1002 Y i6q |
¢ (5{7«7& 4

Visible Semantics: An Algebraic Semantics

for Automatic Verification of Algorithms

Vicent-Ramon Palasi Lallana,

Report LSI-96-26-R

Visible semantics: an algebraic semantics for
automatic verification of algorithms

Vicent-Ramon Palasf Lallana
»Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
e-mail: vicent@goliat.upc.es

Abstract

A new semantics for algebraic specifications, called “visible semantics”, is defined.
Its most notable property is that it is specially suitable for dealing with the problem
of program correctness. Some properties of this semantics are proved and some
conclusions are described.

1 Introduction

Of all the theories that attempt to give meaning to algebraic specifications, initial se-
mantics ([GTW75], [GTW78], [TWW792)) is one of the simplest, most intuitive and most
widespread. However, from the very beginning, it was clear that this semantics was too
restrictive to model some abstract data types, for instance, stacks, lists, sets, etc.

As a result, behavioural semantics appeared ([SaW83], [SaTs3], [Rei81], [Rei84] al-
thought, in this paper the approach in [Niv87] is taken as a starting point). This semantics,
which tries to grasp the intuitive notion of “abstraction w.r.t. implementation”, is based
on dividing the properties of an algebraic specification into observable and nonobservable.
Two specifications are considered equivalent if the differences between them are nonol-
servable.

Though there have been several formulations of behavioural semantics (see [BBK94] or
[Kna93] for a survey), none of them is completely suitable for dealing with the problem
of proving the correctness of an algorithm w.r.t. an algebraic specification. The following
example makes this clear. -

Let us suppose that thereis an imperative programming language in which the operation
of multiplication is not built-in, and, also that a function to compute this operation is
programmed. The result could be as follows:

.
1

function x(a,b:nat) ret c: nat
c:=0;
while b > 0 do
c:=c-a;
b:=b-1
endwhile
endfunction

If we wish to study the correctness of this function, we have to write a specification of
it. Since the specifications that we are considering are the algebraic ones, the result can
be as follows (initial semantics is used):

spec MULT] is

sorts
nat

signature
*: nat nat — nat

equations
¥ a,b:nat
*(zero,b)=zero
"(suc(a),b)=+(*(a,b),b)

endspec

We assume that operations suc, zero and + (with prefiz notation) have been defined. Their
signatures and equations have been, omitted for reasons of brevity.

We shall consider that function “*” Is correct if it is equivalent to specification MULT1
according to some reasonable notion of equivalence.

In order to find this notion of equivalence, the most logical choice is to transform the
function into an algebraic specification (in this way, we must compare two specifications.
which is easier than comparing a program with a specification). To do this, we can apply
the algebraic semantics on function **?. The result can be as follows:

spec MULT? is
sorts
nat
signature
*! nat nat — nat N
equations
Y a,b:nat
*(a,b)zeval_function(“function *(a,b:nat) ret c: nat ... endfunction” ab)
endspec

Operation eval function is part of the algebraic semantics of the language. It is assumed
that all the operations of this algebraic semantics have been defined. Their signatures and
equations have been omitted for reasons of brevity. (For an ezhaustive ezample of the def-
mition of the algebraic semantics of a language, see [GoP81] or [Wan80]).

Now, we can say that function “*” i correct w.r.t. specification MULT] if specifications
MULT1 and MULT2 (which is the algebraic semantics of function “*7) are “equivalent”’
It is easy to see some properties that this equivalence must fulfil.

1. Two specifications can be equivalent despite having different signatures (in our ex-
ample, MULT? has at least one operation (eval function) which does not belong to
MULT1).

o

In fact, we can divide operations of a specification into two classes: those that we wish
to specify (such as “*”_in our example) and those that we describe only because they
are required to define the former (such as “eval_function”). We call them “observable”
and “hidden”, respectively. It is easy to see that two equivalent specifications must
have the same observable operations.

states that are not visible in the external behaviour of the system. Therefore, only
terms that only have observable operations (hence, “totally observable terms”) should
be considered to define the equivalence.

Therefore, we can suppose that two specifications are equivalent if theiy totally observ-
able terms “behave” in the same way. But this approach is not completely correct.

