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Abstract

Neurodegenerative diseases impose substantial public health burdens on populations
throughout the world. Alzheimer’s disease is among the major neurodegenerative diseases,
and its causes and treatment are still unknown. Researchers around the world are conduct-
ing large data-driven studies in order to unveil the causes and biological mechanisms of such
diseases, and for that reason automatic tools that allow to uncover statistically significant
findings are needed.

To address this problem we present in this thesis a software toolbox that provides the
tools to analyze the linear and nonlinear dynamics of gray-matter and study the statistical
significance of such dynamics at the voxel level. The toolbox features various fitting methods
and fit evaluation metrics, an automatic hyperparameters look-up algorithm and several
visualization and comparison tools.

All the features provided in this toolbox were tested in two real problems provided by
the Pasqual Maragall Foundation, and it yielded results that were validated by the findings
in the original studies.
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Resum

Les malalties neurodegeneratives suposen una càrrega substancial en la sanitat pública de
les poblacions d’arreu del món. La malaltia d’Alzheimer es una de les malalties neurodegener-
atives més importants, i les seves causes i tractament son encara desconeguts. Investigadors
d’arreu del món estan duent a terme estudis impulsats per dades per tal de descobrir les
causes i els mecanismes biològics de les malalties abans mencionades, i per aquesta raó es
requereixen eines automàtiques que permetin trobar resultats amb rellevància estad́ıstica.

Per abordar aquest problema presentem en aquesta tesi un software que proporciona les
eines necessàries per analitzar els patrons dinàmics lineals i no lineals de la matèria grisa
i estudiar la rellevància estad́ıstica d’aquests patrons a escala de voxel. El software ofereix
diversos mètodes d’ajust de dades i de mètriques de la qualitat de l’ajust, un algoritme
automàtic de cerca d’hiper paràmetres i vàries eines de comparació i visualització.

Totes les caracteŕıstiques proporcionades en aquest software van ser provades en dos
estudis reals proporcionats per la Fundació Pasqual Maragall, i els resultats generats van ser
validats pels resultats dels estudis originals.
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Resumen

Las enfermedades neurodegenerativas suponen una importante carga para la sanidad
pública de todas las poblaciones del mundo. La enfermedad de Alzheimer se encuentra entre
las enfermedades neurodegenerativas mas importantes, y sus causas y tratamiento no son
conocidos todav́ıa. Debido a esto, investigadores de todo el mundo están realizando estudios
impulsados por datos con el objetivo de descubrir las causas y los mecanismos biológicos de
susodichas enfermedades, por lo que se requieren herramientas automáticas que permitan
desvelar resultados que sean estad́ısticamente significativos.

Para afrontar este problema presentamos en esta tesis un software que proporciona las
herramientas para analizar los patrones lineales y no lineales de la materia gris y estudiar la
significatividad estad́ıstica de tales dinámicas a escala de voxel. La herramienta de software
incluye diversos métodos de ajuste y métricas de evaluación del ajuste, un algoritmo de
búsqueda de hiper parámetros y varias herramientas de visualización y comparación.

Todas las caracteŕısticas proporcionadas en este software fueron probadas en estudios de
la Fundación Pasqual Maragall, y los resultados generados por éste fueron validados por los
resultados de los estudios originales.
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Chapter 1

Introduction

1.1 Statement of purpose

The Magnetic Resonance Imaging (MRI) imaging modality has enjoyed tremendous
growth in the past years, and by now it is firmly established as one of the preferred di-
agnostic imaging tools. In particular, the brain imaging field has taken advantage of such
advances and improvements in MRI, and by now the amount of information we can obtain
regarding the anatomy and functionality of the brain is outstanding.

Physicians, statisticians, computer scientists, etc. around the world have seen this step
forward in brain imaging as an opportunity to study the brain’s pathologies and diseases.

One of the main neurodegenerative diseases that the mankind currently suffers from is
Alzheimer’s disease (AD). It is characterized by a progressive cognitive decline, and it is (by
the time of writing this thesis) the 6th leading cause of death in the United States.

Figure 1.1: Example of a T2 weighted image, a modality of brain imaging using MRI

At Pasqual Maragall Foundation (FPM)1 they research into how to prevent Alzheimer’s
disease and how to slow its onset. Particularly, they have studied the cerebral atrophy
patterns across the AD continuum, and they are currently studying the atrophy patterns in
aging with regards to a certain APOE4 genotype.

What these two studies (and others alike around the globe) have in common is that the
researchers that conduct them require several tools to process the raw image data to obtain
results that are statistically significant. Even sometimes the main neuroimaging software
packages don’t provide the functionality they require and they have to code scripts them-

1https://fpmaragall.org/en/

1

https://fpmaragall.org/en/


selves, which are very specific and not reusable at all.

This project tries to address this problem with the creation of a toolbox that provides
the functionality required to study the linear and non-linear patterns of brain atrophy in
neurodegenerative diseases and aging at the voxel level.

Based on the aforementioned motivation, the main objectives of this project are:

• Research about fitting methods that are convenient to analyze non-linear patterns

• Research about statistical tests and fit evaluation metrics that are relevant to the brain
imaging field

• Conceive visualization tools that allow the user to have better insight in the results

• Implement a Command Line Interface (CLI) toolbox that includes the previous items

• Evaluate the performance and usability of the toolbox with the data from the ”AD-CSF
and the Alzheimer’s disease continuum” study

• Evaluate the performance and usability of the toolbox with the data from the ”Aging
atrophy with regards to the APOE4 genotype” study

1.2 Requirements and specifications

The requirements of this project are the following:

• Provide several fitting methods that are capable of fitting non-linear patterns

• Implement statistical tests and fit evaluators that assess the statistical significance of
the fitting

• Develop a method to find hyperparameters for fitters that require it

• Integrate visualization tools that allow the user to visualize the curves and the statis-
tical maps and the statistical distributions of the data

• Include strategies to compare statistical maps

• Implement a method to perform statistical tests to compare between categories of
subjects

• Implement a data loader that is capable of optimally loading morphological data of
the brain in NIfTI format

• Implement a configurable, modular and extendable software that follows good pro-
gramming practices and is documented

The specifications are the ones that follow:

• Use Python as programming language

2



• Use Nibabel2 to load data in NIfTI format

• Use scikit-learn3 as a machine learning library

• Use matplotlib4 and seaborn5 for the visualization functionality

1.3 Methods and procedures

This project was carried out at the Image and Video Processing Group (GPI) research
group from the Signal Theory and Communications Department (TSC) at the Universitat
Politècnica de Catalunya (UPC) in collaboration with the Pasqual Maragall Foundation
(FPM).

The work presented in this thesis is the natural continuation of the work presented in
[Aduriz Berasategi, 2016]. The FPM originally asked the GPI to collaborate in the study of
the non-linear patterns across the AD continuum based on the paper they had previously
published about this topic ([Gispert et al., 2015]). The idea was to try new fitters and
new statistical tests, but instead of rooting for a straightforward but not reusable solution,
both the GPI and FPM agreed to start a toolbox that would be flexible, easy to use and
extendable.

The base classes and the structure of the toolbox, the GLM based fitters and the majority
of the fit evaluation metrics were already integrated in the toolbox by the time I joined the
research group. From that moment on Asier Aduriz, Adrià Casamitjana and myself, Santiago
Puch, were all involved in the development of the toolbox, and together with the two advisors,
Verónica Vilaplana (UPC) and Juan Domingo Gispert (FPM), we created and improved the
toolbox little by little until the final version, which is the one that this thesis presents.

1.4 Document structure

In chapter 2 two medical problems are presented, namely AD-CSF and the Alzheimer’s
disease continuum and Aging atrophy with regards to the APOE4 genotype, and a survey of
the existing literature about these problems is provided.

After introducing the project, the motivation and the problems, the methodology of the
project is explained in chapter 3. This chapter is the most extensive one in this document,
as it contains detailed explanations of the whole theoretical content upon which the toolbox
implementation is based.

The purpose of chapter 4 is two-fold: first it provides statistically significant results of
the two previously presented problems that are coherent with the ones found by the FPM;
and second it validates the flexibility and usefulness of the toolbox.

Finally, the reached conclusions and the plans for the future development of this project
are presented in chapter 5.

2http://nipy.org/nibabel/
3http://scikit-learn.org/stable/
4http://matplotlib.org/
5https://stanford.edu/~mwaskom/software/seaborn/
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Chapter 2

State of the art

2.1 AD-CSF and the Alzheimer’s disease continuum

As [Bateman et al., 2012] reports, ”well-validated biomarkers of Alzheimer’s disease pro-
cesses are needed to improve the design of clinical trials, develop more effective therapeutics,
and offer the opportunity for prevention trials”. [Molinuevo et al., 2013] addresses this topic
by introducing the AD-CSF-index, an indicator composed by the sum of the normalized CSF
concentrations of Aβ42 and t-tau (total tau) that reflects the degree of the pathology and
determines where the patient is along the AD continuum.

Regarding the association between the characteristic neurodegeneration of the disease
and CSF-related biomarkers, [Sabuncu et al., 2011] evidences the nonlinearities of corti-
cal atrophy with respect to CSF biomarkers. Another nonlinear approach is taken in
[Insel et al., 2015], where piecewise-linear splines are used to evaluate the nonlinear nature of
the association between CSF Aβ and regional atrophy and to identify points of acceleration
of atrophy with respect to Aβ.

