o 1P0R446!Y
(o'f;»m 1

Where should concurrent rotations
take place to rebalance
a distributed arbitrary search tree?

Luc Bougé
Joaquim Gabarré
Xavier Messeguer

Report LSI-95-57-R

Faoulied dinformaiics
de Bargelong - Biblioteca

~Y FNF 1305

Where should concurrent rotations take place
to rebalance a distributed arbitrary search tree?

Luc Bougé; Joaquim Gabarré! Xavier Messeguer?

December 1, 1995

Abstract

We address the concurrent insertion and deletion of keys in binary almost balanced search
trees (AVL trees). We show that this problem can be studied through the self-reorganization of
distributed systems of processes controlled by local evolution rules in the line of the approach
of Dijkstra and Scholten. In particular, we show that our approach encapsulates a number
of previous attempts described in the literature. This solves in a very general setting an old
question raised by H.T. Kung and P.L. Lehman: where should rotations take place to rebalance
arbitrary trees?

Keywords: Distributed algorithms, Search trees, AVL algorithm, Concurrent generalized
rotations, Safety and liveness proofs.

1 Introduction

AVL trees are among the first topics taught to freshmen in the algorithmic course. Since their
introduction by Adel’son-Velskif and Landis [1, 6], they have been recognized as a major source of
inspiration for everything connected to sorting and searching.

The main drawback of the original presentation is to be... sequential! Keys are inserted one
after the other, and each insertion is composed of two phases: 1) Percolation, where the value to
be inserted moves downwards within the tree to reach its right place; 2) Balancing, where the tree
is recursively restructured, starting from the new nodes upwards. Many authors, as R. Bayer and
M. Schkolnick [2] and C.S. Ellis [4], have found concurrent versions of this scheme. Unfortunately,
these attempts have often resulted in complex descriptions and the number of subtle details to be
mastered is actually so large that proving correctness becomes hardly possible.

The goal of this paper is to show that several of these algorithms derive in fact from a single basic
framework by specializing of the nondeterministic evolution strategy. In such a description, the
control is kept as non-deterministic as possible. Any rule can be selected and applied to the global
structure in any order as soon as its guard is satisfied. The rules assume: temporal atomicity (an

*LIP, ENS Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07, France. This work has been partly supported by the
French CNRS Coordinated Research Program on Parallelism, Networks and Systems PRS and HCM under contract
ERBCHGECT920009.

'LSI, Universitat Politécnica de Catalunya, FIB/FME, C/ Pau Gargallo, 5, E-Barcelona 08028, Spain. Partially
supported by the ESPRIT BRA Program of the EC under contract no. 7141, project ALCOM IL Part of this work
has been done while Joaquim Gabarré was a Visiting Professor at ENS Lyon in 1995.

*Authors contact: Joaquim Gabarrd. Internet: gabarroQIsi.upc.es

action should correspond to a fixed, small number of assignments and tests) and spatial atomicity
(an action should necessitate the exclusive access to a fixed, small set of neighboring nodes). The
correctness can be derived from a small number of invariants. The safety property expresses that, if
no rule can apply, then a satisfactory final state has been reached. The liveness property expresses
that eventually no rule applies. The independence property expresses that rules with disjoint
support commute: they may safely be executed concurrently,

This atomic approach has been first undertaken by H.T. Kung and P.L. Lehman [7]. They give
safe concurrent algorithms to deal with insertions and deletions in binary search trees. As they
do not wish to restrict to any specific type of balanced tree such as the AVL tree, deciding where
rotation should take place is not specified. In a footnote, they suggest to attack this problem. Later
on, inspired by on-the-fly garbage collection algorithms 3], J.L.W. Kessels [5] found the first safe
and live* concurrent insertion algorithm for AVL trees based on atomic rules only. The question
about rotations is solved as follows: one rotates (if necessary) just after a carry propagation in order
to maintain the balance. Later on, O. Nurmi, E. Soisalon-Soininen and D. Wood [9, 10] extended
Kessels’ work by giving safe and fair algorithms to deal with insertions and deletions in external
AVL (i.e., the actual keys are stored only in the leaves of the tree). Finally, K.S. Larsen (8] modified
the rules given in [9] in order to increase the degree of concurrency and to study the complexity of
the rebalancing.

