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Abstract

We begin this paper with an introductory part of the projective,
affine and euclidean geometry and the different models of projection
and cameras. After this, we focus on the theory of the epipolar geom-
etry that relates correspondences in different images, namely in two,
three and four images (where we also include some new results).

1 Introduction and motivation

The geometric relation between objects (or scenes) in the world and their im-
ages, taken from different viewing positions by a pinhole camera has lately
been the subject of research in computer vision. The classical approach
relies on a metric interpretation of the 3D world from its projections. A
metric recovery structure provides the most detailed information about the
3D structure of objects in the scene. However, this reconstruction is a prob-
lematic process characterized by the sensitivity of data and the assumption
of models that do not correspond to the real case, letting aside the need of
previous knowledge (or assumptions) for the internal (that leads us to the
calibration process, an off-line process which is impractical and unstable in
many occasions) and external parameters of the camera. Some researchers
have proposed to evolve into another framework, the projective space, where
these relationships become far easier to understand and to handle with. Pro-
jective geometry allows us to understand and express the geometry of the
problem in a much simpler way. It is clear that the descriptions obtained
this way will be much more unconstrained.

An interesting area of application in our case is computer graphics. Re-
projection techniques provide a short-cut for image rendering. Given two
fully rendered views of some 3D object, other views (ignoring self-occlusions)
can be rendered by simply combining the reference views.

In the first section we give the basics concepts of projective, affine and
euclidean geometries and we show how they form a hierarchy. In the fol-
lowing section, we explain the different models of projections and cameras
and how they are related to the geometries. The last four sections contain
the bulk of the paper which aim to explain the relationship of the corre-
spondences of two, three and four.images, (where we also include some new
results) after a short introduction of the epipolar geometry.
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2 Concepts of Projective Geometry

2.1 Introduction

The study of projective geometry was initiated by the painters of the Italian
Renaissance, who wanted to produce a convincing illusion of 3D depth in
their architectural paintings. If we look at a picture of a landscape, we
realize that the lines tend to converge towards a point or line as they recede
towards the horizon. These points and lines are called vanishing directions,
and we can consider them as points or lines at infinity. Projective geometry
can handle with these concepts in a natural way.

Projective geometry ([SK52]) will be the reference framework although
the natural geometry we use is Euclidean. We will see now that it is simple
to consider the Affine and Euclidean geometries as special cases of projective
geometry since they form a hierarchy (see [LV96]), and how they are related.

The three-dimensional Euclidean R3 space containing the object will be
considered to be embedded in a natural way in the three-dimensional (affine
and) projective space P® by the addition of a plane at infinity and the two-
dimensional Euclidean space R? embedded in the two-dimensional (affine
and) projective space P? by the addition of a line at infinity.

We will distinguish between the image itself (in 3D, a plane in space)
and the view of an object which is the result of the projection onto an image.
We will say that a view is the projection of an object (or a set of points)
onto an image.

2.2 Projective level

The projective space of dimension n, P™ is the quotient of R**1 — (0, ..,0)
by the equivalence relation:

[Z1yer Zn) = [21, n2h] & T AF#0,[21, .0y Tn) = A2, -0, 20]

(thus, there is no point corresponding to {0,...,0])
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They are called homogeneous coordinates. Intuitively, every point in a
image represents a line of sight, and any point in that line corresponds to
the same point in the image. Therefore, only the ray is of importance. Let
suppose the camera is at the origin (0,0,0). Then, a 3D point (x,y,t) and
another point A(x,y,t) also lies and represents the same ray, so we have the
rule that rescaling homogeneous coordinates makes no difference: (z,y,t) &

Az, y,t).

In a projective framework, P", the location of points is measured relative
to a frame of reference of n+2 points (a set of n+1 points and a unit point)
such that no n+1 of them are linearly dependent (no n+1 of them lying
in the same hyperplane, see [Moh92]). The set e; = (0,..,1,..0) i=1..n+1
where 1 is in the ith position and en42 = (1,..,1,..,1) (called the unit point)
is the standard projective basis of P*. Any point x = (z1,...,Zp41) can be
described as a linear combination of any n+1 points of the standard basis :

n41

r = Zz;e;

=1

For the regular 3D projective spaces, these four first points, ie (1,0,0,0),
(0,1,0,0),(0,0,1,0),(0,0,0,1), are respectively the point at infinity on the x-
axis, on the y-axis, on the z-axis and the origin.

2.2.1 Homographies

A one-one correspondence between two ranges of points, two pencils of lines,
or a range of points and a pencil of lines, is said to be homographic when the
cross ratio of any four elements of either system is equal to the cross ratio
of the four corresponding elements, taken in the corresponding order, of the
other system ({SK52]). An homography is any transformation of P™ which
is linear in projective coordinates (hence the terminology linear projective)
and invertible. It can be represented by a (n+1)X(n+1) nonsingular matrix
H defined up to scale such that the image of x is x’:

!
Tn+1 Tn+l
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Homographies map any projective subspace to a subspace of the same
dimension, a property which is called the conservation of incidence; homo-
graphies form a group called the projective group. If B is the scalar vector
defining a projective hyperplane (the set of points X such that B*X = 0) the
image of this hyperplane is defined by B H-!.

An homography relates one basis to another one and it is completely
defined by its action on the points of a basis. There is a unique homography
which transforms n given points, no n-1 of which are coplanar, into n given
points, no n-1 of which are coplanar (and dually, there is a unique homogra-
phy which transforms n given hyperplanes, no n-1 of which are concurrent,
into n-1 given hyperplanes, no n-1 of which are concurrent).

It has to be mentioned that an homography has (n+1)x(n+1) -1 degrees
of freedom. Knowing the image of each point of the basis provides us with
n+1 equations up to a scaling factor, ie only n independent equations. So
for n+2 points in the basis, this provides us with n? + 2n equations, exactly
the number of unknowns for the homography matrix ((Moh92]). For a proof
of the uniqueness of the solution, see [SK52).

2.2.2 Cross-ratio
The cross-ratio is the ratio of ratios of distances:

1. Cross ratio of points

Let M and N be two distinct points of a projective space. The projec-
tive line between M and N consist of all points A of the foorm A = a M
+ p N. Then, (a,u) are the homogeneous coordinates of the projective
line P!, expressed with respect to the linear basis M, N. Let A}, A,,
Az and A4 be four collinear points; their cross ratio is defined as:

(A1, Az, A3, Ad) = {its=asiaas-auia)

(ar— ) (G3-30)

B oty
GG =)

and it is invariant under any linear transformation and change of basis.
The cross ratio is the basic invariant in projective geometry ([Moh92])
and it does not depend on the unity vector taken on the line.
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This concept has an immediate application for locating a point on
a line. The position of a fourth point is defined by the cross ratio
knowing three points. If the coordinates of these points are known,
being A(aj,az), B(by,bz), C(cy,c2), the cross ratio of a fourth point
D(x,y) is as follows.

b z
(4,B,C,D]= & ‘%‘ F ~ v _ (m1c2 — aper)yay (bry — baz)boco _
-2 (ay - az)era (bicz — bacr)boy
((1162 - agcl) (bly -_ ng) - (0102 - 0.261) (bly - ngB)
(b]Cg - bgcl) (aly - azx) (b1c2 - bgcl) (aly - 0,21‘)

2. Cross ratio of lines

Let us now consider a pencil of four lines (see Figure 1). Let A;, Ao,
Az, Ayand A’y, A’y, A’3, A4 be the intersections with two lines. Then
(A1, Ag, A3, Ay] = [A", A’2, A’3, A’4]. Therefore the cross ratio of a
pencil of lines can be defined as [Li, Lq, L3, Ls} = [A1, A2, A3, Ay).

Let O be the origin of a pencil of lines L, Ly, L3, Ly. Let A; be points
on L;, A; # O. Then (a theorem by Mdébius)

|OA;1As| |OA; A4
|OA1A4| |OAzA4

where |OA;A;| stands for the determinant of the 3x3 matrix where

each column is the column of homogeneous coordinates of the points
0, A; and A;.

[Lh L2’ L3, L4] =

3. Cross ratio of planes

A pencil of planes in P2 is a family of planes having a common line of
intersection. The cross ratio of four planes II; of a pencil of planes is
the same as the cross ratio of the lines /; of intersection of the planes
with a fifth, transversal plane. Different transversal planes give the
same cross ratio. Let P,Q be any two distinct points on the axis of
the plane pencil and A; i=1..4 be points lying on each plane ; (not
on the axis) then (see Figure 2):

|PQA,As| |PQA2A,|
|PQA1A4| |PQAzA;|

(II,, I, I3, 114) =
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Figure 1: Cross ratio of a pencil of lines

where |PQ A;A;| stands for the determinant of the 4x4 matrix where

each column is the column of homogeneous coordinates of the points
P, Q, A; and A;.

2.2.3 Line equation in P?

The planar line with equation az 4+ by+c = 0 is represented in homogeneous
coordinates by the homogeneous equation (a,b,¢).(z,y,T) = az 4+ by+cT =
0.

Said in a more formal way, suppose P; and P, are fixed points, with
coordinate vectors x(B) = (x{V, x{V, x{") and x® = (x{?, x{?, x®). ©
the points are distinct, they are clearly linearly independent. The set of all
points linearly dependent on two given (distinct) points Py, P3 is called the
line determined by P; and P2, or simply the line P;P;. It follows that a
point Py = (zgk),zgk),zgk)) is linearly dependent on P; and P, if and only
if its coordinates satisfy the following equation:
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Figure 2: Models of projection

MONENORING)
2@ 2 2@ =0
zgk] I(2.&) x:[:)’k}

As seen, the equation of a line in P2 is the cross product of two points
defining the line.

U171 + u2T2 + u3r3 =0

where

.

gz) a zgl)xgz) g1) gz) _ :cgl):c;(f)

U =2 Uy =T3'CT Uz = :cgl)zgz) - xgl)a:gz)

The line Py P, admits of two kinds of algebraic representation. The first
one is
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= Az(l) + “z(z)

and the ratio A:y is uniquely determined. In this way we obtain a rep-
resentation of the points of the line by the homogeneous pair of parameters

(A, 1)

The other way is by its equation 3", u;z; = 0. If we take the coefficients
up, 12, uz in this equation as components of a column-vector u, we may write
the equation in matrix form u*x = 0. The left-hand side is just the inner
product (u,x) of the vectors u and x, and so the equation may also be written
(ux) = 0.

2.2.4 Plane equation in P3

Let P;,Py,P3 be three P2 points, represented by coordinate vectors x(),
x(2), x(3 respectively. These vectors may be taken as columns of a 3x4
matrix and the rank p of this matrix has a simple interpretation, for the
three points are linearly independent if and only if p = 3.

If this condition is satisfied, all the points that are linearly dependent on
P,, P; and Pj satisfy the linear equation Y5, 4;z; = 0 (in a similar way as
seen before). That set of points defined the plane determined by P,, P, and
P3. It follows at once that a plane is determined by any three of its points,
said to be coplanar if they belong to a common plane; and this is the case
if and only if the determinant of their coordinates (of four of them) is zero
([SK52)).

A plane may be represented in two ways :

1) If defined by Py,P2,P3 (with vectors x(1), x(3), x(®)), a general point
P has a coordinate vector z = Az() 4+ A3z(® 4 A32(®) so we have a para-
metric representation of the plane by a triad of homogeneous parameters
(A1 A2, Aa).

2) by the equation 3"%; u;z; = 0. This equation is determined by its co-
efficients, which may be taken as a tetrad of homogeneous plane-coordinates
of the plane. If the column-vector with components (up, %1, u3,u3) is de-
noted by u, the equation of the plane may be expressed in terms of the

inner product of the vectors u and x: (u,z) = 4Tz = 0.
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2.2.5 Line equation in P3

Now consider a pair of given points P;,P; in P3, with coordinate vectors
x(1), x(), The points are linearly independent if and only if the 2x4 matrix
is of rank 2; and in this case their coordinates satisfy two (and no more than
two) linearly independent linear equations (each one defines a projective
plane z and v):

4 4
Z u;zgl) Z v,-z,(-z) =0

i=1 =1

The points which are linearly dependent on P; and P, are the points
whose coordinates satisfy these two equations simultaneously, and these
points are said to make up the line determined by P; and P,. Every point
of the line is said to be collinear with P and Pj; and, of course, the roles
of P; and P; may be taken over by any two linearly independent points of
the line.

A line if fixed by any two of its points P;,Py, and the equation z =
Mz® + X,z(?) which gives the coordinate vector of a general point of the
line, leads at once to the homogeneous parametric representation of the line
by the pair of parameters (A, A;).

The homogeneous coordinates of a line form a redundant set and are
connected by an identical relation. A line is defined as the set of points that
are linearly dependent on two points P, and P, whose coordinate vectors
in the standard projective basis are x(!) and x(2). We consider the sixteen
numbers [;; = xgl) x_sz) - xgl) xgz) ij = L1..4. Since L;; = - 1;, there are only
six of these numbers that are apparently independent. Finally, we obtain
the identity ly;lo3 + Lyols; + Lyalio = 0. The six numbers are referred as the

Grassmann or Pliicker coordinates of the line.

