
Revisiting Decomposition Analysis of Geometric Constraint Graphs

R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, J. Vilaplana-Pastó

Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics

Av. Diagonal 647, 8a, E–08028 Barcelona

e-mail: [robert, tonis, sebas, josep]@lsi.upc.es

Abstract

Geometric problems defined by constraints can be represented by
geometric constraint graphs whose nodes are geometric elements
and whose arcs represent geometric constraints. Reduction and de-
composition are techniques commonly used to analyze geometric
constraint graphs in geometric constraint solving.

In this paper we first introduce the concept of deficit of a con-
straint graph. Then we give a new formalization of the decompo-
sition algorithm due to Owen. This new formalization is based on
preserving the deficit rather than on computing triconnected com-
ponents of the graph and is simpler. Finally we apply tree decompo-
sitions to prove that the class of problems solved by the formaliza-
tions studied here and other formalizations reported in the literature
is the same.

Keywords Constraint solving, geometric constraints, graph-based
constraint solving.

1 Introduction

Geometric problems defined by constraints can be represented by
geometric constraint graphs whose nodes are geometric elements
and whose arcs represent geometric constraints.

For application with potentially large constraints systems, the
efficiency of the algorithms for solving the system at hand is an im-
portant issue. To decide on the suitability of a given constraint solv-
ing method, its correctness must be proved and the class of prob-
lems the method can solve should be characterized.

Many attempts to provide general, powerful and efficient meth-
ods for solving systems of geometric constraints have been reported
in the literature. For an extensive review in geometric constraint
solving refer to Fudos [6] and Durand [3].

Among the existing methods we focus on two techniques com-
monly used to analyze geometric constraint graphs in geometric
constraint solving, generically known as decomposition and reduc-
tion, respectively. More specifically we are interested in decom-
position and reduction where the analysis is based on a direct geo-
metric interpretation. There are other approaches. See for example
Hoffmann et al. [7] for a flow-based decomposition algorithm.

In [13], Owen described a top-down algorithm for computing
a decomposition of an arbitrary graph. The algorithm recursively
splits the graph into split components, [8]. The algorithm termi-
nates when the graphs cannot be split further. At the end of the
analysis the original graph has been decomposed into a set of trian-
gles.

Fudos and Hoffmann, [6], reported on a graph-constructive ap-
proach to solving systems of geometric constraints. The method

is based on an analysis of the constraint graph that derives a se-
quence of construction steps that sequentially places the geometric
elements in the problem with respect to each other. The analysis
has two parts. The first part is a bottom-up reduction analysis where
each step in the sequence corresponds to positioning three rigid ge-
ometric bodies that pairwise share a geometric element, point or
line. The second part is a top-down decomposition analysis that
produces a sequence of decompositions that correspond to a reverse
sequence of rigid geometric bodies.

In this paper we reformulate the algorithm reported by Owen
in [13] to solving geometric constraint problems based on the de-
composition analysis of the constraint graph. First we introduce the
concept of deficit associated with a constraint graph. The deficit
measures the distance between a given constraint graph and a well-
constrained graph induced by the same set of nodes. The deficit
allows us to avoid the need for computing triconnected components
yields a simpler algorithm both conceptually and from a compu-
tational runtime point of view. Then we recall the tree decompo-
sition of a constraint graph, a tool that has is useful to conceptu-
ally analyze constraint graphs. Finally tree decompositions are ap-
plied to characterize the class of problems solved by the decomposi-
tion analysis studied here and to prove that different formalizations
solve the same class of problems.

Section 2 reviews basic concepts from graph theory and geomet-
ric constraint graphs. Section 3 deals with decomposition analysis.
First we recall Owen’s algorithm, then we present the new formal-
ization of the algorithm. Section 4 presents the tree decomposition
of a constraint graph. Section 5 is devoted to characterize the class
of problems solved by the decomposition analysis studied here and
discusses the equivalence of different formalizations. We close with
a brief summary in Section 6.

2 Preliminaries

In this section we recall basic terminology of graph theory, the con-
cept of geometric constraint graph associated to a geometric prob-
lem defined by constraints, and some definitions related to geomet-
ric constraint graphs.

2.1 Graph Concepts

First we recall some basic terminology of graph theory that will be
used in the rest of the paper. For an extensive treatment see [2]
and [8].

