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Abstract

The Width-Size Method for resolution was recently introduced by Ben-Sasson and
Wigderson ([BW98]: Short Proofs are Narrow - Resolution Made Simple STOC 99).
They found a trade-off between two complexity measures for Resolution refutations:
the size (i.e. the number of clauses) and the width (i.e. the size of the largest clause).
Using this trade-off they reduced the problem of giving lower bounds on the size to
that of giving lower bounds on the width and gave a unified method to obtain all
previously known lower bounds on the size of Resolution refutations. Moreover, the
use of the width as a complexity measure for Resolution proofs suggested a new very
simple algorithm for searching for Resolution proof.

Here we face with the following question (also stated as an open problem in [BW98]):
can the size-width trade-off be improved in the case of unrestricted resolution ? We give
a negative answer to this question showing that the result of [BW98] is optimal. Our
result, also holds for the most commonly used restrictions of Resolution like Regular,
Davis-Putnam, Positive, Negative and Linear.

A consequence of our result is that the width-based algorithm proposed by [BW9S]
for searching for Resolution proofs cannot be used to show the automatizability of
Resolution and its restrictions.

1 Introduction

Proof Complexity Theory is concerned with proving non-trivial lower bounds on the length
of proofs in sound and complete propositional proof systems. After obtaining lower hounds
for somewhat powerful systems like Bounded-Depth Frege, there is a renewed interest in
devoloping new techniques for obtaining lower bounds for simple but non-trivial systems like
Resolution. This is a consequence of the following facts:

*Supported by an EC grant under the TMR. project



e several lower bound techniques gave insights for developing new algorithms for search-
ing for proofs in Resolution;

e Proof-search algorithms for restricted versions of Resolution are the main algorithms
implemented in Automated Theorem Proving applications.

Recently Ben-Sasson and Wigderson in [BW98] introduced a new complexity measure
for Resolution refutations. The width of a refutation is defined as the maximal number of
literals in any clause of the refutation. The importance of this new measure is twofold. On
one side they were able to give a general relationship between the width and the length of a
refutation, reducing the problem of giving lower bounds on the length to that of giving lower
bounds on the width. This way they obtained an unified method to prove all the previously
known lower bounds for Resolution. On the other side they made explicit a new simple
proof-search algorithm based on searching for clauses of increasing size.

The width-size relation can be stated as follows:

If F', an unsatisfiable formula over n variables, has a resolution refutation of size S, then it

has a resolution refutation of width O(y/nlog S).

In this paper we are face with the following question (also stated in [BW98] among the
open problems). Can the width-size trade-off be improved ? We give a negative answer to
this question showing that the result of [BW98] is optimal. Namely we find an unsatisfiable
3-CNF F over O(n?) variables such that:

e F has a polynomial size resolution refutation; and
e Any resolution refutation of F' requires a clause of size {(n).

A tree-like refutation is a refutation that can be arranged as a tree. The size-width
trade-off for tree-like Resolution (the system in which we only allow tree-like refutation) is
better than the corresponding trade-off for general resolution. Namely,

if F', an unsatisfiable formula over n variables, has a tree-like resolution refutation of size
S7, then it has a tree-like resolution refutation of width O(log St).

[BW98] showed that this last trade-off is optimal. Anyway the difference between the two
cases leaves open the question whether for other known restrictions of Resolution (that
eventually lie in between tree-like and general resolution) it could be possible to improve the
size-width trade-off given for general resolution. Here we also show that it is not the case
for the following restrictions of Resolution: Regular, Davis-Putnam, Positive, Negative and
Linear Resolution. Indeed we show that in all these cases the size-width result for general
resolution is also optimal. Moreover this result is obtained by using the same formula F
used to give the result for general resolution.

A propositional proof system S is automatizable, if there is an algorithm that for every
tautology F finds a proof of F' in S in time polynomial in the length of the shortest proof of
F in S. [BW98] gave the following simple width-based algorithm for searching proofs.

