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Abstract

We study the sparse set conjecture for sets with low density. The sparse set
conjecture states that P = NP if and only if there exists a sparse Turing hard set for
NP. In this paper we study a weaker variant of the conjecture. We are interested in the
consequences of NP having Turing hard sets of density f(n), for (unbounded) functions
f(n), that are sub-polynomial, for example log(n). We establish a connection between
Turing hard sets for NP with density f(n) and bounded nondeterminism: We prove
that if NP has a Turing hard set of density f(n), then satisfiability is computable in
polynomial time with O(log(n) * f(n°)) many nondeterministic bits for some constant
¢. As a consequence of the proof technique we obtain absolute results about the density
of Turing hard sets for EXP. We show that no Turing hard set for EXP can have
sub-polynomial density. On the other hand we show that these results are optimal
w.r.t. relativizing computations. For unbounded functions f(n}, there exists an oracle
relative to which NP has a f(n) dense Turing hard tally set but still P # NP.

1 Introduction

The density of NP -complete and hard sets has been an early object of study and starts
with the seminal paper of Berman and Hartmanis [BH77|. In that paper roughly two lines
of research have been initiated: the density of <P -complete sets and the density of <%,
-hard sets for NP and other complexity classes.

The study of the <P -complete sets for NP becomes apparent in relation with the
isomorphism conjecture [BH77]. The conjecture implies that all NP -complete sets are
exponentially dense, since SAT, the well known NP -complete set, itself is of exponential
density. Along these lines it was Mahaney who showed that NP -complete sets can not
be polynomially dense unless P = NP.

The study of the <}. -hard sets for NP is motivated by the equivalence between sets
that are <%. -reducible to a sparse set, sets that have polynomial size circuits [BH77] and
sets that can be recognized in polynomial time with the additional help of a polynomial
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amount of advice (P/poly) [Pip79]. Hence if there exists a <k, -hard sets for NP that is
sparse, there exists a polynomial time algorithm for SAT that needs the help of a small
(polynomial size) table. For practical purposes this would mean that one only had to
compute this small table once (for inputs of a certain length) and that from then on NP
would equal P for all inputs of this length. Karp and Lipton however showed that the
existence of sparse <%. -hard sets for NP implies an unlikely collapse of the Polynomial
Time Hierarchy to its second level [KL80].

Many efforts have been put into improving the Karp and Lipton result to P = NP.
This improvement also goes by the name "sparse set conjecture”. An important step
towards this conjecture was obtained by Ogiwara and Watanabe, who showed that indeed
the stronger consequence, i.e. P = NP, can be obtained if <},, -reductions are used instead
of <%. -reductions [OW90].

Not only does the sparse set conjecture imply a better understanding of the structure
of NP and NP -hard sets, also does it settle the blatant unability to prove that EXP
does not have polynomial size circuits. Best known upper bounds on this can be found
in [Kan82].

Attempts to prove the sparse set conjecture usually result in studying stronger than
Turing reducibility types to sparse sets [OW90, HL91, OL91, AHH*91]. In this paper we
follow a different line of attack. Instead of strengthening the reduction type we study the
most general Turing reduction and vary the density of the set reduced to. In particular are
we interested in the consequences of the existence of S% -hard sets for NP that have smaller
density than sparse sets. The analogous question for sets with bigger than polynomial,
i.e. super-polynomial, density has been addressed in [BH92|.

We study the consequences of the existence of <}, -hard sets for NP, that contain
only f(n) strings of size less than or equal to n, for f(n) a unbounded function that is
strictly smaller than any polynomial. We show that there is a link between classes of
bounded nondeterminism [KF80, DT90], and NP having hard sets with low density. We
prove that under the assumption that NP has a <} -hard set with density f(n), SAT
can be computed with only O(log(n) * f(n°)) bits of nondeterminism, for some constant
c. Taking for f(n) for example log(n) results in a collapse of NP to the second level of
the Beta Hierarchy(DT90]. This on its turn implies for example that EXP = NEXP.
Note P can be characterized as the class of sets that are recognized by nondeterministic
polynomial time machines that use O(log(n)) bits of nondeterminism.

On the other hand we show that this result is optimal with respect to relativizing
computations, even if we consider tally sets. We prove that there exists an oracle relative
to which NP does have Turing hard tally sets with f(n) density but P # NP, for f(n) an
unbounded function.

As an application of the developed proof technique we establish absolute results con-
cerning the density of <} -hard sets for EXP. We prove that Turing hard sets for EXP
can not be of sub-polynomial density. This is in some sense optimal, since improvement
to polynomial density, would show that EXP does not have polynomial size circuits, and
Wilson [Wil85] showed the existence of an oracle where EXP does have polynomial size
circuits.