In our approach, we answer the question of Kung and Lehman about rotations as follows:
a rotation can just take place at any unbalanced node. Therefore, when no more rotations are
possible, then we have an AVL. This approach is intuitively clear but working out the technical
details is far from obvious. For instance, if rotations are separated from propagations, then the
local information can be arbitrarily unfaithful, and one may decide to rotate the wrong subtree.
Liveness is questionable.

2 Self-balancing distributed search trees

2.1 General description

We consider binary trees whose nodes are labeled by integer (possibly non-distinct) keys. Such a
tree is a search tree if the keys appear in sorted order in a depth-first, left-right traversal. Nodes
are ranged by 7, p, g, etc. The key stored at node n is denoted key(n). The (real) height of a node
is the height of the subtree rooted at this node. The height of a leave is 1. The height of an empty
tree is 0. A tree is balanced if for all node n, the height of its two subtrees differ at most by 1.
We consider such a tree as a distributed system, where the processes are the nodes and the links
are the father/son edges. Each node n is thus equipped with a number of private registers used to
store the local information it holds about the global system:

lefth(n): The apparent height of the left son of n, at the best of its knowledge;
righth(n): The apparent height of the right son of n at the best of its knowledge.

We define three additional quantities:

*To get a fully correct proof of liveness, the variant function given by Kessels need to be slightly corrected along
the lines of this paper (private communication with Joaquim Gabarré, May 1995).

2

Iheight(n): The apparent local height of node n, at the best of its knowledge.
lheight(n) = max(righth(n), lefth(n)) + 1

bal(n): The apparent balance of node n, at the best of its knowledge.
bal(n) = righth(n) — lefth(n)

delta(n): The difference between the height known by the father m of node n and the current
apparent height of node n, at the best of its knowledge.

lefth(m) — lheight(n) if n is the left son of m
righth(m) — theight(n) if n is the right son of m

delta(n) = {

By convention, we set delta(n) = 0 if n is the root of the tree.

In the following sections we present a safe and live distributed algorithm to update AVL trees. It
can be described easily by a set of evolution rules, in the style of the famous Dijkstra and Scholten’s
distributed termination algorithm. Any rule can be selected and applied in any order as soon as
its guards are satisfied. The application of a rule modifies the values stored into the local Tegisters.
Observe that these quantities may be arbitrarily different from their real values. We do not try to
define accurately what we mean by real. Informally, to get the (real) height or (real) balance we
freeze the tree and we compute these values as usual. Whenever a local register is updated with the
information sent to it (at some preceding moment) we call this information apparent. Of course,
the value:of the apparent information can be very different from the value of the real information.
We say that node n is (apparently) balanced if bal(n) is 0, 1 or —1. Node 7 is apparently balanced
if it is so according to the information transmitted to it by its sons at some preceding moments. As
the information can be delayed by some of the sons, bal(n) roughly reflects the reality. Whenever
bal(n) ¢ {~1,0,1}, we say node n is (apparently) unbalanced.

Let us say what we mean by (apparently) faithful information or (apparent) stability. Intuitively
a node n has apparent faithful information if it is correct from the point of view of its neighbors.
The quantity delta(n) serves to measure the degree of faithfulness. If needed, it can be considered
as a new internal register of n. In this case, n knows when its father m has faithful information
about lheight(n). If n is a left son of m, then node m has faithful information about lheight(n)
whenever lheight(n) = lefth(m) (that means delta(n) = 0) otherwise it has unfaithful information.
When delta(n) = 0, node 7 does not need to send any new information to update the values of m.
We say node n is (apparently) stable. Otherwise, delta(n) # 0, and some useful information is still
being held in n: we say n is (apparently) unstable.

As we will see later, a lot of unfaithful information may be generated along the whole tree. In
order to guarantee a correct final result, we need to anchor the correct values of the local height at
some nodes. A distributed search tree is well-founded if lefth(n) = 0 (resp. righth(n) = 0) for any
node n with an empty left (resp. right) node. This means that (at least) the border nodes have an
accurate knowledge about their height. We have the following easy result.

