), the following variable change is

applied:

vair ,
v

K2Tamb −K2Tfc
(7)
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where v corresponds to the extracted heat in J/s. With this variable change

the equations result in:

Ṫfc = K1 · I −K ′1 · I · Vstack + v (8)

ṡ = K3 · I −K4 · fp (Tfc) · s− fd (s) (9)

Vstack = K7 −K6 · I −K5 · Tfc · fa (Tfc, s, I) (10)

Note that these equations do not depend on Tamb, which simplifies Eq.

(8). The variable change (7) is well defined when K2 (Tamb − Tfc) 6= 0. As

K2 is a constant different from zero, only at Tamb = Tfc the denominator is

zero. Whenever current is drawn from the fuel cell, heat is generated due to

the exothermic nature of the electrochemical reaction. Thus, at a constant

ambient temperature and a started-up fuel cell, the fuel cell temperature

is always greater than the ambient temperature, resulting in a non-zero

denominator for Eq. (7). This makes Eq. (7) well defined in a realistic

scenario.

The new control variable v maintains a physical meaning concerning the

thermal system, since it represents the heat extracted from the fuel cell. This

may be even closer connected to temperature changes than the air velocity.

From the practical point of view using Eq. (7) has a drawback, which is

the need to measure the ambient temperature. Fortunately, nowadays there

exist many ways to measure this variable at a low cost.
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3. Model analysis

3.1. Equilibrium points

3.1.1. Definition

In dynamic system analysis, equilibrium points play a key role [16]. These

points define configurations in which the system can be considered stationary;

consequently the derivatives of the state variables have to be zero. For the

system under study the equilibrium points correspond to:1

0 = K1 · I∗ −K ′1 · I∗ · V ∗stack + v∗ (11)

0 = K3 · I∗ −K4 · fp
(
T ∗fc
)
· s∗ − fd (s∗) (12)

V ∗stack = K7 −K6 · I∗ −K5 · T ∗fc · fa
(
T ∗fc, s

∗, I∗
)
. (13)

3.1.2. Computing equilibrium points

The equations (11)-(13) are highly nonlinear, which makes it difficult

to analyze them analytically. From the implicit function theorem [16] it is

possible, at least locally, to write :

T ∗fc = φ1 (I∗, v∗) (14)

s∗ = φ2 (I∗, v∗) (15)

V ∗stack = φ3 (I∗, v∗) (16)

The expressions φ1, φ2 and φ3 were not determined analytically, hence the

equilibrium points have been characterized numerically. A direct approach

would be fixing I∗ and v∗ and numerically solving (11)-(12) for T ∗fc and s∗.

As (11)-(12) are highly nonlinear equations numerical methods require good

1∗ is used to note that the variable fulfills equilibrium point conditions
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initial conditions to achieve convergence. Obtaining a good set of initial

conditions by guessing T ∗fc and s∗ approximately is not trivial.

In order to simplify this procedure, the analytic expressions of Eqs. (11)-

(12) have been studied. If Eq. (13) is inserted into Eq. (11), it is possible to

isolate s∗ from the resulting equation. Consequently it is possible to obtain

an analytical expression for s∗:

s∗ = φs

(
T ∗fc, I

∗, v∗
)
. (17)

This expression is introduced into Eq. (12) :

0 = K3 · I∗ −K4 · fp
(
T ∗fc
)
· φs

(
T ∗fc, I

∗, v∗
)
− fd

(
φs

(
T ∗fc, I

∗, v∗
))

(18)

The resulting equation (18), although highly nonlinear, is a scalar

function with one unknown, v∗, and thus easier to handle. In order to analyze

the equilibrium points, a grid is defined for (T ∗fc, I
∗). Thus, equation (18)

can be solved numerically by a zero finding algorithm. In our case, the

equation is solved using a zero finding numerical algorithm, in particular

the MATLAB function ‘fzero’ is used, which does not need to compute the

function derivative. In order to achieve good precision, an absolute tolerance

of 10−10 has been used.

Finally, s∗ is obtained using Eq. (17) and subsequently Eq. (13) can be

solved for V ∗stack.

