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Abstract 
 
This project describes a decision tree based pedometer algorithm and its implementation on             
Android using machine learning techniques. The pedometer can count steps accurately and It             
can discard irrelevant motion. The overall classification accuracy is 89.4%. Accelerometer,           
gyroscope and magnetic field sensors are used in the device. When user puts his smartphone               
into the pocket, the pedometer can automatically count steps. A filter is used to map the                
acceleration from mobile phone’s reference frame to the direction of gravity. As a result of this                
project, an android application has been developed that, using the built-in sensors to measure              
motion and orientation, implements a decision tree based algorithm for counting steps. 
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Resumen 
 
Este proyecto describe un algoritmo para un podómetro basado en un árbol de decisiones y su                
aplicación en Android utilizando técnicas de aprendizaje automático. El podómetro puede           
contar los pasos con precisión y se puede descartar el movimiento irrelevante. La precisión de               
la clasificación general es del 89,4%. Un acelerómetro, un giroscopio y un sensor de campo               
magnético se utilizan en el dispositivo. Cuando el usuario pone su teléfono en el bolsillo, el                
podómetro puede contar automáticamente pasos. Un filtro se utiliza para asignar la aceleración             
del sistema de referencia de teléfono móvil a la dirección de la gravedad. Como resultado de                
este proyecto, la aplicación para Android que se ha desarrollado, utilizando los sensores             
incorporados para medir el movimiento y orientación, implementa un algoritmo basado árbol de             
decisión para contar los pasos. 
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1 - Introduction 
 
Commonly used pedometers are often built as separate products and their accuracy is typically              
affected by random motions. In this project, we present a method to count steps of walking                
using a mobile phone. We use several sensors to extract signal features and a decision tree to                 
perform data classification. Gyroscopes and accelerometers are widely used to detect human            
motions [1]. Gyroscope sensor is used to measure the angular velocity of an object.  
 
The work presented here uses gyroscope to measure angular velocity of user’s thigh, when the               
phone is in the user’s pocket shown in Figure 1. The accelerometer can be used as a sensor to                   
measure the acceleration of an object [2]. The magnetic field sensor is often used in global                
positioning system navigation. In this work, data from this sensor are used to generate a rotation                
matrix. Using the matrix and the original acceleration, the vertical acceleration can be             
determined. Decision tree is one of the predictive modeling approaches used in statistics, data              
mining and machine learning. In a decision tree [3], leaves represent target values, which are               
also called class labels, and branches represent measurements about an item, which is also              
called a feature. 
 
 
 

 
 
                                                Figure 1. Mobile phone in user pocket. 
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2 - Background 
 
2.1 - Introduction 
 
Pedometers, now popular as an everyday exercise progress monitor and motivator, can            
encourage individuals to compete with themselves in getting fit and losing weight. Early designs              
used a weighted mechanical switch to detect steps, plus a simple counter. When these devices               
are shaken, one can hear a metal ball sliding back and forth, or a pendulum striking stops as it                   
swings. 
 
Today, advanced pedometers rely on microelectromechanical systems (MEMS) inertial sensors          
and sophisticated software to detect true steps with high probability; MEMS inertial sensors             
permit more accurate detection of steps and fewer false positives. Taking advantage of the low               
cost and minimal space- and power requirements of MEMS inertial sensors, pedometers are             
being integrated into an increasing number of portable consumer electronic devices such as             
music players and mobile phones. 
 
2.2 - Hardware 
 
According to the Canalys’s Q4 2015 [4] global country-level smartphone market report, Google’s             
Android has become the most popular mobile platform. Android consists of a kernel based on               
the Linux kernel, with middleware, libraries and APIs written in C and application software              
running on an application framework which includes Java-compatible libraries based on Apache            
Harmony [5]. Android uses the Dalvik virtual machine with just-in-time compilation to run             
compiled Java code, newer versions have substituted Dalvik for ART which improves the             
performance of the virtual machine. Besides, Android has a large community of developers             
writing applications that extend the functionality of the devices. One of the attractive features of               
Android is that Android devices have multiple different types of hardware that are built in and                
accessible to developers. Android can use video/still cameras, touchscreens, GPS,          
accelerometers, gyroscopes, magnetometers, proximity and pressure sensors, thermometers,        
etc. Because of additional hardware support, Android is more suitable for creating creative             
applications than other smartphones [6]. 
 
This project applied Android to develop an intelligent pedometer. The user's walking motion was              
detected via Android sensor. Pedometer application will analyze the signal, extract significant            
features and count steps using processing signal algorithms and machine learning techniques. 
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2.3 - Technology 
 
The technology for a pedometer includes a mechanical sensor and software to count steps.              
Early forms used a mechanical switch to detect steps together with a simple counter. If one                
shakes these devices, one hears a lead ball sliding back and forth, or a pendulum striking stops                 
as it swings. Today advanced step counters rely on MEMS inertial sensors and sophisticated              
software to detect steps. The use of MEMS inertial sensors permits more accurate detection of               
steps and fewer false positives. In this project we make use of three sensors: accelerometer,               
magnetometer and gyro. 
 

 
 
                     Figure 2. Typical sensors included on an Intel Atom SoC used on Android devices. 
 
 
2.3.1 - Accuracy 
 

The accuracy of step counters varies widely between devices. Typically, step counters are             
reasonably accurate at a walking pace on a flat surface if the device is placed in its optimal                  
position. Although traditional step counters get affected dramatically when placed at different            
angles and locations, recent advances have made them more robust to those non-ideal             
placements. Still, most step counters falsely count steps when a user is driving a car or makes                 
other habitual motions that the device encounters throughout the day. This error accumulates             
for users with moderate commutes to work. Accuracy also depends on the step-length the user               
enters. Best pedometers are accurate to within ± 5% error [7]. 

 
2.3.2 - Integration in personal devices 
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Pedometers can be found in a lot of different devices nowadays, an example:  

 
- Apple iPod Nano 

The 5th and 6th generation iPod Nano by Apple features an integrated accelerometer. 

 

- Nike&iPod 

Apple and Nike, offer the Nike+iPod Sports Kit, which uses a motion sensor that fits into                
a Nike shoe or in a pocket worn on the laces of other brands of shoes. The sensor                  
communicates with an iPhone (3GS or higher), iPod touch (2nd generation or higher),             
iPod nano (4th generation or higher), or dedicated adapter to transmit workout            
information such as elapsed time, distance traveled, and calories burned. 

 

- Apple iPhone 5 

The iPhone 5s was the first iPhone to contain an Apple Motion Coprocessor which was               
denoted the M7 chip paired with the first 64-bit ARM-based Apple processor, the Apple              
A7 SoC. The addition of the separate always on coprocessor allows the main CPU to               
snooze while it tracks the motion of the phone, through the use of an inertial               
measurement unit (IMU) consisting of an accelerometer, MEMS gyroscope and digital           
compass. This means that it will know when you're jogging or when you're in the car, and                 
can take that information and store it without needing to drain the battery by having the                
main CPU run. It can retrofit the data to apps that you download at a later date, meaning                  
any M7-enabled app that uses the new CoreMotion API will be able to give you               
information on recent training. 