A graph G = (V, E) is said to be connected if every vertex is
connected to every other node by at least one path of edges. We
say that a node a of a connected graph G is an articulation node if
by removing a, the graph splits into two or more disconnected sub-
graphs. If a is an articulation node in G, then there are two vertices

u and v different from a such that a is on every path connecting u
and v.

A graph with no articulation vertices is called biconnected. If
u and v are arbitrary different vertices of a biconnected graph G,
then there are at least two different paths in G connecting them.
A connected graph can be uniquely decomposed into biconnected
components by splitting it at separation vertices. Aho et al., [1],
reported a depth first algorithm that efficiently computes such a de-
composition.

Let a and b be two vertices in a biconnected graph G. The edges
of G can be divided into separation classes E1, E2, . . . , En de-
fined as follows, [8]. Two edges are in the same separation class Ei

if there is a path using both edges and not containing a or b except,
possibly, as endpoints. If the two vertices a and b divide the edges
into more than two separation classes, then the pair {a, b} is a sepa-
ration pair (articulation pair) of G. Moreover, if {a, b} divides the
edges into two separation classes, each containing more than one
edge, then {a, b} is also a separation pair.

A triconnected graph is a graph with more that two vertices with
no separation pairs. In a triconnected graph there are at least three
disjoint paths between every pair of non adjacent vertices.

Let {a, b} be a separation pair in the graph G that induces the
separation classes E1, E2, . . . , En. Let E′ =

⋃m

i=1
Ei and E′′ =⋃n

i=m+1
Ei such that |E′| ≥ 2 and |E′′| ≥ 2. Then we will refer

to the graphs G′ = (V (E′), E′) and G′′ = (V (E′′), E′′) as the
separating graphs of G. The graphs

G1 = (V (E′), E′ ∪ {(a, b)})
and

G2 = (V (E′′), E′′ ∪ {(a, b)})
are called split graphs of G. The added edge (a, b) is labeled to
denote the split and is called a virtual edge. Assume that the graph
G and its split graphs are recursively split until obtaining graphs
that cannot be split further. The set of these graphs defines the
set of split components of G. Note that the split components are
triconnected graphs and that by merging the split components we
recover the original graph.

Hopcroft and Tarjan, [8], and Miller and Ramachandran, [12],
reported on algorithms to efficiently compute separating graphs and
split components of a graph.

2.2 Geometric Constraint Solving and Graphs

A geometric constraint problem is defined by giving a set of geo-
metric elements like points, lines, line segments, circles and circular
arcs, along with a set of relationships, called constraints, like dis-
tance, angle, incidence and tangency between any two geometric
elements. As explained by Fudos, [4] and by Mata, [11], we may
transform the geometric constraint problem into one where only
points and lines with pairwise distance and angle constraints need
to be considered.

The geometric constraint problem can be coded as a constraint
graph G = (V, E), where the graph vertices V are the geometric
elements and the graph edges E are the geometric constraints, [13,
6]. Figure 1 shows a geometric problem defined by constraints and
the geometric constraint graph associated.

A necessary condition for a geometric constraint problem to be
solvable is that the associated constraint graph must be wellcon-
strained. Combinatorial properties of wellconstrained graphs have
been characterized by Laman, [10]. Technically, the notion of well-
constrained graph can be formalized as follows, [6].

α

B
A LAB

d1

LAC

C

LBCD

d2

h

C

BA

LBC

LAB

D

LAC

d1

α

h

d2

Figure 1: A geometric constraint problem and associated constraint
graph.

Definition 2.1 Let G = (V, E) be a geometric constraint graph.

1. G is structurally over-constrained if there is an induced sub-
graph with m ≤ |V | vertices and more than 2m − 3 edges.

2. G is structurally under-constrained if it is not structurally
over-constrained and |E| < 2 |V | − 3.

3. G is structurally well-constrained if it is not structurally over-
constrained and |E| = 2 |V | − 3.

3 Decomposition Analysis

First we briefly recall the Owen’s algorithm. Then we give a new
formalization for the Owen’s algorithm which is simpler and that
will be used in the following sections.