3.1.3. Equilibrium points analysis

Figure 1.a shows the obtained equilibrium points when fixing I∗ at

different levels and solving for T ∗fc and v∗. For each current a curve is

obtained, which is plotted in color scale. This color scale corresponds to
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the respective fuel cell power, V ∗stackI
∗, for each point. This analysis has been

restricted to the following variables ranges: I∗ ∈ [2.5, 6.5] A, s∗ ∈ [0.01, 0.8],

T ∗fc ∈ [25, 62] ◦C and v∗air ∈ [0.1, 1] m/s. The current range corresponds to a

current density range of i∗ ∈ [0.11, 0.29] A/cm2.

The specified set of operating conditions are considered as the relevant

range of interest for each variable, respectively, of the studied open-cathode

fuel cell stack. More details on operation conditions of open-cathode stack

and their effect on performance can be found in previous works of the authors

[17, 12].

Besides the equilibrium points, Figure 1.a shows a black curve that

corresponds to the maximum power obtained for each constant current

setpoint. One can see that there is a tradeoff between increasing the fuel

cell temperature and decreasing the liquid water saturation in the cathode

catalyst layer. On the one hand increasing the operating temperature

improves the activity of the ORR, while on the other hand it increases

evaporation of liquid water in the pores of the CL, which results in

decreased proton conductivity and thus decreases the active platinum

surface. Therefore, the points of maximum power can be found at moderate

temperatures instead at the highest allowable temperatures. The described

model thus helps to predict the optimal temperature setpoint.

Figure 1.b shows, in more detail, the same data for a current of I∗ = 6.5A.

Regarding the allowable temperature range, a performance improvement of

about 1.7 W can be obtained at that current setpoint, which is about 2.2 %

of the maximum power. This increase in fuel cell power can be obtained by

carefully adapting the cooling air flow, as experimentally shown in [12].
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Figure 2 shows the evolution of T ∗fc versus vair
∗ for different current

setpoints. Similarly to previous case, the black line corresponds to the points

with maximum power. It can be observed that the target control range for

the air velocity in order to achieve maximum fuel cell power is between 0.15

and 0.25 m/s, while the fan of this open-cathode system is dimensioned for

velocities up to 1 m/s. Consequently, in order to reduce system cost and

weight, and at the same time improve the controllability of the cathode air

velocity, the fan could be sized down to a smaller operating range, at least

for stationary operation. However, there will be a tradeoff in terms of the

maximum cooling flow and the resulting dynamic temperature response to

a change in the current setpoint. Thus, a two-fan solution may become

attractive, especially considering the possible reduction in auxiliary power

consumption of the cooling fan when operating at low velocities for maximum

power during stationary operation. This leads to an improved fuel cell system

net power.

3.2. Stability analysis

3.2.1. Local stability

The equilibrium points determined in section 3.1 may be stable or

unstable [16]. In case of stable points it is possible to operate in open-

loop around them. For instance, if the system is at a specific point of

operation (Tfc, s) close to the equilibrium point (T ∗fc, s
∗), and the inputs,

(I, v), are maintained constant at the appropriate value (I∗, v∗), respectively,

the system dynamics will take the system to the equilibrium point (T ∗fc, s
∗).

In the case of unstable points the system will tend to drift away from the

equilibrium point, consequently it is not possible to operate in their vicinity
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in open-loop.

In order to determine if an equilibrium point (T ∗fc, s
∗) is stable or unstable

the Lyapunov’s linearization method is performed [18]. Firstly, equations (1)-

(3) are written as:

ẋ = f (x,u) (19)

where x = [Tfc, s]
T and u = [I, v]T . For equilibrium points applies:

0 = f (x∗,u∗) .

According to Lyapunov’s approach [16] an equilibrium point x∗ =
[
T ∗fc, s

∗]T ,

u∗ = [I∗, v∗]T will be stable if the eigenvalues of ∂f
∂x

∣∣
x∗,u∗ are placed in the

left half of the complex plane.