Lemma 1 Let T be a distributed, well-founded search tree.
e If all nodes have faithful information, that is, are (apparently) stable, then the local informa-

tion coincides with the real information. For all n we have Iheight(n) = real-height(n) and
bal(n) = real-balance(n). 3

e If 1) all nodes have faithful information, are (apparently) stable, and 2) all nodes are (appar-
ently) balanced, then the tree is (really) balanced. It is thus an AVL in the usual sense.

Proof As all nodes are apparently stable, the apparent value lefth(n) and righth(n) are just the
real heights of the sons of any node n: is it true for empty sons, as the tree is well-founded,
and for all sons by induction. As the nodes are apparently balanced, they are really balanced.

We can now state our basic framework. Consider a distributed, well-founded search tree 7.
We aim at transforming T through a sequence of atomic evolution rules into a tree 7’ with the
following properties. (1) 7’ holds the same keys as T, also in sorted order, and 7" is well-founded;
(2) ALl nodes of T are (apparently) stable and (apparently) balanced. By the lemma above, T" is
an AVL, as wanted. Observe that we make absolutely no assumption on the initial shape of T and
the knowledge of its internal nodes. In this sense, the behavior is self-balancing, very much in the
same sense as for self-stabilizing distributed algorithms.

2.2 The rules

The algorithm should eventually yield an AVL in spite of unfaithful information. Two problems
have to be faced. First, as the information can be delayed at any descendent m of n (we mean
delta(m) # 0), node n has a very rough knowledge of its real height and balance. We must allow
information to flow upwards (our tree is well-founded) to get faithful information. Lemma 1 states
that local information coincides with real information when all information is faithful. Second,
we have to end up with an AVL. Every node should thus try to improve the situation by doing
rotations: To take a decision, node n can only access local information. A rotation around n may
seem very good from the local point of view whereas it actually worsens the global situation. This
leads to two kinds of evolution rules:

Propagation Rule: It propagates information upwards from a son to his father. Applying this
rule increases the quality of the father’s knowledge, that is the global stability.

Rotation Rules: They are a generalization of the single and double rotation rules of the sequential
AVL algorithm. Applying this rule increases the global balance of the tree. In contrast with
the original AVL algorithm, we have no control on rule application: we can no longer assume
that the balance of a node to be rotated is 2 or —2. Tt may happen that the imbalance of a
node suddenly reaches large values.

For the sake of clarity, we adopt the following notation: n(A4, B) denotes the (sub)tree with
root n, left son A and right son B (sons may possibly be empty). Also, we present only the leftwise
versions of the rules. The rightwise version can be obtained by symmetry. As a convention, the
final states of a node n is denoted n’. Unless specified, it is identical to the initial state. We name
the rotation sub-rules after the position of the subtrees with dominant heights. Let us start with a
rule allowing to any son 7 to update the information of jts father concerning its apparent height.

Rule 1 (Propagation)

Guard: A subtree m(n(A, B),C) with delta(n) # 0 (Figure 1).
Behavior: Update m into m’ with

lefth(zln') := lheight(n)

lefth(m) lefth(m') = lheight(n))
Iheight(n) 7? ﬁ/@ﬁ

Figure 1: Propagation rule, left case

Spatial scope: Node n and its father m.

Note: Symmetrically if n is the right son of m.

We can easily prove that applying repeatedly the propagation rule to a well-founded tree will
eventually correct the local values stored into the nodes. At the end, local information will coincide
with the real information. Therefore, the Propagation Rule lets the correct information flow up.
Now, we consider rotations to improve the balance of the tree. First of all, it makes no sense to
require a locally better tree if even local data are unfajthful. We therefore require the sons to be
stable. We could think that as rotations equilibrate (at least locally) subtrees, they also make these
subtrees smaller (at least with respect to the local height). Unfortunately this is not always the
case. This leads us to split single rotations into two cases according to this fact. Is easy to see that
the local height of the rotated subtree strictly decreases when bal(p) # 0, and it remains constant
when bal(p) = 0.

Rule 2 (Single rotation, left-left case)

Guard: A subtree n(p(A4, B),C), bal(n) < —2, p is stable, and bal(p) < 0 (Figure 2).

