
Shared resource aware scheduling on power-constrained tiled
many-core processors✩

Sudhanshu Shekhar Jha a,∗, Wim Heirman b, Ayose Falcón c, Jordi Tubella a,
Antonio González a, Lieven Eeckhout d
a DAC, Universitat Politécnica de Catalunya, Spain
b Intel Corporation, Belgium
c HP Inc., Spain
d ELIS, Ghent University, Belgium

h i g h l i g h t s

• A low-overhead and high scalable hierarchical power manager on a tiled many-core architecture with shared LLC and VR.
• Shared DVFS and cache adaptation can degrade performance of co-scheduled threads on a tile.
• DVFS and cache-aware thread migration (DCTM) to ensure optimum per-tile co-scheduling of compatible threads at runtime.
• DCTM assisted hierarchical power manager improves performance by up to 20% compared to conventional centralized power manager with per-core

VR.

a r t i c l e i n f o

Keywords:
Many-core tiled architecture
Thread migration
Power budget
Adaptive microarchitecture

a b s t r a c t

Power management through dynamic core, cache and frequency adaptation is becoming a necessity in
today’s power-constrainedmany-core environments. Unfortunately, as core count grows, the complexity
of both the adaptation hardware and the power management algorithms increases exponentially. This
calls for hierarchical solutions, such as on-chip voltage regulators per-tile rather than per-core, along
with multi-level power management. As power-driven adaptation of shared resources affects multiple
threads at once, the efficiency in a tile-organized many-core processor architecture hinges on the ability
to co-schedule compatible threads to tiles in tandem with hardware adaptations per tile and per core.

In this paper, we propose a two-tier hierarchical power management methodology to exploit per-
tile voltage regulators and clustered last-level caches. In addition, we include a novel thread migration
layer that (i) analyzes threads running on the tiled many-core processor for shared resource sensitivity in
tandemwith core, cache and frequency adaptation, and (ii) co-schedules threads per tile with compatible
behavior. On a 256-core setup with 4 cores per tile, we show that adding sensitivity-based thread
migration to a two-tier power manager improves system performance by 10% on average (and up to
20%) while using 4× less on-chip voltage regulators. It also achieves a performance advantage of 4.2%
on average (and up to 12%) over existing solutions that do not take DVFS sensitivity into account.
1. Introduction

Industry-wide adoption of chip multiprocessors (CMPs) is
driven by the need to maintain the performance trend in a power-

✩ This work is a collaborative effort.
∗ Corresponding author.

E-mail addresses: sjha@ac.upc.edu (S.S. Jha), wim.heirman@intel.com
(W. Heirman), ayose.falcon@hp.com (A. Falcón), jordit@ac.upc.edu (J. Tubella),
antonio@ac.upc.edu (A. González), lieven.eeckhout@ugent.be (L. Eeckhout).

© 2016 This manuscript version is made available u

http://creativecommons.org/licenses/by-nc-nd/4.0/ 
efficient way on par with Moore’s law [40]. With continued em-
phasis on technology scaling for increased circuit densities, con-
trolling chip power consumption has become a first-order design
constraint. Due to the end of Dennard scaling [12] (slowed supply
voltage scaling), we may become so power-constrained that we
are no longer able to power on all transistors at the same time—
dark silicon [16]. Runtime factors such as thermal emergencies [7]
and power capping [19] further constrain the available chip power.
Owing to all the above factors, power budgeting on many-core
systems has received considerable attention recently [22,36,37,39,
49,51].

nder the CC-BY-NC-ND 4.0 license 

http://dx.doi.org/10.1016/j.jpdc.2016.10.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.10.001&domain=pdf
mailto:sjha@ac.upc.edu
mailto:wim.heirman@intel.com
mailto:ayose.falcon@hp.com
mailto:jordit@ac.upc.edu
mailto:antonio@ac.upc.edu
mailto:lieven.eeckhout@ugent.be
http://dx.doi.org/10.1016/j.jpdc.2016.10.001


2

Dynamic voltage and frequency scaling (DVFS) for multiple
clock domain micro-architectures has been studied extensively in
prior work [11,24,25,49,52]. Current commercial implementations
of fully integrated voltage regulators (FIVR) [8,32] supportmultiple
on-chip frequency/voltage domains with fast adaptation, although
per-core voltage regulators incur significant area overhead—
previous works [8,31,48] suggest that the area of on-die per core
voltage regulators is approximately 12.5% of core area. Other tech-
niques such as core micro-architecture adaptation [3,13,20,43,
30], cache adaptation [1,38,53,46] and network-on-chip adapta-
tion [46] have been shown to be quite effective at managing power
in isolation at high to moderate power budgets. Under more strin-
gent power conditions, core gating [36,33] along with the above
techniques can be used at the potential risk of starving threads.

Most existing power management schemes use a centralized
approach to regulate power dissipation based on power moni-
toring and performance characteristics. Unfortunately, the com-
plexity and overhead of centralized power management increases
exponentiallywith core count [14]. Moreover, the area overhead of
on-chip voltage regulators is significant which limits the number
of voltage/frequency domains one can have on the chip. Hence, it
becomes a necessity to employ a hierarchical approach as we scale
fine-grain power management to large many-core processors at
increasingly stringent power budgets.We therefore propose a two-
tier hierarchical power manager for tile-based many-core architec-
tures; each tile consists of a small number of cores and a shared
L2 cache within a single voltage–frequency domain. The two-tier
powermanager first distributes power across tiles, and then across
cores within a tile. The architecture also provides support for core,
cache and frequency adaptations to avoid core gating at moderate
to stringent power budgets.

Tiled many-core processors pose an interesting challenge
when it comes to hardware adaptation and scheduling. Changing
frequency and re-configuring the shared L2 cache affects all
threads running in the tile. It therefore becomes important to
migrate threads, such that threads with compatible behavior are
co-scheduled onto the same tile. Since the execution behavior
varies over time, periodic re-evaluation and dynamic thread
migration is also required. We therefore classify threads based
on their sensitivity to both cache and frequency dynamically at
runtime. We propose DVFS and Cache-aware Thread Migration
(DCTM): a scheduler running on top of the two-tier hierarchical
power manager to ensure an optimal co-schedule for all threads
running on the power-constrained tiled many-core processor
while accounting for the effects of hardware adaptation.

In this work, we make the following contributions:

• We propose an integrated two-tier hierarchical power manage-
ment for tiled many-core architectures, in which we first man-
age power across tiles and then within a tile.

• For a collection of multi-program and multi-threaded work-
loads, we report that our two-tier hierarchical power manager
outperforms a centralized power manager by 3% on average,
and up to 20% for a 256-core setup.

• Wemake the observation that thread scheduling is essential in
a tiled many-core architecture to account for thread sensitivity
towards shared resources. We classify threads based on their
sensitivity to both cache and frequency adaptation, and we
propose DVFS and Cache-Aware Thread Migration (DCTM) to
optimize per-tile co-scheduling of compatible threads.

• We provide a comprehensive evaluation of DCTM on a tiled
many-core processor. We use multi-program workloads con-
sisting of both single-threaded and multi-threaded applica-
tions, and we report that DCTM improves system performance
by 10% on average, and up to 20%. DCTM outperforms existing
solutions by 4.2% on average (and up to 12%).
2. Motivation

2.1. Limitations of a centralized approach

In the context of power management in many-core pro-
cessors, prior works [38,11,36] have relied on a central entity
(micro-controller) to manage power using one or more micro-
architectural techniques to trade off performance at high to mod-
erate power budgets. At stringent power budgets, neither of
power management schemes like DVFS nor core adaptation nor
cache resizing in isolation can provide a viable solution. As a re-
sult, prior work [33,36] had to resort to core gating at stringent
power envelops. Previously proposed state-of-the-art frameworks
[38,30,43] provide an integrated framework for multi/many-core
architectures by combining and coordinating core adaptation,
cache resizing and/or per-core DVFS to maximize system perfor-
mance across a wide range of power budgets. These frameworks
provide some form of global power management that operates on
the runtime statistics of each core to decide on an optimal per-core
working configuration. During each time slice, a per-core Perfor-
mance Monitoring Unit (PMU) tracks activity statistics using hard-
ware counters, and predicts/projects the performance and power
of all possible configurations. Each core’s PMU sends a list of op-
timal configurations to the Global Power Manager (GPM), which
globally optimizes the many-core configuration within the given
power budget. The GPM instructs each core to reconfigure itself
based on the global optimization.

