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Abstract

We shall demonstrate that proving the behavioral equivalence of two algebraic
specifications can be reduced to proving a set of inductives theorems. So we can
prove automatically this behavioral equivalence by applying automatic deduction
techniques such as proof by consistency.

1 Introduction.

Behavioral semantics appears as a tool to grasp, in algebraic specification, the concept of
module, which is very important in software engineering.

Intuitively, a module is a “blackbox”, which has an interface with the outside. Only
this interface can be observed: the internal functioning of the module is unknown to us.
So two modules are interchangeable (or “equivalent”) if their observable behavior is the
same, being their non-observable functioning as it may.

This idea of module, which is so useful and intuitive, is difficult to model in the tradi-
tional approaches of algebraic specification, such as initial or final semantics.

In fact, these semantics only accept one model (up to isomorphism) of each specifica-
tion and this is much too restrictive. Specifically, it may occur that two specifications that
are intuitively equivalent are not so in these semantics. This produces odd effects, i.e the
usual implementation of a stack is not equivalent to its usual algebraic specification.

Behavioral semantics seems to overcome these troubles. In this semantics, the types
(called “sorts”) are divided into observable and non-observable ones. We are only inter-
ested in the observable consequences.



This enables us to define an equivalence which grasps the intuitive notion of equivalence
between modules, that is known as “behavioral equivalence”, in which two specifications
are equivalent if they share the observable consequences.

This paper aims at proving that this equivalence can be managed by automatic deduc-
tion techniques. Specifically, we want to prove that the problem of testing if two algebraic
specifications are equivalent can be reduced to proving some given theorems in a specific
initial algebra. Thus, we obtain a co-semidecision procedure for behavioral equivalence.

The structure of this paper is as follows: in section 2 we define the basic concepts
concerning algebraic specification and behavioral semantics which are necessary in order
to follow the reasoning. In sections 3 to 10, we introduce the concepts and theorems which
are needed to prove what is intended in this paper. Finally, in section 11, we make a
summary of the applications of what has been proved and we expound our views on the
future lines of research.

2 Basic notions.

In this section, we state the notions that are necessary to understand the rest of the
paper. We describe some basic definitions on algebraic specification and behavioral se-
mantics. For the sake of uniformity in the notation, we have chosen to express all these
definitions in behavioral theory terms, though most of them are not exclusive to this theory
but are rather general results over algebraic specification.

Definition 1. A S-set C is a family of sets indexed by S, C = {C,},es.

Definition 2. A behavioral signature ¥ is a triple £ = (Obs, S, F') where S is a set
whose members are called sorts, Obs is a subset of S whose members are called observable
sorts and F is a §* x S-set F' = {Fy s} (w,s)es7x 5

IfoeF,, where w = wl x ... X wn with wl, ..., wn,s € S, we say that ¢ is a function
symbol with domains wl,...,wn and sort s. We refer to this by either ¢ € Fyq yn,s or
o:wl X...Xwn — s,

S is called sorts(X) and F is called opns(¥). Variables of sort s are called vars(s).

Definition 3. Let £=(Obs,S,F) be a behavioral signature and X a set of variables.
The sets Tx,(X) are defined in the following way:

o If z € X and = € vars(s), then z € Ty, (X).
o If o0 € F),, then 0 € Tx,(X).



A Y-equation with arity 0-is called simple or unconditional equation. A Y-equation e,
in which it is fulfilled that p;, p2 € vars(e), is called equation which has only variables on
its right-hand side.

Definition 10. Let A be a Y-algebra. Let X be a set of variables. An application
v: X — A will be called assignment of values.

Lemma 11. If A is finitely generated, for each assignment v, there is an application
w: X — Ty such that v = €4 o v. In this paper, when we deal with finitely generated
algebras, we use indifferently the name “assignment of values” to refer either to v or to w.

Definition 12. Given an assignment of values v, (where v may be of the two kinds
which we have earlier said), and given a term ¢ € Tg(X), we define v*(t) as follows:

o If t € X, then v*(¢t) = v(t).

o If t has the form o(t,..., %), with n > 0, then v*(¢) = o(v*(#), ..., v*(£.))-

Lemma 13. Let ¥ = (0bs, S, F) be a behavioral signature, X a set of variables and
v:X — Tx. Suppose s € S . If t € (T2(X)); then v*(¢) € (Tx),.

Lemma 14. Let SPEC = (Obs,S,F,E) be a behavioral specification. Let %' =
(Obs’, S', F') be any signature. Let X be any set of variables. Let v : X — Ts/ be an
assignment of values . Suppose p € T5/(X). Then, it is fulfilled that p ¢ Ty, (X)

implies v*(p) € Teeppe

Definition 15. We say that a X-algebra A satisfies an equation ¢ : ¢; = d; &...& ¢, =
dv = 4 = t, if Vv : vars(e) — A it is fulfilled that: e4(v*(c1)) = ea(v*(di)) A ... A
e4(v*(cn)) = €a(v*(dyn)) implies e4(v*(#)) = £4(v*(f2)). If a X-algebra satisfies an equa-
tion e, we shall write A = ¢

Lemma 16. If A is finitely generated, the last definition is equivalent to the following

one: Vv : vars(e) — Tx it is fulfilled that: e4(v*(c1)) = ea(v*(di)) A ... A ea(v*(cy)) =
e4(v*(d,)) implies €4 (v*(4)) = e4(v*(f2)).

Definition 17. A behavioral specification is a 4-tuple SPEC=(Obs,S,F,E), where
%=(0bs,S,F) is a behavioral signature and E is a set of X-equations. We define sig(SPEC) =
Y and eqns(SPEC)=E. We refer by Ty .. to Tt if & = sig(SPEC). Likewise, we de-
fine Tsgppo (X) and (Txgppe )s- Werefer by (Tsoppe)oss to {t | ¢ € (Tsgppe)s N's € Obs}.

Definition 18. Given a specification SPEC=(0Obs,S,F,E), we refer by =sprc to the
congruence being defined by SPEC. That is to say, =spgc is defined by the following four
properties:



1. Vt e TZSPEC 1t is fulfilled ¢t =spgc t.
2. Vt,u € Tyipp, t =spec U implies v =gpgc t.
3. Vt,u,v € TESPEC t =gppc U A u =gpgo v implies t =gsppc v.

4. Ve:(a=d & .&ey,=di=>t=tH)€EE Vu: vars(e) — Ty it is fulfilled that
v*(¢1) =sppc v*(di) A ... A v*(cn) =spec v*(dn) implies v*(p1) =sprc v*(p2)

Comments.

o If we want to prove ¢ =gprc u (for some given t,u € Tssppe)» We must apply
repeatedly these properties until we obtain ¢t =spgc u. We refer to each of these
applications of properties by “step” of the demonstration. Analogously, the sequence
of steps which proves ¢t =spgc u is called “demonstration” of ¢t =sprc u (Beware of
not confusing the terms “demonstration” and “proof).

e Since =gppc is a congruence, the following property is fulfilled:

VO‘ e le.”wn’s, With w].,..., 'w'n,S E S, Vsl,t]_ E (TESPEC)wl,no-,Sn, tn e (TESPEC)'LU'n

If 81 =spec b1, --., Su =sPEC tn then 0(51, veny Sn) =gpEC O‘(t1, e tn)

This property will be widely used in next proofs and we shall call it “property of
congruence”.

Definition 19. Suppose a behavioral specification SPEC. We divide the set Ts,p,.
into classes of equivalence defined by relationship =spgpc. We refer to the class of equiva-

lence which contains the ground term t as [t]=gpp.-

Definition 20. Given a behavioral specification SPEC with sig(SPEC)=X, we refer
by quotient term algebra of this specification to the Y-algebra which is defined as follows:

o As = {A}ses, where A, = {[t]=sppc }» With t € (Tegppe)s-

o Ap = {04} where o4([ti]=gppes tal=sppe) = [slzsppe if and only if o (4, ..., t,) =sprc
s.

Definition 21. Let SPEC be a behavioral specification and A an algebra. We say
that A is initial w.r.t. SPEC if it is isomorphic to the quotient term algebra of SPEC. In
this paper, we shall use the symbol Tspgrc to refer indifferently either to the quotient term
algebra or to any initial algebra.