3.1 Owen’s Algorithm

Owen in [13] introduced a geometric constraint solving technique
based on a top-down analysis of the geometric constraint graph as-
sociated with a geometric problem.

The algorithm has two steps. In a first step, the algorithm com-
putes the set of split components S of the given graph G, [8].
These split components are either triangles or complex triconnected
graphs, that is, graphs with more than three edges. As computed,
the complex split components are no further decomposable. To
overcome this problem, in a second step the complex split com-
ponents are transformed, if possible, by removing from the graph

one of the virtual edges introduced in the first step. Note that virtual
edges are always incident to separation pairs.

Then the first step is recursively applied to the transformed split
components. The algorithm terminates when the graphs cannot be
split further. If any triconnected graph with more than three vertices
remains, the problem cannot be solved quadratically.

At the end of the analysis, the original graph has been decom-
posed into a set of triangles whose edges are either original edges
or virtual edges.

If function SplitComponents(G) computes the split com-
ponents of G, function Reducible(g) checks whether a split
component should be further subdivided, and function Re-
duce(g) removes unneeded virtual edges of graph g, Owen’s al-
gorithm can be written as shown in Figure 2.

func Owen(G) ret S
SC := SplitComponents(G)
S := ∅
foreach g in SC do

if Reducible(g) then
S := S ∪ Owen(Reduce(g))

else
S := S ∪ {g}

fi
done
return S

end

Figure 2: Owen’s analysis algorithm.

The analysis process followed by Owen’s analysis algorithm is
illustrated in Figure 3. Virtual edges are shown in dashed lines.

3.2 The New Formalization

To decompose a graph, Owen’s method uses the algorithm for
finding triconnected components reported by Hopcroft and Tarjan
in [8]. which is based on preserving graph connectivity. As a re-
sult, the split components generated by the decomposition include
extra virtual edges. To recursively apply the decomposition process,
Owen’s algorithm must remove these extra virtual edges.

In what follows we will present an algorithm to decompose a
constraint graph in triconnected graphs with exactly three vertices,
that is, triangles. The algorithm is based on a divide and con-
quer strategy which preserves the constraint graph property of be-
ing wellconstrained. The resulting algorithm is conceptually simple
and easy to implement.

As in [13] and [6], the algorithm will be based on subdividing the
constraint graph into two separating graphs induced by a separation
pair. With the aim of clearly stating a subdivision criterion, we
start by giving some definitions and deriving properties which relate
wellconstrained graphs with their separating graphs.

Definition 3.1 Let G = (V, E) be a geometric constraint graph.
We define the Deficit function associated with G by

Deficit(G) = (2|V | − 3) − |E|

The function Deficit computes the difference between the num-
ber of edges needed for a constraint graph to be wellconstrained and
its actual number of edges. Note that if G is not overconstrained,
Deficit(G) ≥ 0

Lemma 3.2 Let G be a constraint graph and G′ and G′′ separat-
ing graphs. Then

Deficit(G) = Deficit(G′) + Deficit(G′′) − 1

Proof
By definition, Deficit(G) = (2|V | − 3) − |E|). Since G′ and
G′′ are separation graphs of G, then |V | = |V ′| + |V ′′| − 2 and
|E| = |E′| + |E′′|. Therefore,

Deficit(G) = 2(|V ′| + |V ′′| − 2) − 3 − (|E′| + |E′′|)
= (2|V ′| − 3 − |E′|) + (2|V ′′| − 3 − |E′′|) − 1

= Deficit(G′) + Deficit(G′) − 1

�

Lemma 3.3 Let G be a wellconstrained graph and G′ and G′′ sep-
arating graphs. Then if Deficit(G′) > Deficit(G′′), G′ is undercon-
strained and G′′ is wellconstrained.