Set w = 1. Starting with the axiom try to derive all clauses of width (=size) w. If the empty
clause is derived then stop. Else increase w by 1 and repeat.
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On a given formula F such an algorithm works in time T'(n) = n®®) where w is the minimal
width of any refutation of F'. Moreover by the previous width-size relations it is easy to see

that T'(n) is quasi-polynomial (S? (Iognl) in the minimal size tree-like refutation St of F and

is sub-exponential (exp(y/(nlog.S)) ) in the minimal size general resolution refutation S of
F.

As a consequence of our result we therefore obtain that the algorithm of [BW98] is not
an efficient algorithm to automatize resolution refutations or many of its restrictions.

2 Preliminaries

Resolution is a refutation proof system for formulas in CNF based on the following inference

rule:
Cvz Dvz

CcvD
A Resolution refutation for an inital set ¥ of clauses is a derivation of the empty clause from

¥ using the above inference rule. Several restrictions of the resolution proof system have
appeared in the literature. Here we consider the following five:

1. the regular resolution system in which the proofs are restricted in such a way that any
variable can be eliminated at most once in any path from an initial clause to the empty
clause.

2. the Davis-Putnam resolution system in which the proofs are restricted in such a way
that there exists an ordering of the variables such that if a variable z is eliminated
before a variable y on any path from an initial clause to the empty clause, then z is
before y in the ordering. This restriction is also sometimes called ordered resolution in
the Automated Theorem Proving community.

3. the negative resolution system, or N-resolution for short, where in each application of
the resolution rule one of the premises must not contain any positive literals.

4. the positive resolution system, or P-resolution for short, where in each application of
the resolution rule one of the premises must not contain any negative literals.

5. The linear resolution system in which the empty clause is linearly resolvable from the
initial clauses ¥ with respect to a clause C' € X: i.e. there is a sequence of clauses
(Co,Ch,...,Cy) such that Cy = C, C,, is the empty clause and for all 4, 1 < i < n in
the resolution step %, the clause B;_, is either a initial clause (i.e. a clause in

¥) or such that B, < GJ for some 5 < 1.

Let R F F (resp. R bty F ) denote that R is a general (resp. tree-like) resolution
refutation of F. The size |R| of a refutation R in any of the above systems is defined as the
number of clauses used in R. The size complexity S(- F') (respectively St(+ F)) of deriving
a CNF formula F in general resolution (respectively in tree-like resolution) is defined as
min |R| (respectively min_|R|).
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The width w(F') of a CNF formula is defined to be the size (i.e. the number of literals)
of the largest clauses in F' The width w(R) of a refutation R is defined as the size of the
greatest clause appearing in R. The width w(t F) (resp. w(by F)) of deriving a formula
F in general (resp. tree-like) resolution is defined as min w(R) (resp. min w(R). The

RFF RFy F
size-width relations obtained by [BW98] are given in the following Theorem

Theorem 2.1 Let F' be any unsatisfiable formula over n variables. Then
° ST(*_ F) 2 2(w(|—tlF‘)—w(F)),.

o S(-F) > exp(Q(lelfl-ellly)
Our target question “ Is the size-width result for general resolution optimal ?” can be
therefore formalized as follows: can one find an unsatisfiable k--CNF formula F over n

variables such that w(F) =k, S(F F) < O(n°M) and w(k-F) > Q(y/n) ?

We consider the C N F' formula GT,, expressing the negation of the property that in any
directed graph closed under transitivity and with no cycles of size two there is a source node.
We obtain the following clauses:

(1) zijAzjp = Tik LLkEni#F #£k
(2) Tij; — jj,i 7'.».7. € [n],z 74.7
(3) Ti; V.o oTjo1;VTi41,5..-Znj JE [n]

where the clauses in (1) encode the transitivity closure property, those in (2) the property
that there are no cycles of size two and those in (3) say that each node receives at least an
edge from any other node (i.e. there is no source node). This formula was firstly formulated
by Krishnamurthy in [Kr85] where he conjectured its hardness for resolution. Subsequently

Stalmark in {St 96] refuted the conjucture giving polynomial size resolution proofs for the
formula GT,,.

3 Polynomial Size Refutations of GT,,

[St 96] gave a polynomial size unrestricted resolution proof for the GT,, unsatisfiable formula.
We slightly modify his proof in order to show that actually it also works for the following
restrictions of resolution: regular, positive, davis-putnam and linear resolution.