Figure 3 shows the system eigenvalues for the studied second-order system

at different equilibrium points (the eigenvalues are drawn as a function

of T ∗fc). Figure 3.a corresponds to the minimum eigenvalue while Figure

3.b corresponds to the maximum one. When the curves cross the red

line in Figure 3.b, a transition from stability to instability occurs. The

circles over the curves in Figure 3.a indicate the operation points where this

transition occurs in the minimum eigenvalue. When one of the eigenvalues

becomes positive the complete system becomes unstable, this induces a

decomposition of the equilibrium point into stable and unstable ones. This

decomposition is visualized in Figure 4. Stable equilibrium points are plotted

in blue while unstable ones are plotted in red. As it can be seen, the

maximum power line decomposes the plane Tfc − s in two parts, namely

stable and unstable equilibrium points. This coincides reasonably well with

the observed instabilities in the voltage response to open-loop fan flow steps
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in the experiments of [12], where the stack voltage starts to drifts away after

increasing the temperature above 45 ◦C at a current of 4 A.

The trajectories of Eq. (19) around the equilibrium point can be

approximated by those of the following linear system:

∆̇x =

(
∂f

∂x

∣∣∣∣
x∗,u∗

·∆x

)
+

(
∂f

∂u

∣∣∣∣
x∗,u∗

·∆u

)
(20)

where ∆x = x− x∗ and ∆u = u− u∗. In case that ∆u = 0, the trajectories

are defined by :

∆̇x =
∂f

∂x

∣∣∣∣
x∗,u∗

·∆x. (21)

The shape of the trajectories of this system depend on the eigenvalues of

∂f
∂x

∣∣
x∗,u∗ .

As shown above, both eigenvalues are real; the minimum eigenvalue is

always negative (stable behavior), but the maximum eigenvalue is negative

for small temperatures and moves into positive (unstable behavior) as the

temperature increases. Under operating conditions where the maximum

eigenvalue is positive the complete system is unstable. As shown in Fig. 3,

for stable equilibrium points the minimum eigenvalues move approximately

from −3.5 · 10−3 to −1.54 · 10−3 while the maximum lies between −3.5 · 10−4

and 0.

Figure 5 shows the trajectories obtained in the plane Tfc− s for different

initial conditions around three different equilibrium points for a constant

current of I∗ = 6.5A and three different values of v∗. Second order systems

with two real eigenvalues evolve over the phase-plane converging to a line

which is defined by the eigenvectors of ∂f
∂x

∣∣
x∗,u∗ . In the studied fuel cell

system this convergence line is almost aligned with the curve defined by
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maintaining I∗ constant and sweeping the value of v∗.

Additionally, it can be stated that the time required to converge to the

line is about one order of magnitude faster2 than the required time to reach

the equilibrium point once already over the line.

3.2.2. Global stability

In the previous section a local stability analysis has been performed, which

provides information about the system behavior around the equilibrium

points. In this section the stability analysis is completed with the formulation

of a Lyapunov function [16], which in turn allows to extend the study to a

wider region of the phase plane.

Although the analyzed model provides a good description of most relevant

phenomena involved in the PEM fuel cell operation, it is not a purely

theoretical physics model. Instead, the model combines physical laws,

empirical equations and behavior inspired laws. This makes difficult to

derive a Lyapunov function based on the energy of the system. Instead

the information obtained in the previous section is used to formulate the

function. The Lyapunov function must be positive definite in the region of

interest and it must have a minimum at the equilibrium points. Due to these

requirements the following Lyapunov function is proposed:

V (x) = (x− φ (u))T P (x− φ (u)) (22)

where x = [Tfc, s]
T , u = [I, v]T and P > 0. The function φ =

[φ1 (u) , φ2 (u)]T relates the external inputs with the state variables at the

2It depends mainly on the minimum eigenvalue and it is around 2 · 103s.
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equilibrium points (section 3.1). The Lyapunov function (22) is always

positive and is equal to zero at the equilibrium points. In the following, the

derivative of (22) over the system trajectories is analyzed, and it is shown

that the derivative is always negative in the region of interest. Firstly, an

appropriate value of P is obtained by solving the following LMI set:

P > 0 (23)

AT
kP + PAk < 0, k = 1, · · · , n (24)

where Ak corresponds to the Jacobian matrix defined in (21) at different

stable equilibrium points.