Proof
Since G is wellconstrained, Deficit(G) = 0 and separation graphs,
G′ and G′′, are not overconstrained, that is, Deficit(G′) ≥ 0 and
Deficit(G′′) ≥ 0. From Lemma 3.2 Deficit(G) = Deficit(G′) +
Deficit(G′′) − 1. Thus Deficit(G′) + Deficit(G′′) = 1. Then,
either Deficit(G′) = 1 and Deficit(G′′) = 0, which means that G′

is underconstrained and G′′ wellconstrained or vice versa. �

Definition 3.4 Let G be a wellconstrained constraint graph and G′

and G′′ separating graphs. The modified split graphs, G1 and G2,
of G are defined as follows. If Deficit(G′) > Deficit(G′′) then

G1 = (V (E′), E′ ∪ {(a, b)}) and G2 = G′′

otherwise

G1 = G′ and G2 = (V (E′′), E′′ ∪ {(a, b)})

Lemma 3.5 Let G = (V, E) be a constraint graph and, G1 =
(V1, E1) and G2 = (V2, E2) be modified split graphs. Then
Deficit(G) = Deficit(G1) + Deficit(G2).

Proof
Now |E| = |E1| + |E2| − 1. Apply proof of Lemma 3.2. �

Definition 3.6 An s-tree is a binary tree such that:

1. the root is a constraint graph G,

2. for each node in G the root of their sons are the modified split
graphs S1 and S2 of G, and

3. the leaves are either triangles or triconnected graphs.

Let Triconnected(G) be a function that tests whether a
graph has a separation pair, SeparatingGraphs(G) a function
that computes the separating graphs of G, (Recall that separating
graphs do not include virtual edges), and AddVirtualEdge(G)
a function that adds a virtual edge incident to the separation pair
used to compute the split graph G. Then the decomposition analy-
sis algorithm based on preserving deficits of graphs can be written
as shown in Figure 4.

The input to the algorithm is a graph G associated to a geomet-
ric constraint problem. The output is a s-tree S whose root is G.

SPLIT

REDUCE REDUCE

SPLIT
SPLIT

f

d

h

G a

g

h
fe

b

c

d

a
S1

b v2

c
c e

d

v1

S2

a

v2

a
S3

g

h

v1

f

d

a

S2R

ec

d

v1

a

f

d

S2RS1

c e

d

S2RS2

a

e

v3
d

f

g

a

f h

S3R

S2RS3

g
S3RS2S3R1

v1
v4

g

h

v3 v5

v5

v4

Figure 3: Owen’s algorithm computation applied to an example graph.

func Analysis(G) ret S
if Triconnected(G) then

S := BinaryTree(G, nullTree, nullTree)
else

G1,G2 := SeparatingGraphs(G)
if Deficit(G1) > Deficit(G2) then

G1 := AddVirtualEdge(G1)
else

G2 := AddVirtualEdge(G2)
fi
S := BinaryTree(G, Analysis(G1),

Analysis(G2))
fi
return S

end

Figure 4: New algorithm for decomposition analysis.

Note that if G represents a wellconstrained solvable problem, the
resulting s-tree decomposes G into triangles.

Figure 5 illustrates the behaviour of the new decomposition anal-
ysis algorithm applied to the example graph in Figure 3. Note that
now only those virtual edges that are strictly necessary to keep the
deficit property are included in the modified split graphs, therefore
avoiding the need for graph transformation.

When one of the separation classes is a single edge, it is inci-
dent to the vertices in the separation pair. In this case we prove the
following result.

Lemma 3.7 Let G = (V, E) be a wellconstrained geometric con-
straint graph, {a, b} a separation pair such that (a, b) ∈ E. Then
the separation graph which contains the edge (a, b) is wellcon-
strained and no virtual edge is added.

Proof
Let {a, b} be the separation pair in the graph G = (V, E) and
E1, . . . , En−1, Es be the separation classes, where Es contains
just the edge (a, b). Let E ′ =

⋃m

i=1
Ei and E ′′ =

⋃n−1

i=m+1
Ei.

such that |E′| ≥ 2 and |E′′| ≥ 2. We have

|E| = |E ′| + |E ′′| + |Es| = |E ′| + |E ′′| + 1

|V | = |V (E ′)| + |V (E ′′)| − 2

G wellconstrained means that 2|V | − 3 − |E| = 0. Substituting
|E| and |V | by the expressions above and rearranging terms

(2|V (E ′)| − 3 − |E ′|) + (2|V (E ′′)| − 3 − |E ′′|) − 2 = 0

There are two different situations. First let

(2|V (E ′)| − 3 − |E ′|) = (2|V (E ′′)| − 3 − |E ′′|) = 1

Since classes Ei are grouped arbitrarily, assume that E′ = E ′∪Es.
Then V (E′) = V (E ′) and |E′| = |E ′| + 1. The deficit of the
separation graph G′ is

(2|V (E′)| − 3 − |E′|) = 2|V (E ′)| − 3 − (|E ′| + 1)

= 2|V (E ′)| − 3 − |E ′| − 1

= 0

Therefore the separation graph G′ contains edge (a, b), is wellcon-
strained and, since Deficit(G′) < Deficit(G′′), no virtual edge will
be added to it.