Finally, [Gispert et al., 2015] uses a polynomic approach to characterize the nonlinear
volumetric changes in gray matter across the disease’s spectrum — represented by the AD-
CSF-index presented in [Molinuevo et al., 2013] — and the associated impact of the APOE4
genotype, reporting significant nonlinear dependencies in specific memory-related areas of
the brain as a result of the analysis.

2.2 Aging atrophy with regards to the APOE4 genotype

Although there are several genetic and environmental variables that determine the cause
and progression of AD, there is a large consensus in attributing to a variant in the APOE
gene (the ε4 allele carriers) the strongest genetic risk factor for both early and late-onset AD
development, as reported in [Cherbuin et al., 2007] and [Poirier et al., 1993]. Not only is the
presence of APOE ε4 allele the main genetic determinant of AD risk but also of age-related
cognitive decline during normal aging ([Liu et al., 2013]).

Some studies have been conducted in order to characterize the relationship between the
APOE genotype and the brain atrophy in cognitively healthy individuals. [Wishart et al., 2006]
reports reduced grey matter volume in several brain regions when comparing ε3 homozygote
and ε3-ε4 heterozygote carriers, and concludes that regionally reduced gray matter density
is detectable in cognitively intact adults with a single copy of the APOE ε4 allele. Another
study reports significantly decreased volume in the hippocampus — a major component of
the brain that is agreed to have a key role in the formation of new memories — for ε4-allele
carriers compared to ε2-allele carriers ([Alexopoulos et al., 2011]).

More recently, [Cacciaglia et al., 2016] characterizes the impact of the APOE genotype
on brain atrophy due to aging in cognitively healthy individuals by modeling the patterns of
gray-matter variability across age depending on the APOE status.
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Chapter 3

Methodology

3.1 Datasets

In this project two different datasets provided by the FPM have been used to assess the
performance of the toolbox and, at the same time, to compare the obtained results with the
ones found by the researchers at FPM. The purpose of this section is to summarize their
nature. Note that all procedures described in this section were performed by the FPM.

3.1.1 ADCSF and the Alzheimer’s disease continuum

The cohort for this study consisted of 129 participants that were divided in 4 groups
depending on the stage of the disease: 62 belonged to the control group, which means that
they didn’t present any evidence of cognitive impairment and were CSF Aβ negative; 18 were
categorized as preclinical AD due to presence of positive CSF Aβ values (despite the lack of
evidence of cognitive impairment); there were 28 MCI (mild cognitive impairment) partici-
pants; and the remaining 21 participants belonged to the AD group, which means that they
were already diagnosed with Alzheimer’s disease. All the scans were processed using Voxel
Based Morphometry as implemented in SPM1. Briefly, all T12 images were normalized to a
reference template and the gray matter was segmented. A denoising procedure was performed
and as a result voxels were assigned a value between 0 and 1. These values were modulated
by the spatial normalization deformation, and finally all images were smoothed with a 6-mm
full-width at the half maximum Gaussian kernel (FWHM) 3. For a detailed explanation of
the dataset and the image processing of the images refer to [Gispert et al., 2015].

3.1.2 Aging atrophy with regards to the APOE4 genotype

The cohort for this study consisted of 533 cognitively healthy participants aged between
45 and 76 years that were categorized depending on the APOE genotype: 261 non-carriers
of ε4-alleles; 207 ε4-heterozygotes, meaning that they only have one ε4-allele; and 65 ε4-
homozygotes, which have two ε4-alleles.

The image processing of the brain scans was similar to the one described in subsec-
tion 3.1.1: the images were segmented into gray matter tissue using the SPM software,
and located into a common space for subsequent normalization using a 9-affine parameter
transformation. Grey matter images were then used to generate a reference template object
of the sample, which was warped into a standard Montreal Neurological Institute (MNI)
template. Finally, the images were modulated with the spatial normalization deformation
and were smoothed with a 6-mm full-width at half maximum Gaussian kernel. Then again,
for a detailed explanation of the dataset and the image processing of the images refer to
[Cacciaglia et al., 2016].

1http://www.fil.ion.ucl.ac.uk/spm/
2One of the commonest MRI sequences that is characterized by its short Repetition Time (TR) and Time

to Echo (TE)
3https://en.wikipedia.org/wiki/Full_width_at_half_maximum

5

http://www.fil.ion.ucl.ac.uk/spm/
https://en.wikipedia.org/wiki/Full_width_at_half_maximum


3.2 The toolbox

3.2.1 General description

The toolbox comprises an independent fitting library, made up of different curve fitting
and fit evaluation methods, a processing module that interacts with the aforementioned
fitting library providing the formatted data obtained from the file system, several visualization
tools and a CLI interface that allows the interaction between the user and the processing
module, supported by a configuration file.

On top of that, a data loader is required for two reasons: the first is the heterogeneity of
the data to be loaded (Excel file for metadata, NIfTI files for morphometric data, etc.); and
the second is the large amount of data the system is required to handle (a typical gray-matter
volume of a subject has more than 1M voxels, and the toolbox is required to handle studies
with hundreds of subjects).

Figure 3.1: Block diagram of the toolbox

3.2.2 Curve fitting module

One of the main modules of the toolbox is the curve fitting library. This library is totally
decoupled from the toolbox and is in charge of the actual fitting of the data.

In the context of this project a fitter is a method that finds a parametric function of one
or more predictors and possibly one or more correctors that fits the target variable with the
minimum loss (or alternatively the maximum quality measure). That is, if we assume:

y = fθ(Xcorrectors,Xpredictors) + ε (3.1)

A fitter estimates the parameters θ (θ0, θ1, ..., θn−1) of the parametric function that min-
imizes the loss (L) between the target variable and the prediction:

θ̂0, θ̂1, ..., θ̂n−1 = argminθ(L(y, fθ(Xcorrectors,Xpredictors)) (3.2)

Moreover, if we assume additive contributions of the covariates and the explanatory
variables we can formulate Equation 3.1 as:
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y = fα(Xcorrectors) + fβ(Xpredictors) + ε (3.3)

And then we can estimate α and β separately:

α̂0, α̂1, ..., α̂c−1 = argminα(L(y, fα(Xcorrectors)) (3.4)

r = y − fα̂(Xcorrectors) (3.5)

β̂0, β̂1, ..., β̂p−1 = argminβ(L(r, fβ(Xpredictors)) (3.6)

Here y is a random vector of n observations with potentially unknown statistical prop-
erties, Xcorrectors and Xpredictors are matrices of dimensions n ×m and n × k respectively,
and r is the residuals vector obtained after substracting the contribution of the covariates
to the observations.

This mathematical formulation translates into a execution pipeline like the one depicted
in Figure 3.2

Figure 3.2: The curve fitting pipeline. The correctors are often called nuisance variables or
covariates in the literature, while the predictors are called variables of interest or explanatory
variables.

3.2.3 Processing module

Another core module of the toolbox is the Processing module. The main role of this
module is to act as an intermediary between the CLI interface and the fitting library whilst
using the DataLoader module to load the metadata from the Excel files, the NIfTI template
and the morphometric data for all subjects. It is designed in a way that each Processor
interacts with a Fitter to ask the user to input the required parameters for it to properly
work. In order to integrate all processors and allow the user to use different fitting techniques
for correction and for prediction we included the MixedProcessor, which adds a new level of
abstraction and delegates the underlying correction and prediction related functions to the
corresponding Processor instance.
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Predictor separation by category

One important feature that the toolbox offers is the possibility to categorize the subjects
of the study. For instance, if a particular study has a categorical variable that indicates
the diagnosis of the subject, this can be added in the configuration file and modeled by the
toolbox. This allows the user to separately fit the observations of each category (for example
to study the differences in trends of brain atrophy due to the diagnostic), or to perform
a statistical test that assesses how different the trends of brain atrophy are between one
categorical variable and the rest (for example to compute a statistical map that shows which
are the regions where these differences are more noticeable).

The former is trivial to implement: just select the observations and the samples of the
predictors and correctors that belong to the selected category. But the latter involves a
non-trivial implementation, which is going to be explained in the following paragraphs.

The idea is that the predictor used to model the data is split into M predictors, where
M is the total number of categories, and each predictor has the same number of observations
as the original one (n) by putting zeros on the samples that don’t belong to its category.

If P is the predictor with n samples, and s(i) is a sample belonging to the ith category:

P =



s(1)

s(1)

s(1)

s(2)

s(2)

...

s(i)

...

s(M)


⇒ S =



s(1) 0 · · · 0 · · · 0

s(1) 0 · · · 0 · · · 0

s(1) 0 · · · 0 · · · 0

0 s(2) · · · 0 · · · 0

0 s(2) · · · 0 · · · 0
...

...
...

...

0 0 · · · s(i) · · · 0
...

...
...

...

0 0 · · · 0 · · · s(M)


(3.7)

Once the separation is performed, the toolbox asks the user which is the category that
should be compared to the others, and then considers the selected category (say, i) as the
predictor P , and adds the remaining categories to the correctors. Then, assuming that the
correctors matrix C has as columns the correctors of the model, the final model (i vs the
rest) would be

C = {C | S1 | S2 | · · · | SM} (3.8)

P = Si (3.9)

where Sj is the jth column of S and | is the concatenation operator.

An example of an application of this feature can be found in section 4.2.