Two lines | and I’ intersect if their Pliicker coordinates satisfy the equa-
tion

(laalgs + Uglas) + (laalyy + Uglan) + (laslhy + Uigla1) = 0
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2.3 Affine level

Any point P™ P, = (y1,..,.¥n+1) defines an hyperplane which is the set of
points of P* P = (X3,..,Xn+1) Whose coordinates satisfy

n+l
Y ay=ye=0

=1

An hyperplane can be considered as a projective subspace of dimension
P!, Hyperplanes in P? are planes, hyperplanes in P? are lines. Affine
structure of P3 is characterized by the plane at infinity II.,, which is rep-
resented by the vector [0, 0, 0, 1]. The projective space can be described
as the union of the affine space (points [X,A]) and the plane at infinity Il
(points [X, 0]). A primary advantage of homogeneous coordinate systems
for projective spaces lies in the fact that all points may be treated alike.

Back to the example, if we suppose that the image plane of the camera is
T = 1, the ray through pixel (x,y) can be represented homogeneously by the
vector (x,y,1) = (xT,yT,T) for any T # 0 (as the homogeneous coordinates).
For T = 0, these rays exist anyway but they do not correspond to any finite
pixel: it is parallel to any plane T # 0. As they can no longer be considered
as finite point, they are regarded as “ideal points” or “points at infinity”.

The affine transformations are the subgroup of the homographies that
conserve the plane at infinity. Any two subspaces which are not contained
in Il are parallel if their intersection is in II,. This implies that affine
transformations preserve parallelism. If H is the affine transformation in
question, the last row of the matrix is of the form {0, 0, ..., u] with u # 0. As
defined up to scale, we can fully describe it by the matrix

MV
Y )

where M is a 3x3 matrix and Vis a 3x1 vector, which yields the classical
description of a transformation of the affine space 2’ = Mz + V

The ratio of distances of three collinear points is invariant by an affine
transformation, the center of mass, the convex hull and the ratio of volume
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defined by four points in 3D space. If we add to (1) the constraint that
det(M)==1, then the volume themselves are left invariant (this is the affine
unimodular group).

2.3.1 Canonical Injection of R" to P"

Affine space R" can be embedded isomorphically in P™ by the standard
injection (21,22, ...,2,) = (21,22,...,Tn,1). Affine points can be recovered
from projective ones with z,+1 # 0 by the mapping

Ty T2 Tn T1 T2 Tn

1) —

(11,22,"-)2:714—1) = ( ’ Yoy ) ) y ooy
T+l Tntd Tn4l Tn+l Tntl Tn+l

2.4 Euclidean level

Any symmetric (n+1)x(n+1)matrix Q defines a hyperquadric which is the
set of points P = (x1,..,Xxn+1) in P™ whose coordinates satisfy:

Z Q,'J':L',':L‘j = xtQ:l: =0

1<4,5<n+1

In P2 the hyperquadratics are quadric surfaces, in P2 they are conics
and in P! they reduce to two points.

The Euclidean structure is characterized by the absolute conic  which
lies in the plane at infinity II,, and has a matrix identity, and therefore the
equation z? + z% + 2% = 0.

) can be use to define angles between planes and this implies that Eu-
clidean transformations preserve angles. Then the Euclidean subgroup is
defined by the transformations which conserve the absolute conic and this
implies that they also preserve the plane at infinity and are a subgroup of
the affine transformations; they are 1 with the constraint MM =~ I, ( the
matrix M is proportional to an orthogonal matrix). These transformations
are called similarities (the product of a scale factor by a rigid displacement
- rotation and translation).
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Euclidean transformation preserve the relative distance which is the ratio
of any three points. With the additional constraint that det(M) = £1, the
absolute distances are preserved, forming the group of transformations called
isometries (intersection of the affine unimodular group with the similarity

group).

2.5 Hierarchy of Geometries

There is a clear hierarchy of the geometries (see [Fau95], [MBB95)):
Projective D Affine D Similarities D Isometries = Euclidean

As we have seen, as we go down, the transformation groups become
smaller and less general and the corresponding spatial structures become
more rigid and have more invariants.

transformations definition invariants matriz
and concepts

Projective P3

xhomography cross — ratio 4x4
tncidence  nonsingular
coplanarity

duality M-V ]

wop
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Affine
*xaf fine plane at I
transform. infinity ratio of
3 points M3 x3
center of mass monsingular
convez hull matriz
ratio of volumes Vwvector
parallelism
pointsatoo
sideness
betweenness MV ]
0 1
*unimodular absolute volume det(M)+£1
group
Euclidean
*similarities absolute conic 2 angles MM =TI,
ratio of
3 points
rigid
displacement
changes of
scale
*isometries absolute  det(M) = +1

distances
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Figure 3: Models of projection

3 Models of projection and cameras

3.1 Models of projection

To find the projection of a point, a line is drawn from that point to another
one, called the center of projection which can lie at any location in space.
The intersection between this line and a plane in space, known as the image
plane, to which the center of projection does not belong is called the projec-
tion of the point in question. The (set of) projection(s) in the image plane
is called the view of that (set of) point(s) (sometimes we will use view and
image plane interchangeably).

There are four models of projection: parallel, orthographic, central and
perspective (see Figure 3).

There exist always a center of projection, although it may lie at infin-
ity. In this case, the projections are called parallel: any point is projected
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following one and only one determined direction. When this direction is
perpendicular to the plane, the projection is called orthographic.

In the central and perspective, the center of projection does not lie at
infinity. In the case of perspective projection, there exists a line passing
through the center of projection, known as the principal ray which is per-
pendicular to the plane of the view. The point of intersection between the
principal ray and the view is called the principal point. Finally, the dis-
tance between the the image plane and the center of projection along the
optical ray is the focal length. In a sense, the orthographic projection is a
perspective projection whose center lies at infinity.

In perspective projection (see Figure 4), the system is defined as follows:
the axis z of the coordinate system is aligned with the principal ray and the
axis z and y define a plane parallel to the view. The focal length is fixed
and therefore, the position of the view in the coordinate system defined is
perfectly known. Therefore, the change of coordinates is the result of a rigid
movement: a translation of the center and a rotation of the axes, while, in
the case of central projection, this rigid movement is followed by any linear
projective transformation in space (see [Har80)).

3.2 Projection from 3D to 2D
3.2.1 Projective level

Given a point P in P3, the projection matrix of image I is a 3x4 matrix M
and the projection of that point is another point p on image I:

T

T mi1 M1 M3 Miyq y

Al oy = | Mm21 M2z M23 Moy s

S m31 M3z M33 M34 :
Ap=MP

The projection matrix P must be of rank 3.
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Figure 4: Perspective projection

3.2.2 Affine level

Let us decompose the projection matrix M as the concatenation of a 3x3
submatrix M and a 3x1 vector m. The optical center is the only point whose
projection is the vector (0,0,0), therefore

MC = [Mm][Cc]=0

Thus the equation of the optical center is MC = -cm, the optical center
being at infinity if det(M) = 0. If det(M)#0 then the optical center is
C =[-M™'m 1) and m = -MC. It is worth mentioning that a projection
matrix from a real system will always holds this condition (the optical center
must lie in the affine space).

There exists points in P3 that are mapped to points at infinity; by
multiplying M3 (the last row of M) by any point x mapped to infinity, we
get that M3 x = 0. Obviously, this also happens to the perspective center.
In fact, we can regard M3 as a plane of all the points that are mapped to
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infinity known as the principal plane (or the focal plane).

Thus, the projection can be described as a composition of an affine trans-
formation and the projection expressed in the image system (here, the iden-

tity):

The projection of each point at infinity [d, 0] is the vanishing point v =
Md and therefore the optical ray corresponding to a pixel p is the direction
M~1p; then, the vector m is just the projection of the origin of the world
coordinate system (called the principal point).

3.2.3 Euclidean level

The nonsingular matrix M can be decomposed as two matrices which can be
regarded as the matrix describing the change of the image system (5 intrinsic
parameters) and the displacement in space (6 extrinsic parameters). As the
matrix of the intrinsic parameters is upper triangular, it defines an affine
transformation of the plane, rather that a general projective transformation.

) a, Y Ug 1 0 00
M=X|l 0 o v 0100 [é% :f] (2)
0 0 1j[0010fLl™
Qy - ’Uo-l R T
A= 0 a, Y C=[0 1]
0 0 1 | :
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The matrix A does not depend on the extrinsic parameters (matrix C)
and depends only on the intrinsic parameters (because the projection of the
absolute conic is invariant under rigid displacements). The classic motion
equation for a calibrated camera is z’p’ = zRp+T where R is an orthogonal
matrix accounting for the rotation component of camera displacement and
T is the translation component.

3.3 The camera model

The camera model used is the classical pinhole model (following [ZF94],
[Fau93],{Har96]) and it is assumed that objects in the world are rigid.

A) Non-rigid camera configuration: the center of projection is the origin
of the camera coordinate frame (central projection) and can be located any-
where in projective space. Therefore, it can be a point in Euclidean space or
an ideal point (parallel projection). The image is assumed to be arbitrarily
positioned with respect to the camera coordinate frame.

The motion of the camera consists of the translation of the center of
projection, rotation of the coordinate frame around the new location of the
center of projection and followed by tilt, pan, local length scale of the image
plane with respect to the new optical axis. This model of projection is also
referred to as projection with an uncalibrated camera.

B) Rigid-camera configuration: the center of projection is a point in
Euclidean space and the image plane is fixed with respect to the camera
coordinate frame (perspective projection).

The motion of the camera consists of translation of the center of projec-
tion followed by rotation of the coordinate frame and focal length scaling.
Note that a rigid camera implicitly assumes internal calibration: the optical
axis pierces a fixed point in the image and the image plane is perpendicular
to the optical axis and parallel to the xy plane as in the perspective projec-
tion. This model of projection is also referred to as perspective projection
with an calibrated camera.
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3.3.1 Camera calibration

As the image formation process can be expressed as a projective mapping
from P3 to P? and assuming that the camera performs a perfect perspective
projection, the projective camera calibration is the computation of the pro-
jection matrix associated with this mapping. It is done using a set of points
whose location in space are known. With a number of points (at least 6) the
matrix can be obtained. This matrix will contain not only the projection
matrix but also the intrinsic and extrinsic parameters of the camera.

3.4 Comparison between models

The advantage of the non-rigid camera model (or the central projection
model) is that images can be obtained from uncalibrated images. The price
paid for this property is that the images that produce the same projective
structure invariant (equivalence class of images of the object) can be pro-
duced by applying non-rigid transformation of the object, in addition to
rigid transformation. With a set of arbitrary cameras with unknown possi-
bly different calibrations it is not possible to specify the scene more precisely
than up to an arbitrary projective transformation of space. This contrast
with the situation for calibrated cameras in which a set of sufficiently many
lines may be determined up to a scaled Euclidean transformation from three
views ([Har94], [SA90], [WHA92]). In the case all of the three cameras are
the same, however, or at least have the same calibration, it is possible to
reconstruct the scene up to a scaled Euclidean transformation ([Har93]).
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4 Concepts of Epipolar Geometry

'4.1 Introduction

The epipolar geometry describes the relationship (correspondence) of a num-
ber n of projections of a point in the space on a number n of views. It
contains all the information regarding the viewing transformation between
n camera locations.

The subject was investigated by mathematical photogrammetrists in the
19th century but it has received much attention with the publication of
[Tho68] and [LH81]. More recently, work on projective reconstruction by
(Fau92], [HGC92] and [Sha95] launched a lively burst of research in this
field.

Consider the case of two perspective images of a rigid scene (depicted
in Figure 5) where a P3 point P is projected onto two images L, I; It
it obvious that the point P, the center of projection of two views (0;,0;)
and the projection of P on those planes p;,p; must lie in a single plane,
called the P’s epipolar plane. This fact is known as the epipolar equation
or coplanarity constraint.

The line passing through a center of projection of a view (O; or O;) and
a point in space P is the P’s epipolar line in 3D for that projection. The
intersection of this line with an image plane defines the projection of the
point in question (p; or p;). The epipolar line connecting the two centers
of projection is of special interest: the projection of another image’s center
of projection is called the epipolar point or epipole. By construction, the
intersection of the epipolar plane of a 3D point and an image gives a line,
called the epipolar line in 2D, that always passes through the epipolar point
and the projection of the point. All the epipolar lines in an image converge
towards the corresponding epipole. An epipolar transformation defines the
projective relationship between two epipolar lines in two distinct views.

Projectively, the epipolar geometry established the correspondence p;, Pj
and allows 3D reconstruction of the scene to be carried out up to a 3D
projective transformation. An important practical application is to aid the
search for corresponding points, reducing it from the entire second image
to a single epipolar line. The epipolar geometry is sometimes obtained by
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Figure 5: Epipolar coplanarity constraint

calibrating each of the cameras with respect to the same 3D frame although
this is not necessary if a sufficient number of correspondences is provided.