The problem with this approach becomes clear when we wish to specify data types like
stacks, lists, sets, etc. For these data structures, it is advisable to obtain an abstraction of
the internal implementation similar to that of the conventional behavioural semantics. To
do this, the observable sorts! must be divided into two classes. The “nonvisible” ones are
the sorts that have abstraction of the internal implementation (they will normally repre-
sent data structures). The remaining sorts are “visible” sorts (they will normally represent
atomic types).” Two specifications are equivalent if their visible results are the same, that
is, if their totally observable terms of visible sort “behave” in the same way.

To sum up, two levels of “observability” are needed:
p Y

1. That which distinguishes between observable and hidden operations. This leve] is
necessary. since, if we want to specify all the data types that are of interest to us

A sort s is observable if there is an observable operation of sort s.
“This issue is explained at great length in [Niv87] for conventional behavioural semantics. In this
semantics, “visible” and “nonvisible” sorts are called “observable” and “nonobservahle” sorts, respectively.

(the semicomputdble data types), hidden operations are needed (for this issue, see
[BeT87)).

This level is necessary in order to obtain abstraction of the implementation, when this
abstraction is required. (This “observability” is that of the conventional behavioural
semantics)

Althought there are severa] formulations of behavioural semantics, there is none which
fulfils all the properties stated so far (see [BBK94]). One of the main problems is that
behavioural semantics is traditionally defined between algebras that share the same signa-
ture and, as we have seen, this is not acceptable here.

This paper aims to introduce an alternative to behavioural semantics which fulfils al]
these properties and. therefore. is suitable for the proof of algorithms. (In fact, this paper
Is part of my future thesis, which deals with the problem of automatic verification of algo-
rithms). We refer to this alternative semantics as “visible semantics”.

alence or by relaxing the satisfaction relation. However, visible semantics can only he
defined in the first way (the reason for this is given in Section 6).

The structure of this paper is as follows. First, in Section 2, the notation that we use
1s described. Next. visible semantics is completely defined and, finally, we outline some
conclusions and some ideas for future work.

2 Basic concepts

We begin by remembering some basic concepts of the theory of algebraic specification.
Definition 1. A S-set C is a family of sets indexed by S, C = {C}ses.

Definition 2. A simple signature Y is a tuple ¥ = (5, F) where S is a set whose
mewmbers are called sorts and £ is a ST x S-set (F = {‘Fwys}(u,’s)eg~xg), whose members
are called function symbols or operations.

It o € F,,, where v =] X .o Xwn with wl, ..., wn,s ¢ S, we say that o is an
operation of domains wl, ..., wn and sort s. We shall write this as follows: o Foutoum s or
grwl X ... X wn — g, -

We refer to S as sorts(X) and to F as opns(X) . Variables of sort s are referred to as
vars(s).

Definition 3. Let there be two simple signatures ¥; = (81, Fy) and &y = (S2, Fy). We
shall write ¥, C %, if 51 € S and Fy C F,.

Definition 4. Let ¥ = (S,F) be a simple signature and X a set of variables. The sets
Tz (X) are defined as follows:

e lfz € X and 2 € vars(s), then z € T, (X).
e lfocF,, thenoe I, (X).
s foe€F, v, te Ty sty € Ty, , then o(ty, ..., tn) € Tx,.

The members of T, (X) are called terms of sort s,

Definition 5. Let T be a simple signature and X a set of variables. We define
Te(X) = {Tc,(X)},es and Ty = T=(D). The members of Tx(X) are called terms and
those of Tx ground terms.

Definition 6. Let £=(S,F) be a simple signature. A T-algebra 4 is a tuple (As, Ar)
where s = {4,},cs and Ar = {04}ser such that:

e lfoceF,, thenoy ¢ A,.

— A,.

o Ifoe Fupowm,s, then oy : Asy o A

$n

04 is called interpretation of the function symbol o in A.

Definition 7. Let ¥ be a simple signature. Let there be a term ¢ € Tx(X) and a
Y-algebra 4. We define 24(t) as follows:

e lf o€ F\, wheres ¢ S, then ca(o) = oy.

o Ifo € le...wn,sa h € TEwl,n-; tn € TEwn,then €A(O'(t1,..., tn)) = O'A(EA(tl),...,€A(tn)).
€4(t) is called evaluation of ¢ in A.