For a contradiction and without loss of generality, let
(2|V (E ′)| − 3 − |E ′|) = 0, that is, G′ is wellconstrained. Let
(2|V (E ′′)|−3−|E ′′|) = 2. and assume again E′ = E ′∪Es. This
would result in the separation graph G′ ⊂ G being overconstrained,
that is G would be overconstrained which is a contradiction. �

Lemmas 3.2, 3.3 and 3.5 along with Lemma 3.7 prove the cor-
rectness of the algorithm presented in this section.

3.3 Subdivision Pattern

The algorithm given in the previous section analyzes a constraint
graph by decomposing it into two split graphs induced by a sepa-
ration pair. However, there is nothing essential in this subdivision
method.

Todd, [14], reported on a method where graphs are subdivided
by isolating vertices of degree two from their neighbors. In fact,
this is a particular case of decomposing through separation pairs.
Figure 6 illustrates a graph with a degree two vertex v. Note that its
neighbors, a and b, are a separation pair. This subdivision method is
rather limited but can be satisfactorily combined with other meth-
ods, like those in [8] or in [12], to compute more general graph
subdivisions.

v
a

b

Figure 6: Graph with a degree two vertex v.

Another method subdivides a graph into three subgraphs by se-
lecting three vertices such that by removing them the graph splits
into three connected components. See Figure 7. We do not know
any efficient algorithm to select the three vertices but they can be
always computed by using a brute force approach.

c

a

b

Figure 7: Subdividing a graph into three subgraph by using three
vertices a, b and c.

4 Tree Decomposition

In this section first we define the concept of set decomposition that
refers to a way of partitioning a given abstract set. Then we define
the concept of tree decomposition of a graph, a tool that we will use
in Section 5.

G a

g

h
fe

b

c

d

a

b

c

a

ec

d

c e

d

d

df

aa

e

d

c e

d

a

f

d

g

h

a

hf

g

g f h

g

f h

v1

v2

v3

v3 v4

v5
f h

g

Figure 5: Decomposition analysis generated by the new algorithm on the example graph in Figue 3.

a b

c

e
d

f

C

C′

a b

c

e
d

f

C1 C2

C3

C′
1

C′
3

C′
2

a b

Figure 8: a) A set C. b) A set decomposition of C.

Definition 4.1 Let C be a set with, at least, three different mem-
bers, say a, b, c. Let {C1, C2, C3} be three subsets of C. We say
that {C1, C2, C3} is a set decomposition of C if

1. C1 ∪ C2 ∪ C3 = C,

2. C1 ∩ C2 = {a},

3. C1 ∩ C3 = {b} and

4. C2 ∩ C3 = {c}.

We say that {a, b, c} are the active elements of the set decomposi-
tion.

Figure 8 shows a set and a possible set decomposition. Next we
define the concept of set decomposition of a graph, illustrated in
Figure 9.

Definition 4.2 Let G = (V, E) be a graph. Let V (e) denote the
vertices in V that are the endpoints of edge e ∈ E. Let {V1, V2, V3}
be three subsets of V . Then {V1, V2, V3} is a set decomposition
of G if it is a set decomposition of V and for every edge e in E,
V (e) ⊆ Vi for some i, 1 ≤ i ≤ 3.

Roughly speaking, a set decomposition of a graph G = (V, E),
is a set decomposition of the set of vertices V such that does not
break any edge in E. Figure 10 shows a graph and a set decompo-
sition that is not a set decomposition of the graph because vertices
incident to edge (e, b) does not belong to any set in the partition.

a b

c

e
d

f

a b

c

e
d

f

V1 V2

V3
a b

Figure 9: a) Graph. b) Set decomposition of the graph.

a b

c

e
d

f

a b

c

e
d

f

V1 V2

V3
a b

Figure 10: a) Graph. b) Set decomposition with a broken edge.