Lemma 22. Given a behavioral specification SPEC, it can be proved that Vi, u €
Tssppe it is fulfilled that ETsppe(t) = €Tgpge () if and only if ¢ =sppc v if and only if
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[tl=spzc = [v)zsppe-
Definition 23. We refer by (Tsprc)oss 10 {[tl=gpre | t € (Tssppc)obs}-

Definition 24. Given a behavioral specification SPEC=(Obs,5,F,E), we refer by
Totsprc(X) to the set of terms such that all their subterms are observable. That 1s to say,
t e TOtSPEC(X) if:

e t is a variable of sort s, where s € Obs.

e t has the form o(t,...,t,), where o € Fuyoum,s; Wiy Wy € Obs and t,...,tn €
TOtSPEc(X).

Obviously, Totsppc(X) is a subset of Ts(X). We call the members of Totsppc(X)
totally observable terms.

Definition 25. Given a behavioral specification SPEC, we refer by (Tspgc)53 to
{[t]ESPEC |t e Totspgc }-

Definition 26. Given a behavioral specification SPEC=(Obs,S,F,E), we refer by Eoss
to the set of equations e: ¢y = dy &..& cp = dn => 1 =1 such that ¢, dy, ..., cu, dn, t, b2 €
Totsprc(vars(e)).

Definition 27. Let ©=(Obs,S,F) be a behavioral signature. Let A and B be two
Y-algebras. Suppose f is a function between Aoy, and Boss. [*: Te(Aoss) — Tx(Boss)
is defined as follows:

o If t € Apys, then f*(t) = f(t)
o If t has the form o(ty, ..., t.), where n > 0, then f*(¢) = o(f*(%), s [*(t))-

Definition 28. Let U=(0bs,S,F) be a behavioral signature. Let also be two E-algebras
A and B. A behavioral morphism is a function f between Aoss and Boss such that for each
observable computation t over A it is fulfilled that: f(ea(?)) = en(f*(%))-

If this function is bijective, we call it “behavioral isomorphism”.

Definition 29. Let T be a behavioral signature. Let also be two X-algebras A and
B. We say that A and B are behaviorally equivalent if there is a behavioral isomorphism
between A and B.

Definition 30. Let SPEC; and SPEC, be two behavioral specifications over the same
signature ¥. We say that SPEC; and SPEC; are eval-equivalent if their respective initial
algebras are eval-equivalent.



3 Behavioral equivalence

In this section, we shall prove that the notion of behavioral equivalence between two
algebras, which has been defined out of behavioral isomorphisms, may be defined out of
the interpretations of the ground terms in the algebras, if these ones are finitely generated.

In this section, we assume that ¥ is a behavioral signature of the form ¥=(Obs,S,F).

Sublemma 31. If a X-algebra is finitely generated, then for each observable compu-
tation t, there is a ground term g with the same interpretation in A. That is to say,

Vte Ts(Aoss)s, withs € Obs, g € Ty such that €4(t) = €4(g)

Proof. We shall prove this by structural induction.

o Induction base. Suppose that t is a constant. We have two possible subcases.

— t € Tx. In this case, gis t and the lemma is fulfilled.

— t € Aops. In this case, since A is finitely generated, there is a ¢ € Ty such
that €4(c) = t. On the other hand, by definition of €4, €4(¢) = ¢t. Therefore,
e4(c) = €4(g). Then, if we make g be c, we shall have that €4(¢) = €4(g). This
is what we wished to prove.

o Induction step. Suppose that t has the form f(t,...,t,), where f € opns(Z) and
ty ey tn € T(Aobs)s, with s € Obs. Then, by definition of €4, we have:

EA(f(tlv veey tn)) = fA(gA(tl)a veey 6A(t'n.))

Via the hypothesis of induction, there are g1, ..., g € Tx such that e4(g1) = €4(t1), .., €a(gn) =
€4(tn). Therefore,

fa(ea(tr), -y ea(ta)) = fa(ea(r), - €a(gn))
And, by definition of 4,
falealgr)s - e4(gn)) = €a(F (g1, 9n))
By making all the previous expressions equal, we have
ea(t) = €a(f (g1, 0n))

Where f(g1,...,9.) € Tx. So, if we define g as f(g1, ..., gn), Wwe have what we wished
to prove. [



Sublemma 32. Given two X-algebras A and B. We define f : Aoy — Boys in the
following way: Va € Aoss, f(a) = ep(g) where g € Ty such that e4(g) = a. Out of {,
we define f* : Tx(Aoss) — Tx(Boss) as:

o If t € Aoss, then f*(t) = f(2).
o If t has the form o(t,...,t,), where n > 0, then f*(¢) = o(f*(t1), ... f*(ta))
Then, it is fulfilled that:

o If t € Ty, then f*(t) =t.

e If A and B are finitely generated, then V¢ € Tx(Aoss), 39 € Tx such that e4(g) =
ea(t) and ep(f*(t)) = es(9).

Proof. We shall prove the first property by structural induction.

o Induction base. If ¢t € F), ,, where s € S, then f*(¢) = t, by definition.

e Induction step. If t has theform o(, ..., t,), with n > 0, then f*(¢) = o (f*(t1), .., f*(ta))-
But since, via the hypothesis of induction, all f*(¢;) = ¢, then f*(¢) = o(t1,.., tn) = ¢.

Now, we prove the second property by structural induction:

o Induction base. If ¢ € Agss, then f*(¢) = f(¢). Since f(t) € Bous, we have that
es(f*(t)) = es(f(t)) = f(¢). On the other hand, via the definition of £, f() = e5(g’)
where c4(g’) = t. Consequently, ep(f*(¢)) = ep(g’). Since e4(t) = ¢, then e4(t) =
£4(g'). Therefore, if we make g be g’, the property is proved.

o Induction step Examine the case in which t has the form o(#,...,%,), withn > 0. Via
hypothesis of induction we have that for any #;, there is a g; such that e4(g;) = €4(t:)
and ep(f*(&)) = €n(gi)-

By applying this hypothesis of induction and the definition of £4, we write:
ea(0(t1y wr ta)) = 0a(Ealt), wr€a(ta)) = calea(gr), - ea(gn)) =
EA(O'(tl, ey tn))

On the other hand, we have, via the hypothesis of induction and the definitions of
ep and f*:

ep(f*(o(tiy - ta))) = e(oB(f*(t1), -, f*(t))) = e(oB(e8(91), - €8(9n))) =

(o (g1, gn))-

Therefore, if we take o(¢1, ..., g») as g, we shall prove the property.

So, we have proved the sublemma. [



Lemma 33. Let A and B be two Z-algebras finitely generated. If the following
statement is fulfilled

Vs € Obs Vsi,5 € Ty, €4(s1) = €a(s:) if and only if ep(s;) = e5(s2) (1)

, then. A and B are behaviorally equivalent.

Proof. In order to prove that they are behaviorally equivalent, we must prove that
there is a behavioral isomorphism f between A and B.

We define f: Aoy, — By, in the following way:
For each a € Apys, we have f(a)=cp(g) where g € Tx such that calg) = a.

(The exhaustivity of €4 guarantees that g exists, because A is finitely generated. To
avoid the problem that there may be several possible “g”’s, we define an arbitrary order
between ground terms and we choose the first of them w.r.t this order.)

If f has been defined in the previous way, * has the form f*: Te(Aoss) — Tx(Boss)
such that, by sublemma 32, it is fulfilled that:
Vit € Tx(Aoss), 3g € Tx such that e4(g) = e4(t) and ep(f*(t)) = es(g).

(Sublemma 31 guarantees that g exists. If there are several possible “g”’s, we apply
the same solution as above.)

We want to check if f is a behavioral isomorphism. We must prove two things: fis a
behavioral morphism and f is bijective.

Now, we shall prove that f is a behavioral morphism. We want to see that
Vi€ To(Aows)s, withs € Obs, f(eq(t)) = en(f*(1)).

On the one hand, we have, by definition of f, since e4(t) € Aoy,
f(ea(t)) = en(g), where g € Tx such that £4(g) = e4(¢).

On the other hand, by sublemma 32, since ¢ € Tx(Aos, ):
eB(f*(t)) = ep(¢’), where g’ € Ty such that e4(g') = e4(2).