Definition 8. Suppose a simple signature . Let X be a set of variables. A (2*n+3)-

tuple (X, ¢, d),....c,. d,. ti.ty), where t,t, € Ty, (X); a,d € Te, (X); o ca,d, €
T, (X)), with s,5,....8, € sorts(X) is called T-equation of arity n (or X-equation with n
conditions).

We refer to the equation ¢ = (X,e1,dy, ..., Cryday b1, t2) as ¢; = d) &...& Cn = d, =
h=t(orase:c =d &.& ¢ =d, = t; = t,) . The set of variables contained in a
equation e is called vars(e).

(1]

A Y-equation of arity 0 is called simple equation or equation without conditions.

Definition 9. Let 4 be a Y-algebra. Let X be a set of values. Ap “assignment of
values” is an application v : X —s 4.

Definition 10. Given an application v such that v: X — A or v : ¥ —, Ty, v*(¢)
1s defined as follows:

o If t € X, then v*(¢) = v(¢).
o If ¢ ha; the form o(t,...,¢,), with n > 0, then v*(¢) = o(v*(4,), ..., v*(¢,)).

Definition 11. A Y-algebra A satisfies an equatione: ¢ =d; &.& ¢, = dy =t = ¢,
Vo vars(e) — A it is fulfilled that: e4(v*(¢;)) = ealv™(dy)) A L A ca(v(cy)) =
ca(v™(d,)) implies calv™(t)) = calv™(ty). If a Y-algebra 4 satisfies an equation e, we

shall write 4 = ¢,

Definition 12. Let £ be 4 set of equations. We shall write A = EifVe e Eitis
fulfilled that 4 |= .

Definition 13. A simple specification is a tuple SPEC = (X,F) where ¥ is a simple
signature and E a set of equations. We refer to £ as eqns(SPEC) .

Definition 14. Given a simple specification SPEC, we define Alg[SPEC) = {A | 4 =
eqns(SPEC))

3 Visible signatures

We begin by defining the kind of signature suitable for the theory which we wish to
ezpound. As was justified in the introduction, the signature which interests us must be able
to express two levels of “observability”. The first level has to distinguish between observable
and hidden sorts and operations. The second, between visible and nonvisible sorts, among
the observable ones. One way to do this is as follows:

Definition 15. A visible signature is a triple (Vis, Zous. S 4y) such that Yops =
(Sobs, Foss). Say = (S, F) are simple signatures and, moreover, }is C Soss and gy, C
\ﬁ

4.

We refer to the tuple (Vis,Zo4,) as an observable signature and, therefore, the mem-
bers of Sop, and of Fp;, are called observable sorts and operations, respectively. We call
the members of Vis visible sorts.

We call ¥, an extended signature. The members of (S\Soss) and of (F\Fos,) are
called hidden sorts and operations, respectively>.

Definition 16. Let & = (Vis, Zoss, Y 41) be a visible signature. We define s19-0bs(Z) =
(Vis, X os,). Given two visible signatures ¥; and ¥, such that sig-0bs(Xy) = (Visy, (21)08s)
and sig_0bs(X,) = (Vis,, (22)0ss), we shall write s19-0bs(X;) = sig-obs(Z,) if Vis; = Vis,
and (X1) o5 = (22) 0ss.

Now, we shall define the concept of term in a visible signature, which is simply a term
of the extended signature. A term is totally observable of visible sort if all its operations
are observable and, moreover, its sort is visible.

Definition 17. Suppose that ¥ = (Vis, Eoss, Zau) is a visible signature. We say that
A s a E-algebra if it is a Y an-algebra.
Tx,,(X), respectively. Analogously, for each sort s € S,
)s(X), (Tx,,)s, respectively.

We define T, Te(X)as Tx

~All

we define Ty, (X), Ts, as (Ts,,
Definition 18. Let ¥ = (Vis,Zous, S411) be a visible signature. We define TVisy =
{t1te(Ts,,,), Nse Vis).

Obviously, T'Viss is a subset of Tx. The members of TViss, are called totally observable
(ground) terms of visible sort.

As was justified in the ntroduction, a totally observable term of visible sort represents
a computation result which is externally visible (that is, visible “from outside” the specified
system).

Definition 19. Given a Y-algebra A, we define Arvis = {e4(t) | t € TVisy}.