3.2.4 Software implementation

As stated in the specifications section (1.2), the programming language used to implement
this toolbox is Python. The reasons why we chose this particular programming language
were several: it is an easy to learn but feature rich programming language, it supports several
programming paradigms —object-oriented programming (OOP) or functional programming,
for instance—, has mature scientific computing libraries such as Numpy or Scipy and is widely
used by the community for statistical analysis, as it is R or MATLAB.
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The whole toolbox has been implemented almost exclusively with an OOP paradigm in
mind, which has allowed us to use techniques like inheritance or polymorphism to make it
modular and extendable. The latter is one of the strongest points of the implementation, as
it allows the current developers and future ones to add new fitters, new processors or new
fit evaluation methods by overriding the corresponding abstract classes.

Some unit tests4 have been implemented to automatically test the toolbox, hence pro-
viding an added layer of quality assurance (QA). Despite having only a few unit tests that
only cover a small percentage of the code, the implementation of such unit tests provides a
starting point for the developers to start covering more classes and methods, and denotes
that the toolbox is ready to be automatically tested.

Furthermore, a lot of effort has been put in documenting the main classes of the toolbox
and the toolbox itself, and also to be compliant to the PEP85 code style guideline, in order
to increase the readability of the code and therefore make the code base maintainable and
extendable.

For further details on the implementation of the toolbox refer to [Aduriz Berasategi, 2016].

3.3 Fitters

3.3.1 General Linear Model (GLM)

The General Linear model is a generalization of multiple linear regression to the case of
more than one dependent variable. Having in mind the multiple linear regression equation

Y = β0 + β1X1 + β2X2 + ...+ βkXk + ε (3.10)

the GLM differs from it in that the Y vector of n observations of a single Y variable can
be replaced by a Y matrix of n observations of m different Y variables. Similarly, the
β vector of regression coefficients for a single Y variable can be replaced by a β matrix of
regression coefficients, with one vector of β coefficients for each of the m dependent variables.

The matrix representation of this formulation is the following:

Y

(n×m)

= X

(n×(c+p))

β

((c+p)×m)

+ ε

(n×m)

(3.11)

In our case, the variables correspond to the concepts in Table 3.1.

But how do we estimate the β coefficients? The most popular estimation method for the
GLM is Least Squares, in which we pick the β coefficients that minimize the Residual Sum
of Squares (RSS).

4https://docs.python.org/2/library/unittest.html
5https://www.python.org/dev/peps/pep-0008/

9

https://docs.python.org/2/library/unittest.html
https://www.python.org/dev/peps/pep-0008/


Variable Description

Y
Matrix of target variables, that is, the n observations of gray-matter
values for each of the m voxels

X
Matrix of p predictors and c correctors, which is commonly known as
the design matrix

β
Unknown parameters that must be estimated in order to explain the
target variables as a linear combination of the predictors and the
correctors

ε Matrix of m random errors

Table 3.1: Description of the General Linear Model variables

RSS(βm) =

n∑
i=1

[yi,m − (β0,m +

c+p∑
j=1

βj,mxi,j)]
2 (3.12)

where βm is the vector of coefficients of the mth target variable, that is, the mth column
vector of β.

For the sake of simplicity let us assume that we only have one target variable Y , that we
will express from now on as y. We can write Equation 3.12 as:

RSS(β) = (y −Xβ)T (y −Xβ) (3.13)

Differentiating this equation with respect to the β coefficients we obtain:

∂RSS(β)

∂βT
= −2XT (y −Xβ) (3.14)

To find the minimum we put Equation 3.14 equal to 0, and solve the equation for the β
coefficients:

− 2XT y + 2XTXβ = 0 ⇐⇒ XTXβ = XT y ⇐⇒ β = (XTX)−1XT y (3.15)

If we interpret these results geometrically, we observe that ŷ = Xβ is a vector in the
subspace defined by the columns of X (the predictors and the correctors). Furthermore,
what Least Squares does is minimize the distance between this vector and the observations
of the target variable y, which is accomplished when ŷ is the projection of y in such subspace,
i.e., when ε ⊥ ŷ (see Figure 3.3)

However, here we have implicitly assumed that XTX is not singular and therefore there
is a unique solution for the β coefficients. This assumption does not held when the columns
of X are not linearly independent, hence X is not of full rank. This is the case for correlated
error among samples.

Fortunately the GLM is also able to treat this case. If we have a non-singular covariance
matrix Cnxn = σ2Vnxn , where Vnxn =

∑
i λiQ

i
nxn and Qinxn is the matrix corresponding

to the ith covariance component of the model, the Ordinary Least Squares (OLS) problem
becomes a Weighted Least Squares (WLS), whose solution is:

β = (XTV −1X)−1XTV −1y (3.16)
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Figure 3.3: Geometric interpretation of the Least Squares solution in a 2-dimensional space.
The red dotted line that is orthogonal to the yellow plane represents the error ε.
Figure taken from [Hastie et al., 2009]

.

Assuming V −1 = W TW , we can write Equation 3.13 as:

β = (XTW TWX)−1XTW TWy = ((WX)TWX)−1(WX)TWy = (XT
wXw)−1XT

wyw (3.17)

Which is the OLS equation (see Equation 3.12) but with the whitened versions of X and
y, which are Xw and yw respectively.

Curve fitting definition of GLM

Regarding the mathematical definition of the curve fitting block in Equation 3.4 and
Equation 3.6, we have the following table of correspondence:

Curve fitting GLM

L(·) RSS(·)
fθ(X) Xβ = β0+β1X1+...+β(c+p)X(c+p)

Table 3.2: Correspondence between the curve fitting and the GLM formulation

3.3.2 Generalized Additive Model (GAM)

Although appealingly simple, the General Linear Model often fails in real-life examples
due to the constraint of being linear. Even though that a basis expansion and non-linear
inter-dependencies between the regressors can be added, sometimes an inherently non-linear
approach is needed.
The Generalized Additive Model is a Generalized Linear Model (not to be confused with
General Linear Model, GLM) in which the observations depend linearly on unknown smooth
functions of some predictor variables. It was first introduced in [Hastie and Tibshirani, 1990]
as a novel technique that is capable of uncovering nonlinear covariate effects and has the
advantage of being completely automatic, i.e., no exploratory work is needed on the part of
the statistician.
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A generalized additive model has the form

Y = α+ f1(X1) + f2(X2) + ...+ fk(Xk) + ε (3.18)

Here the X1, X2, ..., Xk represent the explanatory variables and Y the target variable,
the f1, f2, ..., fk are non-parametric smooth functions, and the error ε has zero mean. The
difference between the GAM and the Generalized Linear Models is that, instead of modeling
each function as a basis expansion and then fitting the model using OLS, each function is
fitted using a scatterplot smoother (e.g. a cubic spline smoother) by means of an algorithm
(see algorithm 1) that simultaneously estimates the k functions.

Given observations (xi, yi) a criterion like the penalized residual sum of squares (PRSS)
can be specified for the problem of estimating the non-parametric functions:

PRSS(α, f1, f2, ..., fk) =

n∑
i=1

(yi − α−
k∑
j=1

fj(xij))
2 +

k∑
j=1

λj

∫
[f

′′
j (τj)]

2dτj (3.19)

Here the λj are regularization parameters that penalize the roughness of the non-parametric
function, being the two limit conditions λj = 0, which means that fj can be any function
that interpolates the observations, and λj →∞, which means that fj is the linear function
— as no second derivative is tolerated — that best fits the data.

It can be shown ([Hastie et al., 2009]) that the functions that minimize this criterion are
cubic splines in the component Xj , with knots at each of the unique values of xij . However,
there are some conditions that must be fulfilled in order for the solution to be unique:

1.
∑n

i=1 fj(xij) = 0 ∀j: the functions average zero over the data.

2. The matrix of input values (ijth entry is xij) X has full column rank.

The iterative algorithm that finds the solution is known as the backffiting algorithm:

Algorithm 1 Backfitting algorithm

1: α̂← 1
N

∑n
i=1 yi . Initialize elements

2: for j = 1 . . . k do
3: f̂j ← 0
4: end for
5: while f̂j has not converged for some j do
6: for j = 1 . . . k do

7: f̂j ← Sj

[
y − α̂−

∑
k 6=j f̂k (Xk)

]
. Smooth function

8: f̂j ← f̂j − 1
N

∑N
i=1 f̂j(xij)

9: end for
10: end while

Here the Sj is a cubic smoothing spline, but other fitting methods can be accommodated
in this algorithm by choosing the appropriate smoothing operator, such as:

• Local polynomial regression

• Kernel smoothing methods

• Surface smoothers
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Curve fitting definition of GAM

As it has been previously explained, the backfitting algorithm does not find the parameters
that define a parametric function but instead finds the function itself, so if we assume that the
formula in Equation 3.2 has no θ parameters, the following correspondence can be defined:

Curve fitting GAM

L(·) PRSS(·)
f(X) α+

∑k
j=1 fj(Xj)

Table 3.3: Correspondence between the curve fitting and the GAM formulation

3.3.3 Support Vector Regression (SVR)

The basic idea behind Support Vector Regression is simple: assuming we have n training
examples (x1, y1), ..., (xn, yn), where xi ∈ Rk, the goal is to find a function f(x) that has at
most ε deviation from the actually obtained targets yi for all the training data, and at the
same time is as flat as possible.