Behavior: Restructure the tree into p'(A, n'(B,C)) with the obvious updating of the regis-
ters:
key(n') := key(n) key(p') := key(p)
lefth(n') := righth(p) lefth(p’) := lefth(p)
righth(n’) := righth(n) righth(p’) := theight(n’)
Spatial scope: Node n and its left son p.

Note: Symmetrically for the right-right case: n(A,q(B,C)), bal(n) > 2, ¢ is stable, and
bal(g) > 0.

Rule 3 (Single rotation, left-equal case)

Guard: A subtree n(p(A4, B),C), bal(n) < -2, p is stable, and bal(p) = 0 (Figure 3).
Behavior: Restructure the tree into p'(A,n'(B,C)) with the obvious updating of the regis-

ters:
key(n') := key(n) key(p') := key(p)
lefth(n’) := righth(p) lefth(p') := lefth(p)
righth(n') := righth(n) righth(p’) := Iheight(n')

Spatial scope: Node n and its left son p.5

‘

Figure 2: Single rotation rule, left-left case

Figure 3: Single rotation rule, left-equal case

Figure 4: Double rotation rule, left-right case

Note: Symmetrically for the right-equal case: n(4,q(B,C)), bal(n) > 2, q is stable, and
bal(g) = 0.
In contrast to single rotations (as we will see), double rotations always make the local height of
the subtree to decrease.

Rule 4 (Double rotation, left-right case)

Guard: A subtree n(p(4,q(B,C)), D), bal(n) < -2, p and q are stable, bal(p) > 0.

Behavior: Restructure the tree into ¢'(p'(A, B),n'(C, D)) with the obvious updating of the
registers:

key(n') := key(n) key(p') :=key(p) key(¢') := key(q)
lefth(n') := righth(q) lefth(p') := lefth(p) lefth(q’) := Iheight(p')
righth(n’) := righth(n) righth(p') := lefth(q) righth(¢’) := lheight(n’)

Spatial scope: Node n, its son p and p’s son q.
Note: Symmetrically for the right-left case: n(4,q(p(B,C), D)), bal(n) > 2, q and p are
stable, and bal(g) < 0.

We have decoupled the rules designed to improve the consistence of the local data, from the rules
aimed at equilibrating the tree. Propagation Rule deals with registers delta(n). These registers
measure the faithfulness between local data. Rotation Rules work with quantities bal(n) measuring
the imbalance.

2.3 Safety and Liveness

The Safety Property guarantees that, whenever we start with faithful information at the border
nodes of a well-founded tree, any tree obtained through the evolution rules is fine.

Lemma 2 Assume that T is a distributed, well-founded search tree. 1) Let T' be obtained by the
application of some rule, then T' is a well-founded search tree, too. 2) Moreover, if no rule applies
on T, as it is locally stable and locally balanced, T is an AVL.

lefth(o)

lefth(m) 1 lheight(m) lefth(m') = Iheight(n) lheight(m/)

Figure 5: Propagation Rule, left case, 3-node configuration

It remains to prove the diffcult part, that is, the evolution rules do not admit any infinite
sequence of applications: something good, e.g. termination, must eventually happen! As mentioned
above, Propagation and Rotation Rules can fight ones against others. Some oscillating behavior
could result, where stability and balance alternatively improve. An in-depth study of their in-
teraction is therefore necessary. First of all, observe that we now apply rotation rules to highly
unbalanced nodes n (we mean |bal(n)| > 2). The resulting tree is not balanced in general, in
contrast with the usual AVL algorithm. Unless specified, all lemmas in this section are proved by
easy but tedious case enumerations.

Lemma 3 (Evolution of lheight)

Single rotation rule, left-left case: lheight(p’) = Iheight(n) — 1.
Double ;otation rule, left-right case: lheight(¢') = theight(n) — 1.
Single rotation Rule, left-equal case: lheight(p’) = lheight(n).