Now, we shall introduce the category suilable for dealing with the visible semantics. 1o
do this, first we introduce the concepts of visible morphism and visible equivalence.

Definition 20. Let Y, and Y5 be two visible signatures such that sig-o0bs(X,) =

s19-0bs(Zg). Let A bea ¥ -algebra and B a L p-algebra. A visible morphism is a function 7
between Ary;, and Bryy, such that, for any ¢ € TViss , it is fulfilled that: flea(t)) = ep(t).

If this application is bijective, it is called visible 1somorphism.

Lemma 21. Let us suppose that Y4 and Tjp are two visible signatures such that
sig_obs(L,) = sig-0bs(Xg). Let A be a Y i-algebra and B a Yp-algebra. Only one of the

*On occassions. we shall use “nonobservable” as a synonym of “hidden”

following two cases may occur:

1. There is no visible morphism between A and B.

2. There is one single visible morphism between A and B.
Proof. The proof is in the appendix of this paper.

Notice that, in order to define a visible morphism between two algebras, they need not
have the same signature; only the same observable signature. This is coherent with our
philosophy which states that hidden sorts and operations are only useful for defining the
behaviour of the observable one, but are not visible “from the outside”. The same is true
of the following category.

Definition 22. The category Visible(Vis, ¥oss) contains all the Y-algebras such that
sig-0bs(X) = (Vis, £,,) as objects, and the visible morphisms as morphisms.

Now we shall define the visible equivalence between two algebras. This concept is also
defined between algebras that share the same observable signature.

Definition 23. Let ¥, and Y5 be two visible signatures such that sig_obs(L,) =
s19-06s(Ep). Let 4 be a £ algebra and B a Yip-algebra. A and B are visibly equivalent
(and we shall write A =y B) if there is a visible 1somorphism between A and B.

In the introduction, it was stated that the visible equivalence must take into account
only the totally observable terms of visible sort. This can be seen in the following lemma.

Lemma 24. Let ¥, and Yp be two visible signatures such that sig_obs(X,) =
stg-00s(Ep). Let 4 be a ©y-algebra and B a Lp-algebra. 4 and B are visibly equiv-
alent if and only if *:

Y Z‘.l, Iy € TVZ'S,\‘

= A

it is fulfilled that A = 4, = ¢, if and only f B=t =t

Proof. The proof is in the appendix of this paper.

4 Visible satisfaction of an equation

Following the philosophy of visible semantics. an equation is satisfied if all its totally
observable consequences of visible sortare so. In order to formalize this intuitive idea, first
we must state the following definitions:

“On the other hand, notice that T Viss 4= TVz'sEB.

Definition 25. Let us suppose that % is a visible signature and X is a set of variables.
We refer to a ¥ 4y-equation as a Y-equation.

Definition 26. Let ¥ be a visible signature. A visible ¥-context of sort s is a term
ve[z] belonging to Ts(z) where = is a variable of sort s.

Definition 27. Given a term ¢ € Tg(X) and a visible S-context ve[z], we refer to the
term obtained by replacing z in ve[z] by ¢ as ve[t] (that is to say, ve[t] = vez « t]).

velt] is @dny term for which t is a subterm. A totally observable consequence of visible
sort (of a term t) can be defined as a totally observable term of visible sort which can be de-
rived from t (or from contexts of t). Therefore, visible satisfaction can be defined as follows:

Definition 28. Let ¥ be a visible signature. Let e : ¢, = #) be a ground Y-equation
(without conditions) of sort s (that is, 4, t; € Tx,). A Y-algebra A visibly satisfies e (and
we shall write 4 =y ¢) if. for any visible context ve[z] of sort s, it is fulfilled that:

Vi, e TViss (=4 ve[ti]) A (L =4 velty]) implies =4 b

Definition 29. Let ¥ be a visible signature. Let e : ¢; = d; &...& Cn =dy =t = by,
be a T-equation. A T-algebra A visibly satisfies e (and we shall write A =y €) if:

Vv :vars(e) — Tk it is fulfilled that
(AlEv v (a)=v(d) A .. A (A Fv v (c,) = v"(d,)) implies (A4 Ev vi(t) = v7(ty))

Analogously to initial and behavioural semantics, we can define the concept of theory
taking as a starting point the satisfaction of an equation.