In commercial designs, both the per-core PMU and global GPM
are already present in some form [45]. The PMU typically collects
power consumption and junction temperatures, and performs
control functions such as P-state (DVFS) and C-state (various
levels of power gating) transitions. The GPM is implemented as
an integrated micro-controller and runs firmware algorithms that
interface with the PMUs and on-chip voltage regulators. The PMU
keeps track of a core’s activity and controls themicro-architectural
configuration in response to requests made by the GPM; the
GPM combines information from all cores and performs the
global power/performance optimization, see Centralized Approach
in Fig. 1. But as core count continues to grow, the centralized
approach becomes inviable: Deng et al. [11] report quadratic
computational complexity, while Li and Martinez [36] suggest
the computational complexity to be logarithmic to core count. In
future many-core processors [6], a centralized GPM – even with
logarithmic complexity – would be a severe bottleneck.

Because a centralized power manager does not scale favorably
towards large many-core processors and fine-grain hardware
adaptations, we propose two-tier hierarchical power management
(see Section 3)—first contribution in this work.

2.2. Cache-aware thread migration (Cruise)

When threads are co-scheduled on a multi-core processor with
a shared last-level cache (LLC), conflicting thread behavior can
lead to suboptimal performance. For instance, when a thread
whose working set fits in the shared cache is co-scheduled with
a streaming application, the quick succession of cache misses
from the streaming application may push the working set of the
first application out of the shared cache, thereby significantly
degrading its performance. Jaleel et al. [27] propose Cruise:
a hardware/software co-designed scheduling methodology that
uses knowledge of the underlying LLC replacement policy and
application cache utility information to determine how best to co-
schedule applications in multi-core systems with a shared LLC.

Cruise monitors the number of LLC accesses per kilo instruc-
tions (APKI) and miss rate (MR) for each application. Application
classification based on these metrics along with co-scheduling
rules then optimize overall system performance. The applications
are classified in the following categories:



3

Fig. 1. Generic tiled many-core architecture with Centralized (top) versus Hierarchical (bottom) power management.
• Core Cache Fitting (CCF): CCF applications fit in the smaller
levels of the cache hierarchy and hence the LLC size has little
impact on performance.

• LLC Trashing (LLCT): LLCT applications are mostly streaming
applications with large working sets—larger than the available
LLC size. The LLCT applications degrade performance of any
application that benefits from the shared LLC.

• LLC Friendly (LLCFR): LLCFR applications are sensitive to the
shared LLC size. They benefit from additional LLC capacity,
but performance degrades when co-executed with LLCT
applications.

The co-scheduling rules in Cruise are as follows1:

1. Group LLCT applications onto the same tile/LLC.
2. Spread CCF applications across all tiles/LLCs.
3. Co-schedule LLCFR with CCF applications.

The performance of LLCFR/LLCF applications degrades significantly
when they do not receive the bulk of the shared LLC, hence Cruise
schedules LLCFR applications with CCF applications whenever
possible.

Cruise assumes that all cores run at the same clock frequency.
In other words, it does not take DVFS sensitivity into account. This
is a limitation as LLCT and (especially) LLCFR applications, being
mixed compute- and memory-bound, may be quite sensitive to
frequency. We overcome this limitation by proposing DCTM (see
Section 4)—second contribution in this work.

3. Two-tier hierarchical power management

The Centralized approach as described in Section 2.1 is
inappropriate for large-scale many-core processors, for two
reasons. First, it assumes per-core DVFS adaptation which is
infeasible for many-core processors as it requires on-chip voltage
regulators for all cores, which would incur fairly high chip area
overhead [8,31,48]. Second, the runtime complexity and overhead
of a Centralized approach increases considerably with core count.

To address these two limitations, we group cores per tile
and add an intermediate layer for power management, the Tile
Power Manager (TPM); see Two-Tier Hierarchy Approach in Fig. 1.

1 In addition to the above mentioned categories, the authors also identify LLC
fitting (LLCF) applications by monitoring the miss rate of the application with half
the capacity of LLC. In general, these applications exhibit cache characteristics that
are similar to LLCFR. In our implementation, we classify LLCF as LLCFR to limit
additional hardware overhead especially pertaining to the smallest shared LLC size
(see Table 1).
Fig. 2. Normalized runtime overhead (as 1.y×increase over ideal) for Centralized (1
core/tile) and Hierarchical Power Management with varying tile size (2–4 core/tile)
at 1 ms time slice.

Chip power is managed via a hierarchical power manager with
a GPM steering the per-tile TPMs.2 This organization reduces the
runtime overhead of the power manager dramatically. To quantify
the power manager’s runtime overhead, we set up the following
simulation experiment. We consider an average multi-program
workload on a many-core processor with varying core count (we
run workload WL0, see Section 5 for more experimental details).
The power manager is invoked every 1 ms. Fig. 2 quantifies
the worst case theoretical run-time overhead of both Centralized
and Hierarchical power managers normalized to its idealized
power management with zero run-time overhead. The curve/line
1 core/tile refers to Centralized Power Management, whereas data
pertaining to 2–4 core/tile points refers to the normalized runtime
overhead of the Hierarchical Power Management at different
granularities.Weobserve that the overhead increases substantially
with core count. However, when considering a tiled architecture
and a two-tier hierarchical power manager, we are able to
significantly reduce the runtime overhead of the power manager.
In other words, by keeping the GPM relatively simple and passing
more functionality to the TPMs, we avoid GPM to be a bottleneck
at high core count. Moreover, as all TPMs can work in parallel, the
complexity of the two-tier approach equals O(G) + O(Tc log Tc),
with Tc denoting the number of physical cores per tile, and G the
complexity of the GPM (constant in our case). One could adopt an
even deeper hierarchy, which would be beneficial in a design with
more arbitration levels (intermediate nodes acting as arbitrators
for a group of tiles).

2 Note that a micro-controller (MCU) based implementation is assumed for the
TPM and GPM in both the Hierarchical and Centralized power managers—this is in-
line with previously proposed implementations [45,38,30,43].



4

4. DVFS and Cache-aware Thread Migration (DCTM)

A tiled many-core processor architecture with hierarchical
powermanagement, as we just established in the previous section,
poses a new challenge as threads running on the same tile share
the L2 cache (LLC) and a common clock frequency. In other words,
and in contrast to Cruise, threads running on the same tile not only
share the LLC but also share a common clock frequency. Therefore,
it is important to take both cache size sensitivity and frequency
sensitivity into account when mapping threads to tiles, i.e., the
thread migration layer needs to be aware of the sensitivity to both
DVFS and LLC size.

4.1. DVFS and LLC sensitivity analysis

To understand an application’s sensitivity to clock frequency
and LLC size, we set up the following off-line analysis. We
run simulations with 55 SPEC CPU2006 application traces for
750 million instructions to observe the performance sensitivity
with respect to both LLC and frequency. Fig. 3 plots application
performance sensitivity to frequency changes, expressed as the
ratio between its performance reduction and the reduction in
frequency that was applied. Applications are clustered by their
LLC-aware classification type (following Cruise), and plotted in
ascending order of sensitivity within each cluster based on Eq. (1):

sensitivityfreq =
(MIPS freqA/MIPS freqB)

(freqA/freqB)
. (1)

Intuitively,memory-bound applications (LLCT) should have low
sensitivity to a change in frequency, while workloads that are
completely core-cache fitting (CCF) would see a linear degradation
as they are compute-bound. We observe that LLCT applications
can still be affected by frequency variations (see the extreme end
of LLCT region). The performance of these applications could be
significantly affected at stringent power budgets.

We categorize applications into the following DVFS-aware
classes, according to their performance sensitivity to DVFS based
on Eq. (1):

• High sensitivity (HS, >66%): These applications are highly
sensitive to DVFS. The performance of these applications is
severely affected when migrated to a tile running at low
frequency, whereas performance improves significantly if they
can be migrated to a higher-frequency tile. These applications
are generally compute-bound.