For the sake of simplicity we begin by describing the linear case of the Support Vector
Regression, and later on the non-linear case will be introduced via the implicit mapping with
kernels. The linear function f may be expressed as:

f(x) = 〈w, x〉+ b (3.20)

Then we can write this problem as a convex optimization problem by requiring

minimize
1

2
‖w‖2 subject to

{
yi − 〈w, xi〉 − b 6 ε

〈w, xi〉+ b− yi 6 ε
(3.21)

This assumes that a function f exists that approximates all pairs (xi, yi) with ε precision.
Sometimes, however, this may not be the case, so to relax the unfeasible constraints of the
optimization problem we can introduce slack variables ζi and ζ∗i

minimize
1

2
‖w‖2 + C

n∑
i=1

(ζi + ζ∗i ) subject to


yi − 〈w, xi〉 − b 6 ε+ ζi

〈w, xi〉+ b− yi 6 ε+ ζ∗i
ζi, ζ

∗
i > 0

(3.22)

The C hyperparameter acts as a regularizer, and adjusts the trade off between the flatness
of f and the amount up to which deviations larger than ε are tolerated.

The formulation above corresponds to the so called ε-insensitive loss function, which is
depicted in figure Figure 3.4.

We can now formulate the Lagrangian function from both the objective function (primal
objective function) and the corresponding constraints, by introducing a dual set of variables:

L =
1

2
‖w‖2 + C

n∑
i=1

(ζi + ζ∗i )−
n∑
i=1

αi(ε+ ζi − yi + 〈w, xi〉+ b)−

n∑
i=1

α∗i (ε+ ζ∗i − yi + 〈w, xi〉+ b)−
n∑
i=1

(ηiζi + η∗i ζ
∗
i )

(3.23)
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Figure 3.4: ε-insensitive loss function for Support Vector Regression

Now we take the partial derivatives of L with respect to the primal variables (w, b, ζi, ζ
∗
i )

and we equal them to 0:

∂L

∂b
=

n∑
i=1

(α∗i − αi) = 0

∂L

∂w
= w −

n∑
i=1

(αi − α∗i )xi = 0

∂L

∂ζ∗i
= C − α∗i − η∗i = 0

(3.24)

Combining all equations in Equation 3.24 into Equation 3.23 we get the dual optimization
problem:

maximize

{
−1

2

∑n
i,j=1(αi − α∗i )(αj − α∗j )〈xi, xj〉

−ε
∑n

i=1(αi + α∗i ) +
∑n

i=1 yi(αi − α∗i )
subject to

{∑n
i=1(αi + α∗i ) = 0

αi, α
∗
i ∈ [0, C]

(3.25)

The middle equation in Equation 3.24 can be written as

w =
n∑
i=1

(αi − α∗i )xi (3.26)

Finally, if we substitute Equation 3.26 into Equation 3.20 we obtain the SVR solution:

f(x) =

n∑
i=1

(αi − α∗i )〈xi, x〉+ b (3.27)

where αi and α∗i are known as dual coefficients.

For now we have only dealt with the linear version of Support Vector Regression, but
one of the main objectives of this project is to study non-linearities in the data, so now we
are going to study how to make the SVR algorithm nonlinear. There are two options:
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• Mapping functions Φ that explicitly map the inputs from their original input space X
into another feature space F (Φ : X→ F). A typical example is a polynomial expansion
of degree d.

• Kernel functions k(·) that implicitly map the inputs from their original space into
another (potentially high-dimensional) feature space. A kernel is defined as k(xi, xj) =
〈Φ(xi),Φ(xj)〉

The former is a reasonable approach in problems where higher order polynomials and
high dimensional spaces are not required, as it is computationally unfeasible for such cases
(the number of different features is

(
k+d−1
k

)
, being d the degree of the polynomial expansion).

On the other hand, kernel functions are computationally cheaper in SVR, as its solution
only depends on dot products between the input vectors. Thus, it suffices to know and use
k(xi, xj) = 〈Φ(xi),Φ(xj)〉 instead of Φ(·) explicitly. The SVR formulation using kernels is
therefore:

f(x) =
n∑
i=1

(αi − α∗i )k(xi, x) + b (3.28)

Some typical examples of kernel functions used with Support Vector Regression and
Support Vector Machines are:

• Polynomial of degree d: k(xi, xj) = (〈xi, xj〉+ r)d

• Radial basis function (Gaussian): k(xi, xj) = exp(−γ ‖xi − xj‖2)

• Sigmoid: k(xi, xj) = tanh(γ〈xi, xj〉+ r)

Curve fitting definition of SVR

Curve fitting SVR

L(y, f(X))

{
0 if |y − f(X)| 6 ε

|y − f(X)| − ε otherwise

fθ(X)
∑n

i=1(αi − α∗i )k(xi, x) + b

Table 3.4: Correspondence between the curve fitting and the SVR formulation

3.4 Fit evaluation methods

Once a particular model has fitted the data an evaluation of the goodness of the fit can
be performed. As this is done at the voxel-level one can compute statistical maps — a 3D
image where each voxel has the score of the fit evaluation for that particular voxel — for
each of the fit evaluation methods presented in this section.

3.4.1 MSE

Mean Square Error is easily one of the simplest and commonest fit evaluation metric. It
simply assesses how close is the prediction to the actual observations in terms of quadratic
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distance, and does not take into account the complexity of the model used to fit the obser-
vations.

MSE is defined with the following formula:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (3.29)

where yi is the ith observation and ŷi is the prediction of the model for the ith sample.

Considering the curve fitting pipeline in Figure 3.2, yi is the ith corrected observation
and ŷi is the prediction of the model for the ith predictor sample.

3.4.2 Coefficient of determination (R2)

The coefficient of determination is an evaluator that indicates the proportion of the
variance of the target variable that is predictable from the explanatory variables. Put it in
plain language, it provides a measure of how well future samples are likely to be predicted
by the model.

If ŷi is the predicted value of the ith sample, yi is the corresponding observation and ȳ
is the mean of the observations defined as ȳ = 1

n

∑n
i=1 yi, then the R2 score is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(3.30)

As it happened with MSE, the coefficient of determination does not penalize the complex-
ity of the model that fits the observations, so it is possible to arbitrarily increase the score
by increasing the complexity of the model, i.e., the more overfitted the model the greater is
this coefficient.

3.4.3 Akaike Information Criterion (AIC)

The Akaike Information Criterion is a measure of relative quality of a model: given a
collection of models AIC estimates the quality of each model relative to each of the other
models, which means that it will tell which is the best model even if all of them fit the data
poorly.

It is a criterion founded on information theory, as it offers a relative estimate of the
information lost when a given model is used to represent the process that generates the
data. In doing so, it deals with the trade-off between the goodness of fit of the model and
the complexity of the model.

If k is the number of estimated parameters in the model (e.g. the number of regressors
and the intercept term in multiple linear regression) and L is the maximum value of the
likelihood function of the model, AIC can be computed as:

AIC = 2k − 2ln(L) (3.31)

Particularly, the AIC score for a GLM model with k explanatory variables is

AIC = 2(k + 1) + n · (ln(2π) + ln(RSS)− ln(n) + 1) (3.32)
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that if we simplify by removing the constants (as it will be used to compare models that fit
the same n observations) we obtain

AIC = 2(k + 1) + n · ln(RSS) (3.33)

3.4.4 F-test

A t-test is a useful hypothesis testing statistic for both sample means and regression
coefficients. Unfortunately, when we have more complicated hypotheses, this test no longer
works. Hypotheses involving multiple regression coefficients require a different test statistic
and a different null distribution.

The F -test can be used in regression problems to determine whether a particular part of
a model is significantly improving the overall performance of the rest of the model. Consider
two models, the restricted model Mrestricted and the full model Mfull, such that Mrestricted is
nested within Mfull, that is, Mrestricted is a submodel of Mfull. Then, we can measure how
much the inclusion of Mfull −Mrestricted in the model is improving the fit by comparing the
variance of the fitting error when using the complete model, Mfull, as opposed to using the
restricted model, Mrestricted.

Typically, model Mfull will yield better results (a smaller error) than Mrestricted, but what
we want to measure is whether the difference is significant or not. Thus, we will perform
an F-test where the null hypothesis (H0) states that the variances of both errors are equal,
while the alternative hypothesis (H1) claims that the variance of the error when using Mfull

is smaller than when using Mrestricted:

H0 : V ar(MSEMrestricted
) = V ar(MSEMfull

)

H1 : V ar(MSEMrestricted
) 6= V ar(MSEMfull

)
(3.34)

Then the F -statistic is defined as:

Figure 3.5: Examples of the probability density functions of several F -distributions with
different degrees of freedom
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F =
(
RSSrestricted−RSSfull

dfrestricted−dffull )

(
RSSfull

dffull
)

(3.35)

where RSSrestricted =
∑n

i=1(yi− ŷrestrictedi )2 is the Residual Sum of Squares of the restricted
model Mrestricted and ŷrestrictedi is the prediction of the ith sample using the restricted model,

RSSfull =
∑n

i=1(yi− ŷ
full
i )2 is the Residual Sum of Squares of the full model Mfull and ŷfulli

is the prediction of the ith sample using the full model, dfrestricted are the degrees of freedom
of Mrestricted and dffull are the degrees of freedom of Mfull.

Under the null hypothesis F will follow a F-distribution of parameters (dfrestricted −
dffull, dffull), that is, Fdfrestricted−dffull,dffull .

To reject the null hypothesis at the α significance level we need to compute the F -test
from the obtained F -statistic (Equation 3.35) in order to obtain a p-value:

p-value = Pr(Fdfrestricted−dffull,dffull > F -statistic | H0) (3.36)

If the resulting p-value is less than the significance level, that is p-value 6 α, then we can
reject the null hypothesis.