Definition 30. Let us suppose that % is a visible signature and that M is a set of
L-algebras. We refer to the set of all the 2-equations that are visibly satisfied by all the
algebras of M as the visible theory of M (and we shall write VisTheo(M)).

VisTheo(M)={e|VAc M Ay e}

If Ais a S-algebra, we refer to VisTheo({A}) as VisTheo(A) .

5 Visible specifications

Given the concept of the visible signature, that of the visible specification is easily de-

finable.

Definition 31. A visible specification is a tuple SPEC' = (I, F), where ¥ = (Vis, Zoss- S aut)
is a visible signature and £ is a set, of Y-equations. We define sig(SPEC) = £, sig_obs(SPEC) =

9

(Vis,X04,) and eqns(SPEC) = E.

Definition 32. Let SPEC be a visible specification such that sig(SPEC) = £. We

refer to 7% as TZSPEC' Analogously, we define TESPEC(X) and (TESPEC)S' We refer to
TViSE as TViSSlagc.

Definition 33. Let us suppose that SPEC = (%, F) is a visible specification where
Y= (Vis, Los,, 2 411). We define the following concepts:

1. =sppcr{congruence defined by specification SPEC)
2. [Z]ESPEC (class of cquivalence of term t, according to this congruence)

3. Tspre (initial algebra of SPEC)

as, respectively,

L. =spger

2 4]

< UJ:SPEC’
3. Tsppc

where SPEC’ is the simple specification defined as SPEC" = (Xau, F).

6 Semantics of a visible specification
In this section, we shall define the visible semantics of a specification. To do this, we shall
start from the principle that two visibly equivalent algebras should be considered equal ac-

cording to visible semantics.

Definition 34. Let SPEC be a visible specification. We define the loose visible
semantics of SPEC as:)

Visible[SPEC] = {4 | 3B € Alg[SPEC] such that B =, A)

That is to say, the algebras belonging to Visible[SPEC] are those that aqre vistbly equiv-
alent to the algebras that Julfil the equations of SPEC.

In behavioural semantics, there is the “g00d” property that two algebras are equivalent

if they share the same theory. This enables us to define the (loose) behavioural semantics
of an algebraic specification as the set of algebras that behaviourally satisfy their equations.

10

However, in visible semantics, two equivalent algebras need not satisfy the same equa-
tions since they can have different signatures and, consequently, the equations of one algebra
need not make sense in the signature of the other. Therefore, the only way to define the
(loose) visible semantics of a specification is as we did it starting from the notion of visible
equivalence,

We also define the initial and final visible semantics starting from this notion, as we
shall see below.

Definitidn 35. The initial and final visible semantics are defined respectively as:

Vis — [[SPEC] = {A , A =y TSPEC'}
Vis — FISPEC] = {A | A =, F[SPEC]}

. where T¢ppc and F[SPEC] are the initial and the final algebras of SPEC, respectively.

7 Conclusions

We have seen which properties are required for an algebraic semantics to be able to
deal with the problem of program correctness. A new kind of semantics (called “visible”)
which fulfils all these properties has been defined. We have described the new concepts of
visible morphism, visible category, visible equivalence, visible satisfaction of ap equation
and loose, initial and final visible semantics of a specification. It has been explained that
the concept of satisfaction does not serve to define the visible semantics of an algebraic
specification, unlike in behavioural semantics.

The lines of future research are twofold, F irstly, visible semantics will be extended to
support generic specifications such as “STACKIT]”, where T can be any sort (for more

details of this kind of specifications, see [TWW79b)).

Secondly, this paper is part of my future thesis, which propounds a method to automat-
ically deduce the correctness of a program w.r.t. an algebraic specification. The notion of
correctness that we shall use in this thesis will be defined starting from visible semantics.
which has been described here.

8 References

[BBK94] BERNOT, G. BIDOIT, M- KNAPIK, T. Behavioural approaches to algebraic
specifications. Acta Informatica, 31 (1994), pp. 651-671.

[BeT87] BERGSTRA, J.A. TUCKER. J.V. Algebraic Specifications of Computable and
Semicomputable Data Types. Theoretical Computer Science, 50 (1987), pp. 186-200.