Lemma 4.3 Let {V1, V2, V3} be a set decomposition of a graph G
and let V1 ∩V2 = {a} and V1 ∩V3 = {b}. If |V1| > 2, then {a, b}
is a separation pair of G.

Proof
The subgraphs of G induced by Vi, for 1 ≤ i ≤ 3, have disjoint
sets of edges. By Definition 4.1 V1 ∩ (V2 ∪ V3) = {a, b}. Thus,
removing {a, b} disconnects G. Therefore {a, b} is a separation
pair. �

To close this section, we define the concept of tree decomposition
of a graph.

Definition 4.4 Let G = (V, E) be a graph. A 3-ary tree T is a tree
decomposition of G if

1. V is the root of T ,

2. Each vertex V ′ ⊆ V of T is the father of exactly three nodes,
say {V ′

1 , V ′
2 , V ′

3}, which are a set decomposition of the sub-
graph of G induced by V ′, and

3. Each leaf node contains exactly two vertices of V .

A graph for which there is a tree decomposition is a tree decom-
posable graph. Figure 11 shows a collection of set decompositions
recursively generated for the tree decomposable graph of Figure 9.
The corresponding tree decomposition is shown in Figure 12.

By Definition 4.4, all leaves of a tree decomposition T of a graph
G have cardinality two.

5 Domain of Constructive Geometric
Constraint Solving Techniques

Joan-Arinyo et al. showed in [9] that the class of tree decompos-
able graphs characterizes the domain of two constructive geometric
constraint solving techniques: reduction and decomposition anal-
ysis as described respectively in [6] and [6, 9]. Here, we will see
that the decomposition analysis studied in Section 3 can be char-
acterized also by the existence of a tree decomposition and that it
has the same domain as the reduction and decomposition analysis
above mentioned.

In what follows we will only consider constraint graphs G asso-
ciated with wellconstrained problems. In these conditions, s-trees
are binary trees whose root is G, the other nodes are separation
graphs with respect to some separation pair of the parent node and,

a b

c

e

d

f

Figure 11: Collection of set decompositions of the graph in Fig-
ure 9.

{a, b, c, d, e, f}

{a, c, d, e}

{d, e}{a, d, e}{c, e}

{a, e}{a, d} {d, e}

{a, b, f}

{b, f}{a, b} {a, f}

{b, c}

Figure 12: Tree decomposition of the graph in Figure 11.

the leaves are triangles or triconnected graphs with no articulation
pairs.

Definition 5.1 We say that a constraint graph G is s-tree decom-
posable if there is a s-tree such that its root is G and all its leaves
are triangles.

According to the number of virtual edges in the triangles in the
leaf nodes of an s-tree, we classify them in four different types. See
the second column in Table 1.

5.1 Domain Characterization

To characterize the decomposition analysis studied in Section 3 we
prove two lemmas.

Lemma 5.2 If a graph G is tree decomposable, then G is s-tree
decomposable.

Proof
Assume that T is a tree decomposition of G. We shall proceed by
induction on the structure of T . Refer to Table 1.

Induction base: Let G = (V, E) be a graph such that V = {a, b, c}
and E = {(a, b), (a, c), (b, c)}. The tree T in the third column of
Table 1 is a tree decomposition of G. Then the tree in the fourth
column is a s-tree whose root is a graph G = G0 with just one
node representing the triangle {a, b, c}.

Induction hypothesis: Let G′ be a subgraph of G. If G′ is tree
decomposable then G′ is s-tree decomposable.

Induction step: If {C1, C2, C3} is a set decomposition of C and
{a, b, c} the active elements, we have that C′ = C − {a, b, c},
C′

1 = C1 − {a, b}, C ′
2 = C2 − {a, c} and C′

3 = C3 − {b, c}.

Let G be a graph and T a tree decomposition of G such that its
root is {a, b, c} ∪ C′ and the roots of its subtrees are {a, b} ∪ C′

1,
{a, c} ∪ C′

2 and {b, c} ∪ C′
3.

Assume that C′
1
= ∅ and C′

2 = C′
3 = ∅. Let G′

1 be the subgraph
induce by {a, b} ∪ C′

1 in G. Let T1 be the tree decomposition of
G′

1.