 

- Apple iPhone 6 

The iPhone 6 and 6 Plus contains the next generation of the Apple Motion Coprocessors               
with the M8 motion coprocessor, this chip was paired with the vastly improved Apple A8               
SoC processor and gained the added sensor input of a Bosch Sensortech Barometer             
allowing the M8 to sense changes in elevation by the change in barometric pressure. 

- Apple iPhone 6s 

The iPhone 6s and 6s Plus improved the Apple Motion Coprocessors by adding             
integrating it into the die of the new Apple A9 SoC processor. This saves space allowing                
for the reduction of the logic board size as well as reduced power usage within the                
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phone. This chip is also at the heart of the iPhone SE. A variant of the Apple A9, the                   
Apple A9X also incorporates the M9 processor on-die and drives the Apple iPad Pro. 

 

- Fitbit 

The Fitbit is an always-on electronic pedometer, that in addition to counting steps also              
displays distance traveled, altitude climbed (via a number of flights of steps count),             
calories burned, current intensity, and time of day. Worn in an armband at night, it also                
purports to measure the length and quality of a user's sleep.  

 

- Android 

Android integrates a step counter with version 4.4 (KitKat) [8]. 

A device already supporting this sensor is the Nexus 5. Another smartphone is the              
Samsung Galaxy S5, which features a built-in pedometer that uses the S Health             
software to display your daily step counts. 
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3 - System Structure 
 
The system structure of the proposed pedometer is shown in Figure 3. Signals of original               
acceleration, angular velocity and magnetic field are recorded with a sampling frequency of 100              
Hz. Then the signals will be cut into small segments. After that, original acceleration is mapped                
to the direction of the gravity. The features are extracted from each segment. Finally, all               
features are sent to the decision tree to classify each segment. 
 
 
 
 

 
 

                      Figure 3. System chart of the pedometer 
 

 

3.1 - Collecting the data 
 
The raw data necessary for feeding the algorithms is obtained from the Android sensors              
systems. In our case the Android platform provides us with hardware sensors that let us monitor                
the walking activity.  
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3.2 - Acceleration mapping 
 
Due to the inexactitudes and limitations of the hardware sensors [9], the input raw data that we                 
receive needs to be filtered and mapped. Therefore a filter is used for smoothing the signal from                 
inherent noise of the hardware sensors.  
 
Together with the smoothing filter a mapping matrix is used. As vertical acceleration is one of                
the fundamental signals introduced by the walk and the data provided by the sensors is               
respected in the device reference frame, we need to map the the acceleration data to the                
direction of the acceleration of the gravity, to do so we use a rotation matrix mechanism whose                 
fundamentals are the magnetic and gyroscope sensors. 
 
3.3 - Processing the signal 
 
The main purpose of this phase is to remove the information from the filtered data that is not                  
necessary. This part makes possible to enable the next phases. In our case a segmentation               
algorithm is used that using pattern recognition techniques is able to make segments of the               
signal that include the most valuable information to extract features from. 
 
3.4 - Feature extraction 
 
To perform any classification process a set of features has to be extracted. They are attributes                
able to characterize without ambiguity each motion mode. The features selection plays a key              
role in the entire classification process and strongly affects the final performance of the              
designed classifier. In particular, to reduce the probability of miss-classification, features have            
been chosen in order to [10]: 
 

- Minimize the distance among different features belonging to the same class. 
- Maximize the distance among different features belonging to different classes. 

 
In this work the feature extraction is performed after preprocessing the signal with a              
segmentation algorithm that is in charge of recognizing walking patterns in the sensors input              
data provided by the sensors. 
 
The following features have been identified for the classification process: 
 

● The gyroscope minimum acceleration. 
● The maximum vertical acceleration. 
● The minimum vertical acceleration. 
● The position of the maximum acceleration. 
● The variance of the acceleration.  
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3.5 - Decision making 
 
In general a classification process can be considered as a mapping function [10] that given an                
input characterized by a set of d features, assigns each feature vector to one         [ f , f , …, f ]f =  1  2   d        
of the possible classes . In our cases the features are the attributes and  n     [ c , c , …, c ]c =  1  2   d           
the classes are the user’s motion nodes. 
 
Classifier algorithms are traditionally divided in two groups: 
 

- Supervised classifier: the labelled data, whose class is known, is used to train the              
classifier and then to assign unlabeled data to one of the known classes. 

- Unsupervised classifier: here the classes are not known a priori but are defined when the               
classification is completed. 

 
For the classification algorithm used in this work that makes uses of handle MEMS signals, the                
classes and their characteristics are defined during the classifier design process and a             
supervised approach has been adopted. The classification of the user’s state is performed by a               
decision tree classifier.  
 
A decision tree is a non-parametric classifier with the form of a tree whose leaves consist of all                  
the possible classes. In correspondence of each tree’s internal node a test regarding or more               
features is specified. Traversing the decision tree from the root to the leaves any input               
observation can be classified. 
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4 - Sensors 
 
4.1 - Sensors framework 
 
Most Android-powered devices have built-in sensors that measure motion, orientation, and           
various environmental conditions. These sensors are capable of providing raw data with high             
precision and accuracy, and are useful if we want to monitor three-dimensional device             
movement or positioning, or we want to monitor changes in the ambient environment near a               
device. For example, a game might track readings from a device's gravity sensor to infer               
complex user gestures and motions, such as tilt, shake, rotation, or swing. Likewise, a weather               
application might use a device's temperature sensor and humidity sensor to calculate and report              
the dew point, or a travel application might use the geomagnetic field sensor and accelerometer               
to report a compass bearing. 

The Android platform supports three broad categories of sensors: 

● Motion sensors 
● These sensors measure acceleration forces and rotational forces along three axes.           

This category includes accelerometers, gravity sensors, gyroscopes, and rotational         
vector sensors. 

● Environmental sensors 
● These sensors measure various environmental parameters, such as ambient air          

temperature and pressure, illumination, and humidity. This category includes         
barometers, photometers, and thermometers. 

● Position sensors 
● These sensors measure the physical position of a device. This category includes            

orientation sensors and magnetometers. 

4.2 - Driver architecture 
 
On an Android system, the sensor data is read by the Linux driver on the Kernel space, and                  
sent to the API by the HAL driver. Therefore, the sensor data could be converted on either the                  
Linux driver level or HAL level. 
 
The figure below represents the Android sensor stack. Each component communicates only            
with the components directly above and below it, though some sensors can bypass the sensor               
hub when it is present. Control flows from the applications down to the sensors, and data flows                 
from the sensors up to the applications. 
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Figure 4. Layers of the Android sensor stack and their respective owner 
 
 

4.2.1 - SDK 
 
Applications access sensors through the Sensors SDK (Software Development Kit) API. The            
SDK contains functions to list available sensors and to register to a sensor. 