Thus, lheight may not increase on applying a rotation at node =, and it is left unchanged for
all other nodes in the tree. Remark that rotations around n cannot decrease the stability of n (we
mean delta(p’) > delta(n), where p is the new root). When delta(n) > 0, we say that n has positive
unstability. When delta(n) < 0 we say that n has negative unstability. Intuitively,

delta(n) > 0 = “The father of n believes that = is delta(n) units higher than n believes”
= “The father of n overestimates in delta(n) units the local height of n”
delta(n) < 0 = “The father of n believes that 7 is | delta(n)| units smaller than n believes”

“The father of n underestimates in | delta(n)| units the local height of n”

Say tree T is is consistent if delta(n) > 0 for all nodes n. As rotations may not decrease unstability,
they preserve consistency. It can be shown that propagations preserve consistency, too. This leads
us to split our discussion in two parts.

Ii)onsistent tregl The following result is crucial for analyzing the various cases.
Lemma 4 None of the quantities outside, delta, bal is modified outside of the spatial scope of the
rules.

Although all nodes verify delta(n) > 0, we underline that the following analysis only takes into
account the local properties of the nodes.

Propagation Rule We consider the left case only (see Figure 5). Consider a node n, its
father m and m’s father 0. By the precondition of the Propagation Rule, lheight(n) < lefth(m).
On propagating the height of n, one modifies delta(n), lefth(m), Iheight(m) and delta(m). The
global effect of a propagation on BAL and EXCESS depends therefore on the value of delta(m),
and on the relative values of lheight(n) < lefth(m) and righth(m). As the tree is consistent, we
have delta(m) > 0. The global positive unstability and the global unbalance progress in opposite
directions. Remember that lefth(m’) < lefth(m) by hypothesis.

o If the left subtree was “very” dominant at m, then updating lefth(m) improves the balance
bal(m) but decreases the height of m. Thus delta(m) increases of the same quantity as delta(n)
decreases. Thus, BAL strictly decreases and EXCESS remajns unchanged. Thus, TRADE_OFF
strictly decreases.

o If the right subtree was dominant at m, then updating lefth(m) worsens the balance bal(m)
by delta(n), and the leaves the height unchanged. Thus, BAL increases but EXCESS strictly
decreases by the same quantity. Therefore TRADE_OFF strictly decreases.

¢ For intermediate cases, a detailed analysis shows that
BAL' = BAL 4+2.a — delta(n) EXCESS’ = EXCESS ~a

for some a with 0 < o < delta(n), thus TRADE_OFF strictly decreases because
TRADE.OFF" = TRADE_OFF — delta(n).

Rotation Rules A careful analysis with delta(n) > 0 shows the following global effect.

o Left-left rotation: TRADE.OFF’ < TRADE.OFF —1 because BAL’ < BAL —3 and EXCESS’ =
EXCESS +1.

o Left-equal rotation: TRADE.OFF’ = TRADE.OFF because BAL' = BAL and EXCESS' =
EXCESS.

o Left-right rotation: TRADE_OFF' < TRADE_OFF —1 because BAL’ < BAL —3 and EXCESS’ =
EXCESS +1.

We can sum up all the analysis above by the following property.
Property 1 (Variant function) For any rule application, one of these 2 cases holds:
1. TRADE.-OFF strictly decreases;

2. TRADE.OFF remain unchanged: this occurs only in the case of a left-equal rotation. In this
case RBAL strictly decreases.

Therefore, the variant function (TRADE.OFF, RBAL) strictly decreases for the lexicographic order
on any rule application and it is is greater than (0,0).

[general tre;] We now relax the hypothesis of consistency. We only sketch the general analysis,
which is a smooth extension of the one above. .

Negative unstability: Recall that a node has negative unstability if its father underestimates its
apparent height. Intuitively, negative unstability flows upwards in the tree and eventually
reaches the root where it vanishes. Upwards flowing can be captured by weighting the lack
of stability with a measure of its depth within the tree. Kessels [5] introduces the following
quantity for this purpose: outside(n) is the number of nodes not in the subtree rooted at node
n (it is 0 if n is the root). We define)

LOSS = Z outside(n).| delta(n)|
delta(n)<o

The tree is consistent if LOSS = 0. This is thus a measure of the inconsistency of the tree.
This last fact allows us to reduce the liveness of general trees to the liveness of consistent
trees.