Theorem 3.1 There are polynomial size proofs for GT, in the following proof systems:
(1) general resolution, (it) Davis-Putnam resolution, (iti) Regular resolution, (iv) Positive
Resolution, (v) Linear Resolution.

Proof. We start by giving the general resolution refutation, then we discuss why this proof
falls in any of the restricted versions of resolutions We adopt the following abbreviations.



Let:
A, 5,k) 1=z j Azjp — zig
B(i,j) =Xy Y Ty
C(7) := V15i5m i#5 Ti,j
Cm = /\j:l...n Cm(J)
Di_1(1) = Crr(§) V Tik

v#j#Fk#1i€|n]
1 #J € [n]

J € [n],m € [n]
m € [m]

ken]/{ihi€k—-1],5€[n]

Ei_1(1) == Cem1(J) V Vemi,..n(zek) @ € [n]/{1},7 € [n), k € [n]

The proof proceeds by steps downward from n to 2. At the k-th step, for each j =1,...,n,
we prove Ci_1(j) using the inital clauses A(1,k,j), B(k,j) and the clauses Ci(j) and Cy(k)
obtained at the previous step. At the end we have proved C, from which a contradiction is
obtained in 2 steps using B(1,2). Now we give a description of how to perform the k-th step
obtaining in parallel the clauses Ci_1(1), Ck-1(2),...,Cr-1(n). For a generic value j € [n]
we obtain Ck_1(7) by the following steps:

(a): Perform in parallel the following resolutions steps, each one resolving the variable zy ;:

Crls) _A(Lk.j)
Di_, (1)
Cill) _A(2.k.)
D, (2)

Cka! A(]—lak’.]!
Di_| (J'_l)

Ci(7)  B(ik)
D}, (1)

Cils) Ala+1kg

Dy _,(5+1)

Cir)  Aln,k.g)

D'L_l(n)

(n)

(b): Ci_1(j) is obtained by the following tree-like refutation in which we are resolving along
the variables &1k, T2k, ..., Tho1 4

Cx(k) Dj_ (1)
(1) ; Ei—l(l)j

E,_ (1) Dj_,(2)
(2) El‘:—l(2)

Bl _,(n) Di_ (k-1)
Cr—1 (1)

(n)

It is easy to see that such a refutation is a Positive resolution, indeed at each resolution step
one of the involved clauses is always made by positive literals.
It is also easy to see that the following orders of elimination of the variables is respected:

:L’n,la wn,?, ceey :En,n—l
-Tl,na :EZ,na s amn—l,n
Tn-1,1yTn-1,2y:++3Ln—1,n

Tin-1,T2n—-13:+-3Tpn-2,n-1



T2

T2

Therefore the refutation is a Davis-Putnam resolution as well as a Regular resolution.

To see that the refutation Linear observe that the following sequence of clauses define the
order of the linear elimination:

Cr(n),
Cn(1),B(n,1), A(2,n,1), A(3,n,1),...,A(n ~ 1,n,1)
Dy(1),..., Dy(n), En(1),..., EX(n),
Cn(2),A(1,n,2),B(n,2),A(3,n,2)...,A(n - 1,n,2),
Di(1),..., Di(n), EX(1),..., BX(n),
Cn(n—1),A(1,n,n—1),A(2,n,n - 1),.. A(n 2,n,n—1),B(n,n—1)
Dr(1),...,Dp M (n = 1), ER7Y(1),..., B~ (n - 1),
Cn_l(n—l),
C’n_l(l),B(n—l,l),A(2, L,1),A(3,n—1,1),...,A(n - 2,n ~ 1,1),
D} _1(1),..., Dy_y(n — ),Erl._l(l), El ( - 1),
Cn 1(2)’A(1’n ) (TL » )aA(3 n-— ) A(n_Qan_1’2)1
D?_,(1), _1(n=1),E2_,(1),.. Er2. 1(”"1)

Ca-1(n - 2),A(l,n-1,n-2),A(2,n - 1,n-2),...,A(n—-3,n—1,n~2),B(n - 1,n — 2)
DpZi(1),..., DRZi(n - 1), EpZ3(1), ..., EnZi(n — 1),

n—1

a

It is easy to show, by considering an appropriate definition of critical assignments for the
GT, formula and using the “large clause” method of Beame and Pitassi [BP96], that any
resolution proof of GT,, must contain a “large” clause different from the initial ones.