• Moderate sensitivity (MS, 35%–66%): These applications are
moderately affected by DVFS. Applications with a mix of
compute-bound andmemory-bound operations are grouped in
this category.

• Low sensitivity (LS, <35%): These applications degrade slightly
when running at a low DVFS setting. It is therefore beneficial
to reduce frequency as much as possible to save power. These
applications are typically memory-bound.

When co-scheduling applications, the application categorization
based on LLC usage (see Cruise, Section 2.2) needs to work in
tandem with the DVFS sensitivity categorization as just described.
Hence, combining the LLC and DVFS classifications, we have
3 × 3 categories of applications. Not all combinations occur in
practice though, as there is some correlation between LLC and
DVFS behavior; for instance, CCF applications are almost always
compute-bound and hence have high DVFS sensitivity (HS). Fig. 3
identifies five categories: LLCT with LS andMS, LLCFR with MS and
HS, and CCF with HS.
Fig. 3. Application classification based on LLC and DVFS sensitivity.

4.2. DCTM scheduling rules

DVFS and Cache-aware Thread Migration (DCTM) leverages
these classifications to steer scheduling of threads to tiles. The
power manager will then assign the appropriate adaptation
per tile (for frequency and LLC size) and per core (for core
configuration). Intuitively speaking, DCTM maps threads with the
same classification onto the same tile. Tiles with only LS threads
will naturally be configured to run at low frequency (saving power
without sacrificing performance much), while tiles with only HS
threads preferably use a larger fraction of the total power budget
to run at a higher frequency and boost overall systemperformance.
In contrast, mixing LS, MS and HS threads on a single tile leads to a
suboptimal situation: either the tile is set to run at low frequency,
penalizing performance for the HS threads; or it runs at high
frequency which accommodates the HS threads, but wastes power
as it does not improve performance of the LS threads. Combining
this intuition with the cache-aware scheduling, we create the
following scheduling rules for DCTM:

1. Co-schedule LLCT-LS applications on the same tile.
2. Co-schedule LLCT-MS applications on the same tile.
3. Co-schedule CCF-HS applications on tiles with LLCT-MS appli-

cations to account for performance impact due to shared LLC
contention.

4. Co-schedule the remaining LLCFR-MS and LLCFR-HS applica-
tions on the remaining tiles. If possible, co-schedule LLCFR-HS
applications on to tiles with CCF-HS applications/threads such
that LLCFR-HS application can also utilize high V/F setting and
also avoid performance degradation due to shared LLC con-
tention.

The intuition behind co-scheduling all the LLCT-LS applications
together onto a tile is that with relatively little allocated power,
the co-running applications would incur minimal performance
loss. Since the behavioral characteristics of all LLCT-LS applications
are similar, the resource requirement would also be similar. The
same intuition can be applied to LLCT-MS applications as well;
beingmore sensitive to DVFS, these applicationswould have better
performance than LLCT-LS applications and hence the GPM would
allocate a larger fraction of the total power budget to these tiles
compared to the LLCT-LS tiles. The applications in the LLCFR-MS
and LLCFR-HS categories are co-scheduled or combined with CCF-
HS to avoid the performance impact due to the shared LLC. Since
the applications in these three categories have moderate to high
performance along with much higher sensitivity to DVFS change
than LLCT-LS and LLCT-MS applications, the GPM will allocate a
relatively larger fraction of the power budget to these tiles, thereby
limiting the performance degradation.

4.3. Putting it all together

The DCTM on top of two-tier hierarchical power manager runs
at two time scales. The coarse-grain timescale, at 20 ms in our
setup, groups threads to tiles using the DCTM scheduling rules as



5

just described in the previous section. One solution to classifying
workloads in terms of LLC and DVFS sensitivity may be to employ
sampling, i.e., by running a workload’s performance at different
frequency settings and different LLC sizes for short durations of
time. The limitation is that it incurs significant overhead as we
would need to monitor performance for various combinations of
LLC size and frequency setting. Instead, we leverage the simple,
yet effective analytical performance models proposed in [30] to
estimate the performance impact of clock frequency (predicting
performance at the target frequency based on a run at the current
frequency) and LLC size (ATDs [44] to project the APKI and miss
rate for different LLC sizes) on overall performance. Note that
no additional computations are required as the projected values
generated by the performance prediction models are reused by
DCTM.

The fine-grain timescale, at 1 ms in our setup, distributes
power across tiles: the GPM distributes power across all tiles, and
within each tile, the TPM regulates the hardware adaptations as
per the allocated power. Our processor architecture allows three
adaptations: core adaptation, LLC resizing, and per-tile DVFS, aswe
will describe in more detail in Section 5.2. The first fine-grained
time slice (1 ms) assumes no power capping, and runs each thread
at the maximum configuration (largest core configuration, largest
LLC size, highest frequency). We compute the performance of each
tile as a ratio of total systemperformance, i.e., per-tile performance
(measured in Million Instructions Per Second or MIPS) divided by
chip-wide MIPS. The GPM distributes the total available power
budget across all tiles for the next time slice per the MIPS ratios
of the tiles in the previous slice, i.e., a high-performance tile
is given a larger fraction of the available power budget. The
intuition is that compute-intensive tiles need a larger fraction
of the total power, boosting overall system performance. Once
total power is distributed across the tiles, the TPMs then decide
on the optimal configuration for the core, LLC and DVFS setting
in each tile. TPM steers adaptation using the performance/power
models proposed in [30], with the goal of optimizing performance
within the available power budget. Note that, the adaptation and
monitoring can be achieved using other frameworks as well with
modifications.

4.4. Quantifying DVFS sensitivity: DCTM vs. Cruise

To illustrate the importance of being DVFS aware, we now com-
pare the performance of DCTM against Cruise for one particular
workload consisting of four LLCT SPEC CPU2006 benchmarks run-
ning on a tiled architecture with two cores per tile. (For Cruise, we
replace the DCTM scheduling rules by Cruise’s at the coarse-grain
timescale, while considering the same two-tier power manager
at the fine-grain timescale.) Fig. 4 illustrates how DCTM obtains
higher overall performance compared to Cruise. The applications
are arranged in a random fashion at the start of the execution. The
top graphs show per-thread performance (billion instructions per
second—BIPS) for both DCTM and Cruise, while the bottom graphs
show the power and frequency settings of both tiles. All graphs
have time on the horizontal axis, and run over the course of 100ms.

To Cruise, all four threads belong to the same category, hence no
threadmigrations are needed. TakingDVFS sensitivity into account
as we do in DCTM, however, we find that threads th0 and th2 have
low sensitivity (LLCT-LS)while th1 and th3 havemediumsensitivity
(LLCT-MS). DCTM will therefore swap threads th1 and th2 to co-
schedule threads with LLCT-MS behavior together (Rule #2 in
Section 4.2). After migration, Tile-0 will run both LLCT-MS threads
while Tile-1 runs both LLCT-LS threads. Hence, the power budget
for Tile-0 can be increasedwhich, due to running threadswith high
DVFS sensitivity, translates into a significant performance boost. At
the same time, the power and frequency of Tile-1 can be reduced at
limited performance cost, given that it runs both of the LS threads.
Fig. 4. DCTM and Cruise through time for 4 cores with LLCT applications.

The end result is an improvement in total system performance by
2.5% while staying within the same power budget.

5. Experimental setup

5.1. Simulation framework

Performance simulator: We use the Sniper user-level multi-
core simulator [10], version 6.0. The Sniper simulator per-
forms timing simulations for both multi-program workloads and
multi-threaded, shared-memory applications. We use Instruction
Window (IW) centric core models for detailed OOO execution ac-
curacy. We use the most detailed cycle-level hardware-validated
coremodels available in Sniper [9,10].We add support for dynami-
cally changing core and cache parameters. The core adaptation and
DVFS transitions combined take 2 µs during which no computa-
tions can be performed—a conservative approach. When reducing
the number of cache ways, dirty lines are written back through the
simulated memory subsystem, consuming NoC and DRAM band-
width (observed to account for no more than 5% of total DRAM
bandwidth).We assume that threadmigration takes 1000 cycles to
transfer register state and restart execution at a remote core. In ad-
dition, the potential cold misses that transfer the thread’s working
set to the local caches are also included in the execution/runtime
of the simulation. To reduce the variations due to threadmigration,
we execute 3 copies of each workload and report the average.
Power consumption. McPAT version 1.0 is used to estimate static
and dynamic power consumption [34,35] for a 22 nm technology.
Power savings incurred by reconfiguration are modeled by
running McPAT with the modified target parameters (Table 1).
Running McPAT along with the performance simulation allows
us to emulate the behavior of hardware energy counters at
simulated time slices of 1 ms. Note that, changing the V/F setting
while keeping the other micro-architecture knobs unchanged, we
observe that the array layout/size of SRAM and CAM structures
does not change in McPAT.