When registering to a sensor, the application specifies its preferred sampling frequency and its              
latency requirements. 

● For example, an application might register to the default accelerometer, requesting           
events at 100Hz, and allowing events to be reported with a 1-second latency [11]. 

● The application will receive events from the accelerometer at a rate of at least 100Hz,               
and possibly delayed up to 1 second. 

4.2.2 - Framework 
 
The framework is in charge of linking the several applications to the HAL (Hardware Abstraction               
Layer). The HAL itself is single-client. Without this multiplexing happening at the framework             
level, only a single application could access each sensor at any given time. 

● When a first application registers to a sensor, the framework sends a request to the               
HAL to activate the sensor. 
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● When additional applications register to the same sensor, the framework takes into            
account requirements from each application and sends the updated requested          
parameters to the HAL. 

○ The sampling frequency will be the maximum of the requested sampling           
frequencies, meaning some applications will receive events at a frequency          
higher than the one they requested. 

○ The maximum reporting latency will be the minimum of the requested ones.            
If one application requests one sensor with a maximum reporting latency of            
0, all applications will receive the events from this sensor in continuous            
mode even if some requested the sensor with a non-zero maximum           
reporting latency.  

● When the last application registered to one sensor unregisters from it, the frameworks             
sends a request to the HAL to deactivate the sensor so power is not consumed               
unnecessarily. 

4.2.3 - HAL 
 
The Sensors Hardware Abstraction Layer (HAL) API is the interface between the hardware             
drivers and the Android framework. It consists of one HAL interface sensors.h and one HAL               
implementation we refer to as sensors.cpp. 

The interface is defined by Android and AOSP contributors, and the implementation is provided              
by the manufacturer of the device. 

4.2.4 - Kernel driver 
 
The sensor drivers interact with the physical devices. In some cases, the HAL implementation              
and the drivers are the same software entity. In other cases, the hardware integrator requests               
sensor chip manufacturers to provide the drivers, but they are the ones writing the HAL               
implementation. 

In all cases, HAL implementation and kernel drivers are the responsibility of the hardware              
manufacturers, and Android does not provide preferred approaches to write them. 

4.2.5 - Sensor hub 
 
The sensor stack of a device can optionally include a sensor hub, useful to perform some                
low-level computation at low power while the SoC can be in a suspend mode. For example, step                 
counting or sensor fusion can be performed on those chips. It is also a good place to implement                  
sensor batching, adding hardware FIFOs for the sensor events. How the sensor hub is              
materialized depends on the architecture. It is sometimes a separate chip, and sometimes             
included on the same chip as the SoC. Important characteristics of the sensor hub is that it                 
should contain sufficient memory for batching and consume very little power to enable             
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implementation of the low power Android sensors. Some sensor hubs contain a microcontroller             
for generic computation, and hardware accelerators to enable very low power computation for             
low power sensors. 

How the sensor hub is architectured and how it communicates with the sensors and the SoC                
(I2C bus, SPI bus, …) is not specified by Android, but it should aim at minimizing overall power                  
use. 

One option that appears to have a significant impact on implementation simplicity is having two               
interrupt lines going from the sensor hub to the SoC: one for wake-up interrupts (for wake-up                
sensors), and the other for non-wake-up interrupts (for non-wake-up sensors). 

4.2.5 - Sensors 
 
Those are the physical MEMs chips making the measurements. In many cases, several physical              
sensors are present on the same chip. For example, some chips include an accelerometer, a               
gyroscope and a magnetometer. 

Some of those chips also contain some logic to perform usual computations such as motion               
detection, step detection and 9-axis sensor fusion. 

Although the CDD power and accuracy requirements and recommendations target the Android            
sensor and not the physical sensors, those requirements impact the choice of physical sensors.              
For example, the accuracy requirement on the game rotation vector has implications on the              
required accuracy for the physical gyroscope. It is up to the device manufacturer to derive the                
requirements for physical sensors. 

 

4.3 - Sensors coordinate system 
 
There are a number of coordinate systems to be aware of when developing with Android               
devices. Is important to take into account the coordinate system that every sensor is using,               
because we can draw false conclusions if not taken into account. 
 
4.3.1- World Coordinate System 
 
The world coordinate system in Android is the ENU (east, north, up) coordinate system. This is 
different from the NED (north, east, down) coordinate system that is commonly used in aviation 
Figure 5. 
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            Figure 5. Universal coordinate system. 
 
 

4.3.2 - Local Coordinate System 
 
In general, the sensor framework uses a standard 3-axis coordinate system to express data              
values.  
 
For most sensors, the coordinate system is defined relative to the device's screen when the               
device is held in its default orientation as can be seen in Figure 6. When a device is held in its                     
default orientation, the X axis is horizontal and points to the right, the Y axis is vertical and                  
points up, and the Z axis points toward the outside of the screen face. In this system,                 
coordinates behind the screen have negative Z values.  
 
The most important point to understand about this coordinate system is that the axes are not                
swapped when the device's screen orientation changes—that is, the sensor's coordinate system            
never changes as the device moves. 
 

 
 Figure 6. The axis of the gyroscope on a mobile phone. 
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4.3.3 - Other Coordinate System 
 
The method SensorManager.getOrientation(), which is commonly used to get the orientation           
vector of the device from a rotation matrix, uses a third reference coordinate system that is not                 
the world coordinate system. A WND (west, north, down) coordinate system is used, which is               
different from both the ENU and NED coordinate systems that are more common. Also worth               
noting is that the order of the axis returned in the method are different from those returned by                  
the sensors.  
 
When SensorManager.getOrientation() returns, the array values is filled with the result: 
 

● values[0]: azimuth, rotation around the Z axis. 
● Values[1]: pitch, rotation around the X axis. 
● Values[2]: roll, rotation around the Y axis. 

 

 
                                    Figure 7. The axis of the gyroscope on a mobile phone. 

 
 
4.4 - Sensors Offset 
 
The accuracy of a sensor and the offset of a sensor can manifest in a similar way [12]. A                   
reasonably accurate acceleration sensor would measure the gravity of earth when the axis of              
the sensor was pointed straight up towards the sky. 

Determining the accuracy is a little more complicated than this because the gravity of earth               
actually changes slightly depending where on earth we are and because of sensor offset. If the                
positive axis of a an acceleration sensor overestimates the gravity of earth, and the negative               
axis of the same sensor under-estimates the gravity of earth, there is likely some offset               
occurring where the center of the axis is slightly skewed towards the positive or negative axis. 
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Figure 8. Positive Z-Axis slightly overestimation. 
 
4.5 - Sensors Noise 
 
Android devices black-box, meaning we have no idea what is actually going on under the hood,                
we just get the sensor outputs, their sensor implementations and they vary by the model and                
manufacturer. Filters may or may not be applied to sensors before providing an output, and               
some sensors even have filters designed into them. It is useful to have some idea of what kind                  
of filtering is already occurring in cases where we would like to do filtering of our own. Knowing                  
how much noise exists on the sensor outputs is a good place to start. 