Therefore, proving the statement of equality f(e4(¢)) = ep(f*(¢)) has been reduced to
proving:

es(9) = es(g)-

On the other hand, we have that e4(g) = e4(g'), because the two terms of this equation
are equal to £4(t). By applying statement (1), we obtain ep(g) = ep (¢9'), which is what
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we wished to prove.

Now, we shall prove that f is bijective. First, we shall check that f is injective, that is
to say,

Va,b€ Ao, f(a)=f(b) =>a=10

Via the definition of f, f(a) = e5(g) and f() = ep(g’), where e4(g) = a and ealg’) =b.
Therefore, the equation f(a)=f(b) becomes:

es(g) =es(y)

Now, since statement (1) is fulfilled, this produces:
ealg) =ealy)

That, as we have seen before, is equivalent to:
a=2"b

And this is what we intended to prove.

Now, let us check that f is exhaustive, that is to say,
Vb € Boys 3a € Aoss such that f(a) = b
Since B is finitely generated,
Jg € Tx, such that eg(g) = b.
Then, a is €4(g), because, as we shall prove next, f(e4(g)) = b.
flealg)) =en(g') whereea(g') = ea(g)
Since statement (1) is fulfilled:
es(9') = e5(9)
And, since f(e4(g)) =er(g’) and b = ep(g), we have:
flealg)) =0

which is what we wished to prove. O

Lemma 34. Let A and B two Z-algebras. If A and B are behaviorally equivalent, then
the following statement is fulfilled

Vs € Obs Vs, € Ts,, ca(s1) =ea(s2) if and only if ep(s)) = €B(s2) (2)

10




Proof. Since A and B are behaviorally equivalent:
Vit € Ts(Aow)s, withs € Obs, f(ea(t)) = es(f*(2)).

Since all the observable ground terms are observable computations, we have:
Vit e Iy, withs € Obs, f(ea(t)) = en(f*(t)).

And, by sublemma 32, if ¢ € Tx then f*(t) = ¢, it is fulfilled that:

Vi€ Ty, withs € Obs, f(ea(t)) = ep(t). (3)

Now, since f is a behavioral isomorphism, then f is a bijection. Since f is a bijection, it

is fulfilled that:
Vs1,8 € Tx,, withs € Obs, c4(s1) = €4(s;) if and only if f(ea(s1)) = fea(ss))
By statement (3), this is equivalent to:
V1,8 € Ty, with s € Obs, £4(s1) = €4(s,) if and only if ep(s1) = ep(s,)
Which is statement (2). O
Theorem 35 The two following statements are equivalent:
¢ A and B are behaviorally equivalent.
e Vs € Obs Vs,s € Tx,, €4(s1) = €4(s2) if and only if ep(s1) = ep(s2)

Proof. It is a corollary of lemma 33 and of lemma 34. [J

Theorem 36 Let SPEC; = (Obs, S, F, Ey) and SPEC, = (0bs, S, F, E; be two behav-
ioral specifications with the same signature. SPEC; and SPEC, are behaviorally equivalent
if and only if the following property is fulfilled:

Vs € Obs, Vsy,s € (TESPECI)S it 1s fulfilled that
(s1 =spEc, s2) if and only if (81 =sprc, S2)

Proof. This theorem is inferred easily from theorem 35, if we keep in mind that Tspgc,
and Tspgc, are finitely generated because they are initial algebras. [J

4 T-Renamings
In this section, we introduce the concept of “total renaming” (hence T-renaming), which

will be useful to define that of T-reunion in section 5. We also describe some properties of
T-renamings that will be useful for next proofs.
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4.1 Definition of T-renaming

In this subsection, the concept of T-renaming is defined. Intuitively, a specification
SPECy is a T-renaming of another specification SPEC, if we can obtain SPEC; from
SPEC; by changing the names of all the sorts and all the function symbols.

In more formal terms, the concept of T-renaming is defined as follows:

Definition 37. We say that a behavioral specification SPEC, = (Obsy, Sa, Fy, E) is a
T-renaming of another specification SPEC, = (Obsy, S, Fi, E,) if there are two bijections
0:5 — S, and ¢: Fy — F, such that:

1. s € Obs, if and only if (s) € Obs,

2.5N8 =0

3. Vo, Vwl,..,wn,s € S; 0 € (F1)u1...un,s if and only if ¢(o) € (F2)6(w1)...60un),8(5)-
4. FENF =9

5. For any equation ¢ : ¢; = d; &..& ¢, = d, = p; = Pa; e € By if and only if
¢"(c1) = ¢*(dh) &..& ¢*(¢cn) = ¢*(dn) = ¢*(p1) = ¢"(p2) € B,
where ¢ : Tyoppe (X) — Tssppc, (X) is defined as follows:

e If x is a variable, ¢*(2) = z.

e If x has the form o(¢1, ..., tn), where o € (F1)wi,...wn.s, then
¢*(z) = ¢(0)(¢*(t1), ..., ¢*(tn))

Comment. It is easy to see that the algorithm which creates a T-renaming of a behav-
loral specification has a linear complexity w.r.t the input.

Notation. If SPEC, is a T-renaming of SPEC,, we write: SPEC, € T'—Renam(SPEC).
The bijection ¢ is called T-renaming bijection.

Sublemma 38 Let there be SPEC, ¢ T — Renam(SPECY). If t € (TESPECI)S’ then
¢*(¢) € (TESPEcz )9(5)' |

Proof. If t € (Tsgppe, )s, then t has the form o(t1,...,tn), where ¢ € (Fy)u1...ums;
ty oy ty € TESPEcl and n > 0. Therefore, by definition 37, ¢*(¢) = ¢*(o(t1,...,tn)) =

¢(o)(4*(t1),..., $*(tn)), where é(c) € (F2)o(w1),...o(wn),6(s); B (t1), ey d*(ta) € Tsgpge, and
n > 0. Consequently, ¢*(t) € (TESPECQ)e(s)' 0
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4.2 The operation of T-renaming preserves the information

In this subsection, we shall prove that, if SPEC, is a T-renaming of SPEC,, the con-
gruences of SPEC; and SPEC, are the same (if we do not care about the changes of names
entailed by a T-renaming).

In other words: what we are proving is that the initial algebra of SPEC, contains
the same information as that of SPEC,, that is to say, that the operation of T-renaming
changes names but preserves the information.

Sublemma 39 Let there be SPEC;, € T — Renam(SPEC;). Let v : vars(e) —
TEspEcl be an assignment of values and ¢ a T-renaming bijection between SPEC; and
SPEC,. If ¢*: Tx spEC, — TZSPEcz 1s defined out of ¢ as in the definition of T-renaming

and w : vars(e) — Tssppc, is the assignment of values such thatw = ¢* o v, then we
have:

Vit € Trgppe, it is fulfilled that ¢*(v*(¢)) = w*(4*(¢))

Proof. We shall prove this by structural induction on f.

e Induction base. Suppose that t is a variable. We wish to prove that:
¢"(v7(2)) = w*(¢*(t))

Since t is a variable, by the definitions of ¢* and v*, we have that v*(t) = v(t) and
¢*(t) = t. So the last equality becomes:

Analogously, since t is a variable, we have that w*(t) = w(t) and, consequently:
¢"(v(¢)) = w(t)
But, since w is defined as w = ¢* o v, this becomes:

¢"(v(t)) = ¢*(v(2))

which is a trivial equality and, therefore, the induction base is proved.

e Induction step. Suppose that t has the form o(#, ..., £,) where n > 0. Then &*(v*(t))
can be written as:

¢*(’U*(0'(t1, ey tn)))

By definition of v*, this is equivalent to:
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¢"(o(v*(t), -, v ()

By definition of ¢*, this is equivalent to:
$(0)(¢"(v" (), » ¢7(v" (1))

By the hypothesis of induction, this expression becomes:
¢(0)(w(8"(4)); .y w*(7(t)))

Which, by definition of w*, is equivalent to:
w(¢(e)(¢"(t), -+, $7(t)))

By definition of ¢*, this is equivalent to:
w* (¢ (o (b, -y (1))

And, since t is o(t, ..., t,), then this is equivalent to:
w*(¢"(¢))

which is what we wished to prove. [J

Sublemma 40 If SPEC, € T — Renam(SPEC;),
th, iy € TESPEQ’ t =SPEC, 1y if and only if é*(tl) =SPEC, é*(tz)

Proof. We shall prove that &, =spgc, t, implies ¢*(#1) =spgc, ¢*(f2). The reciprocal
implication can be proved analogously.