To solve the LMI a reduced number of points (n = 20), equidistributed

over the region of interest, has been used. Finally, the obtained value for

P is checked with an enlarged number of points (n = 10000) with a similar

distribution. A value which fulfills (23) and (24) in all tested points is:

P =

 1 103.2622

103.2622 56364.83646

 . (25)

The obtained derivative for (22) is:

V̇ (x) = (x− φ (u))T P

(
f (x,u)− ∂φ

∂u
u̇

)
+

(
f (x,u)− ∂φ

∂u
u̇

)T

P (x− φ (u))(26)

where f has been defined in (19). When x is close to an equilibrium point

x∗ = φ (u∗) and u = u∗, the previous equation can be approximated by :

V̇ (x) ≈ (x− φ (u∗))T
(
P

∂f

∂x

∣∣∣∣
φ(u∗),u∗

+
∂f

∂x

∣∣∣∣T
φ(u∗),u∗

P

)
(x− φ (u∗)) (27)

which is negative definite for the stable equilibrium points by construction.
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The complexity of the equations involved in f makes difficult to analyt-

ically prove that (26) is negative definite. However an extensive numerical

analysis has been performed within the region of interest. This study con-

cludes that (26) is negative definite when u∗ is constant and x∗ = φ (u∗)

and u∗ define a stable equilibrium point. To illustrate this, Figure 6 shows

the evolution of V̇ for four different values of u∗. In each subfigure in Figure

6 the studied equilibrium point is shown, as well as the boundary between

stable and unstable equilibrium points and the evolution of V̇ .

As depicted in Figure 6, V̇ is negative definite in the region of interest.

As previously shown in the local analysis there is a direction in which the

convergence range is much faster than in the complementary one. This study

proves that, within the region of interest, the equilibrium points are globally

asymptotically stable. Even if the system begins with initial conditions which

are in the region of unstable equilibrium points the system will converge to

the equilibrium point.

3.3. Efficiency improvement evaluation

As explained in the introduction, proper temperature control of the stud-

ied open-cathode system can lead to power and efficiency improvement. Fig-

ure 7 shows the stack voltage as a function of temperature at several constant

power setpoints. As shown experimentally in our previous publication [12],

the simulation results in Figure 7 depict that a performance improvement for

any load request can be obtained by temperature control. Secondly, a clear

maximum of the possible performance gain can be observed, with subsequent

power loss after passing the optimal temperature.

Figure 8 shows the performance and efficiency gain for a load request of
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70 W in more detail. Between 35 and 60 ◦C the possible relative performance

improvement of the fuel cell stack (defined by the stack voltage gain at

constant power here) is 1.6%, considering open-loop manipulation of the

cooling fan flow. This is further increased to about 3.5% for the fuel cell

system, since the voltage increase is obtained via a reduction in the cooling

flow, which decreases the parasitic power consumption of the fan [12].

Consequently, the stack current at constant power in the same temper-

ature range drops by about 0.1 A. Following Faraday’s law, this decreases

the system’s fuel consumption at 70 W by 1.6%. This shows how proper

thermal management provides an attractive option to increase the efficiency

of the open-cathode system just by software, without modifying any system

component. Additionally, in combination with the described down-sizing of

the cooling fan, as discussed in section 3.1.3, the efficiency may be increased

even further.

4. Control Scheme

As discussed in the previous section, adequate temperature control can

increase the system efficiency. For this purpose, a temperature controller,

based on the presented model, is proposed. Although in section 3.2.2 a

Lyapunov function has been formulated, a controller based on that would

be complex. Hence, a simpler controller based on the system analysis and

comprehension is proposed. This controller is composed by two parts, a

feedforward term, which allows to achieve the desired equilibrium point and

a feedback controller, which handles the plant uncertainty and imposes a fast

closed-loop behavior. Figure 9 contains a complete scheme of the closed-loop
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system.