The actual noise seen on the sensor outputs may be larger than this reported error due to                 
environmental noise (thermal, Vdd regulation, mechanical accelerations) on the sensor device           
and then referring to data sheets to determine the expected noise density of the sensor. The                
noise density, denoted in units of , is defined as the noise per unit of square root      g/u √Hz            
bandwidth and can be used to determine the expected noise output from a sensor [12].  

 

Device Sensor Noise Density Maximum Output 
Frequency 

Nexus 4 MPU-6050 400 g/u √Hz  193Hz 

Galaxy S4 Bosch Sensortec 150 g/u √Hz  100Hz 

Droid Razr STMicro LISD2H 220 g/u √Hz  50Hz 

 

       Figure 9. Android accelerometer specifications. 
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The results of some testings show that the actual noise seen on the sensor outputs may be                 
larger than this reported error due to environmental noise (thermal, Vdd regulation, mechanical             
accelerations) on the sensor  [12].  

As shown in Figure 10 the error for the Nexus 4 is significantly higher than the GS4 or Droid                   
Razr. It is possible that the Nexus 4 is filtering the acceleration sensor where the other two                 
devices are not. 

 

Device Expected Noise Measured Noise Error 

Nexus 4 2390 g/u √Hz  2390 g/u √Hz  48% 

Galaxy S4 2390 g/u √Hz  1430 g/u √Hz  8% 

Droid Razr 2390 g/u √Hz  1680 g/u √Hz  16% 

 
                Figure 10. Android testing results 

 
 
4.6 - Position sensors 
 
The Android platform provides two sensors that let us determine the position of a device: the                
geomagnetic field sensor and the accelerometer. The Android platform also provides a sensor             
that lets us determine how close the face of a device is to an object (known as the proximity                   
sensor). The geomagnetic field sensor and the proximity sensor are hardware-based. Most            
handset and tablet manufacturers include a geomagnetic field sensor. Likewise, handset           
manufacturers usually include a proximity sensor to determine when a handset is being held              
close to a user's face (for example, during a phone call). For determining a device's orientation,                
we use the readings from the device's accelerometer and the geomagnetic field sensor. 
 
Position sensors are useful for determining a device's physical position in the world's frame of               
reference. For example, we can use the geomagnetic field sensor in combination with the              
accelerometer to determine a device's position relative to the magnetic north pole. We can also               
use these sensors to determine a device's orientation in our application's frame of reference.              
Position sensors are not typically used to monitor device movement or motion, such as shake,               
tilt, or thrust. 
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The geomagnetic field sensor and accelerometer return multidimensional arrays of sensor           
values for each SensorEvent. For example, the geomagnetic field sensor provides geomagnetic            
field strength values for each of the three coordinate axes during a single sensor event.               
Likewise, the accelerometer sensor measures the acceleration applied to the device during a             
sensor event.  

 

4.7 - Computing the devices orientation 
 
By computing a device's orientation, we can monitor the position of the device relative to the                
earth's frame of reference specifically, the magnetic north pole. 
 
The system computes the orientation angles by using a device's geomagnetic field sensor in              
combination with the device's accelerometer. Using these two hardware sensors, we can            
provide data for the following three orientation angles: 
 

- Azimuth (degrees of rotation about the -z axis). This is the angle between the              
device's current compass direction and magnetic north. If the top edge of the device              
faces magnetic north, the azimuth is 0 degrees; if the top edge faces south, the azimuth                
is 180 degrees. Similarly, if the top edge faces east, the azimuth is 90 degrees, and if the                  
top edge faces west, the azimuth is 270 degrees. 

 
- Pitch (degrees of rotation about the x axis). This is the angle between a plane parallel                

to the device's screen and a plane parallel to the ground. If we hold the device parallel to                  
the ground with the bottom edge closest to us and tilt the top edge of the device toward                  
the ground, the pitch angle becomes positive. Tilting in the opposite direction— moving             
the top edge of the device away from the ground—causes the pitch angle to become               
negative. The range of values is -180 degrees to 180 degrees. 

 
- Roll (degrees of rotation about the y axis). This is the angle between a plane               

perpendicular to the device's screen and a plane perpendicular to the ground. If we hold               
the device parallel to the ground with the bottom edge closest to us and tilt the left edge                  
of the device toward the ground, the roll angle becomes positive. Tilting in the opposite               
direction—moving the right edge of the device toward the ground— causes the roll angle              
to become negative. The range of values is -90 degrees to 90 degrees. 
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5 - Accelerometer 
 
5.1 - Introduction 
 
An accelerometer is an electromechanical device that measures acceleration forces in units of             
m/s² or G-force (the gravity of earth) which is about 9.8 m/s².  
 
Accelerometers measure both the static acceleration, like the gravity field of earth, and dynamic              
acceleration caused by the movement of the accelerometer. In fact, the accelerometer cannot             
differentiate between static and dynamic acceleration. This means an accelerometer can be            
used to determine the tilt of the device by measuring static acceleration or the linear               
acceleration of the device by measuring dynamic acceleration. However, an accelerometer           
cannot measure both static and dynamic acceleration at the same time. Accelerometers usually             
measure acceleration/gravity it two or three-axis, but on Android devices it is almost always              
three-axis Figure 11. 
 

 
                  Figure 11. Acceleration data over time. 
 

 
A working example of how the accelerometer works can be seen in Figure 12: 
 

● The norm of should be close to 0 when in the free fall., y, z< x   >  
● When the device lies flat on the table and is pushed on its left side toward the right, the                   

acceleration of the device is 0 m/s² minus the force of gravity -9.81 m/s² 
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● When the device lies flat on a table and is pushed toward the sky, the acceleration value                 
is greater than 9.40 m/s², which corresponds to the acceleration of the device minus the               
force of gravity. 

 
 

 

Mobile Position X Y Z 

UP 0 9.81 m/s² 0 

LEFT 9.81 m/s² 0 0 

DOWN 0 -9.81 m/s² 0 

RIGHT -9.81 m/s² 0 0 

FRONT UP 0 0 9.81 m/s² 

BACKUP 0 0 -9.81 m/s² 

 
 Figure 12. Acceleration values on each Axis for different device positions. 
 

 
5.2 - Implementation 
 
There are a number of different implementations of accelerometers available. Some rely on the              
capacitance between two objects. If a force from acceleration moves one of the objects, the               
capacitance between the objects will change. This capacitance can be converted to a voltage              
which can then be used to measure the force of the acceleration. Another implementation of               
accelerometers uses piezoelectric effect which rely on crystal structures that produce a voltage             
when an acceleration force is applied to them. More advanced accelerometers use lasers to              
measure acceleration. 
 