5.2. Adaptive micro-architecture

To keep all the cores active even at stringent power budgets,
we incorporate core micro-architectural adaptation, LLC adapta-
tion and DVFS adaptation simultaneously, thereby providing vari-
ous operational points in our adaptive tiled many-core processor.



6

Table 1
Micro-architectural adaptations.

Parameter Values

Core adaptations
ROB size 16 32 64 128
Reservation station entries 4 8 16 32
Load queue entries 6 12 24 48
Store queue entries 4 8 16 32

DVFS adaptations per-tile
Frequency (GHz) 0.8 1.0 1.2 –
Voltage (V) 0.7 0.75 0.8 –

Shared LLC adaptations per-tile
Cache ways 4 8 12 16
Capacity (KB) 512 1024 1536 2048

Table 2
Tile-based many-core architecture.

Component Parameters

Core configuration
Core type 4-way issue OOO, 128-entry ROB
Load/store queue 48 load entries, 32 store entries
L1-I cache 32 KB, 4-way, 3 cycle access time
L1-D cache 32 KB, 4-way, 3 cycle access time

Tile configuration
Tile size 4 cores
Core count 64, 128, 256
Tile count 16, 32, 64
L2 cache (per-tile) 2 MB, 16-way, 10 cycle access time
L2 prefetcher Stride-based, 8 independent streams
Coherence protocol Directory-based MESI, distributed tags

Network on chip Mesh 16 × 1, 16 × 2, 16 × 4
32 GB/s/link

Main memory 8, 16, 32 controllers
80 ns latency, 128 GB/s total

Chip wide configuration
Frequency-Vdd 1.2 GHz @ 0.8 V
Technology 22 nm
TDP 100, 190, 350 W

As described before, we use the notion of a Globally Asynchronous
Locally Synchronous (GALS) design [26], in which each tile main-
tains its own voltage–frequency domain. The adaptive core/tile
configuration is expressed as a tuple [core, ft , llct ], denoting that
the core is configured as core, running at frequency ft and llct cache
ways enabled for the given tile t (see also Table 1).
Core. Core adaptation pertains to reconfiguring the core micro-
architecture. The core width can be adapted, along with the size of
various structures (see ‘Core adaptation’ in Table 1). We maintain
a quadratic relation between execution width and size of micro-
architectural buffers [18]. Unused components are power-gated
to reduce both static and dynamic power consumption, providing
for an interesting opportunity for power savings for memory-
bound or otherwise low-ILP applications. In our tiled architecture,
we assume each core’s micro-architecture can be adapted
individually.
DVFS. DVFS adaptation is a widely used technique for enforcing
power budgeting. In the proposed architecture, we assume the
availability of on-die voltage regulators [8,32] per-tile to enable
DVFS from 0.8 GHz at 0.7 V to 1.2 GHz at 0.8 V (see also
Table 1), which is in line with the Intel Xeon Phi [29]. In the
tiled architecture, the TPM needs to enforce a DVFS setting per-
tile (affecting both cores and shared LLC). Choosing an appropriate
DVFS setting per-tile is non-trivial as a single setting for all threads
scheduled on the given tile might not be optimal for performance.
Applications with higher sensitivity to DVFS changes are more
likely to be affected by imposing a single DVFS setting per tile.
Hence,we choose theDVFS setting so as tominimize the severity of
the performance impact on the applicationswith high sensitivity to
DVFS. If this setting over-provisions the per-tile power allocated by
the GPM,we subsequently down-scale the coremicro-architecture
until the allocated tile budget is reached.

Shared LLC. For cache adaptation, we use a flushing selective-way
LLC implementation [1], i.e., a shared LLC per-tile in our setup. By
controlling which ways are active, we can power-gate portions of
the cache to reduce its capacity and static power. We use selective
ways (see also Table 1) because of its simple design—selective
sets on the other hand require changes to the number of tag bits
used [53]. By using the flushing cache policy when shrinking to
a smaller number of ways (writing back dirty cache lines), we
can turn off the corresponding cache ways sooner, reducing static
power consumption of the cache. To estimate the effect of cache
capacity changes, we use auxiliary tag directories (ATDs) [44] to
estimate the miss rates (32 randomly selected sample sets) for
different shared cache configurations. To project the performance
impact of threads sharing the LLC, we create ATDs per core and
annotate cache tags with a core identifier. This is only required for
those sets that are part of the ATD’s sample set.

5.3. Workloads

Multi-program workloads. We run a number of multi-program
workloads composed of SPEC CPU2006 benchmarks; 29 programs
in total, which along with all reference inputs leads to 55 bench-
marks. We select representative simulation points of 750 million
instructions each using PinPoints [42]. Four multi-program work-
loads with 64 benchmarks each are constructed by combining
these 55 benchmarks as indicated in Table 3(a). The benchmarks
in each workload are arranged in a random fashion unless men-
tioned otherwise. We replicate each workload by 2× and 4× for
the 128-core and 256-core setups, respectively. Each benchmark
is pinned to a core unless mentioned otherwise. We run the simu-
lation for 200ms to keep total simulation timewithin feasible lim-
its. When a benchmark completes before this time, it is restarted
on the same core. We quantify weighted speedup [47] or system
throughput (STP) [17] which quantifies the aggregate throughput
achieved by all cores in the system.

Multi-program multi-threaded workloads. We create workloads by
combining multiple multi-threaded applications from the SPEC
OMPM2001 [2] and NPB benchmark suites [4], see Table 3(b).
For meaningful analysis, we use the reference input set for SPEC
OMPM2001, and the class A input set for NPB. We construct two
workloads, each running 64 threads in total: NPB1 consists of four
different NAS applications running concurrently with 16 threads
each, while OMPM combines eight SPEC OMPM applications
running 8 threads each. When running on the 128-core setup we
replicate theseworkloads by 2×, and by 4× for the 256-core setup.
Execution of all multi-threaded applications in a workload begins
after the last application has reached the region of interest (ROI).
Again, we run each workload for 200 ms to keep total simulation
time manageable.

6. Evaluation

We now evaluate DCTM on our power-constrained tiled
many-core architecture. Unless mentioned otherwise, results are
obtained using fine-grained hardware adaptation at 1ms intervals,
while thread migration is performed at 20 ms intervals. Each
experiment fixes the available power budget to a fraction of the
chip’s nominal power consumption (see TDP in Table 2). We
quantify performance in terms of system throughput (STP), which
includes power management overhead.



7

Fig. 5. STP (normalized to Centralized) for Hierarchical and DCTM at 60% power budget.
Table 3
Workloads.

(a) Multi-program workloads (SPEC CPU2006)

Workload Description Benchmarks

WL0 SPEC average All 55 + 9 uniform random
WL1 Compute 8 compute bound, ×8
WL2 Mixed 8 compute + 8 memory,

×4
WL3 Memory 8 memory bound, ×8

(b) Multi-program multi-threaded workloads

Workload Benchmarks Input set Threads

NAS parallel benchmark suite
NPB1 BT, CG, FT, MG Class A 16 each

SPEC OMPM 2001 suite
OMPM fma3d, swim, mgrid, applu,

equake, apsi, gafort, wupwise
Reference 8 each

The evaluation is done in a number of steps. We first eval-
uate the scalability of two-tier hierarchical power management
(Hierarchical) compared to the Chrysso-based Centralized power
manager [30].We next compareDCTM against Cruise [27], demon-
strating the importance of being frequency-aware. We then eval-
uate the importance of dynamic thread migration, followed by a
number of sensitivity analyses with respect to the thread migra-
tion interval and power distribution.

