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Fig. 3 Common-emitter characteristics of pseudomorphic AlInP/JnP 
HBT with emitter area of 40x40pm2 
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Gummel plot is shown in Fig. 2. Ideality factors for base and col- 
lector current were 1.7 and 1.3, respectively. We estimate that the 
15% AI composition results in a bandgap difference between emit- 
ter and base of 87 meV (after accounting for strain effects). The 
common-emitter IN characteristics are shown in Fig. 3. The com- 
mon-emitter breakdown voltage BVcEo was of the order of 10 V, 
while the common-base breakdown voltage BVcao was 13V. 
BV,,, is not much larger than BV,,,, and both values are some- 
what smaller than estimated values for ideal InP p-n junctions. 
The breakdown voltages can most likely be attributed to surface 
breakdown as opposed to junction breakdown. Nonetheless this is 
a significant improvement over devices with an InGaAs base and 
collector. 

Summary: We have presented novel HBTs with pseudomorphic 
wide-bandgap AIInP emitters and InP base and collector regions. 
The devices permit the use of InP collectors in a way that avoids a 
conduction-band barrier between base and collector. These devices 
are candidates for high speed and/or high breakdown HBT appli- 
cations. 
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Adaptive VS-MRAC for disturbance 
cancellation 

E. Bertran and G. Montoro Lopez 

rndexing terms: Model reference aduprive control system, 
Interference suppression 

A variable structure, model reference adaptive control (VS- 
MRAC) devoted to cancel interferences without the requirement 
of an auxiliary input is proposed. This method is an improved 
alternative to the strategies recently proposed in the wntrol 
theory literature. 

Introduction: In the general structure of a conventional noise can- 
celler [I], the reference signal, which must be correlated with the 
additive noise, can be obtained from the measurement of the inter- 
ference at some point of the system. When that is not possible due 
either to the impossibility of observing or measuring the interfer- 
ence noise, the conventional canceller structure is not useful. 

Non-adaptive VS-MRAC controllers can cancel interferences or 
unmodelled dynamics with only the requirement of the prior infor- 
mation concerning the interference bounds [2]. These methods 
show a fast response with zero error, but present chattering prob- 
lems due to the switching functions that appear in the control law. 
Adaptive VS-MRAC controllers are used when the interference 
bound is unknown: the bound is obtained adaptively [3, 41. 
Recently [4], a new method has been proposed that uses an inte- 
gral law to generate the adaptive bound, with a zero output track- 
ing error, in spite of chattering phenomena. 

We propose a proportional-integral based law to generate the 
adaptive bound. This method reduces chattering and high fre- 
quency harmonics, assuring that the error tends to zero. 

VS-MRAC canceller: The system (ARMAX) describing the evolu- 
tion of the error is represented by the state equations [5] 
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S ( t )  = As( t )  + b v ( t )  
E ( t )  = cTz ( t )  = yp(t)  - y,(t) 
v ( t )  = u( t )  - $J(t)a + i f ( t )  
u( t )  = J ( t ) k ( t )  +Ui(t) 

(1) 

where i,(t) is the interference to cancel, referred to the input. The 
plant output is y,(f) ,  y,(t) the model output, and u(t) the control 
signal. The transfer function H(s) between e(t) and v( t )  is 

H ( s )  = cT(s1  - A ) - ' b  (2) 

and must be an SPR (strictly positive real function) function [SI. 
Therefore, defining the vector $(t)  = k( t )  - a, the error equations 
can be rewritten as 

i ( t )  = Az(t)  + b v ( t )  

E ( t )  = cTr ( t )  

u ( t )  = W T ( t ) ( k ( t )  - a )  + u z ( t )  + i f ( t )  
= VT( t )@( t )  + u, ( t ,  + i f ( t )  

(3) 

The k(t) vector is selected according to an integral law: it is a clas- 
sical adaptive algorithm if the plant is disturbance free. The uxt) 
signal, devoted to cancel the interference, is chosen as in [2, 61 

(4) 
L( t )  = $ ( t )  = -Rp( t )E( t )  

u,(t)  = -sgn(E) max(lif1) 

where max(li,l) is a bound for li,l. The Lyapunov function candi- 
date is 

L = sT( t )Pz( t )  + $'(t)R-'@(t) ( 5 )  

where P is a positive definite matrix, and R is a positive definite 
diagonal matrix. The time derivative of L is given by 

i = -zT(t)Qz(t)  + 2~(t)(-sgn(~)max(l i , / )  + i f ( t ) )  5 0 

i 5 -xT(t)Qz(t)  lim Z ~ ( T ) & T ( T ) ~ T  5 L(0) 
1'- I' 