Although invariants of a wide range of objects in the 3-dimensional pro-
jective space P3 do exist, one is restricted to considering those that may
be computed from two-dimensional projections (images) (see [MZ92]). For
point sets and more structured geometrical objects lying in planes in P3,
many invariant exists, but it has been proven that no invariants of arbitrary
sets of points in three dimensions can be computed from a single image.

4.2 Basic Equations

Given a point P in P3, the projection matrix of image i is a 3x4 matrix M;
and the projection of that point is another one p; on image i:
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A\ipi = M;P

Now, given m images, we can represent the whole system as follows:

g0 o0 [ F

M2 0 D2 .. 0 —/\: =0 (3)
S .|

M, 0 0 ... pm _;\m

Say we have four images, let M; = [e,-_,-],Mz . [a,-j],.’l-l;; = [b,-_,-],]ll; =
(¢ij], 1=1,2,3 and j=1,2,3,4 (the whole expression in Appendix A).

Let vectors 1, 2, 3 be the three rows of matrix M;, vectors 4, 5, 6 be the
three rows of matrix M,, vectors 7, 8, 9 be the three rows of matrix M,
vectors 10, 11, 12 be the three rows of matrix My; when we say [i, j, k, 1]
1>1, j, k, 1 <12 we refer to the determinant formed by these 4 vectors.

We will see in the next sections the epipolar structures that relate the
correspondences of two, three and four images.
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5 Bilinear constraints: Fundamental matrix

Let us take the first two images of (3) to describe the bilinear constraints.
We have a 6x6 matrix whose determinant equals 0. If we develop this
determinant we can see that the elements of the fundamental matrix are
4X4 determinants as it appears in Appendix B (see also [FM95a]) :

The fundamental matrix is described as

P2 Fi2 ;=0
122711 + 1%2712 + T2Y13 + T1y2721 + Y1Y2Y22
TY2Y23+ T1731 + Y12 + 33 =0
Fiz = [135] 4,j=1,2,3

Following [Sha95), if the projection matrices are recovered as M; = [I,0)
and Mg = [A,V21] (/\1 = [I, O] P, Az P2 = [A, v21] P) then the coefficients
can be described as

] T = 4 1

11
| @iy vzl .. 1 = 2 3
7!] - aizj v;gl , z’] - 1’2’3 g = :1; 1
= 2

The definition of the fundamental matrix is independent of the kind of
projection considered.

As described in [FM95b], the epipole vy, is proportional to the vector
([1,4,5,8], [2,4,5,6], [3,4,5,6]) and v, is proportional to ([1,2,3,4], (1,2,3,5],
(1,2,3,6)).

F2is of rank 2. The kernel of Fy; is the epipole v;3. Given a minimum of
eight correspondences in two images, it is possible to obtain the fundamental
matrix and from it the epipoles by solving the systems:

Fiov12=0 Flva =0
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In addition, thanks to the relationship of the different determinants, we
can find the epipoles directly from the coefficients (see Appendix I, (32)).

.11 I | _.3.1
V22733 — V23732 = V19¥21 V12733 — V13732 = Via¥21 V12723 — V13722 = Vy2¥)
1.2 . T —.,3.2
721733 — V23731 = V1aV21 711733 — 713731 = V12V21 711723 — 713721 = ViV
— 1,3 R I - .3.3
Y21732 — Y2231 = V1a¥21 V11732 — V12731 = VUyaUay; V22722 — V12721 = V1p¥7;

for instance, the coordinates of the epipole vi2 = (x,, yv») can be found
with

722733 — 723732 _ z 712733 — 713732 _

12723 — V13722 v 712723 — 13722

Finally, they provide some nonlinear constraints of the coefficients shown
in Appendix C.

The matrix Fy, is the fundamental matrix corresponding to a pair of
camera matrices P; and P, if and only of P} F P; is skew-symmetric. Two
camera matrices P; and P, with different centers of projection uniquely
determine the fundamental matrix Fy;; on the other hand, given Fys, the
matrices P; and P, are not uniquely determined.

5.1 Estimating the fundamental matrix

Each matching pair of points between two images provide a single linear
constraint of Fy;; this allows F to be estimated linearly from at least 8
independent correspondences (up to scale). Algebraically, however, F has
only seven degrees of freedom due to the rank 2 condition that implies an
additional constraint (det(F;;) = 0). In theory, only 7 points are strictly
necessary but in practice as many points as possible are used.

Combining the equations provided by all the available correspondences
gives a linear system Af = 0. Then, we can use a least-square process and
the solution can be restricted for f to have norm 1: minyg=1{|Af]|?, that is
minf=1f* A’ Af, which amounts to finding the eigenvector associated with
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the smallest eigenvalue of the 9x9 matrix. As A*4 is in general numerically
ill-conditioned, it is a good idea to mormalize the pixel coordinates to |-
1,1] providing more data stability before beginning the whole process (see
[LF96)).

5.2 Perspective projection in P3
5.2.1 Epipolar geometry of two views

As we have seen in (2), the relationship between the projection matrix and
the internal and external parameters of a camera i is given by the following
formula:

M = A,KC;
where
oy Y U 1000
Ai=1 0 a, w K=[0100 C,=|:éz fjl
0 0 1 0010 3

- @y is the magnification in the z coordinate direction.
- @, is the magnification in the y coordinate direction.
- up and vp are the coordinates of the principal point.

- v is a skew parameter corresponding to a skewing of the coordinate
axes.

Ay is the matrix of the intrinsic parameters of the camera i (see [Fau93])
and C; the matrix of the extrinsic parameters. Let take camera i as the one
defining the coordinate system (then C; = I).

The projection equation, relating a point out of the focal plane P = [x,
Y, 5, t] expressed in the normalized camera frame to its projection p; = [xi,

Yi, 1] is
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sp; = AKP (4)

In the ideal case (s is just a real constant)

$ pi

i
c o
oo
—_ oo
coco
"o

If the relationship between two views (say image plane j) is a matrix of
displacement defined by a rotation R and a translation vector T:

R T
E

then, assuming that the point P is not in the focal planes corresponding
to the two views, we obtain the general disparity equation:

s'p; = AjKC;P =
A;RKP + A;K[T 1)t = sA;RA 'p; + tA;T
then
s'p; = sHoopi + tvji (5)
where

vii = A;T Hy = A;RAT? (6)

H is the homography of the plane at infinity.

Equation (5) means that m; lies on the line going through v;; and Ho,p;,
which is the epipolar line of p;.
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Then, F;; = [v;i] Hw is the fundamental matrix, which is of rank 2
(because of [vj]).

If we are not using the plane at infinity but a plane defined by the vector
I = [nf -d], where n is the unitary normal, d the distance to the center and
Il P = 0. From here, n! K P = d t. Since KM = s A7? p; (using (33))

'pj = sHoopi + 5 (A7 pi)vji =
{Hoo + v;i T A7 pi

The new form of the disparity equation (5) is

slpj =s H p;
where the homography of this plane is

nt

H = Heo + vji

A7!

In this case, the fundamental matrix satisfy Fy; = [v;;] H.

Either with Hy, or H, it follows that F;; provides the epipoles v;; F;; =
0 and Ff; vi; = 0 since H v;; = vj; (or Heo) ([F2u92],[Sha94]).

Alternatively, since the epipolar line l;; = v;;x p; (epipolar line of p; on
view I;) and p; = H p; we have

pi(vii]Hpi =0

if the homography H is given because of some configuration of four copla-
nar points, v;; follows from two or more corresponding points.

The plane at infinity, represented by [0,0,0,1], with t = 0, yields the
following disparity equation
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8'p; = sHoopi
If A;, A, R and t are known, thus H,, and v;; (using (6)), it corresponds

to a strongly calibrated system.

If He and F;; are known, thus v;; up to an unknown scalar factor, let
have Ho, = A Hy and 9;; = p vj, it corresponds to an af finely calibrated system.

If only F;; is known, thus ;;, it corresponds to a weakly calibrated system.

5.2.2 Euclidean reconstruction

If A;, Aj, R and T are known, thus Hy, and v;; (using (6)) which corresponds
to a strongly calibrated system, then (5) gives

0 = s(p; X Hoopi) + t(p; X vj:)

— (i xvji)(p;x Heopi)
0 = s+t S Hanl

_ _(pj x v;i)(pj X Heop:)

t | 2; X Hoopi ||
then (4) gives
s T; z/t
747 Wow =]
1 s/t

The projection matrices for these views I; and I; are

A;[I3 03] Aj[RT)

They are known up to a rigid displacement.
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5.2.3 Affine reconstruction

Ho and F;; are known, thus v;; up to an unknown scalar factor, let have ): g
= A Heo and 9;; = g vj;, which corresponds to an af finely calibrated system.
Since A; and v;; are unknown, equations (4) and (5) cannot be used. They
are rewritten in another framework A defined by

14; 0
CA = [ Xoé 13

u

P4 =(X4,¥4,54,t4) then P4 = (X A;KP —4), thus s = As4q and t
=putgandsy p; = KPy

then (4) gives

ou | T Talta
ol I I ya/ta
411 salta

and (5) gives

8'pj = 8 Hoopi +t vj
S’Pj = SAAHop: + tApvj;
8'p; = saHoopi + tabji
0 = 84(pj X Hoopi) + ta(pj x ;i)

— 1 [PJXE’J-'){PJXHWF"]
0 =sa+ A r?

sa _ _(pi X 9i)(p; X Hoopi)
ta | p; X Hoopi ||?

The projection matrices for these views I; and I; are, if

P IV N
Ca —[ 03 u
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then
AL 03]C3Y = A3 0] A[RTIC3! = [Ho ;]

5.2.4 Projective reconstruction

Ounly F;; is known, thus %;; which corresponds to a weakly calibrated system.
Equations (4) and (5) cannot be used. They are rewritten in another frame-
work P where the vector representing the plane at infinity is no longer known,
equal to [0, 0, 0, 1]*. Let us assume that the homography of the plane is
known and defined by H = A [Hoo + v;i % 47!]. Then

14; 0
CP = [ _‘\J‘_“t f]
sd B

If Pp = (xp, yp, 5P, tp) then Pp = (} Ai K P -2 K P + &), thus s
= Asp.

slp.‘i = AspHoopi + ptpvji + Aspvj‘.%'_Ai—lpi
= AspHp; + tp¥j;
0= sP(PJ' X Hp,-) -+ tP(Pj X 1-51.‘.)
= (p;x05i)(p; X Hpi)
0 = sp + tp AL P

g _p xvy; ) (p; X Hpi
tp oy x Hpill?

then (4), as sp m; = K Mp, gives

sp | zp/tp
=l = yp/tp
Bl sp/tp

The projection matrices for these views I; and I; (back to the original
framework of camera i from framework P) are
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AL 03
C—l = l_
P [ ,\Z'A’ 1 M ]

then

AL 03]01;1
A;[RT) Cg!

Al13 0]
(H 9]

If F;; is known, we can always use the plane whose vector holds (using

(34))

vl

'n' —_— ! .
T = "o oA

H = Heo + v~ i Hoo A AT =

Yii 2 vyiillviily [viillvg _
Hoo(1 - HTJjT'IlT - Ilv,ellE )=-He [

it ([v4i] Hoo) = .,'; E;

vji

then

5.3 Recovering the epipoles and fundamental matrix of two
views

The epipoles v;;, v;; of two views I;, I; are the points of intersection of the
line passing through the center of projection of views I; and I}, ie O; and
0;, see Figure 6.

The epipoles can be recovered from six points [Lee88], [Moh92], (four
of them are assumed to be coplanar), seven points [FM90] (non-linear algo-
rithm) or eight points, which is the most usual case [Fau92).

In the case of six poiﬁts, it is a requirement that four of them must
be coplanar. Let A, B, C, D be four coplanar points and F, G the two
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Py

Figure 6: Epipolar points and lines of two views

remaining reference points and O; i=1,2 the center of projection of the two
views involved. Let a’, a” be the projections of point A and so on for the
rest of points. The intersection of the view line O1F with the plane ABCD,
F’, is defined by its projective coordinates measured in view 1, taking the
projections a’, b’, ¢’, d’ as reference frame (see Figure 7).

Now we can locate the coordinates of F’ in the second view, by using
the homography defined by a’, b’, ¢’, d’ and a”, b”, ¢”, d” (let us call it f3).
Finally, we have the line determined by f’ and f;. If we proceed in the same
way with G, the intersection of the lines provides the epipole on the second
view. The same can be done to get the epipole on the first view.

In the case of eight points, the basic idea is based on the projective
relationship between two epipolar lines. Given a point Py and two views I;,
I;, the epipolar line lix; is the line passing through v;; and pg; on view I; and
the line 1;%; is the line passing through v;; and pi; on view I; (see Figure 6).
Therefore, the epipolar geometry may be represented as a 2D correlation
matrix (ie a transformation of the points into lines on a plane). Let L
be an epipolar transformation, ie Lé lik; = p ljki, where Lixj= vi;X pr; and
Liki = VjiX pk; are the corresponding epipolar lines. We can rewrite the
projective relation of epipolar lines using the matrix form of cross-products:
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epipolar point

Figure 7: Epipolar points and lines of two views

LY (vij X pri) = LV [wjlpes = plii
where [v;;] is a skew symmetric matrix (and hence has rank 2).