Property 2 (General Liveness) The variant (LOSS, TRADE_OFF, RBAL) strictly decreases for
the lezicographic order on any rule application and it is is greater than (0,0,0). Therefore, no
infinite sequence of rule applications is posstble.

It seems to be very difficult to give any general description of the successive “shapes” of the
tree on its way towards balance. But we can at least give a bound on the register values as follows.
Let real-height(n) be the real height of the subtree rooted at node n.

Lemma 5 Let T be a distributed search tree such that lheight(n) < real-height(n) for all nodes n
inT. Let T' be obtained by any rule application. Then, this holds for T", too.
This lemma could be used to give a very rough bound on the number of steps needed to get an
AVL from any search tree with N nodes: Just defines initially lefth(n) = righth(n) = 0 for all the
nodes: it makes it a well-founded (but not conmsistent!) tree. At any point in the reshaping, we
shall have: lefth(n), righth(n) < lheight(n) < real-height(n) < N for any node.

3 Concurrent insertion and deletion of keys

Using this basic framework, we can describe an algorithm to manage the concurrent insertion and
deletion of keys in distributed sorted tree.

The idea is to simulate the percolation of keys in the original sequential algorithm
with a new register waiting(n) which holds the keys waiting at node n for downwards percolation.
To handle the possibility of equal keys, waiting(n) is managed as a bag. Operation + adds a key to
the bag. Operation — removes it. This register is called the waiting bag at n. As usual, | waiting(n)|
denotes the number of keys held in bag waiting(n).

We say that a distributed, search tree is strongly sorted if the following condition holds: If 7 is
in the left (resp. right) subtree of m, and 4. ¢ waiting(n), then a < key(m) (resp. a > key(m)). As
a simple example of such a tree, consider a single node n and N keys ay,...,ay with

key(n) := a, waiting(n) := {as,...,ax)} lefth(n) := 0 righth(n) := 0
10

Rule 5 (Percolation)

Guard: Node n, key a € waiting(n), a < key(n).

Behavior: If n has a left son p, then
waiting(n) := waiting(n) — a waiting(p) := waiting(p) + a
Otherwise, create a new node D, left son of n, with the following registers:
waiting(n) := waiting(n)—a key(p) := a waiting(p) := 0 lefth(p) := 0 right-h(p) =0

Spatial scope: Node n and the potential new node p.

Note: Symmetrically with a > key(n) and node g the right son of n.
It remains to refine the Propagation Rule and the Rotation Rules to take into account the
waiting bags. The former causes no problem. But simply leaving the waiting bags hanging at the
rotated nodes does not preserve strong sortedness in the latter. An easy patch is the following.

Rule 6 (Rotation with waiting bags)

Additional guard: A Rotation Rule may be applied only if the waiting bags at the nodes
in the spatial scope of the rule are all empty.
It is easy to check that the restricted version of Rotation Rules preserves strong sortedness. It
is also clear that the global effects on LOSS, BAL, EXCESS and RBAL are not altered.

Property 3 (Safety) LetT be a distributed, well-founded and strongly sorted search tree. Assume
no rule applies to T. Then, T is an AVL whose all waiting bags are empty.

Lemma 6 Let T be a distributed, well-founded and strongly sorted search tree. Let T' be the tree
obtained by applying a Propagation Rule or a Rotation Rules. Then (LOSS', TRADE_OFF/, RBAL') <
(LOSS, TRADE_OFF, RBAL).

To prove liveness, it remains to find an additional variant function to cover the two cases of
Percolation Rule. We introduce the following quantity: inside(n) is the number of nodes in the
subtree rooted at n. Define first

NUMBER = Z | waiting(n)| and WAIT = Zinside(n).lwaiting(n)]

Quantity NUMBER is the current number of waiting keys and WAIT is the current number of waiting
keys, somehow weighted by their respective distances from the leaves. It is easy to check the that the
first case of Percolation Rule lets NUMBER remain invariant and WAIT strictly decrease. Moreover,
NUMBER and WAIT are invariant under the Propagation and Rotation rules (recall that a rotation
may only take place if all bags in the spatial scope are empty). Also, the second case of Percolation
Rule lets NUMBER strictly decrease.