The main results in this paper are:

e We establish a connection between classes of bounded nondeterminism and NP hav-



ing Turing hard sets with low density.

e We prove that if NP has a Turing hard set with density f(n), for any unbounded
function f(n), then SAT can be computed in polynomial time with the use of
O(log(n) * f(n)) many nondeterministic bits, for ¢ some constant.

e We show that these results are optimal with respect to relativized computations:
there exists an oracle relative to which NP has a Turing hard tally set with density
f(n), but P # NP.

e As a consequence of the developed proof technique we show that Turing hard sets
for EXP can not have sub-polynomial density.

The results suggest that it is probably hard to prove the sparse set conjecture even if
we consider sets with arbitrary low density. On the other hand this line of research might
give a handle on proving the actual sparse set conjecture. It seems more doable to work
on non-relativizing proof techniques for proving the sparse set conjecture, for sets with
low density than for sparse sets.

2 Preliminaries

We assume the reader familiar with standard notions in structural complexity theory, as
are defined e.g. in [BDG88]. We will be using (non)deterministic polynomial time oracle
Turing machines. Let M be a (non)deterministic polynomial time oracle Turing machine.
We will denote Q(M, z, A) as the set of queries M makes on input = with oracle A. Note
that if M is a deterministic machine then |Q(M, z, A)| is bounded by a polynomial in the
length of z.

Apart from SAT, the well known NP -complete set, we will be using the set K4 as
well. Where K4 is defined as follows:

K4 = {<i,z,0%" > | M#(z) accepts x within |x|* steps }

We will be considering efficient reductions of complete sets for various classes to sets
of different subpolynomial densities. The following definition specifies our measure of a
set’s density.

Definition 1 Let f be a nondecreasing function, f : IN — IN. A set S C £* is f(n)
dense or has f(n) density if |SS"| < f(n) for all n. If F is a class of functions, we say
S is F-dense if S is [ dense for some f € F.

S is said to be sparse if S is P-dense. Where P is the class of all polynomials. S is
said to be of sub-polynomial density if S is F-dense, where F' is a class of functions such
that f € F iff YednoVn > ng: f(n) < nf. We will call such a function sub-polynomial.

We will be using classes that are defined by limiting the number of nondeterministic
moves of a nondeterministic polynomial time Turing machine [KF80, DT90].

Definition 2 [DT90] For any function f : IN — IN let

B ={L|3A € P,3¢,Ve:z € L (3y,|y| < c* f(|z]) and <z,y> € A)}
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Will will also use the notation ﬂ?f for the class of sets recognizable by a polynomial time
oracle Turing machine that uses at most f(n) nondeterministic moves and has a set in 3¢
as oracle.

3 Hard sets for NP and Bounded Nondeterminism

In this section we study the consequences of NP having Turing hard sets with low density.
We are interested in sets with sub-polynomial density.

Let us consider an example of such a set. Let f(n) be log(n). Consider the assumption
that NP ha§ a Turing hard tally set T' of density log(n). This means that SAT <& T,
say in time n°. The following counting argument, together with a nowadays standard
technique, yield that SAT is computable in time DTIME(c' % nlOg(")), for some constant
d = c2.

First lets count how many different tally sets T<"" of density log(n) there exist. Each
T<" may contain at most ¢ % log(n) strings, that can be placed at n® many different
positions, hence the number of different tally sets up to length n¢ is bounded by:

c
" < nCI*IOg("), where ¢ = ¢?
clog(n)) —

Next we will use the fact that it is possible to compute in polynomial time relative to SAT,
for any satisfying formula ¢, using the disjunctive selfreducibility of SAT, a satisfying
assignment for ¢. This property is also called Search Reduces to Decision or Functional
Selfreducibility [BD76, BBFG91, NOS93]. Since SAT reduces to some tally set with log(n)
density, it is reducible to one among the n®*°&(®) many different ones. Consider the
following algorithm. On input ¢ cycle through all the possible tally sets of log(n) density.
For each one try to compute a satisfying assignment for ¢ and accept if and only if one is
found . It is clear that a satisfying assignment will be found this way if and only if ¢ €
SAT. Furthermore this procedure runs in time n¢*°&(®),

The problem with the previous approach is that it does not work for sets over {0,1}.

cxlog(n

The number of possible sets with density log(n) is only bounded by 2" " and hence
will yield that SAT is computable in time 2**"**™ but this is not very good since SAT is
computable in time 2". The following theorem shows that linking the problem to bounded
nondeterminism yields even better results than the above approach for non tally sets. We
will show that for any function f(n) the assumption that NP has a Turing hard set with
density f(n) implies that SAT is computable in polynomial time with O(log(n) * f(n°))
many nondeterministic bits, for some constant c.