In order to demonstrate t; =gpgc, t2, we must apply repeatedly the definition of = SPEC, -
We refer by “step” to each of these applications. We make an induction on the number of
steps of the demonstration of ¢ =sppg, t.

If t; =spge, by, by definition of =gpgc, one of the following four cases may occur?:

1. In this case, ¢ = t,. Trivially, ¢*(4) = ¢*(t;) and, therefore, ¢*(t1) =sprc, ¢*(t2),
since =gpgc, 1s reflexive.

1Case 1 belongs to the induction base, cases 2 and 3 belong to the induction step. Case 4 belongs to
the induction base when the applied equation is unconditional or, otherwise, it belongs to the induction
step
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2. In this case, ti =gpgg, t; because ¢, =spEc, ti. Since the demonstration of the latter
relationship of congruence has a step less than the former, we can apply the hypothesis
of induction. We have that ¢*(t2) =spec, ¢*(t1) and, therefore, ¢*(t) =sprc, ¢*(t2),
since=gppc, is symmetrical.

3. In this case, t; =gpgc, t, because # =spEq t3 and t3 =spgc, te. Since the demonstra-
tions of t =gpgc, t3 and t3 =spEc, t2 are shorter (in number of steps) than the for-
mer, we can apply the hypothesis of induction. So we have ¢*(t) =spec, ¢*(13) and
¢*(t3) =spec, ¢™(t2). Since =sppg, is transitive, we have that ¢*(¢) =spge, ¢*(t2).

4. In this case, & =gpg¢, b because there is an equation ¢ : ¢y = dy &..& ¢, = d, =
P1 = pa, where ¢ € F; and an assignment of values v:X — Ts sPEG, such that

(a) v*(p1) =t and v*(ps) = t3, and, moreover,

(b) v*(cl) Es_pgcl ’U*(dl), voey ’U*(Cn) Z=SPEC 'U*(dn)

On the one hand, since demonstrations v*(c1) =spec, v (dy), ..., v*(¢n) =sprc,
v*(d,) are shorter (in number of steps) than the former, by the hypothesis of induc-
tion, we have: ¢*(v*(c1)) =spre, ¢*(v*(dr)), ..., 8*(v*(cn)) =spec, ¢*(v*(d,)). Since,
by sublemma 39, ¢*(v*(2)) = w*(¢*(z)), we have the following result: w*(¢*(e1))
=spEC, W*(¢7(d1)), .., w*(¢*(cn)) Zsprc, w*(¢*(dn)).

On the other hand, since SPEC; is a T-renaming of SPEC; and e € Ey, we have
that (¢"(c1) = ¢*(d1) &..& 6*(ca) = ¢*(ds) = ¢*(p1) = ¢*(p2)) € Ep. At this
point, we can apply the fourth case of the definition of =spec, on this equation and
on the result of the previous paragraph. We have that w*(6(p1)) =sprc, w*(6*(p2)).

By sublemma 39, ¢*(v*(z)) = w*(¢*(z)) and, therefore, ¢™(v*(p1)) =spec, ¢*(v*(p2)).
Now, since v*(p1) = t i v*(p2) = t;, we have that ¢*(t,) =srec, ¢*(t2), which is what
we wished to prove. [J

5 T-Reunions.

In this section, the concept of total reunion (hence, T-reunion) is introduced and we
shall prove some basic properties about it.

5.1 Definition of T-reunion.

Intuitively, a T-reunion of two specifications SPEC; and SPEC, is a specification SPEC)
whose initial algebra contains all the information which the initial algebras of SPEC; and
of SPEC,; have individually. A naive idea to do this could be to build a specification which
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has all the equations belonging to SPEC, and SPEC;. But, if we do that, since SPEC,
and SPEC, have the same signature, there will be a naming conflict and the initial algebra
of SPEC, will have more equivalences than those ones belonging to the initial algebras of

SPEC, and of SPEC; individually.

The solution is to avoid the naming conflict, by using a T-renaming of SPEC,, instead
of SPEC;. As we have seen, the operation of T-renaming preserves the information but
changes the names.

Definition 41. Let SPEC; = (0bs,S,F,FE,) and SPEC, = (Obs, S, F, E,) be two
behavioral specifications. Given a specification SPEC; = (Obss, S3, Fs, E3), such that
SPEC3 € T — Renam(SPEC;). We say that SPEC, = (Obss, S4, Fy, Ey) is a T-reunion of
SPEC, and SPEC, via SPEC; (and we write SPEC, = SPEC, © SPEC, via SPEGC;) if:

L Ob54 = Obs U 0683.
¢ S54=S85US;Uy where vy ¢ S.
¢ Fy=FUF3UF,,, where F,., contains the following function symbols:

— yes i—
— plus iy X v — «
— Forany s € §

trans, : s X 0(s) —

where yes,.plus_, trans ¢ (F U F3)

o by =FE UF3U E,,, where E,., contains the following equations:

— plus(yes, yes) = yes

—-VseS Vo€ (Fi),
trans,(o, ¢(o)) = yes.

—VseS Vo€ (Fl)uiuns

transs(a(tl,tz,...,tn),é(a)(ul,uz,...,un)) =
plus(transy, (t1, w), plus(transy, (t2, uz), ..., trans,, (t,, Up)...))

where E,., N (B, U E3) =@

Comments.

e In this definition, we have used the names 7, yes, plus and trans to mean the new
sort and the new function symbols which are introduced in a T-reunion. There may
be some trouble if, in SPEC) and SPEC,, any of these names have already been used
(because, as we have seen, v ¢ S and yes, plus, trans ¢ (F U F;3) ). This naming
conflict is avoided easily by using names other than ~, yes, plus and trans.
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o It is easy to see that the algorithm which creates a T-reunion out of two behavioral
specifications has a linear complexity w.r.t the input.

5.2 Basic properties.
In this subsection, we shall prove some properties which will be useful for next proofs.
Sublemma 42 Let there be SPECy = SPEC; ® SPEC, via SPECs. 1t is fulfilled that:
o Vs€ S, te(Tegppg,)s impliest € (Trgppg )s
o Vs €S, t€(Trgppg,)s impliest € (Tegppe,)s

Proof. We shall prove the first statement by structural induction on ¢. The second
statement can be proved analogously, by interchanging the roles of SPEC) and SPECs.

o Induction base. In this case, ¢t € (Fy)r,- By definition 41, this means that ¢ €
Fys U(F3)xs U (Frew)as- We can distinguish the following cases:

If ¢ belongs to (Fiuey)a,s, s must be v. Now, by definition 41, v ¢ S and, therefore,
s & S. This is a contradiction. So this case is impossible.

If ¢ belongs to (F3),,, s must belong to S;. Now, by definition 37, since SPEC; €
T — Renam(SPEC;), we obtain that S N .S; = &. Therefore, s € S. This is a con-

tradiction. So this case is impossible.

Consequently, the only case which may occur is ¢t € (Fy),,. This means that ¢ €
(TESPEcl)S

e Induction step. In this case, ¢ will have the form o (%, ..., t,), where ¢ € (Fa)wi..un,s
and, for any ¢, ¢; € (TESPEC4)wi-

By the same reasoning that has been applied in the induction base, we have that
o € (F1)w1..un,s- On the one hand, this implies that wl,...,wn € S. So we can apply
the hypothesis of induction on #, ..., t, and we obtain that, for any 7, ¢; € (TESPEcl wi

On the other hand, since ¢ € (Fi)y1..um,s and, for any i, t; € (TESPECI)’“’"’ we obtain
trivially o(t1, ..., tx) € (Tegppe, )s» Which is what we wished to prove. [

Sublemma 43 The following two statements are fulfilled:

o Vs e Obs,Ve € vars(s),Vv: X — Tsgppe, v°(2) € (Trgppg, )s
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* Vs € Obs,Vz € vars(0(s)),Vv: X — Trsppe,» v™(2) € (Tegppg, Jogs)

Proof. First, we shall prove the first statement. By definition of assignment of values,
since z € vars(s) and v : X — Ts¢ppe, » We have that v*(s) € (Txsppe, )s+ Since s € Obs,
then s € S and we can apply sublemma 42. We obtain that v*(z) € (Tesprc, )s-

The proof of the second statement is analogous, but it uses the fact that 6(s) € 5.
Starting from s € Obs and SPEC; € T — Renam(SPEC;), we have, by definition 37, that
0(s) € Obss and, therefore, 8(s) € S5. O

6 SPEC, contains all the information which there is
in SPEC; and in SPECs

We have defined intuitively the T-reunion of SPEC; and SPEC; as the specification
whose initial algebra contains the information present in the initial algebras of SPEC; and
of SPEC;. In this section, we shall prove formally that this statement is true.