In the equilibrium point analysis of section 3.1 a relationship, between T ∗fc,

v∗ and I∗ has been developed (T ∗fc = φ1 (I∗, v∗)). In order to take advantage

of this expression for the controller design, the relationship is transformed

into the following:

v∗ = γ
(
T ∗fc, I

∗) (28)

which provides the required control action to take the system to the

equilibrium point defined by T ∗fc and I∗. According to the stability analysis,

in case of a perfect system knowledge this control action would be sufficient

to take system to the equilibrium point (the stable equilibrium points have

been proven to be globally asymptotic stable). As discussed in section 3.1, it

is not possible to obtain an analytic expression for φ1, the same applies for

γ. Therefore, a polynomial has been interpolated through numerical fitting

instead:

v∗ = γ(T ∗fc, I
∗) = β00 + β10T

∗
fc + β01I

∗ + β11T
∗
fcI
∗ + β02(I

∗)2 (29)

where β00 = 0.0326, β10 = −9.593 · 10−5, β01 = −0.06164, β11 = 0.0001137,

β02 = −0.0009065.

In order to design a linear feedback controller, the linearized model

described in section 3.2 will be used. As previously discussed, locally the

system behaves like a second order system with two real poles and one zero.

Taking ∆vair as input and ∆Tfc as output, the transfer function has the

following shape:

G(s) =
s+ z

(s+ p1)(s+ p2)
(30)

with z ∈ [0.00134, 0.00384], p1 ∈ [0.0017, 0.00417] and p2 ∈ [5.34 · 10−5, 0.00105].
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These intervals have been derived from analyzing the linearized model in a

region of interest defined by T ∗fc = [301.12, 332.98]K, s∗ = [0.0638, 0.16129]

and I∗ = [3, 9]A, which includes almost all the relevant operation points.

Figure 10 shows the Bode plot of some plants belonging to this transfer

function family of Eq. (30). Analyzing the frequency responses and using

conventional loop shaping methods, the following PI controller is proposed:

PI(s) = 1 +
1

10 · s =
s+ 1

10

s
. (31)

This controller guarantees robust stability (µ-analysis methods have been

applied) and offers an excellent performance both in the time and the

frequency domain. Figure 11 shows the step response for the closed-loop

system (modified sensitivity function) for some members of the transfer

function family and the proposed PI controller. All step responses in Figure

11.a are very similar and the settling time is around 30s in all cases. Figure

11.b shows the control action generated by the proposed PI controller.

Figure 12 shows the magnitude of the sensitivity function frequency

response for some members of the family and the proposed PI controller.

All systems show a very small error within the working bandwidth (less than

−40dB for frequencies lower than 10−2rad/s), no noise amplification at high

frequency and an excellent robustness (all family members have a distance

from the Nyquist plot to −1 point greater or equal to 1).

The controller design is completed with a simple anti-windup scheme,

Kaw, which helps to handle control action saturation when big changes in

the reference are applied. Finally, Figure 13 shows the evolution of the

complete system (nonlinear model) when following a given trajectory for

the temperature reference. In this simulation two different constant current
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values are set I = 4 A and I = 6 A, respectively. The controller is performing

correctly and smoothly, even for large changes in the temperature reference.

The upper and lower saturation levels of the cooling fan, as experimentally

characterized in a previous work [12], are properly managed by the anti-

windup scheme. The heating dynamic of the fuel cell after an increase in

the temperature setpoint depends on the generated heat (setpoint reached

faster at higher currents). Accordingly, in order to reach the setpoint as fast

as possible, the controller directly sets the minimum air flow. Vice versa, a

decrease in the temperature setpoint causes the fan to reach the upper air

flow limit (full power). However, as already explained in section 3.1.3, the

control action plot in Figure 13 shows that the fan is over-dimensioned.

5. Conclusions

In the presented work we expanded our earlier published control-oriented

model of an open-cathode PEM fuel cell system [12] and used it for the

study of the system equilibrium points, their dynamics and stability. Among

the set of equilibrium points, the points of maximum power as a function

of temperature and liquid water saturation in the cathode catalyst layer

were characterized. A tradeoff between increasing the fuel cell temperature

and decreasing the liquid water saturation in the cathode catalyst layer was

visualized. Hence, the operating points of maximum power can be found at

moderate temperatures instead at the highest allowable temperatures.