11

- [GoP81] GOGUEN, J.A. PARSAYE-GHOMI, K. Algebraic Denotational Semantics Us-
ing Parameterized Abstract Modules. Formalization of Programming Concepts, LNCS 107
(1981), pp. 292-309.

[GTW75] GOGUEN, J.A. THATCHER, J.W. WAGNER, E.G. WRIGHT, J.B. Abstract
data types as initial algebras and correctness of data representations. Proc. ACM Confer-
ence on Computer Graphics, Pattern and Data Structure, New York (1975), pp. 89-93.

[GTW78] GOGUEN, J.A. THATCHER, J.W. WAGNER, E.G. 4n initial algebra approach
to the specification, correctness and implementations of abstract data types., in: R.T.Yeh,
ed., Current Trends in Programming Methodology; IV Data Structuring (Prentice-Hall,
Englewood Clifts, NJ, 1978) pp. 80-149.

[Kua93) KNAPIK, T, Spécifications algébriques observationnelles modulaires: une seman-
tigue fondée sur une relation de satisfaction observationnelle. These de PUniversité de

Paris-Sud, Orsay 1993.

[Niv87] NIVELA, P. Semdntica de Comportamiento en Lenguajes de Especificacién. PhD
thesis, directed by Fernando Orejas Valdés, Barcelona, 1987. Universitat Politécnica de
Catalunya. Facultat d’Informatica,

[Rei81] REICHEL, H. Behavioural equivalence — a unifying concept for initial and final
specification methods. Proceedings third Hungarian Computer Science Conference. Bu-
dapest (1981), pp. 27-39.

[Rei84] REICHEL, H. Behavioral validity of equations in abstract datq types. Contribu-
tions to General Algebra 3, Proceedings of the Vienna Conference, Verlag B. G. Teubner.
Stuttgart (1985), pp. 301-324.

[SaT85] SANNELLA, D. TARLECKY, A. On observational equivalence and algebraic spec-
ification. Journal of Computer and System Science, 34 (1987), pp. 150-178.

[SaW33] SANNELLA, D. WIRSING, M. 4 kernel language for algebraic specification and
tmplernentation. Proceedings International Conference on Foundations of Computation
Theory. Sweden. Springer LNCS 158 (1983), pp. 413-427.

[TWW79a] THATCHER, J.W. WAGNER, E.G. WRIGHT, J.B. Specifications of abstract
data types using condicional azioms.~IBM Research Report RC 6214, Yorktown Heigths.
NY, 1979.

(TWW79b] THATCHER, J.W WAGNER, E.G WRIGHT, J.B Data type specifications:
para-metrization and the power of spectfications techniques. IBM Research Report RC

12

7757, Yorktown Heights, NY, 1979.

[Wan80] WAND, M First-Order Identities as q Defining Language. Acta Informatica,
14 (1980), pp. 337-357.
A Appendix: Proof of lemmas 21 and 24

In the present appendix, we include the proofs of lemmas 21 and 24, which were been
stated in Segtion 3.

A.1 Proof of lemma 21
A priori, it seems that there are three possible cases:

1. There is no visible morphism between A and B.

o

- There is one single visible morphism between A and B.

3. There are several morphisms between A and B.
Consequently, we must prove that cases 1 and 2 may occur and case 3 may not.

L. The following example shows that case 1 may occur:

Let us suppose a visible signature X = (Vis, Dy, 2 4u) such that;

Vis = sorts(T gy,)

Yows = Xau

sorts(Zau) = {sortl}

opns(Xan) = {opl, op2} where opl, op2 :— sortl

[t is easy to see that totally observable terms of visible sort are op; and op, in this
signature. Now, let us consider the 2-algebras A and B such that:

Asortl = {‘} Bsortl = {*7#}
oply =e oplp = %
op2, =e op2p = #

[t is obvious that no visible morphism can be defined between A and B, since the
ouly mapping between A and B which fulfils f(e4(t)) = e5(t) (for any ¢t € TVisg)
is not an application because “e” has two possible images in B (“*” and CHT.

13

2. Now, let us see that case may occur. The example in which 4 = B shows this.
In this example, a visible morphism is a function which fulfils flea(?)) = ea(t), (for
any t € TVisg). It is obvious that this morphism exists and that it is the identity
function.