Property 4 (Liveness)
The variant function (NUMBER, WAIT, LOSS, TRADE_OFF,RBAL) strictly decreases on any rule

application.

11

LInsertion and deletiorﬂ We add the possibility to delete keys in a concurrent schema with the
previous concurrent insertion algorithm. We start by letting the key to be deleted percolate down
until the node with equal key is found and marked. Then, the node is sent down by successive
rotations around it, until one of its sons, at least, gets empty. The node can then be safely removed
from the tree.

The waiting bag contains now two kind of keys, the keys to be inserted and the keys to be
deleted, which are differentiated by a flag. We need another flag, denoted alive(n), to mark the
nodes to be rotated down and removed. We say that a node is alive if alive(n) = true, otherwise it
is said dead. ’

Let {a1,as,...,ax} the keys to be inserted or deleted. We start by locating them into the waiting
bag of the root of the tree and by setting to true all the flags alive. We modify the Percolation rule
in order to consider the new kind of keys.

Rule 7 (Percolation)

Guard: Node n, key a € waiting(n) and should be deleted.

Behavior: a is extracted form waiting(n). If a = key(n) then alive(n) becomes false. Assume
that a < key(n) and n has left son p, then waiting(p) := waiting(p) + a, but if n has no
left son then a is removed. The case a > key(n) is handed in the same way.

Spatial scope: Nodes n and p.

The next step then is to add a new rule, called Garbage Percolation Rule, to remove dead nodes.
We only sketch the idea here. Dead-marked nodes are sent down to the border of tree by means of
specific rotations, and there, they are eventually removed. These specific rotations basically shift
away the root of the subtree to a neighbor. Observe that the order of the keys is left unchanged.
Then we define a new variant quantity DEAD to measure how many dead nodes are still to be
removed. We finally get the following result.

Theorem 1 (Total correctness) The Propagation, Rotation, Percolation and Garbage Perco-
lation Rules strictly decrease the Sfunction (NUMBER,WAIT,DEAD,LOSS,TRADE_OFF,RBAL).
There does not exist any infinite sequence of rule applications. One eventually get an AVL.

4 Discussion

Let us consider the emulation of some distributed algorithms [5, 9, 10, 8] based on local rules.
To approach the problem we introduce the up apparent height, written up-height(n) of a node n,
defined as up-height(n) = lheight(n) + delta(n). Given a node 7 having left son p and right son ¢ we
have up-height(p) = lefth(n) and up-height(g) = righth(n). This function behaves as an approximate
height because it verifies up-height(n) = 1 + delta(n) + max{up-height(p), up-height(¢)}. Remark
that delta(n) € {..., -2, ~1,0,1,2,...}. Moreover the balance can be rewritten as:

bal(n) = up-height(g) — up-height(p)

,iL.W. Kessels’ approach] Let us see how to emulate the algorithm [5]. We start giving a

brief description of it. Every node n has the registers balance(n) € {-1,0,1}, carry(n) € {0, 1}

and there is a dynamic height defined as: dheight(n) = 1 — carry(n) + max{dheight(p), dheight(q)}

Once all the keys have been inserted, the tree can be highly unbalanced and the algorithm starts a
12

restructuring process. Eventually, all nodes n satisfy carry(n) = 0. Then, real-height(n) = dheight(n)
and the tree is an AVL. This process is described by the transformations (a), (b) and (c) (Figures‘ 1,
2 and 3in [5]). The comparison between dheight(n) and up-height(n) suggests us the identifications:

carry(n) = — delta(n) dheight(n) = up-height(n)

Let us see how to emulate Transformations (a), (b) and (c) with our rules. All the cases given
in (2) can be emulated by our propagation. The cases appearing in (b) and (¢) can be emulated
concatenating a propagation with a rotation.