The stability analysis shows that the connection of points with maximum

power decomposes the phase plane in two parts, namely stable and unstable

equilibrium points. Moreover, the maximum eigenvalues are approximately
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10 times smaller (in magnitude) than the minimum eigenvalues. The

eigenvalue study also revealed a settling time of around 2 · 104 s. This very

slow dynamic is due to the slow process of water sorption and desorption

into and from the membrane. Nevertheless, the 10 times faster maximum

eigenvalue brings the system relatively fast close to the final equilibrium

point.

The developed model-based temperature controller has been validated in

simulation with the complete nonlinear model. This controller is quite simple

but assures robust stability and excellent tracking performance throughout

the operation range, which is the base for further fuel cell system control

objectives, such as overall system efficiency optimization.

In conclusion, the model is capable of predicting the temperature of a

stable steady-state voltage maximum and the simulation results in this work

serve for the design of optimal thermal management strategies. Efficient

temperature control may improve the net efficiency of the studied system

by around 3.5%, as shown by the simulation results. Besides efficiency

improvements, a well-designed controller may also improve the characterized

slow open-loop time response of the system.

Acknowledgements

This work is partially funded by the national project MICINN DPI2015-

69286-C3-2-R MINECO/FEDER and 2014 SGR 267 of the AGAUR agency

of the Generalitat de Catalunya.

23



References

[1] H. Ju, H. Meng, C. Wang, A single-phase, non-isothermal model for

PEM fuel cells, International Journal of Heat and Mass Transfer 48 (7)

(2005) 1303–1315. doi:10.1016/j.ijheatmasstransfer.2004.10.004.

URL http://linkinghub.elsevier.com/retrieve/pii/S0017931004004685

[2] S. Basu, J. Li, C.-Y. Wang, Two-phase flow and maldistribution in gas

channels of a polymer electrolyte fuel cell, Journal of Power Sources

187 (2) (2009) 431–443. doi:10.1016/j.jpowsour.2008.11.039.

URL http://linkinghub.elsevier.com/retrieve/pii/S0378775308021642

[3] Y. Wang, C.-Y. Wang, A Nonisothermal, Two-Phase Model for Polymer

Electrolyte Fuel Cells, Journal of The Electrochemical Society 153 (6)

(2006) A1193–A1200. doi:10.1149/1.2193403.

URL http://link.aip.org/link/JESOAN/v153/i6/pA1193/s1&Agg=doi

[4] Y. Wang, C.-Y. Wang, Two-Phase Transients of Polymer Electrolyte

Fuel Cells, Journal of The Electrochemical Society 154 (7) (2007)

B636–B643. doi:10.1149/1.2734076.

URL http://link.aip.org/link/JESOAN/v154/i7/pB636/s1&Agg=doi

[5] S. Strahl, A. Husar, M. Serra, Development and experimental validation

of a dynamic thermal and water distribution model of an open cathode

proton exchange membrane fuel cell, Journal of Power Sources 196 (9)

(2011) 4251–4263. doi:10.1016/j.jpowsour.2010.10.074.

[6] J. T. Pukrushpan, A. G. Stefanopoulou, H. Peng, Control of fuel cell

24



power systems: principles, modeling, analysis, and feedback design,

Springer, 2004.

[7] P. W. Majsztrik, M. B. Satterfield, A. B. Bocarsly, J. B. Benziger,

Water sorption, desorption and transport in nafion membranes, Journal

of Membrane Science 301 (1) (2007) 93–106.

[8] Q. Wang, M. Eikerling, D. Song, Z. Liu, Structure and performance of

different types of agglomerates in cathode catalyst layers of PEM fuel

cells, Journal of Electroanalytical Chemistry 573 (1) (2004) 61–69.

[9] M. Eikerling, Water management in cathode catalyst layers of PEM fuel

cells a structure-based model, Journal of The Electrochemical Society

153 (3) (2006) E58–E70.

[10] C. Song, Y. Tang, J. L. Zhang, J. Zhang, H. Wang, J. Shen, S. McDer-

mid, J. Li, P. Kozak, PEM fuel cell reaction kinetics in the temperature

range of 23–120 c, Electrochimica Acta 52 (7) (2007) 2552–2561.

[11] J. Zhang, Y. Tang, C. Song, X. Cheng, J. Zhang, H. Wang, PEM fuel

cells operated at 0% relative humidity in the temperature range of 23–

120 c, Electrochimica Acta 52 (15) (2007) 5095–5101.