6.1. Hierarchical vs. centralized power management

We first evaluate the scalability of two-tier hierarchical power
management versus a centralized approach. We consider the
following power management policies: (i) Centralized which
assumes centralized power management along with per-core
DVFS3; (ii) Hierarchical which is our two-tier hierarchical power
manager, with random mapping of threads to tiles, and per-tile
DVFS; and (iii) DCTM which is our two-tier hierarchical power
manager thatmigrates threads across tiles in a DVFS and LLC aware
manner.

3 The Centralized power manager has logarithmic complexity, and effectively
represents Chrysso proposed in [30]. Note that the Centralized power manager uses
a single GPM to distribute power across the chip.
Fig. 5 quantifies relative STP (normalized to the Centralized
approach) for the variousworkloads as a function of core count at a
60% power budget. The Centralized approach is quite effective at 64
cores. The overhead of the centralized power manager is limited,
and the ability to exploit per-core DVFS yields a performance
benefit over the two-tier Hierarchical approach with per-tile DVFS,
by 7% on average. At larger core counts however, the overhead
of the centralized power manager is not offset by the benefit
from per-core DVFS, yielding a performance benefit for two-tier
hierarchical powermanagement, up to 24% for 256 cores (seeWL1).
The interesting insight here is that at large core counts, per-tile
DVFS is in fact beneficial over per-core DVFS, which may seem
counter-intuitive at first sight because there is less opportunity
for fine-grain adaptation. The reason however is that per-tile DVFS
facilitates a two-tier hierarchical powermanager which incurs less
overhead compared to a centralized power manager for a per-core
DVFS architecture.

The results in Fig. 5 also show that being able to migrate
threads such that compatible threads co-execute per tile, as done
using DCTM, yields a substantial performance benefit over random
thread assignment with Hierarchical, see for example WL1: 32.4%
for DCTM versus 24% for Hierarchical. We observe the performance
benefit to be consistent across all workloads.

Overall, we find two-tier hierarchical power management, and
DCTM to be beneficial across all workloads. The performance
benefit seems to be proportional to the number of compute-
intensive benchmarks in the workload, see for example WL1
(compute-intensive) versus WL2 (mixed) versus WL3 (memory-
intensive). The reason is that the power manager groups threads
based on their sensitivity to LLC size and clock frequency, and
allocates a larger fraction of the available power budget to tiles that
benefit the most, which are typically the ones running compute-
intensive benchmarks.

6.2. Two-tier approach: performance vs. power budget

As we mentioned in Section 4.4, application’s sensitivity to
DVFS could provide better performance than just considering LLC
sensitivity. To illustrate this, Fig. 6 shows the STP improvement
(as percentage) of a 256-core setup at different power budgets for
Cruise and DCTM, relative to the Hierarchical performance.4 Both
Cruise and DCTM employ a two-tier hierarchical power manager.

4 Results for 64 and 128 cores are not included due to space constraints.



8

Fig. 6. STP improvement (percentage) for DCTM and Cruise over Hierarchical for the 256-core setup.
Fig. 6 shows the STP improvement (as a percentage) for the
256-core setup at different power budgets for Cruise and DCTM,
relative to Hierarchical. The bottomline is that DCTM outperforms
Hierarchical by 10% on average (across all workloads) and by up to
20%. DCTM outperforms DVFS-agnostic Cruise by 4.2% on average
and by up to 12%.

There are a couple interesting trends to be observed for a
number of individual workloads. For WL0 (average SPEC CPU),
DCTM shows an increasing trend at increasingly smaller power
budgets. The reason is that WL0 includes a wide range of
applications with varying characteristics, which can be efficiently
exploitedusing bothDVFS and LLC sensitivities. ForWL1 (compute-
intensive SPEC CPU), DCTM yields a consistent improvement over
Cruise, but is limited by the available power budget. For WL3
(memory-intensive SPEC CPU), we observe that both DCTM and
Cruise are able to prevent excessive LLC trashing, which leads the
STP improvement over Centralized to increase at smaller power
budgets. However, by being DVFS-aware, DCTM still outperforms
Cruise by 7% on average.

6.3. Static assignment vs. dynamic migration

An alternative to performing on-line thread migration could
be to statically select a thread schedule a priori based on known
average application characteristics. However, in addition to the
potential problem of jobs periodically entering and leaving the
system, a single application exhibits phase behavior thatmay cause
its classification to change over time. Using an average class leads
to suboptimal scheduling, showing that on-line migration is a
necessary component of our approach.

To illustrate that static classification is not sufficient, we
consider the example of the milc benchmark. Fig. 7 plots MIPS
over time for milc at 80% power budget in a 64-core setup.
The average behavior of milc can be classified as LLCT with
moderate sensitivity to DVFS. Static assignment co-schedules this
benchmark with other LLCT-MS or CCF applications. Although the
average classification is LLCT (streaming behavior), milc shows
phases during its execution where it is classified as LLCFR due to
a reduced working set which does fit in the LLC. During this phase,
Fig. 7. Static and DCTM over time formilc on a 64-core setup at 80% power budget.

if the application remains co-scheduled with an LLCT application
whichwill causemilc’s working set to be evicted, performancewill
suffer compared to a situation where the LLCT thread is migrated
away in favor of other LLCFR or CCF applications. Unlike the static
assignment, DCTM is able to observe changes in cache access
behavior at runtime and re-schedule accordingly, leading to higher
performance for milc during its LLCFR phase.

We now evaluate the performance benefit of DCTM against
Static classification in a more systematic way. Static classification
follows the same classification and scheduling rules as DCTM;
the only difference is that Static classification does so based on
the application’s average execution behavior. Fig. 8 shows the
performance improvement of static assignment and DCTM over
Hierarchical. At moderate to low power budgets, static assignment
provides some improvement over random assignment as the
restricted power budget requires significant reductions in both
DVFS and LLC size, which can be tolerated better when compatible
applications are co-scheduled. At higher power budgets, however,
the architecture operates much closer to its full configuration,
and static assignment fails to provide a significant advantage. In
contrast,DCTM is able to exploit phase behavior in the applications,
and can obtain the optimum co-schedule at each point in time.
This gives DCTM a significant margin over both Hierarchical and



9

Fig. 8. Static versus DCTM relative to Hierarchical for WL0.

(a) STP vs. power budget.

(b) Remote cache accesses.

Fig. 9. Sensitivity to DCTM’s thread migration interval for WL0 on 64 cores and L2
invalidates: Hierarchical vs. DCTM for single-thread WL0 workload.

Static, showing that runtime migration can greatly improve power
efficiency of large many-core systems.

6.4. Sensitivity to migration interval

Previous experiments considered a coarse-grain thread mi-
gration interval of 20 ms, while hardware adaptation was
performed every millisecond. This is consistent with an imple-
mentation where adaptations are performed in a hardware power
manager, while thread migrations is done by the operating system
(with input from the powermanager and/or performance counters
to do the classification).
(a) STP. (b) ANTT.

Fig. 10. Fine-grain (Hierarchical) versus coarse-grain (CPM) power redistribution
for the two-tier hierarchical power manager for WL0 on 64-core setup.

In Fig. 9, we vary the DCTM thread migration interval between
1 and 20 ms, while leaving the power-aware hardware adaptation
interval fixed at 1ms. As discussed in Section 5.1, threadmigration
takes 1000 cycles to transfer register state and restart execution
at a remote core, in addition to potential cold misses that transfer
the thread’s working set to the local caches (using the standard
coherency protocol, which our simulations model in detail).
Fig. 9(a) plots STP (relative to full configuration), when running the
SPEC averagemulti-programworkloadWL0 on a 64-core system at
various power settings. No significant difference in performance is
observed, showing that a 20msmigration interval is sufficient. It is
therefore possible to implement this layer in the operating system:
hardware thread migration is not required and it is even possible
to spend a significant amount of time and effort to compute the
best schedule.

In contrast, doing thread migration too frequently can in fact
be harmful, as Fig. 9(b) illustrates. For short migration intervals
(below 5 ms), the amount of cache-to-cache transfers increases
significantly, showing that working sets frequently have to be
transferred across the chip, trailing the migrating threads. These
cache-to-cache transfers cause both a reduction in thread perfor-
mance and consume additional power, which has to be amortized
by the improved schedule.