From the pqint/].ine incidence property, we have tha,!:' pf‘j ik = 0, and
therefore pij L“[v;]pxi=0, or pf‘j Fi;jpki=0 where Fi;=L"[v;;], where F;; is
the "fundamental” matrix.

Finally,

Vji = FijPai X Fijpmi

where p,; and pp; are any two points which are not on the same epipolar
line (with more points, a least square method can be used) (see Figure 8).

An alternative is F;; vi; = 0 and vj; Fi;=0
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Figure 8: Epipolar lines

5.4 Finding the epipole with two points using the fundamen-
tal matrix

Given two points which belong to the same epipolar line, it is possible first to
determine, without obtaining the epipole, if the epipole lies between them or
which one is closer to it and second, the epipole can be obtained if necessary.
In this section we will use the fundamental matrix and we will see that the
method is straightforward and easy to understand; we have written it here
in order to explain the same idea we will use in the next section which has
more interest as we will use the coefficients of the tensor.

Say we have two images a and b and two points in image a which we
believe belong to the same epipolar line. Let v,5 = (Z45,Yab) be the (un-
known) epipole between image a and b and let sx and sy be the slopes of
the epipolar line. Thus, every point in that epipolar line can be expressed
as pg = (Za,¥a) = (Tab + MkSZ, Yab + nk3Y), where ny is a scalar; if nx = 0
the point in question is the (unknown) epipole.

Given the fundamental'matrix between these two images,
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? Fap pa=0 Fop=[v5] 4,7=1,2,3

any of the rows defines one coefficient of a line in image b. If the point
we are using turns out to be the the epipole, all these coefficients equal 0
(and this happens only in this case).

Assuming that p, in image a is not the epipole

T11Za + Y12Ya + 713 = V1
Y21%a + T22Ya + Y23 = V2
Y31Za + Y32¥a + Y33 = v3%

T11(Zab + 1k 8T) + Y12(Yab + 7ESY) + Y13 = v1g
121(Zap + 1k ST) + Y22(Yab + MkSY) + Y23 = V2%
¥31(Zas + nk8T) + Y32(Yab + nkSY) + Y33 = V3%

T11Zab + Y12¥ab + 713 + Y117k ST + Y1208y = V1
Y21Tab + Y22Yab + Y23 + Y2172k ST + Y22 nkSY = V2
Y31Zab + Y32Yab + V33 + Y31MkST + V32NkSY = U3k

nk (71152 + 7128Y) = vl
nk (2182 + Y225Y) = v2%
1k (Y3187 + 7328Y) = v3;

nL = U]k —_ !}2* = ‘U&k
k= S sztvizsy  Tisttmzsy . Ya15T+rmazey

Given two points, if the sign of ny is different, the epipole lies between
them; if the same, the epipole is closer to that one whose absolute value of
ng is smaller. Once the value of n; is known, the epipole can be found from
Zah = Tq — NEST and Yob =.Yo — NESY.
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5.5 Relationship of the slopes of two epipolar lines

Given a fundamental matrix F between two images

71 Y12 73
P2l Y21 Y22 Y23 |1 =0
Y31 Y32 733

and the epipoles vi2 = (X12, ¥12) and v2; = (X21, y21), we know that

M1 T2+ Y12 Y12+ 113 =0 M1 Zaa+721 Y21+ 731 =0
Y21 T12 + Y22 Y12 + 123 =0 T2 ZTa1+ Y22 Y21+ 732 =0
Y31 T12+ 732 Y12+ 733 =0 TM3Z21+723 Y1 +733=0

Besides, any point belongs to an epipolar line and therefore it can be
expressed as p; =( 12 + k Ay, y12 + k B1) and p2 =( 221 + m Az, yo1 +
m B,), where A;, B; are the slopes of the corresponding epipolar lines.

If now we develop the equation of the fundamental matrix with p, and
p2, we can see that all of the terms involving v15 or vg; become null and we
can eliminate the scalars k and m; we are left with the following

711 A1 A2+ 712 By A2 + 721 B2 A1+ 722 By Bo =0

in other words,

A
A, B 71 Y12 1 =0
(42 B2) ( Yor Y22 B



6 TRILINEAR CONSTRAINTS 37

6 Trilinear Constraints

Let us take the first three images of (3) to describe the trilinear constraints.
As said in [Tri95], the elements of the tensor of images i,j,k are 4x4 de-
terminants a‘}k as shown in Appendix D. These trilinear functions can be
recovered by linear methods with a minimal configuration of seven points.

In [Sha95], the same algebraic connections across three views of a 3D
scene are established with a different derivation process (see [Sha95], [Sha92]
and [Sha96)).

Following [Sha95], if the projection matrices are recovered as [1,0], {A,va1],
[B,V31] (/\1 N = [I, 0] P, Ag D2 = [A,Ugl] P, A3 P3= [B,‘U31] P) then the
trilinear tensor is an array of 27 entries (afk with i,j,k=1..3), each of them
is the determinant of a 2x2 matrix:

g
bk vy,
aik V3

k

odk = i k=123

As established in [Sha95], only four of the nine equations are indepen-
dent, called trilinearities.

If a{kpf = a{lxt+a{2y¢+a{3 t=1,2,3 then they can be written ([Sha95]):

3k, k 3k, k 1k k 1k, k

T30y Py — T3T203 P +T203 Py — ) P = (7)
3k, k 3k_k 2k, k 2k, k

Y3y Py — Y3T203 Py +Toa3 py —ay p; =0 (8)

z303°Pf — 239203 pf + y2a}*pf — a}fpt =0 (9)

Y303 pF — Y3035k + yaaZkpk — o2Fpk = 0 (10)

-
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6.1 Epipolar lines

Combining (7), (8), (9) and (10) we find the equations of the epipolar lines
in the second and third images:

1k..k 3k .k 3k, k 1k, .k 1k .k 3k..k 3k, k 1k,.k
(a3t * 03°py — a3°pf * 01" p1 )y + (3°pf * 03°pf — 3" p7 * a3°p1 )72

+(a3kpk  al*pk — af*pf * a3Fpk) = 0 (11)
(a2Fph + a3Fpk — o3*pk « a2*pk)y, + (eFFph » a3t — a3*ph + affph)e,
+(a3*pk x a2kpt — ofFpf x adFpf) = 0 (12)

k.ok . 3k k 3k, k. 1k k 2k k . A3k, k kok k. k
(ak*pt * a3*py — a3 pf * 01" pT)ys + (@1°py * 037 p] —a? p1 *aj P1)T3

+(akpk * al*pt — of*pf x adFpf) =0 (13)
and also
(al*pk * o3 p¥ — a3 pk  alkpb)ys + (a3kph + o3 pf — o3 pk * 0FFpf)zs
(a3kpk x a}Fpk — oBFpf * affpl) = 0 (14)

We need only a point in image 1 and one of the coordinates in image 2
(3) to get the other coordinate in image 2 (3) and the point in image 3 (2).

A) given (z;3,%1) and 22
_ oipl - offpia

T3 = (15
o*p} — a3 pizs )

- k 2%,k
_ 0‘% P’f = Q3°PiT2 16
Y3 = 3%k _ 3k k (16)
ayj'py — 03 P2
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B) given (z1,y1) and z3

Tg =

Y2 =

C) given (z1,%1) and ¥

1k ..k k
at*pf — o phzs

1k k 3k k
a3 Py — a3kpl z3

1k, k 3k ..k
ay'p) — a3 piTs

1k,.k 3k,.k
a3 p; — a3 P1Z3

1k, k 1k k

_a’pr -3 Y2

Y3 =

D) given (z1,%1) and y3

Ty =

Yo =

The list of constraints can be found in Appendix E.

6.2 Finding the epipolar points using the E matrices

3k k 3k, k
a3 pr — o3Py

2%k, k 2k, k
Q3 Py — a3 P2

3k ..k 3k K
Q" Py — 3" P12

2k, k 3k ..k
a;'py — @1 P1ys

ko k
aZkpf — a3k pfys

2k _k 3k k

Qo' P1 — G2’ P1Y3
2k k

Qz"py — O"gkplfys

39

(17)

(18)

(19)

(20)

(21)

(22)

Say we would like to to calculate the epipole in the second (of first camera)
(see [SW94a)): if Ei*F 4 F*Ei = 0 and [v']Ei = F where [u]w is uxw (cross
product), then El*[v'|Ek ~ Ek*[v'|El = 0. Let assume that Ek = [a;, a, a3],
El = [b1,b2b3). Then from the diagonal: (a; x b;)'»' = 0 ( so we have 3

equations) and from the rest: [(a; X b;) — (b; X a;)]*v

by W in the case of the third image.

0. Just replace E



- ‘A;- o

el .

Chiaa o, W e

—_—

PR

S
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6.3 Other previous results

We will just mention some of the properties of the tensor (see [Sha95]). Let
E; j = 1,2,3 be three matrices corresponding to a;,

* these matrices are the homographies of three distinct, non-singular
(not coplanar with any of the camera centers) planes. In the case the third
camera is calibrated (M3 = I), the planes are perpendicular to the main axed
of the third camera coordinate frame ie, E; is the homography associated
with the plane whose normal is the x-axis of the third camera frame and
whose distance to the origin O; is 1/x,31 (v” = v3;) and so forth (recall
Vij = (Xuij, Yuij» Svij))- [SW94b] refers to them as the intrinsic homography
matrices.

* [V]E; & F. It provides a method for recovering this epipole from the
tensor (p'Fp = 0, then p’[v’]E;p = 0). Thus for any choice of j, given the
corresponding points already used to recover the tensor, we have a linear
system for v’ (it can be over-determined if more than two pairs of corre-
sponding points).

* The (over-determined) system of linear equations resulting from F* E;
+ E! F =0, j= 1,2,3 provides a unique solution for F (up to scale). The
solution is unique when at least two of the E; are used in the system, ie j=
Jidas 1 #d2, J1id2 = 1,2,3.

* The projective structure of the scene is captured by the equation p’ &
E1p + kE;p where k is a projective invariant of p® (projective depth) The
invariant k does not depend on the choice of the first two views (11, 12).
The third view %3 determines the projective reference frame.

This structure is recovered without any fiducial (reference) points (four
of them needed to define two planes and the fifth to establish the scale),
since these planes are provided by the tensor. The fifth point is not required
as well, because the homographies are already determined up to a common
scale. This fifth point is at the intersection of the three planes associated
with the homographies E; + E,, E; + E3, E; + E3.

So the third view provides the projective reference; changing it will result
in reconstruction that are projectively related to one another. In practical
terms, reconstruction using the tensor treats all points equally likely, ie the
tensor does not depend on the choice of seven corresponding points, which
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is generally a desirable property in the presence of noise.

* the relative affine structure of the scene is captured by the equation p’
2E p+ kv

* The intrinsic homography matrices are generically full rank. In the case
the three camera centers are collinear, they have rank 2 (the corresponding
fiducial planes are coplanar with O}. Finally, E;, E; and E; has rank 1 iff
xy31 = 0, Yu31 = 0, zy31 = 0 respectively

* The trilinear function F reduces to a bilinear form (any perspective
view 1 can be obtained by a rational linear function of two orthographic
views) which implies that simpler recognition schemes are possible if the two
reference views (model views) stored in memory are orthographic. Besides,
only five points are necessary to obtain the tensor (see [Sha95]).

* The equivalence class of views of an object (ignoring self occlusions)
undergoing 3D rigid, affine or projective transformations can be captured by
storing a 3D model of the object, or simply by storing at least two arbitrary
“model” views of the object, assuming that the correspondence problem
between the model views can somehow be solved.

* All trilinear tensors live in a manifold of P26. The space of all trilinear

tensors with two of the views fixed, is a 12’th dimensional linear sub-space
of R27 (see [Sha96)).

6.4 Tensor 733 from tensor Ti23

In this section it is shown the rela.txonsinp between the coefficients of the
tensor Ti 3,3 (with elements o] ) and those of tensor Ty ;3 (with elements

&)

It is known from the trilinearities that the tensor E;;j must satisfy for
each correspondence:

2 = 1 P2 1 P21‘3 v = flkpk —fz P233
Ellc ggkpkxs Elk k _ 3 sza
2 = 61”‘.9" k311 S £249h - Ehphus
£3*p5 — € phus £3%ps — E3*p5va
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Say we take equation (9), isolate y; and substitute it into (7). What we
get is an equation that depends on 3, y2 and 2,23 with the following form:

z3A+23B+C
z3A' + 23B' + C'

where A,B,C,A’, B’ and C’ are functions which depend only on the
coefficients of a’* and the coordinates of p,.