Theorem 3.2 Any resolution proof of GT,, contains a clause different from the inital ones

of size Q(n)

The previous Theorem does not imply that the width-size method of [BW98] is optimal
since the initial clauses in GT), have size O(n). In the next section we consider a modification
of the formula GT,, that will make us to overcoming the problem of large inital clauses.

4 Tightness Results for the Width-Size Method

We modify the clauses of GT,, in such a way to make the lenght of initial clauses bounded
by a constant but preserving the lower bound of Q(n) on the size of the clauses needed in
any resolution proof of these clauses.



We introduce for each j € [n] n new variables yjo, ... Yj -1, Yjj+1,- - - Yjn and modify the
clauses in (3) by the following clauses (the modification is similar to the reduction used from

SAT to 3-SAT and is also reported in [BW98].)

(3) o A Niztoonyiz(¥ic1,5 V Tij V Ti) A Yn,;
Define the 3-CNF formula MTG, as the conjunction of the clauses in (1), (2) and (3').

Theorem 4.1 There are polynomial size refutations for the formula MTG,, in any of the
following systems: (i) general resolution, (ii) positive resolution, (i) davis-putnam resolu-
tion, (iv) regular resolution, (v) linear resolution.

Proof. The proof proceeds in the following way. From the clauses in (3’) obtain the clauses
in (3) eliminating once at time the y variables. Then we apply the polynomial size proof
for GT, to these new clauses. Observe that the first part of the proof is in fact a tree-like
proof of size quadratic in n and, since the y variables are different for different j € [n], the
regularity of the proof is preserved. It is also easy to see that the new first part of the proof
is a Davis-Putnam resolution since the following order of elimination of the y variables is
respected:

Yo,15-+-9Yn1,
Yo,2,+ -5y Yn,2,
Yons 3 Ynn,

Moreover if for each j € [n] we start by elminating the y;, variable it is easy to see that
the new first part is also a positive resolution. Finally, to prove that this proof is a Linear

resolution proof, consider for j = 1,...,n the following definition:
Yn,j ifz = n
G(i):=% (ZnjVTuo1;V...VZ;jVyi—1;) foranyi=1,...,n—1

Then the order of the clauses in the linear resolution of MTG,, is obtained by the order
of the linear resolution for GT, by putting for each j = 1,...,n the sequence of clauses
Gj(n),...G;(1) just before the clause C,(j) (that actually corresponds to G;(0)). O

4.1 Optimality for Unrestricted Resolution

Let A; be the conjunction of the clauses z; ; — &;; for all i € [n],i # j. Let B; the clauses in
(3"). Consider the formula C; defined as the conjunction of A;A B;. First of all an observation
about assignments for these clauses: if we want an assignment o such that o(C;) = 1 for
some j € [n], then o must verify the following conditions:

e at least one of the variables z; ; has value 1 under «;

e the y;, variable will be assigned in such a way that there is one k € [n}/{;} such that
zjk =1 and y;; =0 for all e < k and y;; =1 for all 7 > k;
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e if z;; has value 1 then z;; must have value 0.

On the other hand, when « falsifies some C; we are not sure that all the z;; variables have
assigned a 0 value. It could be the case that a(C;) = 0 because of some particular way of «
to assign values to the y,; variable (e.g. a(yo;) = 1).

Theorem 4.2 Any resolution proof of MT'G,, must have a clause of size Q(n)
Previous Theorem joint with Theorem 4.1 implies the main result of the paper.

Theorem 4.3 The width-size metod is optimal. That is, there is a k—CNF F on O(n?)
variables verifying the following two properties:

e F has polynomial size resolution refutations,

o Any resolution refutation of F' contains a clause having at least Q(n) variables.