Actually, what we shall prove is that the initial algebra of SPEC, contains the informa-
tion present in the initial algebras of SPEC; and of SPECs. Now, SPECs is a T-renaming
of SPEC;, and we have already proved -in subsection 4.3 that the operation of T-renaming
preserves the information. Therefore, we have that the initial algebra of SPECy contains the
information of the initial algebras present in SPEC,; and of SPEC,, as has just been stated.

Sublemma 44 Suppose SPEC,; = SPEC; ® SPEC, via SPECs. Suppose t,t, €
TEspEcl' If we have a demonstration of =spEc, l2, then we have a demonstration of
ti =sppc, t; which does not use equations that do not belong to E;.

Proof. In order to demonstrate & =gppc, 2, we must apply repeatedly the definition
of =sppc,. We refer by “step” to each of these applications. We make an induction on the
number of steps which the demonstration of # =sprc, b has.

If t, =spEc, ty, by definition of =spEc,, one of the following four cases may occur?:

1. In this case, t; = #,. Trivially, since =spEc, 1s reflexive, there is a demonstration of
ti =spec, tz which does not use equations that do not belong to Ej.

2. In this case, & =gppc, t; because t, =spec, t. Since the demonstration of the
latter relationship of congruence has one step less than the former, we can apply
the hypothesis of induction on it. We obtain that the demonstration of t, =sprc, t

?Case 1 belongs to the induction base, cases 2 and 3 belong to the induction step. Case 4 belongs to
the induction base when the equation applied is unconditional or, otherwise, it belongs to the induction
step

18




does not use equations that do not belong to E;. Consequently, by applying the
symmetrical property of =gpgpc,, we can obtain a demonstration of t =spre, b
which does not use equations that do not belong to Fj.

3. In this case, # =spec, b2 because t =sppc, b3 and t3 =gpge, fp. Since the sub-
demonstrations of # =spEc, t3 and 3 =gpge, 1 are shorter (in number of steps)
than the demonstration of # =spec, b2, we can apply the hypothesis of induction.
So we obtain that (# =spge, t3) and (#3 =gpgc, t;) have demonstrations which do
not use equations that do not belong to E;,. By applying the transitive property of
=gspEc,, we have a demonstration of # =gspEc, t2 which does not use equations that
do not belong to ;.

4. In this case, & =gpge, t, because there is a equation e : ¢; = d; &..& ¢, = d, =
P1 = p2, where ¢ € E; and an assignment of values v : X —s TEsqu such that:

e v*(p;) = ¢ and v*(p2) = to, and, moreover
o v*(c1) =sprg, v*(d1), ..., v(cn) Esprc, v*(dy)
We can distinguish the following cases:

o If ¢ € Eyeyy. As we have seen in definition 41, all the equations belonging to
Erew have the form § = I, where the sort of [, is 7. If e belongs to E,.,, then
p2 must be of the sort 7. Now, v € S and, therefore, p, & Tssppe, (vars(e)).
Since v*(p2) = &, by lemma 14, t, ¢ TESPECI' This is a contradiction and,
consequently, this case is impossible.

e ¢ € (E). If e € s, its right-hand side has the form P1 = pa, Where p;,py €
(TESPEca(vars(e)))s, with s € S3. By definition 37, since SPEC; € T —
Renam(SPEC;), then SNS; = (), thatis, s ¢ S. Therefore, py, py € T25PE01 (vars(e)).
By lemma 14, since v*(p;) = t; and v*(p2) = ty, then #,t, & TESPEcl' This is
a contradiction and, consequently, this case is impossible.

¢ ¢ € Ey By the hypothesis of induction, we have subdemonstrations of v*(c1) =sprc,
v*(d1), .., v*(cn) =spEc, v*(d,) which does not use equations that do not belong
to Ey. By applying e to these subdemonstrations, we obtain a demonstration
of i =spgrc, t» which does not use equations that do not belong to Ej.

Sublemma 45 Suppose SPEC, = SPEC, © SPEC, via SPEC;. Suppose #,t €
Tyspg Gy If we have a demonstration of # =spEc, l2, we have a demonstration of ¢; = SPEC,
t which does not use equations that do not belong to Es.

Proof. It is obtained out of the proof of sublemma 44, by interchanging the roles of
SPECl and SPEC;; O

Lemma 46. Let there be SPEC, = SPEC, © SPEC, via SPEC;. The following two
statements are fulfilled:
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o Vi, ue TESPEcl’ t Z=SPEC, U if and only if ¢ =$PEC, U.
o Vi, ue€ TESPEcs’ t =spec, u if and only if ¢ =SPEC, U.

Proof. We shall prove the first statement. The second one is proved analogously, by
interchanging the roles of SPEC; and SPEC; and by using sublemma 45 instead of sub-
lemma 44.

The fact that ¢ =gppe, v implies ¢ =spEc, U is obvious, because all the equations which
appear in SPEC;, also appear inSPEC,. Consequently, the congruence defined by SPEC,
includes that of SPEC,.

Since t, u € TESPEC1 ,if t =gprc, u, we have a demonstration of ¢ =spec, ¥ which does
not use equations that do not belong to E; , by sublemma 44. In other words, we have a
demonstration of ¢ =spgpc, u. Consequently, the right-to-left implication is proved. []

Comment. Lemma 46 can be written in the following way:

* Vi, u€ Togppe s € Tsppe, (t) = €Tsppc, (4) if and only if €Tsppe, () = € Tsppg, (U)

o Vi, uc TEspzca’ € Tspre, (t) = €Tspra, (u) if and only if € Tppe, () = — (u)

7 Reason for the existence of Erew

We have seen in the previous section that the reason why a T-reunion includes the
equations belonging to E; and FEj is that, by doing so, the T-reunion contains all the in-
formation of SPEC; and of SPEC,.

Now, which is the reason why a T-reunion includes the equations belonging to F,.,?
The answer to this question is that the equations of E,., enable us to express the fact
that a term is the “T-renaming” of another one, that is, that a given #, is equal to ¢*(#).
Moreover, E,., enables us to express this in an inductive theorem.

Specifically, we want to prove that it is fulfilled that trans(ty, t2) =sprc, yes if and only
if 2 =spec, ¢*(t1). This statement has left-to-right and right-to-left implications, which
will be proved in separate subsections.

7.1 Left-to-right implication.

In order to prove the left-to-right implication, the concept of trans-irreducibility will
be of much help to us.
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Definition 47 Let there be [ € TESPEC4 . We say that 11is trans-irreducible (T-I, hence)
if it contains a subterm trans,(s,t) (with m € S) such that Vw € Tsgppe, it is fulfilled
that, either not w =spPrc, s or not ¢*(w) =gppe, t

In other words, a term [ is not T-1, if for any of its subterms which have the form
transy (s, t) (with m € S),dw e TEspEcl such that w =gpge, s and ¢*(w) =sppe, t

Comment. For the sake of clearness, we refer by trans(s, t) to trans,(s, t), because the
subindex of trans can be deduced easily (since m is the sort of s and t).

Sublemma 48 Let [ ¢ T;;SPEQ1 be a T-I term and let u be the result that we obtain
by applying an equation ¢ € E, to I. Then u is T-1.

Proof. Since 1 is T-I, there must be a subterm trans(s, ¢) such that Vw € TESPEcl it is
fulfilled that, either not w =spec, 5 or not ¢*(w) =gppg, t.

We can distinguish the following cases:

e If eis applied on any subterm different to trans(s,t), u will preserve the same subterm
trans(s,t) and, therefore, u will be T-1, too.

e If e is applied on trans(s, t), the following three cases may occur:

— It is applied on ¢. Then u will contain a subterm of the form trans(s,t') where
t' =sppc, t. Sincelis T-1, for each w which belongs to TESPE017 one of the
following conditions must occur:

* not w =S$PEC, S.