Accelerometers with an analog output will produce a voltage that is directly proportional to the               
sensed acceleration. Digital accelerometers usually feature a serial interface be it SPI or I²C.              
Some digital accelerometers use pulse width modulation (PWM) for their output. This means             
there will be a square wave of a certain frequency, and the amount of time the voltage is high                   
will be proportional to the amount of acceleration. Digital accelerometers are advantageous            
because they are less susceptible to noise than their analog counterparts. 
 
 
 
 
 

25 



 

5.3 - Caveats 
 
All accelerometers suffer from a great deal of noise, especially inexpensive accelerometers            
found in mobile devices. Inexpensive accelerometers found in mobile devices are commonly            
referred to as "tilt-sensors" in that they are intended to measure orientation changes which are               
mostly static measurements and involve large shifts in axis-measurement magnitudes. In other            
words, a tilt-sensor is great for watching gravity go from 9.82m/s (gravity of earth) in one axis to                  
9.82m/s in another axis as we rotate the device, but not so great for measuring small changes in                  
acceleration. 
 
5.4 - Sensor Code 
 
On Android devices, we can access the device's accelerometer sensor using the Android             
sensors API. In our project we will request sensor updates with 100Hz frequency. Also the               
sensor events are registered in onResume() and removed in onPause() . This is done so the               
acceleration sensor is stopped when the user navigates away from the activity to save battery               
life as sensors use a lot of battery life. In our project we have created a background service that                   
collects the data independently of the activity.  
 
This service called StepManager is fired up as soon as the MainActivity is show to the user and                  
is stop and soon as the MainActivity calls onDestroy() .  
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6 - Gyroscope 
 
6.1 - Introduction 
 
The gyroscope measures the rate of rotation in rad/s around a device's x, y, and z axis. The                  
sensor's coordinate system is the same as the one used for the acceleration sensor. Rotation is                
positive in the counterclockwise direction; that is, an observer looking from some positive             
location on the x, y or z axis at a device positioned on the origin would report positive rotation if                    
the device appeared to be rotating counter clockwise. This is the standard mathematical             
definition of positive rotation and is not the same as the definition for roll that is used by the                   
orientation sensor. 
 

 
 

            Figure 13. Angular velocity data over time. 
 

 
6.2 - Implementation 
 
Most gyroscopes on Android devices are vibrational and measure the rotation of a device with a                
pair of vibrating arms that take advantage of what is known as the Coriolis effect, which is                 
caused by the Earth's rotation. By measuring changes in the direction of the vibrating arms               
caused by a rotation and the Coriolis effect, an estimation of the rotation can be produced. The                 
gyroscope is one of three sensors that are always hardware based (the other two are the                
magnetic and the acceleration sensors) on Android devices. In conjunction with the acceleration             
sensor, the gyroscope can be used to create other sensors like gravity, linear acceleration or               
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rotation sensors. These sensors are all useful for detecting the movement of the device, which               
can either be a result of the user inputs or an external physical environment In our project we                  
use it to indirectly determine the position of a device, like tilt-compensation on the magnetic               
sensor for a compass. 
 
6.3 - Caveats 
 
Like all sensors, a gyroscope is not perfect and has small errors in each measurement. Since                
the measurements from a gyroscope are integrated over time, these small errors start to add up                
and result in what is known a drift.  
 
Over time, the results of the integration can become unreliable and some form of compensation               
is required to help compensate for the drift. This requires another sensor to provide a second                
measurement of the devices orientation that can then be used to augment the gyroscopes              
integration back towards the actual rotation of the device. This second sensor is usually a               
acceleration or magnetic sensor, or sometimes both. A weighted average, Kalman filter or             
complementary filter are common implementations of fusing other sensors to the gyroscope            
sensor, each with their own advantages and disadvantages. When we really get down into the               
implementations, we also run into real limitations with the "support" sensors as well. For              
instance, an acceleration sensor cannot determine the difference between the tilt of the device              
and linear acceleration, which makes for a vicious circular reference when trying to implement a               
linear acceleration sensor.  
 
In fact, the Android Sensor TYPE_LINEAR_ACCELERATION is terrible at measuring linear           
acceleration under the influence of a physical environment such as the acceleration of a car               
because of the circular reference. The magnetic sensor is another option, but it is limited by the                 
effects of hard and soft iron offsets and it can only measure roll and yaw, so it isn't perfect,                   
either. It can take a lot of effort, fine tuning and possibly multiple sensor fusions and calibrations                 
to get reliable estimations. 
 
6.4 - Calibrated versus uncalibrated 
 
As of Android 4.3, a new uncalibrated gyroscope sensor is available. No gyro-drift             
compensation has been performed to adjust the given sensor values. However, such gyro-drift             
bias values are returned separately in the result values so we use them for custom calibrations.                
This allows us to implement our own sensor fusions without having to worry about black-boxed               
underlying sensor fusions wrecking our carefully implemented custom calibrations and fusions.           
On the Nexus 4 and Nexus 5 devices, the uncalibrated gyroscope actually works fairly well on                
its own, but will eventually drift over long periods of time or after a lot of dynamic rotation. Since                   
hardware implementations vary with each device and manufacturer, this may not be the case              
will all Android devices. 
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7 - Acceleration Mapping 
 
 
7.1 - Introduction 
 
An accelerometer can measure the static gravitational field of earth or it can measure measure               
linear acceleration but it cannot measure both at the same time. The acceleration given by the                
mobile phone is respected in the mobile phone reference frame shown in Figure 7. Vertical               
vibration is a significant signal induced by the walk. Therefore, original acceleration needs to be               
mapped to the direction of the gravity to generate the signal of vertical vibration Figure 14. 
 

 
     Figure 14. Linear acceleration data over time. 

 
 
7.2 - Linear Acceleration 
 
When talking about linear acceleration in reference to an acceleration sensor, what we really              
mean is Linear Acceleration = Measured Acceleration - Gravity so we can determine the actual               
acceleration of the device no matter how the device is oriented. 
 
Android offers its own implementation of linear acceleration with         
Sensor.TYPE_LINEAR_ACCELERATION. Most of the time the device must have a gyroscope           
for this sensor type to be supported. However, some devices implement Sensor            
TYPE_LINEAR_ACCELERATION without a gyroscope, presumably with a low-pass filter.         
Regardless of the underlying implementation, Sensor TYPE_LINEAR_ACCELERATION works        
well for short periods of linear acceleration, but not for long periods Figure 15. 
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Figure 15. Linear acceleration vs Raw Acceleration over time. 
 
 

In the figure above we can see how the linear acceleration linear acceleration estimation, taken               
Sensor TYPE_LINEAR_ACCELERATION, begins to deviate heavily from the actual         
acceleration, taken using Sensor TYPE_ACCELERATION, after a short period of time. This is             
presumably because deep under the hood of the linear acceleration algorithm, a gyroscope is              
used to estimate the orientation of the device, which then calculates the gravity vector which is                
then subtracted from the acceleration to produce linear acceleration.  
 