6.5. Fine-grained power redistribution

Our Two-Tier Hierarchy Approach reallocates power between
the tiles in each hardware adaptation interval (1 ms timescale),
in addition to making adaptations local to each tile. An alternative
would be to run the global component (GPM) less frequently, while
running TPMat a small timescale. Such approach is in fact proposed
by Coordinated Power Management (CPM) [39], where a fast per-
tile DVFS controller performs local optimization constrained to
each tile’s power budget, and a globalmanager redistributes power
across the tiles every ten adaptation intervals. We implement a
similar design with 1 ms and 10 ms time scales for the local
(TPM) and global (GPM) power management, respectively. Fig. 10
shows STP (relative to full configuration) as a function of the
available power. OurHierarchical design (GPM and TPM adaptation
at 1ms timescale) outperforms CPMby 1%–8% in STP, in addition to
providing better fairness between the running threads (measured
in average normalized turnaround time, ANTT [17]). This is because
in CPM, each tile needs to manage power over- and undershoots
using a fixed power budget over a 10 ms interval. In contrast,
when doing global adaptation at 1 ms time scales, power can be
redistributed across tiles much faster, allowing compute-bound
threads to borrow power frommemory-bound threads running on
different tiles within just 1 ms, so the system can respond much
more quickly to changes in workload behavior.



10
7. Related work

Micro-architecture adaptation. A variety of prior work has explored
techniques to improve power-efficiency by adapting micro-
architecture structures on a per core basis. Some proposals adapt
the instruction window [3] and the issue logic [20] to provide
greater power/energy efficiency while showing a small reduction
in application performance. ForwardFlow core [23] is proposed as
a way to trade off core performance for power. Albonesi [1] and
Yang et al. [53] evaluate shutting downportions of the cache, either
a number of ways or a combination of ways and sets for improved
energy efficiency or to trade off performance for power and energy.
Eckert et al. [15] combine drowsy caches with front-end pipeline
gating and demonstrate better performance-power scaling than
dynamic frequency scaling, and evenDVFS in some cases. Although
their work shows that one can reconfigure the system to perform
better than DVFS, they do not perform runtime optimizations
of large many-cores in power-constrained environments. Finally,
Dubach et al. [13] use machine-learning models (trained using
profiling) to perform online adaptation of a single core at a time.
Centralized dynamic power management. Several prior works
explore centralized dynamic power management. For example,
Isci et al. [25] investigate a global power controller to determine
different per-core DVFS values to maximize chip-wide MIPS.
Teodorescu and Torrellas [49] propose variation-aware power-
management DVFS algorithms for application scheduling on a CMP
to save power or improve throughput at a given power budget.
CoScale [11] deals with co-optimizing DVFS settings for both the
CPU and DRAM. Other proposals use machine learning and neural
networks to perform global DVFS with per-core adaptation [28]
or global resource allocation [5]. Meng et al. [38] propose DVFS
adaptation along with cache adaptation for a 4-core system.
Chrysso [30] dynamically adjusts the capabilities of an out-of-
order core, private cache and per-core DVFS at fine-grained time
slice (10 ms) using simple analytical models and a centralized
power manager to improve performance under given power
budgets. Finally, Flicker [43] dynamically adjusts the capabilities
of an out-of-order core at coarse-grained time slice (100 ms) using
sampling-based global genetic algorithm to improve performance
compared to core gating at moderate power budgets.
Tiled architecture and hierarchical power manager. In RCS [22], the
authors propose mechanisms to uniformly change core resources
with the number of cores (up to 12) to exploit application vari-
ability at a fixed power budget. The proposed scheme uses SVM-
based machine-learning mechanisms to obtain the number of
active cores (with correspondingmicro-architectural variation) for
each interval. PEPON [46] uses 10 DVFS adaptations for core and
NoC alongwith selective-way resizing of a single shared LLC to pro-
vide feasible working configuration till moderate power budgets.
Other proposals [21,39] use the concept of two-level power man-
agement schemes, viz.master–slave and global–local, respectively.
Mishra et al. [39] use one of the 10DVFS values per island (2/4 cores
per island) under the given power budget. The mechanism uses
a 2-level power manager—GPM-LPIC (digital controller per LPIC)
called every 25/50 ms and 2.5/5 ms, respectively. Prior work has
explored powermanagement techniques on network-on-chip [50]
to provide significant reduction in power dissipation of NoCs. A
hierarchical control-theory based power manager [41] employs
multiple PID controllers (one for each cluster and one for each
application) in a synergistic fashion and manages to achieve op-
timal power-performance efficiency while respecting the TDP
budget. This approach has poor scalability with increasing num-
ber of clusters and price-theory based demand–supply approach.
Additionally, the coarse-grain power management could ensue
thermal-throttling due to instantaneous power over-shoots.
To the best of our knowledge, none of the above works have
evaluated three-way micro-architectural adaptation along with
a thread migration layer for optimal shared resource utilization
using a hierarchical power manager on a power-constrained tiled
many-core architecture.

8. Conclusion

An integrated and scalable many-core power management is
clearly needed as we move towards increasingly tighter power
budgets. In this work, we leverage a two-tier hierarchical power
manager due to its low overhead and high scalability on a tiled
many-core architecture with shared LLC and per-tile DVFS at
fine-grain time slices. We use (i) analytical performance and
power models for the shared architecture and its adaptation,
and (ii) we distribute power across tiles using GPM and then
within a tile (in parallel across all tiles). We observe that thread
scheduling is essential in such an architecture to account for
thread sensitivity towards shared resources.We leverageDVFS and
cache-aware thread migration (DCTM) to ensure optimum per-tile
co-scheduling of compatible threads at runtime over the two-tier
hierarchical power manager. Based on our evaluations, we show
that DCTM outperforms Cruise [27] by 4.2% on average (and up
to 12%) for both multi-program and multi-threaded workloads.
Compared to a centralized power manager, DCTM improves per-
formance by 10% on average (and up to 20%) while using 4× less
on-chip voltage regulators.

Acknowledgments

This work was supported in part by the European Research
Council under the European Community’s 7th Framework Pro-
gramme (FP7/2007–2013)/ERC Grant agreement no. 259295 and
the Spanish Ministry of Economy and Competitiveness under
grants TIN2010-18368 and TIN2013-44375-R. The experiments
were run on computing infrastructure at the ExaScience Lab, Leu-
ven, Belgium.

References

[1] David H. Albonesi, Selective cache ways: On-demand cache resource
allocation, in: Proceedings of the 32nd Annual International Symposium on
Microarchitecture, MICRO, November 1999, pp. 248–259.

[2] Vishal Aslot, Rudolf Eigenmann, Performance characteristics of the SPEC
OMP2001 benchmarks, ACM SIGARCH Comput. Archit. News (2001) 31–40.

[3] R.Iris Bahar, Srilatha Manne, Power and energy reduction via pipeline
balancing, in: Proceedings of the 28th Annual International Symposium on
Computer Architecture, ISCA, June 2001, pp. 218–229.

[4] David H. Bailey, Eric Barszcz, John T. Barton, David S. Browning, Russell L.
Carter, Leonardo Dagum, Rod A. Fatoohi, Paul O. Frederickson, Thomas A.
Lasinski, Rob S. Schreiber, H.D. Simon, V. Venkatakrishnan, S.K. Weeratunga,
The NAS parallel benchmarks, Int. J. High Perform. Comput. Appl. (1991)
63–73.

[5] Ramazan Bitirgen, Engin Ipek, Jose F. Martinez, Coordinated management of
multiple interacting resources in chip multiprocessors: A machine learning
approach, in: Proceedings of the 41st Annual International Symposium on
Microarchitecture, MICRO, November 2008, pp. 318–329.

[6] Shekhar Borkar, Thousand core chips: A technology perspective, in: Pro-
ceedings of the 44th Annual Design Automation Conference, DAC, 2007,
pp. 746–749.

[7] David Brooks, Margaret Martonosi, Dynamic thermal management for
high-performance microprocessors, in: Proceedings of the International
Symposium on High Performance Computer Architecture, HPCA, January
2001, pp. 171–182.