[12] S. Strahl, A. Husar, P. Puleston, J. Riera, Performance improvement

by temperature control of an open-cathode PEM fuel cell system, Fuel

Cells 14 (2014) 466–478.

[13] U. Pasaogullari, C. Wang, Liquid water transport in gas diffusion layer

of polymer electrolyte fuel cells, Journal of the Electrochemical Society

151 (3) (2004) A399–A406.

25



[14] F. Barbir, PEM Fuel cells: Theory and Practice, Elsevier Academic

Press, 2005.

[15] S. Strahl, A. Franco, A. Husar, Electrode structure effects on the

performance of open-cathode proton exchange membrane fuel cells:

a multiscale modeling approach, International Journal of Hydrogen

Energy 39 (2014) 9752–9767.

[16] H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, Upper

Saddle River, New Jersey, 2002.

[17] S. Strahl, A. Husar, J. Riera, Experimental study of hydrogen purge

effects on performance and efficiency of an open-cathode PEM fuel cell

system, Journal of Power Sources 248 (2014) 474–482.

[18] J.-J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall Inc.,

1991, iSBN 0-13-040890-5.

Appendix A. Model details

The entire model has been described and experimentally validated in an

earlier publication of the authors [12]. All parameter values can be found

in [12]. In the following, the governing equations are presented in short,

together with the derived parameters for the state-space representation.

Appendix A.1. Governing equations

The governing equations for the system model are the heat transport

equation, A.1, and the liquid water transport equation, A.4, for the fuel cell

cathode catalyst layer.
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Heat transport:

dTfc
dt

=
1

mfcCp,fc

(
Q̇tot − Q̇cool

)
(A.1)

where

Q̇tot = PH2 − Pel = I (Ethncell − Vstack) (A.2)

Q̇cool = ρairAinletvairCp,air (Tfc − Tamb) (A.3)

Liquid water transport:

ds

dt
=

1

εeffdCLρlKsorp

(Jgen − Jevap − Jdiff ) (A.4)

where

Jgen =
I

2FAgeo

MH2O (A.5)

Jevap = Kevaps
MH2O

RTfcApore

[
p0 exp

( −Ea

kBTfc

)
− pv

]
(A.6)

Jdiff = σ cos θ
√
εeffkeff

krl(s)ρl
µl

=(s)
s

ddiff
(A.7)

krl(s) = s3 (A.8)

=(s) = 1.42− 4.24s+ 3.79s2 (A.9)

The stack voltage is determined by departing from a cross-over-loss-

corrected theoretical fuel cell potential E0 and subtracting activation losses
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as well as ohmic losses. Mass transport losses are neglected due to the open-

cathode system properties, as described in [12].

Vstack = ncell

(
E0 −

RTfc
αnF

ln

(
I

Ageoi0
AECD

)
− IRohm

)
(A.10)

Appendix A.2. State-space model parameters

The parameters (K1) to (K7) and the functions (fp) and (fd) for the

state-space representation are based on the governing equations above.

Parameters:

K1 =
Ethncell

mfcCp,fc

(A.11)

K ′1 =
1

mfcCp,fc

(A.12)

K2 =
ρairAinletCp,air

mfcCp,fc

(A.13)

K3 =
MH2O

2FAgeoεeffdCLρlKsorp

(A.14)

K4 =
KevapMH2O

RAporeεeffdCLρlKsorp

(A.15)

K5 =
ncellR

αnF
(A.16)

K6 = ncellRohm (A.17)

K7 = ncellE0 (A.18)

Functions:

fp(Tfc) =
1

Tfc

[
p0 exp

( −Ea

kBTfc

)
− pv

]
(A.19)

fd(s) = − Jdiff
εeffdCLρlKsorp

(A.20)
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Parameter Value Unit

Specific heat capacity of the fuel cell stack, Cp,fc 1260 J · kg−1K−1

Fuel cell stack mass, mfc 0.3 kg

Air density @ 25oC, ρair 1.184 kg · m−3

Specific heat capacity of air Cp,air 1012 J · kg−1 · K−1

Effective cross-section of the cathode housing structure, Ainlet 8.5e− 3 J · kg−1 · K−1