The deviation occurs because the acceleration sensor is also used to compensate the drift of               
the gyroscope and under sustained periods of linear acceleration, the gyroscope begins to             
compensate for what it thinks is a long term gravity signal, but is really sustained linear                
acceleration. While using the API sensors is very convenient, we find the need of using a more                 
specialized implementation. 
 
7.3 - Vertical Acceleration 
 
Vertical vibration is a significant signal induced by the walk [14]. Therefore, original acceleration              
needs to be mapped to the direction of the gravity to generate the signal of vertical vibration.                 
There are two methods to achieve it.  
 
In the first method, we calculate the angle between vector of linear acceleration provided by               
linear acceleration sensor and the vector of g provided by gravity sensor, where g denotes the                
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acceleration due to gravity, and |g|=9.8 m/s² . Let denote the linear acceleration, AGD         Alinear       
denote the value of the acceleration in the direction of gravity, and xlinear, ylinear and zlinear                
denote elements of the vector of  respectively, then they can be computed as follows:Alinear  

 
                 (1)   A|| linear 

|| =  √x²  ²  z²     linear + y linear +  linear  

 

os A  · g                            (2)  c <  linear linear >  =  A  · glinear linear
 A · g| linear| | linear|   

 
os A  · g  AGD =  − c <  linear linear >                      (3)   A|| linear

||    

 
In the second method, a rotation matrix is generated using data from the accelerometer and the                
magnetic field. Then the original acceleration can be mapped to the direction of gravity. Let                AGD  

denote the value of the acceleration in the direction of gravity, denote the rotation            M rotation     

matrix and denote the vector of acceleration respecting to mobile phone’s reference  Aoriginal            

frame, then: 
 

x A                                      (4)  0, ,[ 0 AGD] = Mrotation original  

 
In this project we use the second method which provides us an acceptable solution to obtain the                 
data necessary for the pedometer implementation. 
 
7.4 - Complementary Filter 
 
The complementary filter is a frequency domain filter. In its strictest sense, the definition of a                
complementary filter refers to the use of two or more transfer functions [15[, which are               
mathematical complements of one another. Thus, if the data from one sensor is operated on by                
G(s), then the data from the other sensor is operated on by I-G(s), and the sum of the transfer                   
functions is I, the identity matrix. In practice, it looks nearly identical to a low-pass filter, but uses                  
two different sets of sensor measurements to produce what can be thought of as a weighted                
estimation. 

In most cases, the gyroscope is used to measure the device's orientation, which can then be                
used to produce a gravity vector, which can then be subtracted from the acceleration vector to                
produce the linear acceleration vector. However, the gyroscope tends to drift due to roundoff              
errors and other factors.  

Most gyroscopes work by measuring very small vibrations in the earth's rotation, which means              
they really do not like external vibrations. Because of drift and external vibrations, the gyroscope               
has to be compensated with a second estimation of the devices orientation, which comes from               
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the acceleration sensor and magnetic sensor. The acceleration sensor provides the pitch and             
roll estimations while the magnetic sensor provides the azimuth. A complementary filter is used              
to fuse the two orientations together.  

It takes the form of: 

yro[0] alpha gyro[0] (1 alpha) accel/magnetic[0]                    (5)  g =  *  +  −  *   

Alpha is defined as alpha = timeConstant / (timeConstant + dt) where the time constant is the                 
length of signals the filter should act on and dt is the sample period (1/frequency) of the sensor. 

 

7.4.1 - Orientation Euler Angles Complementary Filter 
 
The common way to get the attitude of an Android device is to use the               
SensorManager.getOrientation() method to get the three orientation angles. These two angles           
are based on the accelerometer and magnetometer output. In simple terms, the accelerometer             
provides the gravity vector (the vector pointing towards the centre of the earth) and the               
magnetometer works as a compass. The Information from both sensors suffice to calculate the              
device’s orientation. However both sensor outputs are inaccurate, especially the output from the             
magnetic field sensor which includes a lot of noise. 
 
The gyroscope in the device is far more accurate and has a very short response time. Its                 
downside is the dreaded gyro drift. The gyro provides the angular rotation speeds for all three                
axes. To get the actual orientation those speed values need to be integrated over time. This is                 
done by multiplying the angular speeds with the time interval between the last and the current                
sensor output. This yields a rotation increment. The sum of all rotation increments yields the               
absolute orientation of the device. During this process small errors are introduced in each              
iteration. These small errors add up over time resulting in a constant slow rotation of the                
calculated orientation, the gyro drift. 

To avoid both, gyro drift and noisy orientation, the gyroscope output is applied only for               
orientation changes in short time intervals, while the magnetometer/accelerometer data is used            
as support information over long periods of time. This is equivalent to low-pass filtering of the                
accelerometer and magnetic field sensor signals and high-pass filtering of the gyroscope            
signals. The overall sensor fusion and filtering looks like in Figure 16. 
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                     Figure 16. Filter Scheme. 
 
 

The sensors provide their data at more or less regular time intervals. Their values can be shown                 
as signals in a graph with the time as the x-axis, similar to an audio signal. The low-pass filtering                   
of the noisy accelerometer/magnetometer signal (accMagOrientation in the Figure 16) are           
orientation angles averaged over time within a constant time window. 

Later in the implementation, this is accomplished by slowly introducing new values from the              
accelerometer/magnetometer to the absolute orientation:  

ccMagOrientation ( 1 factor ) accMagOrientation factor newAccMagV alue; (6)  a =  −  *  +  *    

The high-pass filtering of the integrated gyroscope data is done by replacing the filtered              
high-frequency component from accMagOrientation with the corresponding gyroscope        
orientation values: 

usedOrientation (1 factor) newGyroV alue factor newAccMagV alue;               (7)  f =  −  *  +  *     

Assuming that the device is turned 90° in one direction and after a short time turned back to its                   
initial position, the intermediate signals in the filtering process would look something like in              
Figure 17. 
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      Figure 17. Intermediate filtered signals to obtain the Rotation Matrix. 
 
 

The gyro drift in the integrated gyroscope signal. It results from the small irregularities in the                
original angular speed. Those little deviations add up during the integration and cause an              
additional undesirable slow rotation of the gyroscope based orientation. 

The final result of applying the complementary filter to obtain the rotation matrix needed for               
obtaining the linear acceleration can be seen in Figure 18, where we can see acceleration,               
magnetic and rotation data used in the filter and linear acceleration obtained after applying the               
mapping function. 
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Figure 18. Annotated graph where we can see the accelerometer sensor, linear sensor, magnetic sensor 
and the rotation sensor over time. 
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8 - Gait Analysis 
 
8.1 - Mobile Position 
 
Most mobile phones now have a large screen and occupy most space of user’s pocket.               
Therefore, the position of mobile phone is usually stable in the user’s pocket and it is reliable to                  
use the x-axis to detect Forward Rotation FR  and Backward Rotation BR .  
 