[8] Edward A. Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Douglas, William
J. Lambert, Kaladhar Radhakrishnan, Michael J. Hill, FIVR – Fully integrated
voltage regulators on 4th generation Intel R⃝ CoreTM SoCs, in: Proceedings of
the 29th Applied Power Electronics Conference and Exposition, APEC, 2014,
pp. 432–439.

[9] Trevor E. Carlson, Wim Heirman, Lieven Eeckhout, Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations, in:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC, November 2011, pp. 1–12.

http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref2
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref4


11
[10] Trevor E. Carlson,WimHeirman, Stijn Eyerman, IbrahimHur, Lieven Eeckhout,
An evaluation of high-level mechanistic core models, ACM Trans. Archit. Code
Optim. (TACO) 11 (3) (2014) 28:1–28:25.

[11] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F. Wenisch,
Ricardo Bianchini, CoScale: Coordinating CPU and memory system DVFS in
server systems, in: Proceedings of the 45th Annual International Symposium
on Microarchitecture, MICRO, December 2012, pp. 143–154.

[12] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of
ion-implanted MOSFET’s with very small physical dimensions, IEEE J. Solid-
State Circuits (1974) 256–268.

[13] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Michael F.P.
O’Boyle, A predictive model for dynamic microarchitectural adaptivity
control, in: Proceedings of the 43rd Annual International Symposium on
Microarchitecture, MICRO, December 2010, pp. 485–496.

[14] Thomas Ebi, M. Faruque, Jörg Henkel, TAPE: Thermal-aware agent-
based power economy multi/many-core architectures, in: Proceedings of
the International Conference on Computer-Aided Design, ICCAD, 2009,
pp. 302–309.

[15] Yasuko Eckert, Srilatha Manne, Michael J. Schulte, David A. Wood, Something
old and something new: P-states can borrow microarchitecture techniques
too, in: Proceedings of the International Symposium on Low Power Electronics
and Design, ISLPED, July 2012, pp. 385–390.

[16] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
Doug Burger, Dark silicon and the end of multicore scaling, in: Proceedings of
the 38th Annual International Symposium on Computer Architecture, ISCA,
2011, pp. 365–376.

[17] Stijn Eyerman, Lieven. Eeckhout, System-level performance metrics for
multiprogram workloads, IEEE MICRO (2008) 42–53.

[18] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, James E. Smith, A mecha-
nistic performancemodel for superscalar out-of-order processors, ACM Trans.
Comput. Syst. (TOCS) (2009) 1–37.

[19] Xiaobo Fan, Wolf-Dietrich Weber, Luiz Andre Barroso, Power provisioning for
awarehouse-sized computer, in: Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA, June 2007, pp. 13–23.

[20] Daniele Folegnani, Antonio González, Energy-effective issue logic, in: Proceed-
ings of the 28th Annual International Symposium on Computer Architecture,
ISCA, June 2001, pp. 230–239.

[21] YangGe, Qinru Qiu, QingWu, Amulti-agent framework for thermal aware task
migration in many-core systems, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 20 (10) (2012) 1758–1771.

[22] Hamid Reza Ghasemi, Nam Sung Kim, RCS: Runtime resource and core scaling
for power-constrained multi-core processors, in: Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation, PACT,
August 2014, pp. 251–262.

[23] Dan Gibson, David A. Wood, Forwardflow: A scalable core for power-
constrained CMPs, in: Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture, ISCA, June 2010, pp. 14–25.

[24] Sebastian Herbert, Diana Marculescu, Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors, in: Proceedings of the International Sympo-
sium on Low Power Electronics and Design, ISLPED, 2007, pp. 38–43.

[25] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, Margaret
Martonosi, An analysis of efficient multi-core global power management
policies: Maximizing performance for a given power budget, in: Proceedings
of the 39th Annual International Symposium on Microarchitecture, MICRO,
December 2006, pp. 347–358.

[26] Anoop Iyer, Diana Marculescu, Power and performance evaluation of globally
asynchronous locally synchronous processors, in: Proceedings of the 29th
Annual International Symposium on Computer Architecture, ISCA, 2002,
pp. 158–168.

[27] Aamer Jaleel, Hashem H. Najaf-abadi, Samantika Subramaniam, Simon C.
Steely, Joel Emer, Cruise: Cache replacement and utility-aware scheduling, in:
Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2012, pp. 249–260.

[28] Ramkumar Jayaseelan, Tulika Mitra, A hybrid local–global approach for
multi-core thermal management, in: Proceedings of the 2009 International
Conference on Computer-Aided Design, ICCD, November 2009, pp. 314–320.

[29] James Jeffers, James Reinders, Intel Xeon Phi Coprocessor High Performance
Programming. Newnes, 2013.

[30] Sudhanshu S. Jha, Wim Heirman, Ayose Falcón, Trevor E. Carlson, Kenzo
Van Craeynest, Jordi Tubella, Antonio González, Lieven Eeckhout, Chrysso:
An integrated power manager for constrained many-core processors, in:
Proceedings of the ACM International Conference on Computing Frontiers, CF,
May 2015, pp. 19:1–19:8.

[31] Harish K. Krishnamurthy, Vaibhav A. Vaidya, Pavan Kumar, George E.
Matthew, SheldonWeng, Bharani Thiruvengadam,Wayne Proefrock, Krishnan
Ravichandran, Vivek De, A 500 MHz, 68% efficient, fully on-die digitally
controlled buck voltage regulator on 22nm Tri-Gate CMOS, in: Proceedings of
the IEEE Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1–2.

[32] Nasser Kurd, Muntaquim Chowdhury, Edward Burton, Thomas P. Thomas,
Christopher Mozak, Brent Boswell, Manoj Lal, Anant Deval, Jonathan Douglas,
Mahmoud Elassal, Ankireddy Nalamalpu, Timothy M. Wilson, Matthew
Merten, Srinivas Chennupaty, Wilfred Gomes, Kumar Rajesh, 5.9 Haswell: A
family of IA 22nm processors, in: Proceedings of the International Solid-State
Circuits Conference Digest of Technical Papers, ISSCC, pp. 112–113, 2014.

[33] Jacob Leverich, Matteo Monchiero, Vanish Talwar, Partha Ranganathan,
Christos Kozyrakis, Power management of datacenter workloads using per-
core power gating, Comput. Archit. Lett. (2009) 48–51.
[34] Sheng Li, J. Ahn, Jay B. Brockman, Norman P. Jouppi, McPAT 1.0: An integrated
power, area, and timing modeling framework for multicore architectures, in:
HP Labs, 2009.

[35] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
Norman P. Jouppi, McPAT: An integrated power, area and timing modeling
framework for multicore and manycore architectures, in: Proceedings of
the 42nd Annual International Symposium on Microarchitecture, MICRO,
December 2009, pp. 469–480.

[36] Jian Li, Jose F. Martinez, Dynamic power-performance adaptation of parallel
computation on chip multiprocessors, in: Proceedings of the 12th Interna-
tional Symposium on High-Performance Computer Architecture, HPCA, 2006,
pp. 77–87.

[37] Kai Ma, Xue Li, Ming Chen, Xiaorui Wang, Scalable power control for many-
core architectures running multi-threaded applications, in: Proceedings of
the 38th International Symposium on Computer Architecture, ISCA, 2011,
pp. 449–460.

[38] Ke Meng, Russ Joseph, Robert P. Dick, Li Shang, Multi-optimization power
management for chip multiprocessors, in: Proceedings of the 17th Interna-
tional Conference onParallel Architectures andCompilation Techniques, PACT,
2008, pp. 177–186.

[39] Asit K. Mishra, Shekhar Srikantaiah, Mahmut Kandemir, Chita R. Das, CPM
in CMPs: Coordinated power management in chip-multiprocessors, in:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC, 2010, pp. 1–12.

[40] Gordon E. Moore, Cramming more components onto integrated circuits,
Electronics (1965) 116–144.

[41] Thannirmalai SomuMuthukaruppan, Mihai Pricopi, Vanchinathan Venkatara-
mani, Tulika Mitra, Sanjay Vishin, Hierarchical power management for asym-
metricmulti-core in dark silicon era, in: Proceedings of the 50thAnnual Design
Automation Conference, DAC, 2013, pp. 174:1–174:9.