3. Finally, let us see that case 3 may not occur. We shall prove it by contradiction. Let
us suppose that there are two visible morphisms between A and B, called £, and f.
By applying the definition, for any ¢ € TViss ., it is fulfilled that:

Flzalt)) = ea(t)
Llea(t)) = ep(t)

By properties of equality, this means that, for any t € TVisg,, it is fulfilled that:

filealt)) = falea(t))

M M

l
m (n

i

That is to say, the two morphisms are the same, and, therefore, uniqueness is proved.

O

A.2 Proof of lemma 24

Since lemma 24 contains an “if and only if”, we must prove both “directions” of the
double implication:

o First, let us prove that, if 4 and B are visibly equivalent, then:

Vi, b e TViss

~A

it is fulfilled that 4 = ¢, = ¢, if and onlyif Bt =t

Let us suppose that 4 and B are visibly equivalent. This means that there is a visible
1somorphism f between A and B, Since f is a bijection, it is fulfilled that:

Va,a € Aryiy o = az if and only if flay) = flaz)

By the definition of Arvis, 2 € Ay, if and onlyif 3¢ ¢ TVz’sEA such that ea(t) = 1.
Then, the above statement is equivalent to the following one:

Vhoty € TVisg, c4(t)) =cq(ty) if and only if f(e(t1)) = f(ea(ty))

Now, siuce f is a visible morphism between A and B, for any L& I'Visy ., f(ea(t)) =
£p(t). Therefore, we obtain:

Vi, t € TViss, c4(t) = €4(ty) if and only if ep(t) = cp(ty)

14

By applying the definition of satisfaction of an equation in a given algebra and the
fact that ¢, and ¢, are ground terms®, this is equivalent to the following statement:

i tl s tz € TL',‘Z'vS'V‘

L4

it is fulfilled that A Et =t if and only if Bt =t

, which is what we wished to prove.

* Let us prove the reciprocal implication, that is, that the above statement implies
visiblesequivalence between A and B. By applying the definition of satisfaction of
an equation in a given algebra and the fact that t and t, are ground terms, this
statement is equivalent to the following one (which we shal] call “statement o”):

Vit € TVise, c4(ty) = €4(ty) if and only if ep(t) = cp(ty)

Consequently, we must proof that, if statement « is fulfilled, there is a visible iso-
morphism between 4 and B.

To do this, let us suppose that statement « is fulfilled. We define f as the mapping
which fulfils f(c4(¢)) = gp(t). If we prove that [is a bijection, we shall prove that
A and B are visibly equivalent. We divide the proof into three parts:

— First, let us see that f is an application, that is,

Vay,a € Ary, a = g implies f(a;) = f(ay)

By the definition of Atvis, € Apy,, if and only if 3¢ ¢ TVisg, such that
€4(t) = z. Then, the previous statement is equivalent to the following one:

Vit e TVZ’S:A calty) = c4(ty) 1mplies Healt)) = flea(ty))
Now. since f is defined as Jea(t)) = ep(t), this means that:
Vi b€ TVisg, cy(ty) = €a(t2) implies ep(t)) = e5(ty)

which is fulfilled, by statement «.

— Now, let us see that f is irijective, that is,

Va,a € Apy, flay) = f(ay) implies a; = a,

SAnd, consequently, for any assignment of values v, 1t is fulfilled that v7(#) = ¢ and v (lg) = 15,

15

By the definition of Arvis, € Ay, if and only if 3¢ ¢ TVisEA such that
ca(l) = r. Therefore, the above statement is equivalent to the following one:

Vit € TViss, f(ea(h) = f(za(t)) implies ea(ty) = ()
Now, since f is defined as f(ea(t)) = ep(t), this means that:
Vit € TViss, ep(t;) = ep(tz) implies e4 () = e4(ty)

which is fulfilled, by statement a.

Let us see that f is exhaustive, that is,
Vb€ Brvi, 3a€ Apy;, such that fla) =10

By the definition of Brvis, # € By, if and only if 3¢ ¢ TVisg, such that
€8(t) = z. Therefore, the above staternent is equivalent to the following one
(remember that 7'Visy 4= TVisg,):

Vie TVisy, 3a € Arys, such that fla) =ep(t)
Now, by the definition of /. we know that Healt)) = ep(t). Moreover, by the

definition of Ay, c4(t) € Ay, Consequently, if we make €4(t) be a, the
above statement is fulfilled and, therefore, exhaustivity is proved. [J

16

LSI-96-1-R

LSI-96-2-R

LSI-96-3-R

LSi-96-4-R

LS1-96-5-R

LSI-96-6-R

LSI-96-7-R

LSI-96-8-R

LSI-96-9-R

LSI-96-10-R.