IE. Nurmi et al.’s approaal Now we consider the following extension of the J.L.W. Kessels’
algorithm developed by O. Nurmi, E. Soisalon-Soininen and D. Wood in [10] (see also [9]). Every
node holds the registers rbalance(n) € {-1,0,1} and tag(n) € {-1,0,1,2,...} and they define a
relaxed height as:

rheight(n) = 1 + tag(n) + max{rheight(p), rheight(g)}
The definitions of rheight(n) and up-height(n), suggest us the identifications:

rheight(n) = up-height(n) rbalance(n) = bal(n) tag(n) = delta(n)

A problem appears with these identifications. As in [10] tag values can only decrease in one unit,
we are forced to have delta(n') = delta(n) + 1. However our Rule 1 allows node n to propagate
all the information in only one step (for any value delta(n) # 0 we have delta(n’) = 0). In order
to accept.small modifications like delta(n’) = delta(n) £ 1, we add a new private register delta(n).
This register keeps the information to be transmitted to the father in order to update its knowledge
about the height. The information about the height flows slowly along the tree and in a propagation
we have up-height(n') = up-height(n) £ 1. All our rules can be rewritten to take care of this fact.

,&L. Larsen’s approac}Tl Finally let us consider the approach taken by K. L. Larsen [8]. Recall
that, given anode n having a father m, the transformations given by O. Nurmi, E. Soisalon-Soininen
and D. Wood in [10] require precondition tag(n) # 0 and tag(m) = 0. This precondition has been
relaxed by Larsen accepting nonzero values for tag(m). We can emulate this approach in the same
lines as above.

5 Conclusion

Many previously proposed algorithms can be seen as specializations of ours: they amount to im-
posing a number of additional constraints on the scheduling of the rules. Their correctness is thus
a direct consequence of the correctness of our algorithm. Because they restrict themselves to “ef-
ficient” scheduling, they can guarantee good performances. Kessels’ algorithm deserves a special
discussion. Kessels only considers the insertion of leaves at the bottom of the tree. Qur algorithm
extends Kessels’ method on several points. It allows the concurrent insertion of leaves by explicitly
describing the percolation of the items to be inserted. It also caters for the concurrent deletion
by introducing the notion of “anti-items”, which annihilate with their positive fellows. We allow
the information to be propagated upwards fully concurrently with the rebalancing process (and
also with insertions and deletions!). It turns out that these two goals may conflict one with the

13

other: propagating information upwards may reveal some imbalance; rebalancing a subtree mod-
ifies its height and invalidates the information of its ancestors. We have shown that this conflict
nevertheless converges, but this may take a very large number of steps because of the complexity
of the interferences. The key result is that even tough balance and knowledge accuracy conflict,
a suitable tradeoff between them nevertheless improves: TRADE_OFF = BAL +2. EXCESS. Under-
standing more deeply the role of this sort of “hocus-pocus” formula would be very interesting: we
are currently working in this direction.

Acknowledgments We thank David Cachera for his careful proofreading.

References

1. G.M. Adel’son-Vel’skif and E.M. Landis. An algorithm for the organization of the information. Soviet
Mathematics Doklay, (3):1259-1263, 1962.

2. R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta Informatica, 9(1):1-21, 1977.

3. E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, and E.F.M. Steffens. On-the fly garbage
collection: an exercice in cooperation. Comm. ACM, 21(11):966-975, November 1978.

4. C.S. Ellis. Concurrent search and insertion in AVL trees. IEEE Trans. Comyp., C-29(9):811-817,
September 1980.

9. J.L.W. Kessels. On-the-fly optimization of data structures. Comm. ACM, 26(11):895-901, 1983.

6. D.E. Knuth. The art of computer programming, Sorting and Searching, volume 3. Addison-Wesley,
1973.

7. H.T. Kung and P.L. Lehman. Concurrent manipulation of binary search trees. ACM Trans. Database
Systems, 5(3):354-382, September 1980.

8. K.S. Larsen. AVL trees with relaxed balance. In Proc. Int. Parallel Processing Symposium, number 8,

10.

pages 838-893. IEEE Comp. Soc., 1994.

O. Nurmi, E. Soisalon-Soininen, and D. Wood. Concurrency control in database structures with relaxed
balance. In ACM PODS, pages 170-176. ACM, 1987.

O. Nurmi, E. Soisalon-Soininen, and D. Wood. Concurrent balancing and updating of AVL trees.
Technical Report 1992ITKO-B76, Helsinki University of Technology, Department of Computer Science,
1992.

14