The degrees of freedom of a model

In statistics the degrees of freedom may be defined as the number of values in the calcu-
lation of a statistic that are free to vary.

For a multiple linear regression model, the number of degrees of freedom is the number of
observations of the data n minus the number of parameters to be estimated, that for the case
of a multiple linear regression with p explanatory variables (including the intercept term)
would be df = n − p − 1. Despite being trivial in the case of multiple linear regression or
GLM, it is in general non-trivial for the other fitting methods.

The F-test is one of the most widely used statistical tests in the neuroimaging field, so
there was a strong interest in generating statistical maps with this metric for all fitters.

The case of GAM using smoothing splines is explained in [Hastie et al., 2009], where the
effective degrees of freedom are defined as the trace of the smoother matrix, dfλ = tr(Sλ).

The case of the SVR is even more complex. [Dinuzzo et al., 2007] introduces the concept
of the equivalent degrees of freedom based on the notion of pseudoresiduals and the use of
subdifferential calculus. As the mathematical background required to fully understand this
article is out of the scope of this project, I will only present the formula to compute the
pseudoresiduals, the sets of marginal support vectors and the final formula to compute the
degress of freedom.

Considering the notation used in subsection 3.3.3 and I = {1, 2, 3, ..., n}, the pseudoresid-
uals are defined as

ηi = yi −
∑

j∈I,j 6=i
(αj − α∗j )k(xi, xj) = yi − f(xi) + aik(xi, xi) (3.37)

From now on the dual coefficients (αi − α∗i ) will be expressed as ai
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The set of the marginal support vectors is defined as:

I+M = {i ∈ I : f(xi)− yi = ε}
I−M = {i ∈ I : yi − f(xi) = ε}

(3.38)

IM = I+M ∪ I
−
M (3.39)

And finally, the degrees of freedom of the SVR is the number m of marginal support
vectors

m = |{i ∈ I : ε ≤ |ηi| ≤ ε+ Ck(xi, xi)}| (3.40)

3.4.5 Penalized Residual Sum of Squares (PRSS)

As we saw in Equation 3.19, Penalized Residual Sum of Squares is a fit evaluation method
based on the fitting curve:

PRSS =
n∑
i=1

(yi − ŷi)2 + λ

∫
[f

′′
(x)]2dx (3.41)

Instead of penalizing the number of parameters of the model like the AIC or the degrees
of freedom like the F-test, the PRSS penalizes the roughness of the fitting, thus making it a
fit evaluation metric available for any fitter.

However, PRSS presents the problem of specifying the λ, which can be solved either
heuristically (i.e. trial and error) or using some sort of hyperparameters searching method.

Furthermore, this method does not take into account the underlying variance of the
predicted curve. For example, if we have n observations with 0 mean, low variance and a flat
trend, the PRSS score will be low for that fitting as even a linear regression will fit the data
almost perfectly, while if we have n observations with non-zero mean, high variance and a
non-flat trend, no matter how good is our fitting that we will never obtain the same PRSS
score as in the previous case. That poses a real problem in the context of morphological
neuroimaging analysis, as a great percentage of the voxels are 0 valued for all subjects (e.g.
voxels corresponding to areas with white matter or cerebrospinal fluid).

For that reason, we propose a variance normalized version of the PRSS, which is presented
in the next section.

3.4.6 Variance Normalized - Penalized Residual Sum of Squares (VN-
PRSS)

This new fit evaluation method intends to favor not only the best smooth fits, but also
the ones that fit observations with non-flat trends, or conversely, it penalizes fits that do not
adjust well to the observations, are rough, or are performed over observations with a flat
trend.

The formulation is the same as PRSS but adding the normalization factor of the variance
of the predicted curve:

V N -PRSS =
1

1
n−1

∑n
i=1(ŷi −

1
n

∑n
i=1 ŷi)

2
(

n∑
i=1

(yi − ŷi)2 + λ

∫
[f

′′
(x)]2dx) (3.42)
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3.5 Hyperparameters search: GridSearch

The insightful reader may have noticed that the Support Vector Regression not only has
normal parameters that are included in the optimization problem (i.e. the dual coefficients),
but also depends on several hyperparameters to properly fit the observations, which are
C and ε by default, and may include others depending on the kernel used (e.g. γ for the
Gaussian kernel).

One possible approach to find such hyperparameters is the so called trial and error. The
problem is that the search space is so big even with 2 parameters that this approach is
unfeasible to do it manually.

For that reason we proposed an automatic method to find the optimal hyperparameters
in the considered search space by sampling it in a grid, hence the name GridSearch. Here by
optimal hyperparameters we mean the hyperparameters that minimize an error function (or
loss function) that outputs how great is the error of the fit with respect to the observations
(see subsection 3.5.3).

3.5.1 Description

Assuming there are p hyperparameters to be optimized, the idea of the GridSearch algo-
rithm is to sample the p-dimensional search space in a grid, try to fit a subset of the data
with the combination of hyperparameters of each sample in the grid, and find the combina-
tion that minimizes the error function of choice. Despite being a simple idea, it still presents
some problems that need to be addressed:

1. The lack of validation data forces the searching algorithm to work with the training data
itself, the morphological data of all subjects where the linear and nonlinear patterns
ought to be found. This poses the problem of biasing the search towards overfitting
the data, so in order to generalize a subset of m voxels is randomly selected (without
repetition) for each iteration, and the search is performed over N iterations.

2. In voxels with low-variance data and flat trends (mentioned in subsection 3.4.5) the
fitting will be easier than in voxels with high-variance data and non-flat trends, hence
the error for such voxels will be smaller. Suppose then that in the ith iteration out of N
we select m voxels like the former ones: the optimal hyperparameters will be found in
this iteration, but such hyperparameters will bias the fit towards underfitting in voxels
with high-variance and non-flat trends. Due to that, there is a minimum variance that
a voxel must have in order to be randomly selected for a particular subset of m voxels,
and the error for each voxel is weighted by the inverse of its variance, 1

V ar(yj)
.

The sampling procedure to obtain the grid considers four approaches. Considering the
example of one hyperparameter that should be optimized using start = a, end = b and
samples = s, these are the four mentioned approaches:

• Deterministic linear spacing : the interval [a, b] is partitioned into s sub-intervals with
the same length, or equivalently, we obtain s equidistant samples between a and b.

• Deterministic logarithmic spacing : the interval [10a, 10b] is partitioned into s sub-
intervals with the same length, or equivalently, we obtain s equidistant samples between
10a and 10b.
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• Random linear spacing : we find s random values between a and b and we order them
in increasing order.

• Random logarithmic spacing : we find s random values between 10a and 10b and we
order them in increasing order.

3.5.2 Algorithm

Algorithm 2 GridSearch algorithm

1: tot err ← 0 . Initialize total error to 0
2: optimal hparam← null . Initialize optimal hyperparameters to null
3: fitter ← new Fitter() . Initialize fitter
4: hparams← get hyperparameters() . Initialize hyperparameters grid
5: for i = 1 . . . N do
6: cnt← 0 . Initialize voxel counter
7: while cnt < m do . Select a subset of m voxels
8: voxel← select random voxel()
9: if V ar(voxel) > thr and voxel /∈ voxel subset then

10: voxel subset← voxel
11: cnt← cnt+ 1
12: end if
13: end while
14: obs← get observations(voxel subset) . Observations of the m voxels
15: for hparam in hparams do
16: fitter.fit(obs, hparam) . Fit the observations
17: prediction← fitter.predict() . Predict the fitted data
18: df ← fitter.df() . Get the degrees of freedom
19: err ← error function(obs, prediction, df)
20: err ← 1

V ar(obs)err

21: err ← sum(err)
22: if err < tot err then
23: tot err ← err
24: optimal hparam← hparam
25: end if
26: end for
27: end for

3.5.3 Error functions

Three error functions have been considered in order to optimize the hyperparameters:

1. MSE: Mean Squared Error optimizes the goodness of the fit but does not penalize
the complexity of the model. It can be used with a linear SVR with polynomial basis
expansion (PolySVR) if the degree of the polynomial is low, but it will cause overfitting
when used with a SVR with Gaussian kernel (GaussianSVR).

2. Cp statistic: formulated as Cp = MSE + 2dfn σ̂
2, it assesses the adjustment of the fit

via MSE and the complexity of the model via degrees of freedom, df . It can be use
with both PolySVR and GaussianSVR as it won’t allow overfitting.
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3. ANOVA-based error: it computes the p-value as in subsection 3.4.4. This error function
is similar to the Cp statistics in terms of penalizing the complexity of the model, but
it is more useful if we want to obtain F-test statistical maps afterwards, as it finds the
optimal hyperparameters for that fit evaluation method.

3.6 Methods to compare statistical maps

Four methods to compare statistical maps have been conceived in the context of this
project.

3.6.1 Description of the BEST, RGB, absdiff and SE methods

Name
# of com-
parable
maps

Description

BEST 2 →∞

Creates a new map with the best fit score of all compared
statistical maps for each voxel, and also creates an addi-
tional map where each voxel has the numerical label of
the map with the best fit score. This means that if we
compare m maps, and we number them in increasing or-
der as {1, 2, ..., i, ...,m}, the vth voxel where the best fit
score fs corresponds to the ith map, the value assigned to
that voxel would be fs for the former and i for the latter.