[42] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, Anand
Karunanidhi, Pinpointing representative portions of large Intel Itanium;
programs with dynamic instrumentation, in: Proceedings of the 37th Annual
International Symposium on Microarchitecture, MICRO, December 2004,
pp. 81–92.

[43] Paula Petrica, AdamM. Izraelevitz, David H. Albonesi, Christine A. Shoemaker,
Flicker: A dynamically adaptive architecture for power limited multicore
systems, in; Proceedings of the 40th International Symposium on Computer
Architecture ISCA, June 2013, pp. 13–23.

[44] Moinuddin K. Qureshi, Yale N. Patt, Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches, in: Proceedings of the 39th Annual International Symposium on
Microarchitecture, MICRO, 2006, pp. 423–432.

[45] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, Eliezer
Weissmann, Power-management architecture of the Intel microarchitecture
code-named Sandy Bridge, IEEE MICRO (2012) 20–27.

[46] Akbar Sharifi, Asit K. Mishra, Shekhar Srikantaiah, Mahmut Kandemir, Chita R.
Das, PEPON: Performance-aware hierarchical power budgeting for NoC based
multicores, in: Proceedings of the 21st International conference on Parallel
Architectures and Compilation Techniques, PACT, 2012, pp. 65–74.

[47] Allan Snavely, Dean M. Tullsen, Symbiotic jobscheduling for simultaneous
multithreading processor, in; Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS, November 2000, pp. 234–244.

[48] N. Sturcken, M. Petracca, S. Warren, P. Mantovani, L.P. Carloni, A.V. Peterchev,
Kenneth L. Shepard, A switched-inductor integrated voltage regulator with
nonlinear feedback and network-on-chip load in 45 nm SOI, IEEE J. Solid-State
Circuits (2012) 1935–1945.

[49] Radu Teodorescu, Josep Torrellas, Variation-aware application scheduling
and power management for chip multiprocessors, in: Proceedings of the
35th International Symposium on Computer Architecture, ISCA, June 2008,
pp. 363–374.

[50] Sriram Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson,
James Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob, et al. An
80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS, in: Proceedings of the
International Solid-State Circuits ConferenceDigest of Technical Papers, ISSCC,
2007, pp. 98–589.

[51] Yefu Wang, Kai Ma, Xiaorui Wang, Temperature-constrained power control
for chip multiprocessors with online model estimation, in: Proceedings of the
36th Annual International Symposium on Computer Architecture, ISCA, 2009,
pp. 314–324.

[52] Qiang Wu, Philo Juang, Margaret Martonosi, Douglas W. Clark, Formal
online methods for voltage/frequency control in multiple clock domain
microprocessors, in: Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating Systems
ASPLOS, 2004, pp. 248–259.

[53] Se-Hyun Yang, Michael D. Powell, Babak Falsafi, T.N. Vijaykumar, Exploiting
choice in resizable cache design to optimize deep-submicron processor
energy-delay, in: Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, HPCA, February 2002, pp. 151–161.

http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref10
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref12
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref17
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref18
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref21
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref33
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref40
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref45
http://refhub.elsevier.com/S0743-7315(16)30118-6/sbref48


12
Sudhanshu Shekhar Jha received B.E. in computer science
engineering from Birla Institute of Technology, Mesra
in 2006. Received Masters in embedded systems design
from Advanced Learning and Research Institute (ALaRI),
affiliated with ETH Zurich, Politecnico di Milano and
Universita della Svizzera Italiana in Switzerland in 2011.
Joined ARCO in 2011 and current research is focused
towards performance optimization on power-constrained
many-core architecture.

Wim Heirman obtained his M.Sc. and Ph.D. in computer
architecture from Ghent University in 2003 and 2008,
respectively. He currently works as a research scientist
for Intel Corporation. His interests include many-core
processor architecture and performance modeling.

Ayose Falcón received his B.S. (1998) and M.S. (2000)
degrees in computer science from the University of Las
Palmas de Gran Canaria, Spain. In 2005, he received a
Ph.D. in computer science from the Universitat Politècnica
de Catalunya (UPC). His Ph.D. research included fetch
unit optimization – especially branch prediction and
instruction cache prefetching – for superscalar and
simultaneous multithreading processors. During his Ph.D.
years, Ayose was a Summer Intern and then a research
consultant at Intel Microprocessor Research Labs in
Portland (OR, USA), and worked as a teaching assistant at

UPC for one year. From 2004 to 2009, Ayose was a senior research scientist at the
Exascale Computing Lab, HP Labs. His research interests included simulation and
virtualization technologies, disciplines in which he published several papers and
one book chapter, and disclosed 7 patents. He was one of the creators of COTSon,
a full-system simulator co-developed by HP and AMD, which today is available as
an open-source tool (http://cotson.sourceforge.net/). From 2010 to 2014, he was
a Senior Research Scientist at the Intel Barcelona Research Center, where he has
been the technical project lead and technical project manager of different projects.
His research has focused on newmicroarchitecture paradigms and code generation
techniques for future Intel microprocessors. With Intel, Ayose published several
papers in internal conferences and disclosed 7 patents. Since 2014, Ayose is a senior
R&D software engineer at HP Inc, working at the Large Format Printing division.
Jordi Tubella received his degree in computer science in
1986 and his Ph.D. in computer science in 1996, both
from the Universitat Politècnica de Catalunya at Barcelona
(Spain). He is a member of the Computer Architecture De-
partment at the Universitat Politècnica de Catalunya since
1988, being a associate professor since 1998. His research
interests focus on processor microarchitecture and par-
allel processing, with special interest on heterogeneous
computing and speech recognition.

Antonio González (Ph.D. 1989) is a full professor at
the Computer Architecture Department of the Universitat
Politècnica de Catalunya, Barcelona (Spain), and was the
founding director of the Intel Barcelona Research Center
from 2002 to 2014.

His research has focused on computer architecture,
compilers and parallel processing, with a special emphasis
on processor microarchitecture and code generation. He
has published over 325 papers, has given over 100 invited
talks, holds over 40 patents and has advised 30 Ph.D.
theses in these areas. He also has a long track record of

innovations in commercial products, especially Intel products, during his stage as
director of the Intel Barcelona Research Center.

Antonio has served as an associate editor of five IEEE andACM journals, program
chair for ISCA,MICRO, HPCA, ICS and ISPASS, general chair forMICRO andHPCA, and
PCmember formore than 100 symposia. Antonio’s awards include the award to the
best student in computer engineering in Spain graduating in 1986, the 2001 Rosina
Ribalta award as the advisor of the best Ph.D. project in Information Technology
and Communications, the 2008 Duran Farrell award for research in technology, the
2009 Aritmel National Award of Informatics to the Computer Engineer of the Year,
the 2013 ‘‘King Jaime I Award’’ in New Technologies, and 2014 ICREA Academia
Award. Antonio is an IEEE Fellow.

Lieven Eeckhout is a professor at Ghent University,
Belgium, in theDepartment of Electronics and Information
Systems (ELIS). He received his Ph.D. in Computer Science
and Engineering from Ghent University in 2002. His
research interests are in computer architecture, with
a specific emphasis on performance evaluation and
modeling. He served as the program (co-)chair for HPCA
2015, CGO 2013 and ISPASS 2009, and general chair
for ISPASS 2010. He is the current editor-in-chief of
IEEE Micro, and associate editor for IEEE Computer
Architecture Letters, IEEE Transactions on Computers, and

ACM Transactions on Architecture and Code Optimization.

http://cotson.sourceforge.net/

	Shared resource aware scheduling on power-constrained tiled many-core processors
	Introduction
	Motivation
	Limitations of a centralized approach
	Cache-aware thread migration (Cruise)

	Two-tier hierarchical power management
	DVFS and Cache-aware Thread Migration (DCTM)
	DVFS and LLC sensitivity analysis
	DCTM scheduling rules
	Putting it all together
	Quantifying DVFS sensitivity: DCTM vs. Cruise

	Experimental setup
	Simulation framework
	Adaptive micro-architecture
	Workloads

	Evaluation
	Hierarchical vs. centralized power management
	Two-tier approach: performance vs. power budget
	Static assignment vs. dynamic migration
	Sensitivity to migration interval
	Fine-grained power redistribution

	Related work
	Conclusion
	Acknowledgments
	References