Theorem 3 Let f(n) be any fully time constructible function. If there exists a set S with
density f(n) that is Turing hard for NP then SAT is computable in polynomial time with
O(log(n) x f(n°) many nondeterministic bits, for some constant c.

Proof: (Sketch)We have to show that under the assumption that SAT reduces to a set S
with density f(n) we can construct a polynomial time algorithm using O(log(n) * f(n°))
many nondeterministic bits, that decides SAT. Assume that SAT <% S via a machine
M., that runs in time n® and that M, witnesses the fact that SAT has Search Reducing
to Decision. Simulate the machine M,, that generates a satisfying assignment relative to



SAT on input ¢. Every time M, makes a query to SAT simulate the Turing reduction M.,
from A to S, on this query. Every time M. makes a query ¢ to S either assume that ¢ is
out of S or guess that ¢ is in S. Make sure that at most f(n°) times a query is guessed to
be in S and that the decision about ¢ is consistent with previously made decisions about
q. Accept if and only if a satisfying assignment for ¢ is found. It should be clear that this
construction runs in polynomial time. From this it follows that at most O(log(n) * f(n°))
many nondeterministic bits are used. The following describes in more detail the above
algorithm:

input ¢
n:=|¢|
Guess a set Positions of size < f(n°) such that Vi € Positions, |i| < log(n°t1)
Queries :== ()
Count := 0
z:=¢
while there is at least one variable in z
let z be the first variable in z
2= zla:::O
while Simulation of M, on 2z’ not ended do
Simulate M, on 2’ until it queries ¢
Count := Count + 1
if ¢ € Queries then continue simulation in YES state
else if Count € Positions then
Queries := Queries | J{¢}
continue simulation in YES state
else continue simulation in NO state
end while
if M, accepted 2’ then z := 2’
else z = z|;.—;
end while
if z simplifies to “true” then accept else reject

The above Theorem shows that although a set S over {0, 1} with density f(n) (for f(n)
small) contains in some sense more information than a tally set T of the same density, a
polynomial time algorithm is not able to extract this information out of S.

Plugging in explicit values for f(n) yields the following corollary:

Corollary 4 If there exists a set S with density log(n)*, that is Turing hard for NP, then:
1. NP = ﬂpolylog'
2. EXP = NEXP.

Proof: Use Theorem 3 together with standard padding arguments. O



Another consequence of the proof technique of Theorem 3 is that it yields absolute
results about the density of Turing hard sets for EXP. To our knowledge this is the first
result concerning the density of <}, -hard sets for EXP.

Theorem 5 There do not exist Turing hard sets for EXP that have sub-polynomial den-
sity.

Proof: (Sketch) Assume that there exists a f(n) dense Turing hard set for EXP for some
sub-polynomial function f. From this we can conclude [KL80|] that EXP = X}. We
will see that by extending Theorem 3 we will be able to show that X% is computable in
time 20008(n)*f("°™)  Then we will have a contradiction with the hierarchy Theorems for
deterministic time, since EXP is not computable in sub-exponential deterministic time. In
order to extend Theorem 3 we will make use of the fact that all <% -complete sets for X}
are functional selfreducible [BD76]. Functional selfreducibility is the natural generalization
of search reducing to decision for other levels of the Polynomial Time Hierarchy. Consider
any set A in X¥}. By definition there exists a polynomial time computable relation R4
such that:
z€ A& YWz Ry(z,y, 2)

A set AX} is functional selfreducible if there exists a polynomial time procedure that can
compute, relative to A, for all z € A a yo such that Vz : R4(z,yo, z). For all strings not
in A such a yg does not exists. Borodin and Demers showed that this is always the case
if Ais S’r_} -complete for Sigma) [BD76]. We will see that under the assumption of the
existence of a f(n) dense hard set for EXP any complete set A for X'} can be recognized

in ﬁ;’{”’i;), for g(n) € O(log(n) * f(n®W)).

Let A be <% -complete for X%, My be the procedure that witnesses that A is functional
selfreducible and M, be the machine witnessing that A qu S. Simulate My on some input
z and every time a query to A is made simulate the reduction M., from A to S, on this
query . Again, as in the proof of Theorem 3, if M. makes a query ¢ to S assume either
that ¢ is not in S or guess that the query is in the set, making sure that no more than
f(n®) many yes guesses are made and that the decisions are consistent with previously
made decisions about ¢q. After this computation some y’ has been computed. If nothing is
computed, because yo does not exists or because some wrong sequence of guesses is used,
reject. Next the algorithm checks whether the computed 3’ indeed satisfies the property

that Vz : Rs(z,y,2). This can be done by one oracle call to SAT. Since SAT € X} it

follows using Theorem 3 that SAT € Bp(10g(n)«f(nd) for some d. Hence A € ﬁf(gé')') and can

be decided in deterministic sub-exponential time. O

Note that any improvement to the previous theorem will settle the big the open ques-
tion whether EXP has polynomial size circuits. Also does the theorem hint at the possi-
bility that a much weaker form of the sparse set conjecture!, might settle the circuit issue

for EXP.