By Lemma 4.3, (a, b) is a separation pair of G thus G′
1 is a sepa-

ration graph of G. Build the other separation graph G2 as the graph
G2 = (V2, E2) with V2 = {a, b, c} and E2 = {(a, c), (b, c)}. By
Definition 2.1, G2 is underconstrained, thus by Lemma 3.3, G′

1 is
wellconstrained.

Now build the modified split graphs of G as G0 = (V2, E2 ∪
{(a, b)}) and G′

1.

Since G′
1 is tree decomposable, by the induction hypothesis it is

s-tree decomposable. Therefore there is a s-tree, say S′
1, whose root

is G′
1. Hence the binary tree whose root is G and whose subtrees

are G0 and S′
1 is a s-tree. Therefore G is s-tree decomposable.

Applying the same procedure for cases C′
2
= ∅ and C′

3
= ∅
completes the proof. �

If function ComputeTriangle(T) computes the triangle
associated with a node of a tree decomposition, and function
MergeGraphs(G1, G2) rebuilds a graph from its modified split
graphs, Figure 13 shows an algorithm that, based on Lemma 5.2,
computes a s-tree S from a tree decomposition T of a graph G.

Lemma 5.3 If a graph G is s-tree decomposable, then G is tree
decomposable.

n G0 Tree-decomposition T S-tree S

0

a c

b

{a, b} {a, c} {b, c}

{a, b, c}

G0

1

ca

b

{a, c} {b, c}

{a, b, c} ∪ C′

{a, b} ∪ C′
1

a c

bO′
1

Ĝ1

2

ca

b

{b, c}{a, b} ∪ C′
1 {a, c} ∪ C′

2

{a, b, c} ∪ C′

c

O′
1

Ĝ1O′
2

Ĝ2

a

b

3

a

b

c
{a, b} ∪ C′

1 {a, c} ∪ C′
2 {b, c} ∪ C′

3

{a, b, c} ∪ C′

a

b

c

O′
1

O′
2

O′
3

Ĝ3

Ĝ2

Ĝ1

Table 1: Types of interior nodes in a tree decomposition and the equivalent s-tree decomposition.

func FromTreeToS-Tree(T) ret S
G0 := ComputeTriangle(T)
S := BinaryTree(G0, NullTree, NullTree)
n := NumberOfVirtualEdges(G0)
for j in 1 to n do

Tj := Subtree(T, j)
S′

j := FromTreeToS-Tree(Tj)
G′

j := Root(S′
j)

Gj := MergeGraphs(G′
j , Gj−1)

S := BinaryTree(Gj , S
′
j , S)

end
return S

end

Figure 13: Computing a s-tree S from a tree decomposition T .

Proof
Assume that S is a s-tree whose root is G. Again we shall proceed
by induction on the structure of S. Refer to Table 1.

Induction base: Let G = (V, E) be a graph such that V = {a, b, c}
and E = {(a, b), (a, c), (b, c)}. The s-tree S of G is that given
in the fourth column of Table 1. Then the tree given in the third
column is a tree decomposition of G.

Induction hypothesis: Let G′ be a subgraph of G. If G′ is s-tree
decomposable then G′ is tree decomposable.

Induction step: Let S be a s-tree whose root is G and whose sub-
trees are G0 and S′

1.

Assume that G0 = (V0, E0) with V0 = {a, b, c} and E0 =
{(a, c), (b, c)} ∪ {(a, b)} and let G′

1 = (V ′
1 , E′

1) be the root of
the s-tree S′

1. By Definition 3.6, G0 and G′
1 are the modified split

graphs of G with respect to the separation pair {a, b}. Since G′
1 is s-

tree decomposable, by induction hypothesis it is tree decomposable.
Therefore there is a tree decomposition T ′

1 of G′
1.

Build a tree decomposition T such that its subtrees are T ′
1, {a, c}

and {b, c}. See Table 1. Subtrees {a, c} and {b, c} share the node
c. Since {a, b} is a separation pair of G, V0 ∩ V ′

1 = {a, b}. But
c ∈ V0, thus c /∈ V ′

1 , {a, c} ∩ V ′
1 = {a}, and {b, c} ∩ V ′

1 = {b}.
Therefore T is a tree decomposition of G.