As we have two equations of second degree, they can be decomposed

(Azg — r1)(z3 — ra)
(A'zz — 7r3)(z3 — 14)

Ty =

where 7y, 79,73 and 74 are the roots of these equations. Now, since we
know that z; = (£}%pk — 3% pkz3) /(€3 ph — €3%phz3) holds, it seems that two
of the roots, say r3 and 74, have the same value and can be eliminated. By
comparing the two formulas, it is clear that

k 1k k
7‘1~51P2 T2 2 &3 pg

A= gpk Al e3kph

If we do the same with the rest of the equations, we have the following
list of comparisons:

lkpk o (a:133a%2 a§2a13)x2+(a13 12 0‘1 033)y2+(a12 13 ai3a22)

ok = (oo - oFlaf)as + (oaf — a'a)un + (o'ad - aPad)

32 33 32

- a2aP)zs + (03203 - o)y + (23?03 - aPad?)

Peps = (of’e]



6 TRILINEAR CONSTRAINTS

k_k 3
lev Py = (a:lila%

k. k 3
63 Py = (aglag

3k_k 31 _33
£°p3 = (o3 03
1k, k 12 11
§3°p; = (a3’

2k k 22 21
£3°p; = (o303

3k k 32 31
£3°p3 = (a3°a;

0‘3 a%l)zz_*_(all 13

as a21)z2+(a21 23

- allal?)z; + (alZall!
- o'ad’)zs + (of’ad

- a3'ad?)z; + (e}

22,21

32 31

- a'ad?)ys + (

- a1’z )y + (@
- ooy + (a
- a3’adl)es + (of'ed’ - el )y + (a
~ar'ed’)ys + (@

- aflo)y; + (a

43
13 .11 11,13
1o —apag”)
23 21 21,23
a3 —oayay”)

33 31 31_33
1oy —ayay”)

11 .12 12 11
1o —oyay)
21 22 22,21
1oy’ —oitay)
31,32 _ 32 31
0y @y ;)

If we consider the value of the coefficients, we can see (done with Maple)
that the scaling factors are the coordinates of the epipole between image 1
and 3, va; (see also Appendix I, (32))

11 12,13 _ 13
1’315 = (o3°0; a3 02 )
2 2 23 2
”315 T= (a2 0‘§30‘2 )

vHé = (agzaga - a3 a3
”3152 (‘113 h 03 ‘113)
”:3153 = (023 31 03 ‘3‘23)
"::;'15:23 = (agaagl 0‘3 0‘2 )
wéf} = (el - allal)
v35,63! = (af’e %‘ o3'a3?)
68 = (aPad! - aflaf)

and in a general way,

1 (12 12 13 12
v3:61° = (a1°a 0‘1 a3 )
'”glff = (0‘22 23 0‘%303 )

3 £32 33 33
”3151 = (‘11 az” — oy 0‘3 )

1 12 13 11 11 .13
v3:£° = (o103 - 0" a3°)
1’3153 _(aza 21 21 23)
68 = (el - aled)

1212 _ (12 11 allael?
V3163 (a1a o a3°)

2 222 22 21 21,22
v383° = (ai’e3 —of 013 )

3 £32 32 31
v5:163° = (o3 al 0‘3 )

hel® = (al%a’ -
v§1§2 - (a22 23
”3151 —(a32 33
”3152 = (aisaél
e = (ool
B = (ol -
36 = (efie}
3,68 = (afied -
”3153 = (032 3 -

ol3 12)
Q) 0y
22
- ofted)
0‘1 a2 )
13
01 az )
0‘1 3)
31 33)
a3
o:}loz%2
'fla%2
31032)
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8 = 81 82
R G A N L
3 = 1 2

The same can be done to find tensor T3 from tensor Tj 3 3.

The case of tensor T} 32 from T3 is very simple as it is well known
that if the coefficients of T} 2,3 are ¥, then the coefficients of T 3 5 are k)

6.5 Tensor 124 from tensor 123 and tensor 234

Say we have tensor T;;, and Tjx; and we want to obtain T;;;. To make
it clear, let put it with numbers: Tl,z,g,'k(tensor af") and T334 (tensor ﬂfk)
and we want to obtain Tj 4 (tensor ¥]")

Say point p in image m is noted p,, with coordinates (zm,ym,1) and
1 _ 2 _— 3 =1
Pm —zm’pm —ym’pm .

Say we have the trilinearities of T; 3 4

23(03%p5 — 24B3p3) = (B1*p5 — z457*ph)

3(P3* p5 — vaB3*p§) = (B7*ph — vaB3*ph)

y3(BY*p5 — z4B3*p5) = (B3*ps — ©aP3* P}

y3(B3%p§ — vaB3*ph) = (B3*pk — yaB3*pf) (23)

Now, what we want is to find the epipolar line in image 4 for every point
in image 1.

What we have in images 2 and 3 is the projection of the line defined by
a point in image 1. Our goal is to find this projection in image 4.

Say we have the following line in image 2 and image 3:

-

Y2 = a2z2 + by Y3 = a3z3 + b3
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which (according to (12) and (13) are

2k k. 3k k_ .3k _k_2k_k 3k k. 2k k_ 2k k 3k _k
(a3 py a3 py —ad*py o pk) bz_(upupapﬂrp}
(o3"pyai*py—a3*prai*py) (a3*piat*py —ai*pfay pl)

(o pradkpk_adkpka2kpk) be = (a2 pkalkpk _olkpkozk k)
az = L}ri—“rl—"ri—i-ri—( ) 3 = b

o3 piag py—a3*pray”pt (o3"prog Py —o3"pray py)

ay =

Then equations (23) become

z3(B3°P5 — 243 p5) = (BY* P — 2483 ph (24)
z3(P3°P5 — vaB3"p5) = (B3*P5 — yaB*pS) (25)
(a3zs + b3)(B3*p5 — 483" p5) = (B3*p5 — 465" p}) (26)
(aszs +b3)(B3"p5 — vaB3"p3) = (B3*P% — v4B3"p3) (27)

Say we take (24), (26)

as(B1°P3 — 24B3°P}) + bs(B3°P5 — 248" p5) = (B}l — v4B3*p})

which is an equation with variables z2 and z4 only. We can rearrange it
to get (15) (but with tensor 4). Then, we do the same with (25), (27), to
get an equation with variables z2 and y4, to get (16).

In short, by comparing the coefficients we get, there are the following
relations:

vi%pk = B1%by + B33 — B12braz — BI3as — B32bobs — B1%6s
v3*pf = Bllas + Blazas + B3 + BiZasbs — AL — BL%a,
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vikpk = —p3%bsa3 — B3Pa3 — B32b2b; — A3b3 + 32b; + B33
73%pk = B3az + B32aza3 + B33 + BFPazbs ~ A3 — B2,
v2kpk = 8226, + P2 — B3%baas — PPaz — B32bybs — 533bs
v3kpk = pPlas + BF2azay — PEbs + fFPazbs — B2 — fFa,

v3¥pk = ylkpka, + v1*pkh,

73kpt = y3¥plas + 15 plb,

(72*p% depends on the rest of the coefficients)

for any point p’l‘ in image 1 (in fact, tensor a just defines the line coeffi-
cients). The scale factor in this case is the same for any point p;.

Now, by using points (1, 0, 0), (0, 1, 0), (0, 0, 1) the coefficients of 4 can
directly be estimated. There are, though, three groups of coefficients which
depend on the value of k.

For instance v3° :

23 .33 33 .23

ag0.0.l) (“gsaa — &3 aj bgovorl) - (03’0}’ — a3%a?)
(@Far - a’ar) (oFal? - el
a0 = (of’e3® — o’a’) pOOD (eF’af® - af’al®)
(a5’a1® - a3’al’) (a5}’ - af’a®)

7:333 o ﬂ?lagoyoll) + 13:132ag0!0a1)a:(30v011)

+ﬂglb:(301071) + ﬂgzagoloul)bgolorl) - ’Bgl — ﬂg?agovovl)

Now, since the values of 73¥p¥, we can use any point to find the right
scale factors as follows. First, in case we do not have any point on the third
image (image number 4), it is easy to get one by using (15) and (16), for
instance with point p; = (0,1,1) and z; = 0. The values are put in any
of the trilinearities and the scale factor corresponding to k=2 is estimated.
The same should be done with point p; = (1,0,1).
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6.6 Finding the epipole with two points using the tensor

In this section I show two results: given two points which belong to the same
epipolar line, it is possible first to determine, without obtaining the epipole,
if the epipole lies between them or which one is closer to it and second, the
epipole can be obtained if necessary.

Say we have two images a and b and two points in image a which we
believe belong to the same epipolar line. Let v, = (Zab, Yab) be the (un-
known) epipole between image a and b and let sx and sy be the slopes of
the epipolar line. Thus, every point in that epipolar line can be expressed
as pg = (2o, Ya) = (Zab + Nk ST, Yab + nESYy), where ny is a scalar; if ng = 0
the point in question is the (unknown) epipole.

Say the tensor T, = a‘fk is at hand and we obtain the epipolar lines
from the trilinearities (as in (11), (12), (13), (14)):

1k k o 3k k 3k, k. 1k k 1k k . 3k, k 3k, k. 1k k
(a3"pf * ay"pf — a3°py * o1"pT)ys + (3°pT * 03P — 3" py * a3°py )z
kok o 1k k 1k k . 3k kY
+(a3*pf * al*pf — ol pf * ai*pf) = 0

2% ko 3k k _ ~3kok o ~2kok 2% k. 3k k _ 3k k. 2k k
(af*pt * " pf — a3°py * af*pf )y + (a5"pf * 037 Py — 3" py * a3°py) s

3k k. 2k k Kok o A3k kY _
+(a3*pf * atFpf — afFpf + o}*p1) = 0

1k, ko 3k k 3k k. 1k k 2%, k. 3k k 3k, k. 2k k
(a3®pl * o3"pf — a3°p] + 1" py)yc + (ai"p1 * 03" pf — 07" p1 * 5" py)z.

2%k, ko 1k k _ 1k k. 2k K\ _
+(a5"pi * 01°p] — o3"pi ¥ ai"py) = 0

1k ko 3k k _ 3k k. 1k k 2k k. 3k k __ 3k k. 2k k
(ad®pf * a3"pf — a3 py * az"pt)ye + (5 p1 * 03" pf — 03" py * a3°py )z,
2%k, 1k k _ 2k k. 1k kY _

(a3p; *a3"pl —ai"pi * a3°py) =

Let us look for instance at the first epipolar line in image b from a point
in image a :

1k k 3k .k 3k .k

k. k 3k, k 1k .k
1ok x o3 Pa * a3°p;)Th

1k, k
(a3 Dg* Q7 Py — Q3 P * O pa)yb + (a2 Pg ¥ Q37 Py — O3
(a3*pk + o pk — o} ph + of¥pp)
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If p, were the epipole between images a and b, then, instead of getting
a line in b we would have obtained a point and therefore every coefficient of
the line would have been zero. In general, they will not be null:

1k _k 3k, k 3k, k 1k k _
Q3 Pg ¥ 01 Py — Q3 Py ¥ (g pa—vlk

1k _k 3k _k 3k, k 1k k _
Q3" Pg ¥ Q3 P, — 0 Py * 03 Pg = V2

3k _k 1k_k 1k, k 3k_k __
Q3 Pg * Q1" Pg — O Pg * 0 Py = vk

Each of these coefficients can be written as a product of two vectors (for
instance the first one).

1k, k 3k k 3k, .k 1k, kY _ k(A 1k 3k 3
(a3 Pg ¥ Q1" Dg — Q37D * Oy pa)—pa(a3 *0y" — 03

t 2,2 _
M31,13,33,11($a, YarTaYas Tas Yar 1) = vlg

k 1kN. bk _
*o) )pa"

where M33 11,31,131s a 6x1 vector of (a3¥)txa3* — (a3¥)t+alF conveniently
arranged (see Appendix I, (77)):

M§1,13,33,11 =M1 Ml(xg7 3/3, ZTaYayTay Ya, 1) = vl
M2tl,33’23'31 = M2 M2($Z,y2, TaYaqy Ta, ya,l) = 1)2k
Mzts,11,21,13 = M3 M3(23, 92, 2aYar Ta) Yas 1) = v3;

Let take any of the Mj j=1,2,3 matrices. Then, if the point were the
epipole

Mj(:EZb’ yzb’ Zab¥Yaby Tabs Yab, 1) =0

therefore, for any point
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Mj(z§7 yg’ zaya’ za, ya’ 1) =
Mj((zab + nk32)?, (Yab + nesy)?, (Tab + nk5T)(Yab + nk5Y),
Tap + NEST, Yab + N4y, 1) =
Mj(zzb’ ygby ZTabYaby Taby Yabs 1)+
Mj((nesz)? + 2zqpnisz, (nrsy)? + 2yasnisy,
NESTYab + NkSYZTap + niszsy, nksz, ngsy,0) =
Mj((nksz)? + 2z5pmpsz, (nksy)? + 2yasnisy,
NkSTYab + NkSYTap + NEsTSY, NEST, Nk5Y,0) = vjk

For any point we have three equations (j=1,2,3) whose unknowns are
Zab, Yab and ni. The question is whether or not we can obtain these values
(since the equations are not linear). If Mj = (Mj1, Mj2, M j3, M j4, M js, M jo)
then

Mjy(nesz)? + 2M jizapnisz + Mja(nesy)? + 2M joyapnisy + M jangscyas+
M jangsyzap + Mjankszsy + Mjsngsz + Mjsngsy — vji

ni(Mjisz? + Mjasy? + Mjzszsy) + nkzas(2M j15z + Mjzsy)
+nkYab(2M j2sy + Mjasz) + ng(Mjssz + Mjssy) — vjp = 0
niaj + nzapdi + nkyapes + nedj — vk = 0

where

aj = Mj18z? + Mjysy? + Mjaszsy bj = Mj12s2 + M j3sy
cj = Mj2sy + Mjssz dj = Mjssz + Mjssy 7 =1,2,3

As the solution must be unique, the quadratic coefficient must equal zero
and we can get a unique value for the unknowns. Using Maple, we can find
the value of n, without computing the epipole.
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b1 b2 b3

cl ¢2 3

vl 12 3%
b1 b2 b3

cl ¢2 3
dl d2 d3

ng =

The value of nj expresses the distance of the point to the epipole, ac-
cording to the slope of the line. If the signs of two ny are different, the
epipole lies in between; if the same sign, then the absolute value of n; gives
idea of the distance: the closest point has the smaller number.