We mean here the following weaker variant: SAT is computable in polynomial time with significantly
less than a linear number of nondeterministic bits if and only if there exists a sparse Turing hard set for

NP.



4 Relativized Optimality
In this section we show that Theorem 3 is optimal with respect to relativized computations.

Theorem 6 Let f(n) be an unbounded function. There exists an oracle A and a tally set
T of density f(n) such that:

1. KA S’,}’A T and

2. PA # NP4,
Proof:

(Sketch) W.l.o.g. we assume that f(n) < n and monotone. The construction of the set
A consists out of two parts. One to satisfy requirement 1 and the other part to satisfy 2.
The set A will be the marked union of QBF, a PSPACE <? -complete set, and a set B

(iie. A =QBF@®B). Requirement 2 will be satisfied by showing that the following test
language L is in NP4 but not in P4:

L ={0"|3z € B and |z| = n}

Note that for all B, L is in NP4. We will construct B in such a way that L ¢ P4. In order
to do this we need a sequence of strings to diagonalize over. Let {a;}72, be a sequence of
natural numbers such that the following things hold:

L f(a:) > 2 f(ai-1),
2. flai—1) *a;—1 < ag,
3. o/ > 4l 44, and
4. ag is the first n such that f(n) > 2.

Since f(n) is unbounded it is not hard to see that {a;}{2, exists and is infinite. In the
following let A = QBF & B and let M;, M ... be an enumeration of polynomial time
oracle Turing machines such that M; runs in time n' + 1. The construction of B goes as
follows:

stage n:

Let yo, = 122 ...2400...0 be a string such that:
1. k = log(as) * f(a:),

2. z; € {0,1} (1 << k),

3. |Ya;| = ai, and

4. yao, & Q(M;,0%, A).

Put y,, into B if and only if MA(0%) rejects.

end of stage n



From the definition of {a;}2,, the fact that M; runs in time n' + ¢, and that f(n) is
unbounded it follows that y,, exists and that L ¢ P4, The construction of B satisfies re-
quirement 2. In order to satisfy requirement 1 we need to code B into a f(n) dense tally set.
We will show that we can code B into a 2« f(n) dense tally set T', which is sufficient? to sat-
isfy requirement 1. First observe the following. If we put, for all n, f(a,) strings into T at
the interval 02, ..., 0%*f(2n) then T will have density 2 f(n). The observation yields that
we have f(ay) strings to code y,, into T'. To do this divide the interval 0%~ ... , 0an*f(an)
into f(ay) intervals Iy of length a, such that I = ok*an . ,O((kH)*a"_l)(l <k < f(ar)).
Next if we place one string ?, in each I; we can interpret t1¢y...%5¢,,) as a f(ay,) digit
number base.a,. Recall that y, = zyz2...7400...0 where k = log(a,) * f(an). The only
part of y,, that matters is zjzy... . Since we can express T1Ty...Ty as a f(a,) digit
number base a, there is room to code z1z5 ...z and hence y,, into T

This coding argument shows that we can code B into T. To see that KA S%A T we do
the following reduction. Let M; be some nondeterministic polynomial time oracle machine
that accepts K. In order to know whether JVIJA(m) accepts or rejects, the reduction firsts
recovers B up to length |z|’, using T'. Next it queries QBF whether M;(z) with QBF and
B up to length |z|” accepts or rejects. O

5 Conclusions

The oracle result (Theorem 6) shows that the weaker form of the sparse set conjecture
needs nonrelativizing proof techniques to be proven. On the other hand it seems more
doable to develop non-relativizing techniques for the weaker form of the conjecture than
for the actual conjecture.

Another interesting point that comes out of the oracle construction is that the idea
behind the coding can be used to show that the class of sets that Turing reduce to a tally
set with polylog?® density and the nonuniform advice class Full-P/polylog [Ko87, BHM92]
are equal. It seems therefore natural to study the structure of these advice classes in
greater detail.

Theorem 5 suggests that the weaker form of the sparse set conjecture, i.e NP = f¢(n)
iff exists a Turing hard sparse set for NP for some subpolynomial function f(n), implies
that EXP is not contained in P/poly. It would be interesting to prove this.
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