Theoretical potential @ Tref = 25oC and Pref = 1atm, Eth 1.23 V

Number of cells in the stack, ncell 20 −

Intrinsic exchange current density of Pt, i
ref
0 5e− 3 A · m−2

Charge transfer coefficient, α 0.3 −

Activation barrier for the ORR on Pt, ∆G∗ 66 k · J · mol−1

Optimal electrode roughness factor, Aopt 118 −

Optimal reachable liquid water saturation, sopt 0.165 −

Geometric catalyst surface area, Ageo 22.5e− 4 m2

Ohmic stack resistance, Rohm 0.3 Ω

Partial pressure of oxygen at the cathode, pO2
0.21 · Pref Pa

Effective porosity, εeff 0.5 −

Effective Permeability, Keff 1e− 14 m2

Liquid water density, ρl 970 kg · m3

Liquid water viscosity, µl 3.52e− 4 Pa · s

Liquid water surface tension, σ 0.0625 N · m−1

Effective contact angle, θ 91 o

Effective thickness of diffusion media, ddiff 0.4e− 3 m

Catalyst layer volume, VCL 2.25e− 8 m3

Catalyst layer thickness, dCL 0.01e− 3 m

Sorption time constant, Ksorp 360 −

Evaporation time constant, Kevap 8.6e5 −

Pre-exponential factor, p0 1.196e11 Pa

Activation energy of evaporation, Ea 0.449 eV

Boltzmann constant, kB 8.617e− 5 eV · K−1

Cathode ambient pressure, Pamb 1.013e5 Pa

Cathode ambient temperature, Tamb 298 K

Cathode ambient vapor pressure @ 75%RH, pv 2380 Pa

Pore surface area per unit volume, Apore 2e7 m2 · m−3

Table A.1: Physical properties and constants
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(a) (b)

Figure 1: T ∗
fc vs s∗ at equilibrium points. (a) for different levels of I∗. (b) for I∗ = 6.5A.
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Figure 2: T ∗
fc vs vair

∗ at equilibrium points for differents levels I∗.
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(a) (b)

Figure 3: Eigenvalues of the linearized system in each equilibrium point. (a) minimum

eigenvalue (b) maximum eigenvalue.
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Figure 4: Equilibrium points stability analysis. Stable equilibrium points are drawn in

blue. Unstable equilibrium points are drawn in red.
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Figure 5: Some trajectories for different initial conditions (around equilibrium points) and

values of v∗ for I∗ = 6.5A.
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a b

c d

Figure 6: Evolution of V̇ in the region of interest, for four different equilibrium points

(x∗,u∗). The figure depicts the value of V̇ in color scale, the equi-valued contour curves

of V̇ , the analyzed equilibrium points and the boundary between stable and unstable

equilibrium points. (a) T ∗
fc = 315.52K, s∗ = 0.108, I∗ = 6.1A and v∗ = −0.1806. (b)

T ∗
fc = 308.66K, s∗ = 0.1169, I∗ = 5A and v∗ = −0.1444. (c) T ∗

fc = 304.55K, s∗ = 0.1029,

I∗ = 3A and v∗ = −0.08114. (d) T ∗
fc = 300.55K, s∗ = 0.0971, I∗ = 2A and v∗ = −0.0520.
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Figure 7: Equipower curves for V ∗
stack vs T ∗

fc
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Figure 8: Stack voltage and current versus T ∗
fc for 70W constant power
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Figure 9: Closed-loop temperature control system.
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Figure 10: Frequency response of some members of the transfer function family describing

the local behavior at relevant equillibrium points
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Figure 11: Closed-loop step response for some members of the transfer function family

describing the local behavior at relevant equillibrium points and the proposed PI controller.

(a) System output (Tfc) (b) Control action (v).
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the transfer function family with the proposed PI controller, describing the local behavior
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Figure 13: Temperature profile tracking for constant current using the complete nonlinear

model. (a) Temperature (Tfc), (b) Control action vair) for I = 4 A. (c) Temperature

(Tfc), (d) Control action vair) for I = 6 A.
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