RGB 2 or 3

Creates a statistical map where each compared map is
assigned to an RGB channel. That way, if you compare
2 statistical maps, the first would be assigned to the red
channel (R) and the second to the green channel (G), and
if you add a third map to the comparison it would be
assigned to the blue channel (B). The resulting is a 4-
dimensional array with dimensions 2×dim1×dim2×dim3
for the case of 2 inputs and 3 × dim1 × dim2 × dim3 for
the case of 3 inputs.

Absolute differ-
ence (absdiff )

2

Computes the absolute difference between the two maps:
Y = |X1 −X2|, where X1 and X2 are the 3D maps to be
compared with dimensions dim1 × dim2 × dim3 and the
subtraction is element-wise.

Squared Error
(SE )

2

Computes the squared error or distance between the two
maps: Y = ‖X1 −X2‖2, where X1 and X2 are the 3D
maps to be compared with dimensions dim1×dim2×dim3
and the subtraction is element-wise.

Table 3.5: Description of the BEST, RGB, absdiff and SE methods to compare statistical
maps
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3.6.2 Use cases

There are different use cases in which each of this comparison methods are useful. Here
we present some of them:

• Select the best fitting model

If fitting the same observations of the same study with different fitters and/or different
models for the same fitter, the BEST method is the method that will ease your model
selection task. As it generates a label map with the model that best fits a particular
voxel, you can see which regions are best fitted by which models.

• Visualize the relative contribution of different models

If you have 2 or 3 models to fit your data and want to visually inspect which is the
relative contribution of each model (in terms of fitting scores), then the RGB method
is the one you should use. The output map can be visualized with tools like FSLView6

in RGB mode in order to see the contribution of each compared statistical map as a
combination of the primary colors for each region of interest.

• Validate the similarity between 2 maps

If you want to ensure that two statistical maps are equal or almost equal, or otherwise
you want to know where the two maps differ the most, then you can use the SE and
the absdiff methods. The SE method is better for equality comparisons, as it enhances
the big differences and lessens the small ones (due to the nature of quadratic distance),
whilst the absdiff is better to visually inspect the regions where a difference between
the 2 maps can be found.

3.7 Visualization tools

While having a variety of fitters to model your data and fit evaluation methods to assess
the goodness of the fit is important, it is equally important to have tools that let you easily
inspect the fitting and fit evaluation results. For that reason, two visualization methods have
been considered in this project:

1. Curve visualization

This method allows the user to visualize the fitted curves with respect to the obser-
vations for a given voxel. The shown figure consists of a scatter plot of the corrected
observations of the specified voxel and a curve plot of the prediction of the model over
such corrected observations. This tool can show overlapping or independent plots of
different models: the former allows the user to inspect the differences between the
fitted curves and the latter provides a detailed plot of a specific model.

An example of the curve visualization can be found in Figure 4.7.

2. Graphical visualizer

While the previous tool is useful to inspect the curves for a particular voxel, it is some-
what rigid in the sense that you can’t quickly change the voxel that you are visualizing
and the fact that you have no visual reference of the position of that particular voxel
with respect to the brain. On top of that, a user can have better insight of the results

6http://fsl.fmrib.ox.ac.uk/fsl/fslview/
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by visualizing the curves of the voxels where the fit scores are higher. These previous
reasons led us to conceive a visualization tool that, in fact, isn’t provided in any major
neuroimaging software package: a graphical visualizer that shows the coronal, sagital
and frontal views of the reference template with an statistical map overlaying it, and a
figure on the side with the corrected observations and the predicted curve (or curves)
for the selected voxel.

So, in a sense, this tool allows you to visualize what the curve visualization does with
the addition of having a visual reference of the brain and the statistical map and the
ability to select with the cursor the voxel to visualize.

One example of the graphical visualizer can be found in Figure 4.4.
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Chapter 4

Results

4.1 AD-CSF and the Alzheimer’s disease continuum

In this section the results obtained from the toolbox for the dataset AD-CSF and the
Alzheimer’s disease continuum will be presented. As [Aduriz Berasategi, 2016] presented
significant results computed with a previous version of the toolbox that were coherent with
the ones found in [Gispert et al., 2015], we will orient this section in presenting alternative
methods to uncover other interesting findings, while providing examples of the capabilities
of the toolbox. Despite that, the models used to fit the data will be as similar as possible
to the ones used in [Gispert et al., 2015], that is, all the observations will be corrected by a
polynomial GLM with age and gender as correctors, being the former a 2nd degree polyno-
mial and the latter linear, and the predictor, which is the AD-CSF index, will be modeled
as a 3rd degree polynomial in the polynomial-based fitters.

The first experiment consisted of fitting the two SVR based fitters to the data and
compute an F-test statistical map on both of them. The goal of this experiment was to
see how the SVR based fitters behave (in terms of non-linearity and statistical significance)
and also see if they provide more information than the common polynomial GLM, which is
the one used in [Gispert et al., 2015]. In order to fit the polynomial SVR and the Gaussian
SVR a previous step was taken: the hyperparameters search, which yielded the following
hyperparameters when using the ANOVA error function, deterministic linear spacing for ε
and deterministic logarithmic spacing for C and γ (see Figure A.1):

Name C ε γ

Polynomial SVR 1.65 0.078 -

Gaussian SVR 0.301 0.1 1.995

Table 4.1: Polynomial and Gaussian SVR hyperparameters for the AD-CSF and the
Alzheimer’s disease continuum

For this hyperparameters the resulting heat-maps of the F-test are Figure 4.1 for the
Polynomial SVR and Figure 4.2 for the Gaussian SVR.

One can easily notice the difference in the size and number of activated regions between
the two fitters, as it is clear that the polynomial SVR has statistical significance in several
regions that the Gaussian SVR has not. This may be due to the incremented non-linearity
of the Gaussian SVR that causes the model to have more degrees of freedom and, therefore,
to have less statistical power. However, here the actual value of the statistical test cannot
be easily distinguished between one and other.

The second experiment tried to overcome the mentioned limitation by producing a BEST
fit model map between the transformed Z-scores of the polynomial GLM, the polynomial
SVR and the Gaussian SVR, and then visualizing the voxels in which each of the SVR-
based fitters have better fitting scores. Again, the compared maps are Z-scores obtained
as a transformation of the p-values produced by the F-test, which have been filtered by a
significance level of 0.001 and by minimum cluster size of 100 voxels.
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Figure 4.1: F-test statistical map for the polynomial SVR, with significance level (α) filtering
at 0.001, minimum cluster size of 100 voxels and transformed into Z-scores for improved
visualization.

Figure 4.2: F-test statistical map for the Gaussian SVR, with significance level (α) filtering
at 0.001, minimum cluster size of 100 voxels and transformed into Z-scores for improved
visualization.
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In Figure 4.3 we see that the selected voxel is orange, which corresponds to the polynomial
SVR model, and in Figure 4.4 we see that the selected voxel is white, which corresponds to
the Gaussian SVR model. Again, we see a lot of voxels that are either black (polynomial
GLM, the remaining model) or orange, indicating that the polynomial models (GLM and
SVR) provide great statistical power in order to find the regions of interest. But we also see
this time that the Gaussian SVR has the greatest fitting scores in specific regions, concretely
the right hippocampus — as reported by the Harvard-Oxford Subcortical Structural Atlas
—, which is known to be one of the most important memory-related structures of the brain.
This may indicate that the inherent non-linearity of the atrophy in this region may not be
explained only by a third degree polynomial, but by an even more nonlinear function.

Figure 4.3: BEST model of polynomial
GLM vs polynomial SVR vs Gaussian
SVR with the corresponding curves for
a voxel in which the best fitting score
belongs to the polynomial SVR model.

Figure 4.4: BEST model of polynomial
GLM vs polynomial SVR vs Gaussian
SVR with the corresponding curves for
a voxel in which the best fitting score
belongs to the Gaussian SVR model.

Finally the third experiment was conceived to compare the F-test and the VN-PRSS
fit evaluation methods and see which kind of curve patterns they favor. The goal was to
find whether the new VN-PRSS evaluation function discovers new regions of accelerated
atrophy that the F-test is not capable of. For this experiment to be easily reproducible the
polynomial GLM was used as the fitting method.

Figure 4.5 shows the activation map of the F-test while Figure 4.6 shows the activation
map of the VN-PRSS fit evaluation method.

We see that the VN-PRSS overlaps with the majority of the activated regions in the F-
test, meaning that they capture similar information. Figure 4.7 shows the fitted polynomial
GLM curve for a voxel where both the VN-PRSS and the F-test scores are high. Although
there is no evidence of the VN-PRSS method providing more information than the F-test,
the method still proves itself useful as it can provide similar results as the widely accepted
F-test, but it does not require the computation of the degrees of freedom, so it can be applied
to any parametric and non-parametric fitter.
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Figure 4.5: F-test statistical map for the polynomial GLM, with significance level (α) filtering
at 0.001, minimum cluster size of 100 voxels and transformed into Z-scores for improved
visualization.

Figure 4.6: VN-PRSS statistical map for the polynomial GLM, with a γ value of 0.0003 and
filtering out the values outside the 0.5% percentile

Figure 4.7: Polynomial GLM curve for the voxel in coordinates -22 mm, 3 mm, -18 mm in
MNI space.
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4.2 Aging atrophy with regards to the APOE4 genotype

The results provided in this section will try to reproduce the ones in [Cacciaglia et al., 2016].
To do so, the same polynomial model used in the article will be used here: the correctors
will be gender, years of education and total intracranial volume, all of them fitted by a linear
GLM, and the predictor will be age, which will be fitted using a polynomial GLM of degree
2 whenever the fitter allows polynomial basis expansion (that is, polynomial GLM, GAM
with polynomial smoother and polynomial SVR).