Proof of Theorem 4.2

Recall the definition of the formula C;. For each I C [n] let C; defined as A;c; C; We define
a measure pu giving measure of the complexity of any clause in resolution proof of MTG,,.
p(C) is the size of the minimal I C [r] such that C; = C on all assignments. u(C;) < 1,
#({}) = n, and p is obviously subadditive, therefore in any resolution proof of MTG,, there
is a clause such that 2 < u(C) < % Fix such a clause. We show that this clause will
contain (}(%) literals. Assume for the sake of contradiction that |C| < 2. We will prove a

6
contradiction. First of all notice that since u(C) > % the following claim holds:

Claim 4.1 There ezists at least an | € I such that no variable from Cj belongs to C.

Proof of the Claim

Observe that each C; contains exactly a negated variable appearing in another C; (in fact
for each i # j € [n] C; and C} share the clause (Z;;V z;;)). Since |C| < %, this means that in
the worst case C' captures variables from at most 3 different C;. But since |I| = u(C) > 2,
then there is at least an [ € I such that no variable from C; appears in C.0O

Now, given that there is an [ € I such that any variable from C; does not appear in C,
consider any assignment & such that a(Ci) = 0,a(C) = 0 and for all j € I/{l} «(C;) = 1.
This assignment must exist by the minimality of I. By the previous observation on the
assignment « not satisfying a clause C; we deduce that one of the two following cases occurs
for the z variables in Ci:

e either all the variables z;; are setted to 0 by a, or

e there is some 2, setted to 1 and «(C;) = 0 because of the way « assignes values to
the y;; variables.



In the latter case we immediately obtain a contradiction noting that since no variable
from C; appears in C we can change the value of the y;; variables according to the previous
observation in such a way that o(C;) = 1. This change does not affect neither the value
of C nor the value of the others C; for j € I/{l}. Therefore we have found an assignment
satisfying all the C; for 7 € I but falsifying C. And this is not possible.

In the former case we proceed as follows. First of all we extend o to an assignment o
satisfying all the C; for i € [n]/{l}. Defined J = [n]/I we have that |J| > 3 (since [I| < &),
Therefore by the same argument used in Claim 4.1 for the set I we deduce that there is at
least a 7 € J such that no variable from C; appears in C.

We build an assignment 3 from o' such that 3(C;) =1 for all i € I and B(C) = 0, and
this is a contradiction. (3 is built in the following way: change all ;; such that a(z;;) =1
to 0. Change all the symmetric values z;; such that o(z;;) = 0 to 1. This first change does
not affect the value of C' since no variable from C; appears in C. Observe that after this
change some variable z;; will have the value 1. Therefore it remains to change (according to
the previous observation) the value of the variable y;; in such a way to satisfy C; (i.e. such
that B(C;) = 1). This change will not affect the value of C since we know that no variable
from C; appears in C. So that (3 leads to a contradiction.

4.2 Consequences in Restricted versions of Resolution

Our result has several consequences. First of all the width-size method of [BW9S] for tree-like
resolution joint with Theorem 4.2 give a lower bound of the order 2" for tree-like resolution
proofs for MTG,, therefore, by Theorem 4.1 providing to another exponential separation
between unrestricted resolution and tree-like resolution as in the case of [BEGJ9S].

Theorem 4.4 Any tree like resolution proof of MT'G,, must have size Q(2").

Other consequences regard with restrictions of resolution. As we have seen in Section 2,
the width-size trade off is more powerful in the tree-like case than in unrestricted one. This
fact let us think that (possibly) restricting some way the resolution system it is possible to
give better trade-off results than the unrestricted case. We show that this is not the case for
the regular, positive, negative, Davis-Putnam and Linear resolution. As we have observed
in Section 4 MTG,, has also polynomial size refutation in all the considered restrictions.
By Theorem 4.2 any resolution refutation of MTG,, (in particular in any of the considered
restrictions) must have a clause of size 2(n). This immediately implies that the width-
size trade-oft for general resolution cannot be improved for the case of regular and positive,
davis-putnam and linear resolution. For the case of negative resolution, we consider the
unsatisfiable formula MTG, in which the z;; variables are replaced by 2; ; whose intended
meaning is opposite to that of the = variables. It is easy to see that the positive resolution
proof for MT@G,, is in fact an negative resolution proof for MT'G,, and that the lower bound
technique can also be applied. Therefore also in the case of negative resolution we cannot
improve the width-size trade-off obtained for unrestricted resolution by [BW98].
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