 

 
 

                       Figure 19. The three axis of the gyroscope. 
 

 
The rotation movement that occurs inside the pocket allows us to identify an easily recognizable               
pattern that we can use to create an algorithm to segment the signal Figure 19. 
 
 
8.2 - Pattern Recognition 
 
From the characteristics that can be used to analyze running or walking, we choose              
acceleration as the relevant parameter. When thinking about the nature of walking we can              
observe a unit cycle of walking behavior, showing the relationship between each stage of the               
walking cycle and the change in vertical and forward acceleration Figure 20. 
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                      Figure 20. Walking stages and  acceleration pattern [15]. 
 

 
From figure above we can deduct that tt least one axis will have relatively large periodic                
acceleration changes, no matter how the pedometer is worn, so peak detection and a dynamic               
threshold-decision algorithm for acceleration on all three axes are essential for detecting a unit              
cycle of walking or running. 
 
 
8.3 - Distinguish walking and running 
 
When observing the data from the accelerometer we can see that there is some periodicity               
involved. Most of the energy captured by the acceleration and angular rates associated to              
human movement is below 15Hz [16]. 
 
Human walk presents a particular signature due to the periodic repetition of two main phases:               
the stance phase, when the foot is in contact with the ground, and the swing phase, when the                  
foot is in the air. As shown in Figure 21 and 22, the analysis in the frequency domain of inertial                    
signals recorded with handheld devices allows capturing the periodicity of accelerometer signals            
due to the user’s walking activity or running activity. In fact, periodicities in the time domain                
produce peaks in the frequency domain. Observing the presence or absence of the above              
peaks, for example in the accelerometer signal, it is possible to test the signal periodicity and,                
subsequently, understand if the inertial force sensed by the IMU is really related to the user’s                
walking, running or to a random motion of the user’s hand. 
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                        Figure 21. Fourier Transform of walking pattern. 
 

 
 
                       Figure 22. Fourier Transform of running pattern. 

 
 
The frequency analysis of the accelerometer signal is performed using the Short Time Fourier              
Transform (STFT) in order to take into account the non-stationary nature of the signal. This               
technique assumes that a generic non stationary signal can be considered stationary for short              
periods of time. Then the spectrogram can be obtained by squaring the absolute value of the                
STFT. 
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        Figure 23. Decision boundary between walking and running events. 

 
 
We can draw a conclusion, that is walking and running have different peak energies and               
different dominant frequencies. With that two features we can establish the basis for a decision               
tree algorithm that could distinguish between running and walking gaits as seen in Figure 23               
and Figure 24. 
 
 
 

Dominant Frequency Peak Energy Event  

6.277902 1873.131579 Running 

5.859375 2008.083333 Running 

5.998884 2022.9600 Running 

6.138393 1881.8064 Running 

2.51116 399.54506 Walking 

2.37165 391.7410 Walking 

2,341.769 341.7692 Walking 

 
            Figure 24. Machine learning features and decision scheme. 
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8.4 - Downstairs or Upstairs 
 
8.4.1 - Location of the maximum 
 
Data of a segment is recorded in an array. Each data point has its own index. denotes                ndexSI   
the index of the start point. denotes the index of the end point. denotes the      ndexEI         ndexM  I    
index of the data point with maximum value. denotes the length of a segment.        engthSL        engthM  L  
denotes the distance between the start point and the point with the maximum value.  
 
 

engthM ndexM IndexE                        (8)  L = I −    

 

engthS ndexE IndexS                           (9)  L = I −   

 

ocation Maximum  x 100                 (10)L = LengthS
LengthM   

 
Signal in a segment represents the Backward rotation of user’s thigh. In motions of walking on                
level ground or downstairs, when the user begins to rotate his thigh backward, his foot will soon                 
touch the surface, due to the small distance to between the ground and the foot. Then vibration                 
is induced by heel strike. Therefore, the maximum is located near the start point of a segment.                 
When walking downstairs, the distance between the food and the ground is larger, due to this                
fact the maximum is not located near the start point. 
 
 
8.4.2 - Variance of the signal 
 
We calculate the variance of a segment as follows, where Da denotes the average of data                
values: 
 

a i                      (11)D =  n
1 ∑
n

i=1
D   

ar (Di a)²       (12)V =  n
1 ∑
n

i=1
−D  

 
 
The variance of a segment of walking on level ground will be larger than that in a segment of                   
walking up stairs. Using this feature, the motion of walking on level ground can be distinguished                
from the motion of walking up stairs.  
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9 - Processing the signal 
 
 
9.1 - Data segmentation algorithm 
 
The principle of the algorithm is to detect FR of user’s thigh and use it to separate signal of each                    
step. The system will continue to monitor the angular velocity of x-axis and detect FR. If there                 
are 15 consecutive data points whose values are all less than -0.5 rad/s, an FR is detected. The                  
start point of a segment is the first data point with positive value after the FR.  
 

 
 

                                  Figure 25. Signals of walking 
 
The start point is located by monitoring the first positive point after detecting the 15 consecutive                
negative points. The end point of a segment is the last peak before the FR of the next step. A                    
peak is located by checking whether there is a data point denoted by that meets the             (n)x     
requirement : , where n denotes the index of the data x(n) (n )  and x(n ) (n) − x − 1 > 0 + 1 − x < 0          
point.  
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After setting the start point, if no FR is detected, the end point of the segment will be set to be                     
the 150th data point after the start point. The signals of angular velocity and vertical vibration                
are segmented according to start points and endpoints as shown in Figure 25. FR is an                
important element of a walk-like event. If no FR is detected, no segments will be created as                 
illustrated by the signals after the segmentation. Therefore, some irrelevant motions are            
discarded and the reliability of the system is improved. Using this algorithm, one segment              
represents a walk-like event. The system can simply count the number of segments, which are               
considered to be true walk events by a decision tree, and obtain the number of steps of different                  
gait patterns. The mobile phone only monitors one of user’s thighs. Therefore, one segment              
represents 2 steps.  
 
 
9.2 - Feature extraction 
 
This phase aims at extracting and evaluating meaningful parameters able to univocally            
characterize each class, therefore enabling the classification process. 
Six features are selected to create the decision tree: 
 

● The gyroscope minimum acceleration. 
● The maximum vertical acceleration. 
● The minimum vertical acceleration. 
● The position of the maximum acceleration. 
● The variance of the acceleration.  

 
 
9.3 - Classification 
 
We choose the decision tree as the classification engine since it has a very low computational                
complexity and can be implemented on a mobile computing unit. 
 
In order to avoid imbalanced distribution of different classes in a decision tree, the amount of                
each class in a training set should be balanced. If one class is the majority in a training set, the                    
decision tree created by this training set is more likely to classify an unknown instance to that                 
class, for that purpose three subjects with different gait patterns are asked to participate in the                
training set. Then C4.5 algorithm in Weka is used to identify distinct features and create a                
decision tree, according to the training set. 
 