The values of the coordinates of the epipole are as follows:

(a2cl — c2al)n} + (d2c1 — c2d1)ni + (c2v1 — v2cl)
(b1le2 — c1b2)n

Tab =

(a1b2 — bla2)n? + (162 — b1d2)ny + (b1v2 — v1b2)
(ble2 — c1b2)ny !

Yab =

If just one point, the slopes of the line and the tensor a are known, the
epipole itself can be estimated if required.

6.7 The epipoles from the coefficients of the tensor

In this section I show how the coordinates of the epipoles in images 2 and 3

can be easily obtained from the corresponding tensor Ty 3 = o:fk.

We know that every epipolar line passes through the epipole. Therefore,
this point on the second image, for example, does not depend on the corre-
sponding projection value of the point in the third image. Let assume the
epipole does not lie at infinity and let us look at the formulas we have from
the tensor (see (17), (18), (21), (22)):

-

o = alkpk _odkpk v = alkpk _ o3k ko
2 O3 Py—o3 Py T3 2 a3 pi—a3 pirs
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a2kpk_adkpky
3" py —a3*prvs

2y = adkpk _odkpky, vo =
a3 Py —a3 PrYa 2

Now, say we are looking for the x coordinate of the epipole in the second
image, we can get rid of points in the third image if we find pf such that:

a) o3 p¥ and a3¥p¥ equal 0 (intersection of two lines) or
b) al*pf and o}*p equal 0 or
c) a?*p¥ and a2 p¥ equal 0.

which give us a vertical! line in the second image because the value of z,
is determined and the value of y; depends on z3 or y3. This gives us three
points in the first image and four ways (2+1+1) of finding the x coordinate
of this epipole. This vertical line in the second image is the intersection
of the image plane with a plane which contains the center of projection of
views 1 and 2 (see Figure 9).

Now, we can do the same with the formulas where y; appears, in order
to find the horizontal epipolar line in the second image.

If now we transform again the equations for the coordinates z3 and y3
(see (15), (16), (19) and (20)):

I alkpk _olkko, vs = a2kpk o2k ks
3 &y Py o3Py T2 S e i
_ abkph_alkpky, a2kpk _ o2k ok,

I3 = Ys =

a3 py—ay prv @y pr —a3" P2

Say we are looking for the epipole in the third image, we can get rid of
points in the second image if we find p§ such that:

a) akp¥ and afFp equal 0 or

b) al*p and a3*p} equal 0 or

c) a3fp¥ and a3Fp¥ equal 0.

which give us a vertical line in the third image because the value of z3 is

'when we say vertical(horizontal), we mean the line parallel to the abcisa(ordinate) of
the image, even if they are not perpendicular
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Figure 9: Vertical and horizontal lines in the second image

determined and the value of y3 depends on z; or y,. This give us again three
points and four ways (2+1+1) of finding the x coordinate of this epipole.

We can use the same idea to find points whose epipolar line in the third
image is horizontal and therefore the y value of the epipole.

The expression of points and epipoles are written in Appendix F.

In any case we have (two sets of) three points in the first image that
produce the same vertical (horizontal) epipolar line in the second (third)
image. In consequence, all three points lie on the same epipolar line in the
first image; this line is the intersection of a plane which passes through the
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line connecting the center of views of the first image and the second (or the
third) and which is perpendicular (vertical or horizontal) to the coordinate
system of the second (third) image. Therefore, the epipole in the first image
can be found by intersecting these two lines (of three points each, although
only two of them are necessary). This is numerically very simple. Since we
have three points in each line, we have in fact three lines for the vertical
epipolar line and another three for the horizontal epipolar line and therefore,
nine possible ways to find the epipole of the second image onto the first. In
case one these points were the actual epipole, we have a way to check it with
the other two.

6.8 Lines defined by the tensor

Given a fundamental matrix between two images Fj 3,

Y11 Y12 713 I
(z2 v2 1) | 121 722 723 | =0
Y31 Y32 733 1

We can see that this structure naturally defines three epipolar lines in
each of the images:

a) the horizontal epipolar line in image 2 is the corresponding epipolar
line ¥11 21 + 12 %1 + 73 in image 1.

b) the vertical epipolar line in image 2 is the corresponding epipolar line
Y21 T1 + Y22 Y1 + Yo3 in image 1 and

c) the epipolar line in image 2 that passes through (0,0) is the corre-
sponding epipolar line y3; z; + 732 ¥1 + Y33 in image 1.

If we exchange the indices of every 7;;, we get the corresponding epipolar
lines in image 2. Thus, each line (column) of the fundamental matrix defines
an epipolar line in image 1 (2) and therefore these lines must intersect in
the epipole of that image.

In Section 6.7, we have shown that it is possible to find some specific
points in the first image that belong to the same epipolar lines.
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Now, say we interpret that the coefficients of a tensor actually define
lines in the first image (a* defines the line o®! x + a2y + a3 = 0, a,b =
1,2,3) and the epipolar lines in the second and third images:

1k, k Kk k ko, 1k, k 1k, k k. k k k
(031’1*0?1’1_031’1*0‘1 7 )vks + (a3 Pl*ag Pl_ag p’f*a% Plf)xkb
3k, k. 1k k 1k k o ~3k kY _
(0‘21’1*‘111’1—‘121’1*“11’1)—0
ok, k . 3k k 3k, k., 2k k 2%k, k. 3k k 3k, k. 2k k
(a37py * a7"py — 03°py * ai"pT)yky + (3"t * a3 pf — o3*ph x o2 pF)zky+
3k, k. 2k k 2% k. 3k _ky _
(azpl*alpl"azpl*alpl)—o

1k, .k 3k .k 3k,.k 1k, .k 2k, k 3k, .k 3k, k 2k k
(@a3"pT * ai"pi — @3°pf * a1°pi )yk: + (af*py * o3°pf — a3Fpf + a2 ph )Tk +

k. k k. k 1k .k 2k kY
(a§ Pl*ai pi— o3 pi*xai"py) =0

1k,.k k.k 3k .k 1k .k 2k .k 3k,.k 3k .k k
(o3 pf * a% p1 — 03 pt * az"py)yk: + (a5°pf * a3%pf — Q3" py * a% P’f)xkc-l'

2k, ko, 1k, k 2%k ko 1k kY _
(a3™pi * 03°pf — a3"py * a3"pf) = 0

As seen before, we can take some of the intersections of these lines (see
Figure 11) :

* the vertical epipolar line in the second image (x coordinate): its cor-
responding epipolar line in the first image is a line passing through the
following points:

1) intersection of lines a3¥ and o3*

2) intersection of lines o1* and a3*

3) intersection of lines a?* and o3*

* the horizontal epipolar line in the second image (y coordinate): its
corresponding epipolar line in the first image is a line passing through the
following points:

4) intersection of lines &3* and o3*

5) intersection of lines a}* and o}*
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6) intersection of lines o3* and o3*

* the vertical epipolar line in the third image (x coordinate): its cor-
responding epipolar line in the first image is a line passing through the
following points:

7) intersection of lines alf and o3*
8) intersection of lines o}* and o3F
9) intersection of lines o3* and o3*

* the horizontal epipolar line in the second image (y coordinate): its
corresponding epipolar line in the first image is a line passing through the
following points:

10) intersection of lines o3* and a3F

11) intersection of lines a?* and a3*
12) intersection of lines a2 and a3F

Now we can see by inspection of the equations of the epipolar lines that
there are two more lines defined by any tensor. They are the epipolar lines
whose corresponding epipolar line (in 2 and 3) passes through the center of
the coordinate system (in other words, point (0,0)) (see Figure 10).
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Figure 10: Vertical and horizontal lines and line passing through (0,0) in
the second image
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* the epipolar line in the second image that passes through (0,0): its
corresponding epipolar line in the first image is a line passing through the
following points:

13) intersection of lines o3* and o3F

14) intersection of lines al* and a}¥

15) intersection of lines a?* and o2*

* the epipolar line in the third image that passes through (0,0): its
corresponding epipolar line in the first image is a line passing through the
following points:

16) intersection of lines o}* and a?*
17) intersection of lines o}* and a2f
18) intersection of lines a}* and a2F

Say we take the dual (ie lines become points and vice versa) and represent
this structure (see Figure 13). As we can see, each point (representing the
epipolar lines) follows this invariant in P?: Given three lines Iy, I3, I3 that
intersect in one point E, if we take two points in each line and intersect the
lines defined by them, the three new points A, B and C lie in a line (see
Figure 12).
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epipolar lines

© intersection of tensor lines

D epipolar points

Figure 11: Lines defined by the tensor in the first image
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Figure 12: Invariant in P2

59
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vertical line
of the 3rd image

jme passing through (0,0)
of the 3rd image

line passing through (0,0) vertical line horizontal line
of the 2nd image of the 2nd imagef the 2nd image

Figure 13: Lines defined by a tensor (dual)

_As seen, these intersections define 18 lines in the first image; every line
(af) intersects exactly four times with other lines, and, for their part, the
lines defined by these points give as a result six epipolar lines that define
the epipoles of image 2 and 3 in image 1; as we can see, both images are
treated alike.

_As seen, these intersections define 18 lines in the first image; every line
() intersects exactly four times with other lines, and, for their part, the
lines defined by these points give as a result six epipolar lines that define
the epipolar points of image 2 and 3 in image 1; as we can see, both images
are treated alike.
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7 Quadrilinear constraints

Finally, let us take the first four images to describe the quadrilinear con-
straints. As said in [Tri95], the elements of the fundamental matrix are 4x4
determinants as shown in Appendix G.

Following [Sha95], if the projection matrices are [I,0], [A,v21], [B,v3i],
[Cval:

Mp=[L0P Xpr=[Ava]lP Mps=[B,va] P Ayps=[C,vu] P

then the quadrilinear tensor is an array of 81 entries, each of them is the
determinant of a 3x3 matrix:

; I = 0 1

Gy iz Y3 . 1 = 1 2

Wikt =| bji, bji, 'v:;;cl 1,5,k,1=1,2,3 9 =~ 1 3
Ckin Ck Va1 3 = 2 3

Finally, using Maple, we have found the linear expression of the 16 in-
dependent equations of the quadrilinear constraints (shown in Appendix ??
where only the coordinates of the correspondences are needed. As each cor-
respondence provides 16 equations and there are 81 unknowns, we need 5
or more correspondences to find these coefficients.