In this problem we want to find results that show differences in the atrophy patterns
across normal aging depending on the APOE4 genotype. Hence if we encode the APOE4
genotype as a categorical variable that represents the number of ε4-alleles, we can categorize
the subjects of the study as 0, 1 or 2, and then we can use the feature explained in section 3.2.3
in order to fit the observations separately depending on the category and also to perform
statistical tests to compare between categories.

A quick inspection of the boxplots of the Age variable for each category in Figure A.2
reveals that category 2 does not have the same representation in terms of range, and also that
the distribution of this variable is quite different in category 2 from the rest of categories.

The first experiment consisted in fitting the categorically-separated observations with
the polynomial GLM using the aforementioned model for the correctors and predictors. The
goal of this experiment was to compare the results generated by the toolbox to the ones
presented in [Cacciaglia et al., 2016].

We see in Figure 4.8 the original F-test statistical map when comparing ε4-ε4 allele
carriers vs the rest. Beside it we have Figure 4.9, which is the F-test statistical map computed
by the toolbox when also comparing category 2 vs the rest. Although they are not completely
different, it can be easily noticed that the two maps don’t match perfectly. A possible
explanation of this mismatch is the way in which the category is encoded: in our case, we
only encode whether the subject is non-carrier, heterozygote or homozygote for the ε4-allele,
while in the paper they encode the APOE4 categorical variable using 5 categories: ε2-ε3,
ε2-ε4, ε3-ε3, ε3-ε4 and ε4-ε4 allele carriers.

Figure 4.8: F-test statistical map from
[Cacciaglia et al., 2016] comparing the
ε4-homozygotes versus the rest, with
significance level (α) filtering at 0.001
and minimum cluster size of 30 voxels.

Figure 4.9: F-test statistical map for
the polynomial GLM comparing the
ε4-homozygotes vs the rest, with

significance level (α) filtering at 0.001
and minimum cluster size of 30 voxels.

In Figure 4.10 we see the curves for the significant regions provided in the original pa-
per. Some of these significant regions are derived from a ROI-based analysis — the F-test
comparison is performed locally in a region of interest —. Because of that we only plot the
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curves for the significant regions at whole-brain level (that is, the posterior hippocampus for
both hemispheres of the brain), which can be seen in Figure 4.11 and Figure 4.12.

Here the fitted curves are rather similar despite being fitted with two different methods.
We can also see that the right posterior hippocampus is not significant when evaluated with
the F-test while the left is, and that is due to the difference in the fitted curves, as the left
region presents an abrupt decay around 57 years that the other categories don’t present, but
the right one follows a similar trend to the other categories.

Figure 4.10: Fitted curves using an spline-smoother for the significant regions at ROI
level and at whole-brain level provided in [Cacciaglia et al., 2016]

The second and last experiment for this problem consisted in computing the VN-PRSS
fit scores for the same comparison as in the first experiment, category 2 vs the rest. The
goal in mind when performing this experiment was to see whether this fit evaluation metric
uncovered new regions or if it behave similarly to the F-test instead.

To see the differences between the F-test statistical map and the VN-PRSS fit scores
map we compared them overlaying one map to the other and putting them in different color
modes in FSLView. The resulting colored map (Figure 4.13) shows that the two fit-evaluation
methods are almost identical, as the resulting color (purple-ish) is due to the fact that the
VN-PRSS map is using a hot colormap with opacity value of 0.5 and the F-test map is using
a cool colormap with opacity value of 1. An example of a curve for a voxel where both
statistical maps have a high fit score is provided in Figure A.3.
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Figure 4.11: F-test activation map for
category 2 versus the rest and the

corresponding polynomial GLM curve
in the voxel with coordinates 26 mm,
-32 mm, 0 mm in MNI space, which

belongs to the left posterior
hippocampus.

Figure 4.12: F-test activation map for
category 2 versus the rest and the

corresponding polynomial GLM curve
in the voxel with coordinates -27 mm,
-30 mm, 5 mm in MNI space, which

belongs to the right posterior
hippocampus.

Figure 4.13: Combination of an F-test and a VN-PRSS statistical map for the same
model (polynomial GLM) when comparing category 2 vs all. The former is colored in

cool mode while the latter is colored in hot mode and has 0.5 opacity.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we have presented a software toolbox that allows researchers to study linear
and nonlinear patterns of gray-matter variability.

Several fitting methods with their own sub-variants have been introduced and their math-
ematical formulation has been explained. Also, some of the most widely accepted fit evalu-
ation methods have been presented in this work, as well as others that are more innovative
and less traditional. In the context of this work an algorithm to find the hyperparameters of
the Support Vector Regression fitters based on a grid search approach has been designed and
implemented. The presented algorithm has been designed with a neuroimaging point of view
in mind, but it also provides flexibility by the inclusion of several error functions. Finally,
visualization tools and methods to compare statistical maps have been included in this work
in order to ease the task of inspecting the results and uncovering interesting findings in them.

Having said that, we can conclude that the toolbox has been successfully implemented,
as the requirements specified in section 1.2 have been fulfilled and the main objectives of the
project in section 1.1 have been achieved. Proof of the successful implementation are the
results presented in chapter 4, which are coherent with the ones presented in both articles
from FPM and, at the same time, provide added insight of the data due to the diversity of
methods that can be applied to it. Furthermore, the toolbox is already fully operational, the
code is easily readable as it is all documented and PEP8 compliant, and the CLI interface
is also well documented (Appendix F), which makes it user-friendly, even for non-technical
users. Another important fact to be mentioned is the increasing interest that the Pasqual
Maragall Foundation has put in the publication of the code — as an open-source tool —
accompanied by a technical publication.

Finally, although the toolbox incorporates many features that have been proved useful,
there is still some development to be done, which is going to be summarized in section 5.2.

5.2 Future development

• Curve pattern clustering: One of the most innovative features in the field of neu-
roimaging that both the research group at GPI and the FPM have conceived is a
clustering method that groups voxels depending on the pattern of the fitted curve, i.e.,
voxels with similar curve trends are clustered together.

• Extending the data loader for FreeSurfer data: another interesting feature that
has been planned for this toolbox is the extension of the Data loader module to accept
FreeSurfer data, so that researchers that are used to FreeSurfer can easily use their
data with this toolbox.

• Implementing more unit tests: with the implementation of more unit tests (ideally
to cover 100% of the code) we would improve the QA of the toolbox.
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Appendix A

Additional results

Figure A.1: Error surface for the polynomial SVR when using the ANOVA error function in
the AD-CSF and the Alzheimer’s disease continuum problem.

Figure A.2: Categorical boxplot for categories 0, 1 and 2 that presents the minimum and
maximum, the median and the first and third quartiles of the Age variable for each category
of the Aging atrophy with regards to the APOE4 genotype problem.
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Figure A.3: VN-PRSS statistical map for the polynomial model in Aging atrophy with regards
to the APOE4 genotype problem and the associated curve in a voxel with a high fit score.
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Appendix B

List of Acronyms

FPM Fundació Pasqual Maragall

GPI Grup de Processat d’Imatge

AD Alzheimer’s Disease

CSF Cerebrospinal fluid

NIfTI Neuroimaging Informatics Technology Initiative

CLI Command Line Interface

GLM General Linear Model

GAM Generalized Additive Model

SVR Support Vector Regression

VBM Voxel Based Morphometry

RSS Residual Sum of Squares

PRSS Penalized Residual Sum of Squares
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Appendix C

Gantt diagram

Figure C.1: Gantt diagram of the project.
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Appendix D

Budget

Despite being a research project and therefore not involving a service or product to be
sold, this section tries to estimate the budget of the project.

The hardware used for this project were the computational resources provided by the
GPI, so there has not been any cost in terms of hardware.

The software used for the development of the toolbox and the visualization of results is
all open-source, so again there are no costs added.

The only cost that can be accounted for this project is the salary of the members involved
in it. Considering the amount of time that each member has put into this project and the
standard salary for junior engineers, senior engineers and technical advisors, the costs can
be summarized as follows:

Role Weeks Wage/hour Dedication Total

Junior engineer 35 10,00 e/h 25 h/week 8.750 e

Junior engineer 24 10,00 e/h 25 h/week 6.000 e

Junior engineer 24 10,00 e/h 15 h/week 3.600 e

Senior engineer 35 20,00 e/h 4 h/week 2.800 e

Technical advisor - 20,00 e/h 10h 200 e

Total 21.350 e

Table D.1: Budget of the project
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Appendix E

Incidents and modifications

The development of this project hasn’t occurred without any incidences or modifications.

As the primary stakeholders of the project were the Pasqual Maragall Foundation, we
have had to adapt the requirements and specifications throughout the project in order to
provide the best outcome for them. Initially the goal of the project was to develop a soft-
ware toolbox that allowed researches to study the neurodegenerative patterns across the
Alzheimer’s disease, and to do so we planned the features that would be useful for that task.
By periodically meeting with the FPM we were able to narrow down the initially planned
features, so a few of them that were initially considered in the project plan were finally
rejected.

The inflection point was around the beginning of June, when the goal of the project was
changed for a more ambitious one: to develop a toolbox that would allow researchers to
study nonlinear patterns of gray-matter variability and assess their statistical significance
for any study, thus not being limited to the Alzheimer’s disease continuum problem. This
dramatic change of scope was primarily motivated by their need to study a new problem,
the Aging atrophy with regards to the APOE4 genotype problem.