(6) 
where Q is a positive definite matrix [SI. Hence L is hounded and 
converges to a finite value. Moreover, x( t )  is continuous due to its 
derivative being bounded. Therefore, it follows from the Barbalat 
lemma that x(t )  + 0 when t 3 - [SI. 
Adaptive VS-MRAC canceller: If the bound of i/ct) is unknown 
then it can be obtained adaptively [3, 41. We propose a new solu- 
tion: the adaptive generation of the unknown bound with an inte- 
gral-proportional based law. The u l t )  signal is 

u,(t) = -sgn(E)M(t) 

(7) 

with fi, > 0. We can consider a zero initial condition for M ( f ) .  A 
Lyapunov function candidate is 

L = rT( t )Pz( t )  

The time derivative of L is given by 

L = -zT(t)&s(t)  + ~ ~ ( t ) ( - s g n ( ~ )  max(lif1) 

i, 5 -rT(t)&r(t)  
+ i f ( t ) )  - 2P2Ii(t)l2 i 0 (9) 

as in eqn. 6, it follows that x(f) + 0 and e ( f )  + 0 when t + m. 

The choice of p2 = 0, leads to an integral law, like in [4]. 

Simulution resulfs: The plant, reference model and error equations 
are defined by 

where e( f )  = y,,(t) - ym(f). Therefore u ( f )  and H(s) are 

44 = h'l(t)Y,(t) + Kz(t)uJt)  + u,(t)  
(11) H ( s )  = a,>O a,>O 

s + b ,  

H(s) is SPR. The k, parameters are generated from 

(12) 
kl(t) = -71e(t)y,(t) 

& ( t )  = - -^i2E(t)Uc(t)  

where y, > 0. The signal u i f )  is given hy 
uz( t )  = -sgn(E)M(t) 

V S - M R A C  : M ( t )  = M = rnax(lzf1) 

adaptive  V S - M R A C  : M ( t )  = I E ( T ) ~ ~ T  + pZ/E(t) l  

(13) 
Jd' 

The previous systems have been simulated with the parameters a, 
= 1 ,  6,  = I ,  a, = 0.9, b, = 1.2, yl = y2 = 1. The command signal 
u,(t) is a square wave and i ( f )  is a strong interference defined by 
i(r) = sin(0.5f) + sin(t) + sin(2t) + sin(3t). 

The SIMNON graphic results (see Figs. 1 and 2) are: 

a Proposed adapfive VS-MRAC fiI = 1, p2 = 50 

b Adupfive VS-MRAC fiI = I (integral law) 

c VS-MRAC: max(li,l) = 6 
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Fig. 1 Steady-stafe control signal u,(f) 
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Fig. 2 Plant and model responses 
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Conclusions: The simulation results show the good behaviour of 
the proposed adaptive system, even for strong interferences in the 
same spectral band of the plant. In spite of the use of the signum 
function, the control signal u,(t) shows a lower chattering content 
(high frequencies) than the equivalent signal proposed in previous 
works. Apart from hardware considerations, this aspect has a sig- 
nificant importance in telecommunication applications. The 
method has been studied with other types of perturbations, 
unmodelled dynamics and nonlineanties in the plant, with similar 
results as above. 
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Printers corrections 

In the subcaption to Fig. I ,  ‘815’ should read ‘815000’ 
In the subcaption to Fig. 2, ‘30mW should read ‘30mV’ 
In the line below Fig. 2, ‘scaned‘ should read ‘scanned‘ 
In the caption to Fig. 3, ‘Cuurent’ should read ‘Current’ 

Authors’ correction 

In the subcaptions to Fig. 3, the first line should read ‘Hold time 
[SI at V, = 2V:’ 

Editor’s corrections 

In the subcaptions to Fig. 3, ‘a’ to ‘h’ should read ‘(i)’ to ‘(viii)’ 

In line 11 on p. 2079, and on the right-hand side of Fig. 4, the 
minus sign should read ‘=’ 
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of In,,,Gao ,&s/In,.,,~.,,As heterojunction grown on GaAs sub- 
strate’ Electron. Lett.,  1994, 30, (25), pp. 2172-2173 

Authors’ correction 

In Table I ,  the entries for ‘Charge neutrality level’ should read 
‘0.39’ and ‘0.68’ respectivelyl9th January 1995 
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