A BASIC EQUATIONS

A Basic equations

( €11 €12
€21 €22
€31 €32
ail aiz
a21 a2
a3 as2
bi1 b2
b1 b2
b1 b3z
€11 C12
€21 C22
\ €31 €32

B Fundamental matrix

(2,3,5,6]
Fo.=1 -[2,3,4,6]
(2,3,4,5]

C Nonlinear

€13 €14 I3 0 0 0 \

ez e 1 0 0 O

es3 ez4 1 0 0 O [ z
a1z Qi4 0 T9 0 0 Yy
a3 a4 0 y 0 O z
asz Qaz4q 0 1 0 0 1
b13 b14 0 0 I3 0 --Al
bas b4 0 0 y3 O -2
bas b3¢ 0 0 1 0 -3
€13 Ci14 0 0 0 Ty \ —/\4
c23 c24 0 0 0 g4

€33 C34 0 0 0 1 }

-[1,3,5,6] [1,2,5,6] 1

(1,3,4,6] —[1,2,4,6] | = | 7.1

-11,3,4,5] [1,2,4,5] a1
constraints

of the coefficients of the fundamental matrix:

Y22733 — V23732 - 712733 — 713732 - N2723 — 13722

Y21733 — 23731
V22733 — Y23732

711733 — 713731
- Y12733 — 713732

711723 — T13721
_ Mi27%23 — 713722

Y21732 — 722731
Y21732 — V22731

711732 — V12731
- Y11732 — Y12731

B Y22722 — T12721
- Y22722 — T12721

721733 — 723731

711733 — 713731

711723 — T13721

/

Y12 M3
Y22 Y23
Y3z Y33

lc ele ele
WD NI = DI | =t
- — — — —

62
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J22733 ~ 723732 _ 721733 — V23731 _ 21732 — V22731 _ v_}g
712733 — 713732 711733 ~ 713731 711732 = 712731 1)122
Y22733 — Y2332 _ Y1733 ~ V23731 _ 21732 T V22731 _ ﬁl
712723 — 713722 V11723 — V13721 722722 — V12721 v?g
712733 — 718732 _ 711733 ~ 713731 _ 711732 ~ V12731 _ ”_122_
T12723 — V13722 T11723 — 713721 V22722 — V12721 - vf'g
D Trilinear constraints
[2,3,4,7] [1,3,4,7] [1,2,4,7] [eol! al? ol3]
[2,3,4,8] [1,3,4,8] [1,2,4,8] all of? ¥
_[2)3,479] —[11 3s4a 9] _[1)2’4’9] a:l31 a:132 a:133
(2,3,5,7 [1,3,5,7] [1,2,5,7] o' a? o
Tijk = (2,3,5,8] (1,3,5,8 [1,2,5,8] | = a%l a%z a§3
-[2,3,5,9] -[1,3,5,9] —[1,2,5,9] a3l of? o
-[2,3,6,7] -[1,3,6,7] -[1,2,6,7] a§1 a§2 a},3
-[2,3,6,8] -[1,3,6,8] —[1,2,6,8] a:;’,l a%’ a§3
[2,3,6,9] (1,3,6,9] [1,2,6,9] L a%l a§2 a§3 I

E Constrains of the tensor

E.1 From Homographies E;, W; T}

Let call E the homographies from the first to the second view, and W those
from the first to the third and T matrices:

- .
o] ol of? all al? o alf a2k
E;=| o o} a‘;‘?' W= | a? a?? o? T, = | odf ofF
1 32 33 31 .32 .33 ik 2k

o af o} o ot o az” o3

The constrains are as follows
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ofl ot ofi | [of off of | |of oB op
with E;: | of! o' of! |=0 [al? o2 o2 (=0, | al® o2 o
o ot ot |  |ab af af o o of
oo of | (o o | ek ok o
with W;: | of' o' afl (=0 |a?? of? o2 |=0 | aF® o2 o
al of! of a3 a3? a3? a3 o o3
11,21 .31 12,22 .32 13 23 33
o o o e o o e oy o
with T; : ag a%i agi =0 a%: a%: agz =0 a%i af? agz
23
all of! of od? o2 o al® o af
but there are only three of them
off ot ap
aff af a3 |=0
1k 2k 3k
a3” 03" 03
alka2*adt + altadkad* 4+ alkadkadk
1k 2k 3k _ 1k 2k 3k _ 1k 2k 3k _
_a3 a2 al - a1 aa 02 —a2 al a3 = 0 (28)

Equation (28) means that a row or a column in Tj matrices is a linear

combination of the other two.
The derivation is as follows:

From equations (29) and (30) we get the following constrain:

1k k 2k k 3k k [ ~1k k- 2k k- 3k k 1 ~1k k. 2k k 3k k
0y piay pia3 py + oz pras pyoy pr + a3 prog prasytpr—

1k, k A2k k A3k k 1k k 2k, k .3k, k 1k k o2k k 3k .k
Q3 P10y P10y Py — 01 P03 piaypy — oy pragtproasipy =0
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Now, if we expand this product and group the terms (z3, ¥, 2}y, 2192,
z?, y?, 2191, 71, 11 and constant, we get a vector in which each of its 10
elements must be zero (because the product is null to any point p,).

Let (E;)m denote the mth column of matrix E;.
These elements are as follows:

A) (coefficient z3)

11 .21 31

apr o ay
0=|ai! o2l of
all a2l o

det((Er)1(E2h(E3)h) =0
The first row of matrices Fy,F,,E3 or the first columns of matrices
Wi1,W,,Ws are a 3x3 matrix of rank 2.
This constrain is the same as (28) for k=1.

B) (coefficient y3)

12 .22 .32
a” o7 o
0=|o3 of ey
az” a3" O3

det((E1)2(E2)2(E3)2) =0
The second row of matrices Fy,F,,E3 or the second columns of matrices
W;,W,,W3 are a 3x3 matrix of rank 2.
This constrain is the same as (28) for k=2.

C) (constant coefficient)
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a%3 a2 o>
0= a%a

13

(2
ol 23

ajz

det((E1)s(E2)3(E3)s) = 0
The third row of matrices E;,F5,F3 or the third columns of matrices
W;,W,,W3 are a 3x3 matrix of rank 2.
This constrain is the same as (28) for k=3.

D) (coefficient z2y;)

det((E1)1(E2)1(E3)2) + det((E1)1(E2)2(Es)1) + det((E1)2(E2)1(E3)1) = 0

The addition of the determinants composed by any combination of first,
first and second rows of matrices F;,F;,F3 or the first, first and second
columns of matrices W;,W2,W3 equals 0. Therefore, there will be three
determinants (rows/columns 112,121,211).

E) (coefficient z;y?)

det((E1)1(E2)2(E3)2) + det((E1)2(E2)1(E3)2) + det((E1)2(E2)2(E3)1) = 0

The addition of the determinants composed by any combination of first,
second and second rows of matrices Ey,F3,FE3 or the first, second and second
columns of matrices W;,W2,W3 equals 0. Therefore, there will be three
determinants (rows/columns 122,221,212).

F) (coefficient z2)

-

det((E1)1(E2)1(E3)3) + det((E1)1(E2)3(E3)) + det((Er)a(E2)1(E3)1) = 0
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The addition of the determinants composed by any combination of first,
first and third rows of matrices F;,E3,E3 or the first, first and third columns
of matrices Wy,W;,W3 equals 0. Therefore, there will be three determinants
(rows/columns 113,131,311).

G) (coefficient y?)

det((E1)2(E2)2(E3)3) + det((E1)2(E2)s(Es)z2) + det((E1)a(E2)2(E3)2) = 0

The addition of the determinants composed by any combination of sec-
ond, second and third rows of matrices E,,E7,E3 or the second, second, and
third columns of matrices W;,W,,W; equals 0. Therefore, there will be three
determinants (rows/columns 223,232,322).

H) (coefficient z,3,)

det((E1)1(E2)2(E3)s) + det((E1)1(E2)3(Es)2) + det((E1)2(E2)1(E3)3)
+det((E1)2(E2)3(Ea)) + det((E1)3(E2)1(E3)2) + det((E1)s(E2)2(E3)) =0

The addition of the determinants composed by any combination of first,
second and third rows of matrices Eq,E2,F3 or the first, second, and third
columns of matrices Wy ,W;, W5 equals 0. Therefore, there will be six deter-
minants (rows/columns 123,132,213,231,312,321).

I) (coefficient z,)

det((E1)1(E2)3(E3)s) + det((E1)s(E2)1(E3)3) + det((E1)3(E2)a(E3)y) = 0

The addition of the determinants composed by any combination of first,
third and third rows of matrices E,,F,,E3 or the first, third, and third
columns of matrices Wy,W,,W3 equals 0. Therefore, there will be three
determinants (rows/columns 133,313,331).

J) (coefficient 1) "
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det((E1)2(E2)3(E3)s) + det((Er)s(E2)2(E3)3) + det((E1)3(Ez)3(Es)2) = 0

The addition of the determinants composed by any combination of sec-
ond, third and third rows of matrices Ey,F3,E3 or the second, third, and
third columns of matrices Wy,W;,W3 equals 0. Therefore, there will be three

determinants (rows/columns 233,323,332).

E.2 From the epipolar lines

A) from equations (11) and (12)

3k, k 1k, .k 1k, k 3k k 1k k 3k _k 3k _k 1k k
(e3"piog"pi —a3"pioy pi) _ (a3"piaspi — o3 piad®py)
3k _k 2k k 2k, k3E, kY — [ 2k k3K, k 3k k2R kY
(a3"proi pf —ag piay py)  (e3"pias™pi — o3*piastpy)
3k, k 1k k 1k, k 3k k
(a3*pior*pf — a3*piof*pf

3k k 2k k 2k 3k ok
(e3"prei*pi — a3*proi™pf)

B) from equations (13) and (14)

2%k 1k, k 1k k 2k k 2k, k 3k, k 3k k 2k, k
(a5"prog"pi — az"piai®py) _ (eipries pl — of*prad*pt) _
2k ok 1kiok 2k ke Lkoky T 2k 3k k 3k k 2k -
(a3*piog™pi — a5"pieg®py) (o3 P’f‘"z P —a3'pog ij)
3k k 1k k 1k _k 3k k
(a3"piog Pl — o3 pioy Pr)

3k, k 1k, k 1k, k 3k Kk
(5 piog"py — a3 piag p1)

Now

agpi * af*pf = (p)"(al")’ + oipf =
ad*pi + afp} = (p1)!(al¥) + o2¥p} =

b1 .d1 b1 . d2 b1 .d3 dl . b1 dl . b2
oe | 0800 %%, %% ] %%0n %5,%,
(pl) au ac aa ac ac ac pl = (pl) ac aa ac aa

b3 . d1 b3 . d2 b3 d3 d3 b1 d3 b2
Q,a, a0 oy a Q. o, otag

(29)

(30)
agl 023
ad?oh3
alall
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The diagonal elements of every matrix hold a similar condition (plugging
in points (1,0,0), (0,1,0), (0,0,1) as follows):

with k=1,2,3

(oFalt - offa®) _ (a}'ed* - aFal) _ (ool - afial)
(oo —afFa¥) ~ (affadf — afial) _ (affal - afial)

and

(Falf - aladt) _ (al¥ag — ofadt) _ (adtalt - attath
(el = aFadf) ~ (aFfaff - affaff)  (affolf - alfad)

C) from equations (29) and (30) (similar to (28))

1k, k. 2k k 3k k o 1k k~ 2k k~ 3k k . 1k k~ 2k k 3k k _ -1k k 2k k 3k Fk
o' prag plostp] + a3 proaz proy Py t a3 proyproy Py — Q3T praz proy Py

1k k 2k Kk 3k _k 1k, k 2k k 3k k _
—o1"pias pras py — oy proy prog p; =0

F Epipoles from the tensor coefficients

Points in the first image corresponding to the vertical epipolar
line in the second image

_ (.33 32 32 33 31 33 31 33 31 _32 31,32
p=(a3"0)* — a3”ey”, a7 03” — a3 01", 07 03" — a3 ay")

_ (.12 13 13 .12 11,13 1113 11 .12 11,12
p=(aza;” — a3’y a37 01" — oy 03%, 05701 — a; o3%)
(2223 23 22 2123 21,23 21,22 21 .22
p = (e1’e3® — a3, 0f 03” — o3 o), ef a3” — a3 a1°)

-
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X coordinate of the epipole in the second view
ol ol | [af of oP | |aF oF oP| |} off o
of of af | [off aff of | [ofl of? off| |oft o2 oF
o off of | |afl off o | |odt o of | |oft o ob
T = = =
adl al? of? odl of? of? ad! o3? o o3l of? o
ad! of? of? ol of? of® ol a}? old all al? o
ol a¥? o ! o o all! ol? o}? adl! o o
Points in the first image corresponding to the horizontal epipolar
line in the second image
(33 32 32 33 3133 3133 .32 31 32 31
p= (033" — 0r%a3’, 03"y — 0 a3,y 03 —o3°ay’)
(13 12 12,13 11 .13 1113 1112 1112
p=(ag°a3” — ay"ag’ 037 03° — @y a3”, 03705 — a3’ 3”)
(2223 23 22 21 23 21 23 21 22 21 22
p=(03e;” — 3”03, a3 03” — a3 03°, 05 03" — aj a3°)
Y coordinate of the epipole in the second view
odl al? ol ol o? o o3l o o o3l o2 o3
o3l of? of adl od? o all ol? al3 adl o2? a2
31 .32 33 31 .32 .33 11 12 .13 21 .22 .23
- 11 12 13 | — 21 22 23 | T 31 32 33 31 32 33
a3’ a3” a3 a3 ‘-"32 a3 az° 03" a3 az a3” o3
o' of? o 3! a3? o33 adl al? ol o3l a2 of
o off of | |of off of | |aff ol of| [aft af of

Points in the first image corresponding to the vertical epipolar

line in the third image

— (13 .32 12,33 3113 11.33 3112
p=(03"03" — az“a3”, 03 03" — a3 03°, 0303

— (13,32 12,33 31 _13 11,33 .31.12
= (0" — ag*ey®, o) o —aj 0y, oy o

_ (.13 32 12 33 31,13 11,33 _31_12
p= (070" —a3°ay”, 05 a3 —ay a3 3 Qg Qg

11,32
— Q3 a3

11_32

- olad?