* not  ¢*(w) =gppg, t. Since ¢/ =sprc, U and =gpgg, is tranmsitive, if
¢"(w) =spic, t' was fulfilled, then it would be fulfilled that ¢*(w) =sppe, t
too. Now, this is a contradiction. Therefore, not ¢*(w) =sprc, t'is proved.

That is to say, u is T-I, since it contains a subterm of the form trans(s,t') such
that Vw € TESPEcl it is fulfilled that, either not w =spEc, sor not ¢*(w) =gppe,
.

~ It is applied on s. Then u will contain a subterm of the form trans(s’, ) where
s' =spgc, 5. Sincelis T-1, for each w which belongs to TESPECI, one of the
following conditions must occur:

* not w =spec, S. Since s’ =sprc, $ and =spPEC, 1S transitive, if w =sPEC,
', then it would fulfilled that w =sprc, 5. Now, this is a contradiction.
Therefore, not w =gppe, s’ is proved.

* not ¢*(w) =spEc, t.
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That is to say, u is T-I, since it contains a subterm of the form trans(s’,t) such
that Vw € TESPEcl it is fulfilled that, either not w =spec, §' or not ¢*(w) =spEC,
t.

— It is applied on the whole subterm trans(s,t). Since this subterm begins by
trans, only two equations can be applied.

* trans(o, ¢(o)) = yes This equation is impossible to apply, since its applica-
tion entails that Jw € TESPEcl such that w =gpge, s and ¢*(w) =gpge, t
(in this case, w = s). Now, we have chosen trans(s,t) as the subterm
of [ such that not Jw € T}:SPEC1 which fulfills that w =gppe, s and
¢"(w) =sppc, t. So we have a contradiction here and this case is impossible.

* trans(o(sy, ..., $0),0(0) (4, vy 1) =plus(trans(sy, t;),plus(trans(sy, t,)...
trans(sn,ty)...)). Then the subterm of ! onto which the equation is applied
must have the form trans(o(v*(s1),..., v*(s,)), ¢(o)(v*(t1),-..,v*(t,)) and the
resulting subterm of u has the form plus(trans(v*(s1),v*(¢)),
plus(trans(v*(sy), v*(t3))...trans(v*(s,), v*(t,))...))

Suppose that, for any 7, 3 w; such that w; =sprc, v*(s:) and ¢*(w;) =gprc,
v*(t). Then, it is fulfilled that o(wy,..., w,) =spec, o(v*(81),..., v*(5))
and

¢(U(wl> LX) wn)) = ¢(U)(¢*(w1)7 ey ¢*(wn)) =S$PEC, ¢(O‘)(’U*(t1)7 cery ’U*(tn)).
That is to say, if we make w be o(wi, ..., w, ), then 3w such that w =spEC, S
and ¢*(w) =sppc, t. Now, this is a contradiction, since we had cho-
sen trans(s,t) as the subterm which fulfilled that there is no w such that
W =gspEC, S and ¢*(w) =S$PEC, t.

Therefore, we can deduce that there is a ¢ such that, either not w; =gppq,
v*(s;) or not ¢*(wy) =sppc, v*(%). Now, since trans(v*(s;), v*(%)) is a
subterm of w, it is fulfilled that u is T-I, which is what we wished to prove.[]

Sublemma 49 Let [ ¢ TESPEC4 be a term and let u be the result that we obtain by
applying an equation e € Ej to ¢t. Then, if [ is not T-1, neither is u.

Proof. We shall prove this by contradiction. Suppose that 1is not T-I and u is T-L
Therefore, when we apply the equation e, we must introduce a subterm trans(s,t) such
that Vw € TESPEcl it is fulfilled that, either not w =gpge, s or not #*(w) =sprc, t.
Now, there are only two equations which can introduce a subterm trans:

1. trans(o, ¢()) = yes, in inverse order. If we apply this equation, by making w be o, it
is fulfilled that 3w € TESPEcl such that w =gpgc, s and, moreover, ¢*(w) =sprc, t-
That is to say, the subterm introduced does not fulfill the conditions which must be
fulfilled and, in consequence, u is not T-I.
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2. trans(o(sy, ...y 80),0(0) (b, ey b)) = plus(trans(si, ty),plus(trans(sq, t)... trans(sy, t,)
...)), in inverse order. Then, the subterm which is introduced by the equation has the
form trans(o(v*(s1), ..., v*(sn)), () (v*(t1),-..,v*(t,)) and the corresponding subterm
of [ has the form
plus(trans(v*(s1),v*(t)),plus(trans(v*(sy), v*(t2)).--trans(v™(s,), v*(t,))...))

Now, 1is not T-I. That is, for any 7, Jw; € TESPEcl such that w; =gpgc, v*(s;) and
¢*(wi) =sppc, v*(%). Then, we have that, if we make w be o(wy, ..., wy,), it is ful-
filled that Jw € TESPEcl such that w =spge, o(v*(s1), ..., v*(82)) and ¢*(w) =spEC,
¢(a)(v*(t1),...,v*(ts)). Therefore, u is not T-I. [J

Corollary 50 Suppose [ € T;;SPEC‘1 and let u be the result which we obtain by applying
an equation e € Ey to t. Then, [ is T-1 if and only if  is T-I.

Proof. Tt is the immediate consequence of sublemma 48 and of the counter-reciprocal
of sublemma 49. [J

Sublemma 51 Let there be ¢, u € T>:SPEC‘1 such that ¢ =gpge, v . Then, it is fulfilled
that ¢ is T-I if and only if u is T-I.

Proof. If t =gpgc, u, by definition of =spEc,, one of the following four cases may occur:

1. In this case, t = u. The sublemma can be reduced to “¢ is T-I if and only if ¢ is
T-1", which is trivial.

2. In this case, ¢ =spEc, U because u =gpgg, t. Since the demonstration of the last
relationship of congruence is shorter (in number of steps) than that of the first one,
we can apply the hypothesis of induction on it. We obtain that “u is T-I if and only
if ¢ is T-1”. Since the double implication is symmetrical, we have what we wished.

3. In this case, t =gpgc, u because ¢ =sppc, v and v =gpge, u. Since the subdemon-
strations of ¢ =sppc, v and v =gpge, u are shorter (in number of steps) than that
of t =spgc, u, we can apply the hypothesis of induction on them. So we have “t is

T-T'if and only if v is T-I” and “v is T-I if and only if u is T-I”. Since the double
implication is transitive, we have what we wished.

4. In this case, ¢t =gpgg, u because u is the term which we obtain when we apply an
equation e to t. Now, by corollary 50, we have that “¢ is T-I if and only if u is T-1”.
O

Lemma 52. Let there be s,t € TEsqu- It is fulfilled that

trans(s,t) =sppc, yes implies that Jw € TESPEcl such that
W =gpEc, S and ¢*(w) =gspPEC, t.
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Proof. Suppose that trans(s,t) =spgc, yes. Since yes is not T-I (because it does
not contain any subterm which has the form trans(s’,t’)), then neither is trans(s, ), by
sublemma 51. Now, since this term is not T-I, by definition 47, there must bea w € Ty, ¢

such that w =sPEC, S and qﬁ*(w) =spEC, . O

7.2 Right-to-left implication.

Now, we shall prove the right-to-left implication of the statement stated at the begin-
ning of this section.

Sublemma 53 plus(yes, plus(yes, ..., yes)...) =spgc, yes.

Proof. We shall prove this by induction on the structure of the term.

o Induction base. In this case, we must prove that plus(yes, yes) =spgc, yes. Now,
this is trivial, since there is an equation plus(yes, yes) = yes.

o Induction step. In this case, the term is plus(yes, plus(yes, ..., yes)...). By applying
the hypothesis of induction on plus(yes, ..., yes), we have that plus(yes, ..., yes) =sprc,
yes. Therefore, by applying the property of congruence on the term, we have
plus(yes, plus(yes, ..., yes)...) =sprc, plus(yes, yes). Now, as we have seen,
plus(yes, yes) =sprc, yes. Consequently, since =gpgg, is transitive, we obtain what

we wished. ]

Lemma 54. Let there be t,u € Tssppe, - It is fulfilled that

U =SPEC, (ﬁ’“(t) implies tmns(t, u) =SPEC, YES
Proof. We shall prove this by structural induction on t.
Induction base. If ¢t € (Fy)r,, then ¢*(¢) = #(t) and, therefore, v =gpgc, #(t).