LSI-96-11-R

LS1-96-12-R

LSI-96-13-R

LSI-96-14-R

LSI-96-15-R

LSI-96-16-R

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Research Reports — 1996

“(Pure) Logic out of Probability”, Ton Sales.

“Automatic Generation of Multiresolution Boundary Representations”, C. Andyjar, D. Ayala.
P. Brunet, R. Joan-Arinyo, and J. Solé.

»

“A Frame-Dependent Oracle for Linear Hierarchical Radiosity: A Step towards Frame-to-Frame
Coherent Radiosity”, Ignacio Martin, Dani Tost, and Xavier Pueyo.

“Skip-Trees, an Alternative Data Structure to Skip-Lists in a Concurrent Approach”, Xavier
Messeguer.

“Change of Belief in SKL Model Frames (Automatization Based on Analytic Tableaux)”, Matias
Alvarado and Gustavo Nijjez.

“Cornpressibility of Infinjte Binary Sequences”, José . Balcdzar, Ricard Gavalda, and Montser-
rat Hermo.

“A Proposal for Word Sense Disambiguation using Conceptual Distance”, Eneko Agirre and
rerman Rigau.

“Word Sense Disambiguation Using Conceptual Density”, Eneko Agirre and German Rigau.

“Towards Learning a Constraint Grammar from Annotated Corpora Using Decision Trees” .
(o]
Lluis Marquez and Horacio Rodriguez.

“POS Tagging Using Relaxation Labelling”, Llufs Padré..

“Hybrid Techniques for Training HMM Part-of-Speech Taggers”, Ted Briscoe, Greg Grefen-
stette, Lluis Padrd, and Iskander Serail.

“Using Bidirectional Chart Parsing for Corpus Analysis”, A. Ageno and H. Rodriguesz.
“Limited Logical Belief Analysis”, Antonio Moreno.
“Logic as General Rationality: A Survey”, Ton Sales.

“A Syntactic Characterization of.Bounded-Rank Decision Trees in Terrns of Decision Lists™ .
Nicola Galesi.

“Algebraic Transformation of Unary Partial Algebras I: Double-Pushout Approach”, P. Burmieis-
ter, F. Rosselld, J. Torrens. and G. Valiente.

LSI-96-17-R

LS1-96-18-R

LSI-96 19-R

LS1-96-20-R

LSI-96-21-R

LSI-96-22-R

LSI-96-23--R

LS1-96-24-R

LSI-96-25-R

LSI-96-26-R

“Rewriting in Categories of Spans”, Miquel Monserrat, Francesc Rossellé, Joan Torrens, and
. . f
Gabriel Valiente.

*Strong Law for tvhe Depth of Circuits”, Tatsuie Tsukiji and Fatos Xhafa.

“Learning Causal Networks from Data”, Ramon Sangiiesa i Solé.

“Boundary Generation from Voxel-based Volume Representations™. R. Joan-Ariﬁyo and J. Solé.
“Exact Learning of Subclasses of CDNF Formulas with Membership Queries”, Carlos Domingo.

“Modeling the Thermal Behavior of Biosphere 2 in a Non-Controlled Environment Using Bond
Graphs”, Angela Nebot, Francois E. Cellier, and Francisco Mugica.

“Obtaining Syuchronization-Free Code with Maximum Parallelism”. Ricard Gavaldé, Eduard
Ayguadé, aud Jordi Lorres.

“Menioisation of Categorial Proof Nets: Parallelism in Categorial Processing”, Glyn Morrill.
“Decision Trees Have Approximate F ingerprints”, Victor Lavin and Vijay Raghavan.

“Visible Semantics: An Algebraic Semantics for Automatic Verification of Algorithms” | Vicent-
Ramon Palas! Lallana.

Hardcopies of reports can be ordered frorm:

Nuria Sdnchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secrelsi@lsi.upc.es

See also the Department WWW bages, http://wwu~1si.upc.es/wuw/