)
)
)
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X coordinate of the epipole in the third view
all al? o3 ol al? ol ol al? of? adl al? ol
all al? ol3 oll al? ol3 all ol o3 all ol? al?
ol af? of o' off of? el o}t o ad! af? ol
ol ai? o a3 o3 o ad! o of? adl ad? off
all ol ol all al? ol all ol? ol3 all al? ol?
o3l af? of a! of? of? ! of? of? a3l o3? o
Points in the first image corresponding to the horizontal epipolar
line in the third image
— (32,23 _ 22 .33 3123 _ _21.33 31 .22 _ 21,32
p = (o3°a3” — a3z’ a3 a3 — o3 o3°, 03 03" — a3 a3°)
— (~32,23 _ 33 22 .31 23 _ 2133 31 22 _ 21,32
p=(ay’0)” —oy oy 0y 07 — oy 0y, 0 oy” — aj'ay”)
— (32,23 _ .33 .22 31 23 2133 31 22 21 32
p=(a3’0y” —ay’ag%, a5 a3” — o 03, 0y a3 — oz 03°)
Y coordinate of the epipole in the third view
oft of? of o' af? af R Y ol af? o
all o2 ¥ afl a2? o2 afl a2 o¥ afl a2 P
al! o3? of al! af? oF al af? o adl af? o’
a3l o o a3l a o a3l of? o3 adl af? of?
ol af? of afl a2 oF a2l o o2 o' a2? of
31 32 23 31 ,32 .33 31 .32 33 31 32 ,33
a3" a3 a3 a3” a3" Qa3 o o” o 0y 0"
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G Quadrilinear constraints

Ql.2,3.4 =

+(3,4,7,10]
+[3,4,7,11]
-[3,4,7,12]
+(3,4,8,10]
+(3,4,8,11]
-[3,4,8,12]
-[3,4,9,10]
-[3,4,9,11]
+(3,4,9,12]

+(3,5,7,10]
+[3,5,7,11]
-[3,5,7,12]
+[3,5,8,10]
+[3,5,8,11]
+(3,5,8,12]
~[3,5,9,10]
-[3,5,9,11]
+[3,5,9,12]

~[3,6,7, 10]
~[3,6,7,11]
+[3,6,7,12]
~[3,6,8,10]
—[3,6,8,11]
+[3,6,8,12]
+(3,6,9,10]
+(3,6,9,11]

| —(3,6,9,12]

+[2,4,7,10]
+[2,4,7,11]
-[2,4,7,12]
+[2,4,8,10]
+[2,4,8,11]
~[2,4,8,12]
~[2,4,9,10]
~[2,4,9,11]
+(2,4,9,12]

+(2,5,7,10]
+(2,5,7,11]
-[2,5,7,12]
+(2,5,8,10]
+[2,5,8,11]
-[2,5,8,12]
-[2,5,9,10]
-[2,5,9,11]
+(2,5,9,12)

~[2,6,7,10]
~[2,6,7,11]
+[2,6,7,12]
-[2,6,8,10]
~[2,6,8,11]
+[2,6,8,12]
+(2,6,9,10]
+(2,6,9,11]
-[2,6,9,12]

-[1,4,7,10] T

—[1,4,7,11]
+{1,4,7,12]
-[1,4,8,10]
-[1,4,8,11]
+[1,4,8,12]
+(1,4,9,10]
+(1,4,9,11]
-[1,4,9,12]

-(1,5,7,10]
-[1,5,7,11}
+[1,5,7,12]
-(1,5,8,10]
-(1,5,8,11]
+[1,5,8,12]
+(1,5,9,10]
+(1,5,9,11]
-(1,5,9,12]

+[1,6,7,10]
+[1,6,7,11]
-[1,6,7,12]
+{1,6, 8, 10]
+[1,6,8,11]
-[1,6,8,12]
-[1,6,9,10]
-(1,6,9,11]

+{1,6,9,12] |

w1

w1121
w1131
w1211
w1221
w1231
w1311
Wi321
w1331

w2111
w2121
w2131
w2211
w2221
w2231
w2311
w2321
w2331

w311l
w3121
Waia1
w3211
w3221
w3231
w33l
W33z

| W3331

w1112
w1122
w1132
w1212
w1222
w1232
w1312
w1322
w1332

w2112
w2122
w2132
w2212
w2222
w2232
W2312
w2322
w2332

w3112
w3122
W3132
w3212
w3222
w3232
w3312
w3322
W3332
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w1113 |
w1123
w1133
w1213
w1223
w1233
w1313
w1323
w1333

w2113
w2123
w2133
w2213
w2223
w2233
w2313
w2323
W2333

w3113
w3123
w3133
w3213
w3223
w3233
w3313
W3323
w3333

H Independent equations of the quadrilinear con-
straints

The 16 independent equa,tibns are as it follows :
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1)

2)

3)

4)

6)

7)

8)

+T122T3%4 w3331 — 212223 W33yl — T1T2T4 W3131 — T1Z3T4 w1331 — T2T3T4
+2122 w3111 + 2173 Wizl + 2174 w1131 + 2273 W3s13 + TaT4 W3133 + T3Ty

=Z1 Wi111 — %2 W3 — T3 w1313 — T4 w3z + winz =0

+ZT1T2T3Y4 W33l — T1Z2T3 W33z — T1T2Y4 W3131 — T123Y4 w1331 — T2T3Y4
+21%T2 w3121 + Z1Z3 wizel + T1¥a w13l + T2T3 wazes + ToYs w3133 + T3Ys

-1 w121 — T2 W3123 — T3 W1323 — Y4 wiizz + wiizz3 =0

+21T2Y3T4 w3331 — T1T2Y3 Wa3ll — T1T2T4 Wa23l — T1Y3T4 Wi331 — T2Y3T4
+21%2 wagn + T1Ys wisil + T1%4 w1231 + T2Ys waz13 + T2T4 W3233 + Y3Ty

—I1] w211 — T2 W3213— Y3 w1313 — T4 w13z + wiziz =0

+T1Y2T3T4 W33s1 — T1Y2T3 w3311 — T1Y2T4 W3131 — T1T3T4 W33l — Y2 T3T4
+2Z1Y2 w3111 + 2123 wa311 + T1T4 woi3l + Y223 w3313 + Y2T4 w3133 + T3T4

—I1] W11l — Y2 W3113 — T3 w2313 — T4 W23z + woi13 =0

+Y12223%4 W33zl — Y12223 w331l — Y1Z2T4 W3131 — Y1Z3T4 W1331 + T2T3T4
+¥%1%2 w3l + Y123 wisn + Y124 w1131 — T2T3 W33z — T2T4 W3132 — T3y

- winn +T2 wiiz+ T3 wisiz + T4 wize — winne =0

+Z1T2Y3Y4 w3331 — T1T2Y3 W33zl — T1%2Y4 W3231 — T1Y3Y4 W1331 — T2Y3Y4
+Z1T2 w3221 + Z1Y3 w1321 + Z1Y4 w1231 + T2Y3 w3323 + ToYs w3233 + Y3Ys

—ZT) wi221 — T2 W3223 — Y3 w1323 — Y4 w1233+ wi3 =10

+T1Y2%3Y4 w3331 — T1Y2T3 W3z2r — T1Y2lY4 W3131 — T1T3Y4 w2331 — Y2T3Y4
+Z1Y2 w3121+ 2123 w321 + T1Y4 w2131 + Y273 W332s + Ya¥a w3133 + TaVs

—Z1 w2121 — Y2 W3123 — T3 Wi323 — Y4 w2133+ woi3 =0

+Y1T2T3Y4 W3331 — Y12223 W33zl — Y1Z2Y4 W3131 — Y1T3Y4 w1331 + T2T3VY4
+39T2 wii21 + Y173 Wis2l + V1Y Wi131 — T2T3 W32 — ToYs w3132 — T3Ya
-y w21+ T2 wies + 23 wizz + Y4 wiizz ~ wire =0

W3333

w1333

W3333

w1333

w3333

w1333

w3333

w2333

3332
w1332

W3333

w1333

w3333
w2333

W3332

w1332
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9)

10)

11)

12)

13)

14)

15)

16)

+ZT1Y2Y3T4 w3331 — T1Y2Y3 W3zll — T1Y2T4 w3231 — T1Y3T4 Wo33) — Y2Y3Ty
+Z1Y2 w3211 + T1Y3 w2311 — T1T4 w2231 + Y2¥3 w3313 + Y224 W33z + Y3Tg

=T1 W2211 — Y2 W3213 — Y3 W2313 — T4 W23z + wo1z3 =0

+Y1T2Y3T4 w3331 — Y122Y3 W33ll — Y1Z2T4 w3231 — Y1Y3T4 wWizd + T2Y3Ty
+y1T2 waen + Y1¥3 wisil + Y1%T4 w1231 — T2Y3 W3az1z + T2Z4 Winzs — Y3Tg
=Y wian +22 w2+ Y3 wiziz + T4 wizap— wy12 =0

+Y1Y223%4 w3331 — Y1Y2T3 Wa3l1 — Y1Y2T4 W3131 — Y1T3T4 waszy + Y2Z3T4
+Y1Y2 w3111 + Y123 wasll + Y1T4 Wo131 — Y2T3 W33z — Y24 W33z — T34
—¥1 wan1 + Y2 w2 + 23 waziz + T4 wozz — w2 =0

+T1Y2Y3Y4 Wazsl — T1Y2Ys W3s21 — T1Yo¥4 W3231 — T1Y3Y4 w2331 — YoU3l4
+T1Y2 w3221 + T1Y3 w2321 — T1Ys Wo231 + Y23 w3323 + Y24 w3zzz + Y3ly
—Z1 w2221 — Y2 W3223— Y3 W2323 — Y4 w2233+ w203 =10

+Y1T2Y3Ys w3331 — Y1T2Y3 W3s21 — Y1T2Y4 W3231 — Y1Y3Y4 w1331 + T2Y3V4
+Y1T2 w3221+ V1¥3 wis21 + 1Y w1231 — T2Y3 W3zzp — TalYs W3232 — Y3l
-1 w1221 + T2 W3zzz + Y3 wizee + Ysa wi232 — wize =10

+Y1Y223Y4 w3331 — Y1Y2T3 W33zl — V1¥2Y4 w3131 — Y1T3Y4 Wrazl + Y2ZT3Y4
+91Y2 w3121 + Y123 w321 + Y1¥4 W31 — Y2T3 W3322 — Y24 W3132 — TaYs
~¥1 w2121+ Y2 Wiz + T3 wazgr + Y4 w3z — woy22 =0

+¥1Y2Y3T4 W3331 — Y1Y2Y3 w331l — V1Y2T4 W3231 — V1Y3T4 Wo3zy + Y2Y3Z4
+9Y2 wa2n1 + Y1Y3 wWasnl — Y1T4 w2231 — Y2¥3 W3312 — Y2T4 W33z — Y3T4
=Y1 won t Y2 Wi+ Y3 wazna+ T4 Wz — wig2=0

+Y1Y2Y3Y4 w33zl — Y1Y2¥3 w3321 — Y1¥2Y4 W3231 — Y1Y3Ys Wwaoasr + Y2Y3¥4
+1Y2 waze1r + Y1Y3 w2321 — Y1Y4 W2231 — Y2¥3 W3322 ~ YalYq W33 — Y3l
=Y1 w221+ Y2 Wizt Y3 wozze + Y4 W3z — Woga =0

w3333

w2333

W3332

w1332

w3332

W2332

W3333

w2333

W3332

w1332

w3332

w2332

w3332

W2332

w3332
w2332



I SOME ALGEBRAIC EQUATIONS

As ech correspondence provides 16 equations and there are 81 unknowns,
we need 5 or more correspondences to find these coefficients.

I Some algebraic equations

Referenced in the text:

mi; M2 Mi3 T
(z, v, 1)| ma1 mo2 ma3

y =
m31 M3z Ma3 1

22
2

Y

Ty

(m11, ma2, Mg 4+ M1, Mi3 + m31, Ma3 + Mag, Ma3) . (31)
Yy
1

Given 4 vectors of dimension 2 C,D,EF, it holds the following formula,
where [] represente the determinant of the vectors:

[CaE][DvF]_ [C’F][D’E]= [C7D][E7F]

Given 6 vectors of dimension 4 A,B,C,D,E,F, it holds the following for-
mula:

(4, B,C, E|[A, B, D, F|~[A, B,C, F|[A, B, D, E|[4, B,C, D|[A, B, E, F| = 0
(32)
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(v Mv)w = (wu'M)v (33)

e’ =|| w|? I + [o]? (34)

Inverse of a diagonal matrix

Al o] [ar | o
- - = - | -
0 | B 0 | B!
A1 0] AT |0
_|_ = = | .
C | B =42C | B!

Skew-symmetric matrix of a vector v = [a,b,c]

0 ~c b
[v] = [ c 0 -a ]
-b a 0
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