Now, there is the equation trans(t,$(t)) = yes, then trans(t,¢(t)) =sprc, yes. Since
u =gppc, ¢(t) and =gpgc, is a congruence, then we have trans(t, u) =spgc, yes.

Induction step. If ¢ has the form o' (4, ..., t,), then ¢*(¢) has the form ¢(o)(¢*(t1), ..., ¢*(tn))-
Therefore, trans(t, $*(t)) is, by applying the equation trans(o(zy, ..., 22),0(0) (Y1, o) Yn)) =
plus(trans(zy, y1), plus(trans(z,, y2)...trans(en, yn)...)), the term plus(trans(ty, ¢*(t1)),
plus(trans(ty, ¢*(¢2))...trans(t,, ¢*(t,))...)). By the hypothesis of induction, for any i it is
fulfilled that trans(;, ¢*(%)) =spec, yes. Then trans(t, ¢*(t))

=sprc, plus(yes, plus(yes, ..., yes)...). By sublemma 53, trans(t, ¢*(t)) =sprc, yes. And,
since u = ¢*(t), then trans(t, v) =sprc, yes. [
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8 Proof of soundness.

In this section, we shall prove the soundness of our method. That is, we shall prove
that, if some inductive theorems are fulfilled in the initial algebra of SPEC'4, then SPEC;
and SPECz are behaviorally equivalent, as we have proved in section 3). This property is
stated in theorem 55.

Theorem 55 The statement

Vs € Obs, Vi, 2, € vars(s); yi,y2 € vars(6(s)) it is fulfilled that
(TspEc, k= trans,(21, 1) = yes & trans,(z2, o) = yes & o = y1 = 12 = y2) A
(Tspro, = trans,(z1, 1) = yes & trans,(zz, 1) = yes & w2 = y2 = @ = 41)

implies the statement

SPEC; and SPEC, are behaviorally equivalent
Proof. We shall begin with the first statement

Vs € Obs, Vi, 2 € vars(s); y1,ye € vars(8(s)) it is fulfilled that
(TspEc, | trans,(21, 1) = yes & trans,(Ty, yo) = yes & 71 = 2 = Y1 = y2) A
(Tspgc, &= trans,(zi, 1) = yes & trans,(z2, y2) = yes &y =1y = 31 = 2)

By definition of fulfilment of an equation in a given algebra, the last expression is
equivalent to:

Vs € Obs, Y,z € vars(s); y1,ye € vars(8(s)), Vv : X — Trgppe,
it is fulfilled that

(v*(transs(z1, 1)) =sprc, v*(yes) A v
A v*(z1) =sprc, v*(,) implies v*(11) =spEc, v*(12)) A
(v*(transs(z1, 1)) =spec, v*(yes) A v *(transs(z2, ¥2)) =sprc, v™(yes)
A v*(y1) =spec, v*(y2) implies v*(21) =sprc, v*(22))

*(transs (22, y2)) =spec, v (yes)

Now, since the only variables in the previous statement are z;, 22, ® and 1o, the
definition of v* can be applied and we obtain:

Vs & Obs, Vs,8 € (TEQPEC )s; b1, b2 € (TEcpEc Jo(s) it is fulfilled that
(transs(si, t1) =spec, yes A trans,(s2, &) =spec, yes N sy =spEC, 2 implies t; =spEc, tg)
(transs(s1,t1) =spec, yes A transs(s2, t2) =spec, yes N t =spec, b implies s; =sprc, S2)

Since, for any s, (TESPEcl)s C (TESPEC4)3 i (TgSPEcs)g(s) C (TESPEC4)9(5)’ this implies
that:

Vs e Obs, Vs, € (TEspEc )s; ti b2 € (TgQPEC Jo(s) it is fulfilled that:

(transs(s1,t) =spec, yes A trans,(sz, t2) =spEc, yes N 81 =spEc, $2 implies t, =sprEc, t2)
(trans,(si, t) =spec, yes A transs(sy, t2) =spec, yes N t =spec, b implies 51 =sppc, 52)
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Now, since 81,8, € (I SPEC, )s (because SPEC) and SPEC; have the same signature),
then ¢*(s1),¢*(s2) € (Tsgppe, )9( ), by sublemma 38. Therefore, since the last statement
is fulfilled for all the values of t; that belong to (T% SPEC, )é(s), it must be fulfilled when

t; = ¢*(si):

Vs & Obs, Vs, € (TESPECI)S it is fulfilled that

(trans,(s1, ¢*(s1)) =sprc, yes N trans,(sz, 9*(s2)) =spec, yes A
s1 Ssppc, 5 implies ¢*(s1) =spec, ¢7°(52)) A

(transs(s1, ¢*(s1)) =sprc, yes A transs(sz, $*(s2)) =spec, yes

A ¢*(s1) =sprc, $°(s2) implies s, =spEc, S2)

By lemma 54, we obtain that:

Vs € Obs, V1,8 € (TESPE(Jl)s it is fulfilled that

(true A true A s =sprc, S implies ¢*(s1) =sprc, ¢%(52)) A
(true A true A ¢*(s1) =spec, ¢*(s;) implies s1 =sprc, 52)

Which, by the properties of logics, is equivalent to:

Vs € Obs, V1,5 € (TESPECI)S it is fulfilled that
(s1 =sprc, 52) if and only if (¢*(s1) =spec, ¢7(s2))

By applying the first part of lemma 46 to the left-hand side of the double implication,
we have that:

Vs € Obs, V81,8 € (TEspEcl)s it is fulfilled that
(s1 =sprc, s2) if and only if (¢*(s1) =sprc, ¢7(s2))

By definition 41, since 51,52 € Txgppe, > then s1,8 € Tsgppe, because SPEC; and
SPEC, have the same signature. Now, by definition 37, since SPEC3 € T— Renam(SPEC),
it is fulfilled that ¢*(s1), $*(s2) € Tsgppe, . Therefore, by applying the second part of lemma
46 to the right-hand side of the double 1mp11cat10n we have that:

Vs € Obs, Vsy,8 € (TESPEcl)S it is fulfilled that
(81 =SPEC, 52) if and only if (¢*(S1) =SPEC; (;5*(32))

Si.ﬁce SPEC; € T — Renam(SPEC,), by applying lemma 40:

Vs € Obs, Vsi,8 € (TEspEcl)s it is fulfilled that
(81 =SPEC, Sz) if and only if (81 =SPEC, 52)

And, by theorem 36, this is equivalent to:
SPEC; and SPEC; are behaviorally equivalent

Which is what we wished to prove [
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9 Proof of completeness.

In this section, we shall prove the completeness of our method. That is, we shall prove
that, if SPEC; and SPEC, are eval-equivalent (and, therefore, behaviorally equivalent,
as we have proved in section 3), then some inductive theorems are fulfilled in the initial
algebra of SPECy. This property is stated in theorem 58.

9.1 Useful properties.

First, we shall prove some properties which will be useful in order to prove theorem 38.

Lemma 56 The statement

Vs & Obs, Vsy,8 € (TEspEcl)s3 t, 1y € (TESPE03 Jo(s) it is fulfilled that
ty =spec, ¢°(s1) A b =sppe, ¢*(s2) implies
((81 =SPEC, 82) if and only if (tl =SPEC, tz))

implies the statement

Vs € Obs, Vsi,8 € (TESPEcl)s; ti, ty € (TESPEca)G(s) it is fulfilled that
trans,(s1, t1) =spec, yes A trans,(s2, t2) =spec, yes implies
((s1 =spEc, s2) if and only if (h =sprc, t))

Proof. Suppose the second statement is fulfilled. Suppose that it is fulfilled that
trans,(s1, t1) =spec, yes A trans(ss, ty) =sprc, yes. We want to prove that it is fulfilled
that (81 =SPEC, 52) if and only if (tl =sPEC, tg).