Applying the same procedure for cases in rows three and four in
Table 1 completes the proof. �

5.2 Domain equivalence

Now, we will see that the class of s-tree decomposable geometric
constraint graphs and the class of tree decomposable graphs are the
same. In other words, a geometric constraint problem expressed
by means of a geometric constraint graph is solvable by Owen’s
technique if and only if the graph is tree decomposable. Since we
proved in [9] that a geometric constraint graph is solvable by re-
duction analysis, [5], if and only if the graph is tree decomposable,
this implies that Owen’s technique and reduction analysis have the
same domain and that its domain can be characterized by the class
of tree decomposable graphs.

Theorem 5.4 Let G = (V, E) be a geometric constraint graph.
The following assertions are equivalent:

1. G is tree decomposable.

2. G is s-tree decomposable.

3. G is solvable by reduction analysis.

4. G is solvable by decomposition analysis.

Proof
Joan-Arinyo et al. proved in [9] the equivalence of assertions 1, 3
and 4. Lemma 5.2 proves that 1 implies 2 and Lemma 5.3 proves
that 2 implies 1. �

6 Summary

We have introduce the concept of deficit of a constraint graph.
Based on this concept, we have presented a new formalization for a
decomposition analysis algorithm. We have proved its correctness.
The idea of preserving just the constraint graph deficit avoids the
need for general algorithms to compute triconnected components.
Thus the resulting decomposition analysis algorithm is simpler both
conceptually and from a computational point of view.

We have used the tree decomposition as a general tool for de-
composition analysis of constraint graphs. Specifically, we have
applied it to prove that different decomposition analysis formaliza-
tions solve the same class of geometric constraint problems.

Acknowledgements

This research has been supported by CICYT under the project
TIC2001-2099-C03-01.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Computer Sci-
ence and Information Processing. Addison Wesley Publishing
Company, Reading, MA, 1974.

[2] Gary Chartrand and Linda Lesniak. Graphs & Digraphs.
Chapman & Hall, 3rd edition, 1996.

[3] C. Durand. Symbolic and Numerical Techniques for Con-
straint Solving. PhD thesis, Purdue University, Department
of Computer Sciences, December 1998.

[4] I. Fudos. Editable representations for 2D geometric design.
Master’s thesis, Purdue University, Department of Computer
Sciences, 1993.

[5] I. Fudos and C.M. Hoffmann. Correctness proof of a geo-
metric constraint solver. Technical Report CSD 93-076, De-
partment of Computer Sciences, Purdue University, Decem-
ber 1993.

[6] I. Fudos and C.M. Hoffmann. A graph-constructive approach
to solving systems of geometric constraints. ACM Transac-
tions on Graphics, 16(2):179–216, April 1997.

[7] C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Geometric
constraint decomposition. In B. Brüderlin and D. Roller, ed-
itors, Geometric Constraint Solving and Applications, pages
171–195. Springer, Berlin, 1998.

[8] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into tri-
connected components. Technical report, Computer Science
Department. Cornell University, Ithaca, NY. USA, February
1974. New revision of TR 72-140.

[9] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vila-
plana. On the domain of constructive geometric constraint
solving techniques. In R. Ďuricovič and S. Czanner, edi-
tors, Spring Conference on Computer Graphics, pages 49–54,
Budmerice, Slovakia, April 25-28 2001. IEEE Computer So-
ciety, Los Alamintos, CA.

[10] G. Laman. On graphs and rigidity of plane skeletal structures.
Journal of Engineering Mathematics, 4(4):331–340, October
1970.

[11] N. Mata. Solving incidence and tangency constraints in 2D.
Technical Report LSI-97-3R, Department LSI, Universitat
Politècnica de Catalunya, 1997.

[12] Gary L. Miller and Vijaya Ramachandran. A new graph tri-
connectivity algorithm and its parallelization. Combinatorica,
12:53–76, 1992.

[13] J.C. Owen. Algebraic solution for geometry from dimensional
constraints. In ACM Symp Foundations of Solid Modeling,
pages 397–407, Austin, TX, 1991.

[14] P. Todd. A k-tree generalization that characterizes consistency
of dimensioned engineering drawings. SIAM J. Disc. Math,
2(2):255–261, 1989.