Regarding the incidents, the most important one was the underestimation of the timing
to implement the F-test for one of the newly introduced fitters, the SVR. We conducted
an in-depth research over the topic, and some experiments were made in order to provide a
robust implementation of the degrees of freedom for the SVR, but it took quite more time
than we initially planned.
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Appendix F

CLI toolbox documentation

The Requirements, How can I use it? and CLI documentation sections from the README.md
file — the file that contains the toolbox documentation in Markdown format — in the Git
repository (as of September of 2016 and without images) are included in this appendix. The
original file has been converted to PDF in order to be visible in this document.
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Nonlinear analysis toolbox for
neurodegenerative disease and aging
This toolbox written in Python provides the tools to analyze the linear and non-linear dynamics of
gray-matter and study the statistical significance of such dynamics at the voxel level.

Authors

Name Position / Role
Asier Aduriz Berasategi Author

Santiago Puch Giner Author
Adrià Casamitjana Díaz Contributor

Verónica Vilaplana Besler Advisor (UPC)
Juan Domingo Gispert Advisor (PMF)

Institutions

UPC (Universitat Politècnica de Catalunya)●

PMF (Pasqual Maragall Foundation)●

Requirements

In order for this toolbox to properly parse and obtain the data to be processed there are some
requirements that should be fullfilled. These requirements are the following:

Excel file (.xls) with all the metadata This file should contain the unique identifier for each subject,●

an optional categorical value for each subject, and one or several fields with metadata to be used
as predictor and/or correctors. The data must be enclosed in the first sheet of the xls book, and
this sheet must have the first row as a header with the names identifying the fields to be used. An
example of a Excel file with the required format can be found in
tests/mock_data/mock_excel.xls.
Folder containing all the NIFTIs (gzipped or not) This folder must containt one NIFTI file for each●

subject, and it should be identified with the unique identifier specified in the excel file, with the
option to have a study prefix for everyone of them.
Template file in NIFTI format The template into which all the subjects have been registered to●

compute the VBM (e.g. MNI template)
Configuration file (.yaml) for this study In this configuration file you specify where to find your●

previous requirements (Excel, data folder and template), where to store the results, the model
(predictor and correctors), and other parameters, such as the processing parameters and the
configuration parameters for the GridSearch.You can find a template of this configuration file in
config/exampleConfig.yaml.

How can I use it?



The interaction between the user and the software is done through a Command Line Interface (CLI).

As the toolbox is written in Python you must have python 2.7 previously installed in order to use it
(instructions on how to install python can be found here).

First you just have to clone this repository:

$ git clone https://santi-puch@bitbucket.org/imatge-upc/neuroimatge.git
$ cd Neuroimatge

After that you must install all the dependencies, specified in the requirements.txt file:

$ pip install -r requirements.txt

After all that is done you can execute the scripts using the python executable. This is the pattern
that you'll be using to execute the scripts:

$ python nln-script.py --options

CLI documentation

nln-compute_fitting.py

Computes the fitting parameters for the data provided in the configuration file. This fitting
parameters can be computed for all subjects in the study (default behaviour) or you can specify for
which categories should the parameters be computed

Parameter name Optional Possible value/s Default
value Description

configuration_file No Path -
YAML configuration file for the study,

as specified in the requirements
section

--categories Yes Space-separated
integers None

Category or categories (as they are
represented in the Excel file) for which

the fitting parameters should be
computed

--parameters Yes Path None

Path to the txt file within the results
directory that contains the user

defined parameters to load a
pre-configured correction and

prediction processor

--prefix Yes String Empty
string Prefix used in the result files

nln-generate_user_parameters.py



Generates user defined parameters for a specific correction and prediction processor so you can
use them in compute_fitting.py using the --parameters option

Parameter name Optional Possible
value/s Default value Description

configuration_file No Path - YAML configuration file for the study, as
specified in the requirements section

--prefix Yes String Empty string Prefix used in the result files

nln-compute_statistical_maps.py

Computes statistical maps for the fitting results computed by compute_fitting.py. By default uses all
computed parameters inside the results folder specified in the configuration file.

Parameter name Optional Possible value/s Default value Description

configuration_file No Path -
YAML configuration file for the

study, as specified in the
requirements section

--method Yes mse, r2, fstat, ftest,
aic, prss, vnprss ftest

Method to evaluate the fitting
score per voxel and create a

statistical map out of these fitting
scores

--dirs Yes Space-separated
paths

All computed
parameters
within the

results
directory

Specify one or several directories
within the results directory from
which the parameters should be

loaded

--cluster_size Yes Integer 100
Value of the minimum cluster

size (in voxels) that should
survive after thresholding

--p_thresholds Yes Space-separated
floats

0.01 0.005
0.001

One or more values representing
the maximum acceptable p-value,

so that all voxels with greater
p-value are put to the default

value

--gamma Yes Float 5e-3
Value of the percentile used to
determine the upper threshold
for PRSS and vnPRSS methods

--gm_threshold Yes Float 0.1 Mean grey-matter lower
threshold

--labels Yes Boolean True Produce a map that has one label
per cluster

nln-compare_statistical_maps.py

Compares statistical maps generated by compute_statistical_maps.py using four possible
techniques: RGB map, best-fitting map, absolute difference or squared error. You must specify the
specific maps to compare and ensure that they are comparable (Z-score map vs Z-score map,
p-value map vs p-value map, etc.)



Parameter name Optional Possible value/s Default
value Description

configuration_file No Path -
YAML configuration file for the study,

as specified in the requirements
section

files No Space-separated
paths - Specify two or more files within the

results directory to be compared

--method Yes best, rgb, absdiff, se best

Method to compare the fitting score
per voxel and create a new
statistical map out of this

comparison

--name Yes String Empty
string

Name to be prepended to the
output file

nln-search_hyperparameters.py

Finds the hyper parameters of the PolySVR or GaussianSVR using a grid search approach and using
several error functions

Parameter name Optional Possible value/s Default
value Description

configuration_file No Path - YAML configuration file for the study, as
specified in the requirements section

--parameters Yes Path None

Path to the txt file within the results
directory that contains the user defined

parameters to load a pre-configured
correction and prediction processor

--categories Yes Space-separated
integers None

Category or categories (as they are
represented in the Excel file) for which
the hyperparameters should be found

--prefix Yes String Empty
string Prefix used in the result files

--error Yes mse, anova, Cp anova Error function to be minimized in order
to find the optimal hyperparameters

--iterations, -i Yes Integer 5 The number of iterations to perform

--voxels, -v Yes Integer 100

The number of voxels to be used to
compute the error and therefore find the

optimal hyperparameters. In general,
more voxels used may imply better

generalization, but also more
computation time and use of resources

--voxel-offset Yes Integer 10

Number of voxels that will not be taken
into account in all directions, both at the
beginning and at the end. That is, for a

voxel offset of v, and volumes with
dimensions (x_dim, y_dim, z_dim), only
the following voxels will be taken into

account: [v:x_dim-v, v:y_dim-v, v:z_dim-v]

nln-show_curves.py



Shows the curves for the fitting results computed by compute_fitting.py. By default shows all
computed parameters inside the results folder specified in the configuration file

Parameter name Optional Possible value/s Default value Description

configuration_file No Path -
YAML configuration file for the

study, as specified in the
requirements section

--dirs Yes Space-separated
paths

All computed
parameters
within the

results
directory

Specify one or several directories
within the results directory from
which the parameters should be

loaded

--compare Yes Boolean True

Plots the curves in the same figure
so that you are able to compare

the different curves. The program
does not recognize whether the

data has been corrected with the
same fitter or not, so you must
ensure this to have coherent

results

nln-show_visualizer.py

Shows the graphical visualizer to display a statistical map and the curves for the selected voxel

Parameter name Optional Possible value/s Default
value Description

configuration_file No Path - YAML configuration file for the study, as
specified in the requirements section

map No Path -
Path relative to the output directory

specified in the configuration file to the
statistical map to be loaded

dirs No Space-separated
paths -

Specify one or more directories within
the results directory specified in the

configuration file from which the fitting
parameters should be loaded

--colormap Yes hot, rainbow hot

Color map used to paint the statistical
maps' values. By default it is 'hot', useful

for statistical based measures (F-stat,
p-values, Z-scores, etc.), but you can use

'rainbow' for labeled maps

--n-points Yes Integer 100

Number of points used to plot the
curves. More points means a smoother
curve but requires more computational

resources

nln-show_data_distribution.py

Shows the data distribution of the observations, the predictors, the correctors and the residuals



Parameter name Optional Possible value/s Default value Description

configuration_file No Path -
YAML configuration file for the

study, as specified in the
requirements section

plot No

univariate_density,
bivariate_density,

boxplot,
categorical_boxplot

-

Type of plot to be used. For the
categorical_boxplot it is

assumed that the dirs specified
belong to different categories of

the data. Otherwise, only the
last data retrieved from a

specific category will be taken
into account

--dirs Yes Space-separated paths

All computed
parameters
within the

results
directory

Specify one or several
directories within the results

directory from which the
parameters should be loaded

You can get help about the required parameters using the --help option, which is supported by all
the scripts.

For example, if you want to know how to execute the nln-show_visualizer.py script, you can use:

$ python nln-show_visualizer.py --help
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