Since trans, (s, ;) =sprc, yes N trans,(sy, t2) =sprc, yes is fulfilled, by lemma *52, we
have that 3wy, wy € TEspEcl such that wy =sprc, s1 A ¢*(w1) =spec, t
A wo =spic, S2 N ¢*(w1) =speo, ti- On the one hand, since wy, =sprc, $1 N Wz =SPEC; 52,
it is fulfilled that (s; =sprc, s2) if and only if (w1 =sprc, wy).

On the other hand, since the first statement and ¢*(w1) =sprc, 1 A ¢*(w1) =spec, t
are fulfilled, we can apply the first statement and we obtain (wy =spec, we) if and only if
(ti =sprc, t2). By combining this double implication with the one in the previous para-
graph, we have that: (s; =sprc, so) if and only if (& =sprc, t). And this is what we
wished to prove. [J

Lemma 57. The statement

Vs € Obs, Vs, € (TESPEcl)S it is fulfilled that
(s1 =spEc, 52) if and only if (¢*(s1) =spec, ¢7(s2))

implies the statement:
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Vs € Obs,Vs,s € (TESPEcl)s? t, b € (TESPEC3)9(S) it is fulfilled that
t1 =sppc, ¢"(s1) A t2 =sprc, 6%(s2) implies
((81 =SPEC, 82) if and only if (tl =SPEC, t2))

Proof. Suppose that the first statement is fulfilled. Suppose that it is fulfilled that
t =spec, 9*(s1) Nt =spec, ¢*(s2). We want to prove that it is fulfilled that (s1 =spEc, $2)
if and only if (# =spgc, &)

Since it is fulfilled that ¢ =gpgc, ¢*(s1) A & =sprg, ¢*(s2), we have that (& =gprc, t2)
if and only if (¢*(s1) =sprc, 6*(s2)).

On the other hand, since the first statement is fulfilled, we have that (s1 =sprc, ) if
and only if (¢*(s1) =sprc, ¢*(s2). By applying this double implication to the one in the
previous paragraph, we obtain that (s; =spge, s2) if and only if (t =sprc, t2), which is
what we wished to prove 1.

9.2 Core of the proof of completeness

Now, we shall prove the theorem which states the completeness of our method.

Theorem 58 The statement

SPEC; and SPEC, are behaviorally equivalent

implies the statement

Vs € Obs, Vi, 2, € vars(s); y1, 1 € vars(0(s)) it is fulfilled that
(Tspec, = transs(z, y1) = yes & trans,(za, 1) = yes & vy = y1 = 1, = Y2) A
(Tspec, = transs(zy, 1) = yes & transy(z, 1) = yes &z = o = 7 = v1)

Proof. Let us suppose that SPEC; and SPEC, are behaviorally equivalent. By theorem
36, it is fulfilled that:

Vs e Obs, Vsy,s; € (TEspEcl)s it is fulfilled that
(81 =sppc, %) if and only if (s, =$PEC, S2)

Since SPECs € T — Renam(SPEC;), by applying lemma 40:

Vs e Obs, Vs, € (TEspEcl)s it is fulfilled that
(s1 =sppc, 52) if and only if (¢*(s1) =spro, 6*(s2))

By applying lemma 46 to the left-hand side of the double implication:
Vs & Obs, Vsy,s € (TESPEcl)S it 1s fulfilled that

(s1 =sppc, 52) if and only if (¢*(s1) =sprc, 6*(s2))
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Now, since s1,s; € (TEspEc )s (because SPEC; and SPEC; have the same signature),

then ¢*(s1), ¢*(s2) € (Tx spEG, )g(s by sublemma 38. Therefore, we can apply lemma 46 to
the right-hand side of the double implication and we obtain:

Vs € Obs, Vsy,8 € (TEspEcl)s it is fulfilled that
(s1 =spec, s2) if and only if (¢*(s1) =spec, 67(s2))

By lemma 57, this implies:

Vs € Obs, Vsy,s € (TESPEcl)s; ty, by € (TESPEC3 )g(s) it 1s fulfilled that
ty =spec, ¢°(s1) A ty =sprc, ¢*(s2) implies
((81 =sPEC, 52) if and only if (tl =S$PEC tz))

By lemma 56, this implies:

Vs € Obs, Vs, € (TzspEcl)s5 ti,ty € (TESPEC;;)G(S) it 1s fulfilled that
trans,(s1, i) =spec, yes A trans,(sy, &) =sppc, yes implies
((81 ESPEC4 32) if and OIlly if (t1 ESPEC4 tg))

By sublemma 43, this implies:

Vs € Obs, Vi, € vars(s); y1,y2 € vars(6(s)), Vv: X — TESPEC4 it is fulfilled that

trans,(v*(z1), v*(v1)) =sprc, yes A trans,(v*(22), v*(y2)) =sprc, yes implies
((v*(21) =sprc, v*(z2)) if and only if (v*(1n) =sprc, v*(12)))

By using the properties of logics, this is equivalent to:

Vs € Obs, Vi, € vars(s); y1, ¥ € vars(8(s)), Vo : X — TEQPEC it is fulfilled that

(trans,(v*(21), v* (1)) =spec, yes A trans,(v* (), v*(12)) Sspre, yes

A v*(@1) =sppc, v*(z2) implies v* (1) Zsppo, v*(y2)) A

(trans,(v*(21), v*(v1)) =sprc, yes A trans,(v*(22), v* (1)) =sprc, Yes
v*(y1) Zspec, v*(y2) implies v*(21) Zsppo, v*(22))

By definition of fulfilment of an equation, this is equivalent to:

Vs € Obs, Yo, 2 € vars(s); y1, y2 € vars(6(s)), it is fulfilled that
(Tspec, = trans,(z1,y1) = yes A trans,(zz,12) = yes A @y = 2 = 1 = yp) A
(Tspec, |= trans,(z1, 1) = yes A trans, (22, p2) = yes A =y = @ = )

Which is what we wished to prove. [

10 End of proof.

In this section, we shall make the last step of our proof: we shall prove theorem 59.

Theorem 59. Both statements are equivalent:
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o Vs & Obs, Va2, € vars(s); t, y2 € vars(0(s)) it is fulfilled that ‘
(Tspec, = trans,(zy, 11) = yes & trans,(z2, 1) = yes & 11 = y1 = 13 = y2) A
(Tspec, = trans,(zy, y1) = yes & trans,(z3,12) = yes & 2 = 1 = o1 = y1)

e SPEC, and SPEC, are behaviorally equivalent.

Proof. 1t is a corollary of theorem 55 and of theorem 58. [

Comment. Hence, we shall call the first statement of this theorem “fundamental prop-
erty”.

11 Conclusions

Taking up the result obtained in the previous section:
Theorem 59. Both statements are equivalent:

o (Fundamental property). Vs € Obs, Vo, 2, € vars(s); vi,y2 € vars(6(s)) it is
fulfilled that
(Tspec, = trans,(z1,1n) = yes & trans,(z;,10) = yes & o1 = y1 = 23 = 1) A
(Tspeo, = transs(zy, 1) = yes & trans,(z2, 1) = yes & 22 = yo = @1 = 1)

e SPEC) and SPEC, are behaviorally equivalents.

This means that proving the behavioral equivalence between SPEC1 and SPEC2 is
equivalent to proving the fundamental property in initial algebra of SPEC4 (where SPEC4
is the T-reunion of SPEC1 and SPEC2 via some arbitrary T-renaming SPEC3).

Now, the fundamental property is only a set of theorems and there are techniques for
proving the fulfillment or non-fulfillment of theorems in initial algebras. These are the
systems for theorem proof via inductionless induction, which are based on rewriting tech-
niques. By submitting the theorems of the fundamental property to these systems we can
know whether two algebraic specifications are behaviorally equivalent or not.

The possible applications of this theoretical work would be two. On the one hand, it
would be useful in order to build tools for verifying the equivalence between programming
modules and, more precisely, between the classes of object-oriented programming. Thus, if
we have these classes formally specified, we shall be able to tell when a new class is useful
or, otherwise, when it only adds redundant information to our collection.

On the other hand, this paper is part of the thesis entitled “Automatic Verification of
Object-Oriented Programming”. The underlying idea is as follows: for a given program
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and its algebraic specification, we shall build a specification which is equivalent to the
program. Then, we shall see via automatic deduction whether the two specifications are
behaviorally equivalent and, if it is so, the program will then be correct. As one may see,
this proof of the behavioral equivalence would be along the lines proposed in this paper.
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