While creating the classifier Weka also evaluate the performance of this predictive model. Cross              
validation is a common method to evaluate the accuracy of classifiers. In Leave One-Out (LOO)               
cross validation, Weka result is 95.2663%. 
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                                 Figure 26. Weka decision tree. 
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10 - Results 

 
The decision tree based pedometer is tested in a walking experiment and an anti-interference              
experiment. Two subjects were asked to put an Android device in their pockets using Runtastic               
Pedometer, in the other pocket they were asked to were the SmartPedometer app developed              
for this project. Then the efficiency of the proposed system can be compared with that of                
Runtastic Pedometer.  
 
The subjects were asked to do two experiments. In the walking experience, each subject was               
asked to take steps on level ground. In the anti-interference experiment, subjects were asked to               
shake or swing the mobile phone and the Runtastic Pedometer, 10 times at the same time and                 
to see whether the SmartPedometer and Runtastic Pedometer, take those motions as steps. 
 
 

   
SmartPedometer 

 
Runtastic Pedometer 

 Total Steps Steps detected Accuracy Steps detected Accuracy 

Subject 1 250 230 92% 282 87% 

Subject 2 100 86 86% 122 78% 

 350 316 89% 404 82.5% 

 
                     Figure 27. SmartPedometer vs Runtatic Pedometer. 
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11 - Conclusion 
 
A decision-based pedometer that can count steps is developed. An angular velocity based             
algorithm is used in this pedometer to segment signals and enable the pedometer to count               
steps of different gait patterns easily. The decision tree is used to improve the accuracy and                
reliability of the pedometer. The system has been tested in several experiments with good              
results. The experiment results show that the proposed pedometer produces much less false             
step count than a commercial product. 
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13 - Annex 

13.1 - Android development 
 
Environment 
 
For the development of the SmartPedometer we have used Android Studio. Android Studio is              
the official Integrated Development Environment (IDE) for Android app development, based on            
IntelliJ IDEA. Android Studio offers even more features that enhance our productivity when             
building Android apps, such as: 
 

● A flexible Gradle-based build system 
● A fast and feature-rich emulator 
● A unified environment where we can develop for all Android devices 
● Instant Run to push changes to our running app without building a new APK 
● Code templates and GitHub integration to help us build common app features and             

import sample code 
● Extensive testing tools and frameworks 

Project Structure 

Each project in Android Studio contains one or more modules with source code files and               
resource files. Types of modules include: 

● Android app modules 
● Library modules 
● Google App Engine modules 

By default, Android Studio displays our project files in the Android project view, as shown in                
Figure 25. This view is organized by modules to provide quick access to our project's key                
source files. 

All the build files are visible at the top level under Gradle Scripts and each app module contains                  
the following folders: 

● manifests: Contains the AndroidManifest.xml file. 
● java: Contains the Java source code files, including JUnit test code. 
● res: Contains all non-code resources, such as XML layouts, UI strings, and bitmap             

images. 
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                       Figure 28. SmartPedometer project files. 
 

Application fundamentals 

Android apps are written in the Java programming language. The Android SDK tools compile              
our code along with any data and resource files into an APK: an Android package , which is an                  
archive file with an .apk suffix. One APK file contains all the contents of an Android app and is                   
the file that Android devices use to install the app. 

App Components 

App components are the essential building blocks of an Android app. Each component is a               
different point through which the system can enter our app. Not all components are actual entry                
points for the user and some depend on each other, but each one exists as its own entity and                   
plays a specific role each one is a unique building block that helps define our app's overall                 
behavior. 

The components used in our SmartPedometer are: 

- Activities: An activity represents a single screen with a user interface. In            
SmartPedometer we have MainActivity which is the activity shown when the application            
is started. 
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- Services: A service is a component that runs in the background to perform long-running              
operations. A service does not provide a user interface. In SmartPedometer we use a              
service to collect data and to process signals in the background away from the UI thread                
that is in charge to update the user interface. 

The Manifest File 

Before the Android system can start an app component, the system must know that the               
component exists by reading the app's AndroidManifest.xml file. Our app must declare all its              
components in this file, which must be at the root of the app project directory. 

The manifest does a number of things in addition to declaring the app's components, such as: 

● Identify any user permissions the app requires, such as Internet access or            
read-access to the user's contacts. 

● Declare the minimum API Level required by the app, based on which APIs the app               
uses. 

● Declare hardware and software features used or required by the app, such as a              
camera, bluetooth services, or a multi touch screen. 

 

                 Figure 29. SmartPedometer manifest file. 

50 



 

 
Activities Lifecycle 

Unlike other programming paradigms in which apps are launched with a main() method, the              
Android system initiates code in an Activity instance by invoking specific callback methods that              
correspond to specific stages of its lifecycle. There is a sequence of callback methods that start                
up an activity and a sequence of callback methods that tear down an activity. 

During the life of an activity, the system calls a core set of lifecycle methods in a sequence                  
similar to a step pyramid. That is, each stage of the activity lifecycle is a separate step on the                   
pyramid. As the system creates a new activity instance, each callback method moves the              
activity state one step toward the top. The top of the pyramid is the point at which the activity is                    
running in the foreground and the user can interact with it. 

As the user begins to leave the activity, the system calls other methods that move the activity                 
state back down the pyramid in order to dismantle the activity. In some cases, the activity will                 
move only part way down the pyramid and wait, from which point the activity can move back to                  
the top and resume where the user left off. 

 

 

                         Figure 30. Android activity lifecycle. 
 

All this aspects need to be taken into account when designing the SmartPedometer, that’s why               
we have carefully paid attention to this aspects as can be seen in Figure 30. We can sum up                   
some aspects as follows: 
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- OnCreate: Application start and we need to setup the views and the main structure. Is in                
this method where we bind ourselves to the StepManager’s service to receive            
information about the steps taken so we can update the steps counter UI. 

- OnResume: Right after OnCreate OnResume method is called. Is here where we create             
WakeLock that prevents the device from falling into battery saving mode. 

- OnStop: Before calling OnDestroy method we need to inform the device that we no              
longer want to prevent it from going to battery saving mode so we get rid of the                 
WakeLock. 

- OnDestroy: The application is finishing so we need to tell de StepManager to stop its               
work. 

 

                         Figure 31. SmartPedometer lifecycle. 
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Receiving data from the Sensors 

On Android devices, we can access the devices sensors sensor data using Android API. In our                
project we are requesting the data using a frequency of 100Hz. Also that the sensor events are                 
registered in onResume() and removed in onPause(). This is done so the sensor are stopped               
when the user navigates away from the activity to save battery life as sensors use a lot of                  
battery life. 

In Figure 30 we can see the portion of code used to inform the Android device that we would                   
like to receive the sensors data periodically, to do so we register a listeners using the Android’s                 
API. 

 

                          Figure 32. Registering the sensors. 
 
 

After registering the listeners a callback function will be triggered at the specified sampling rate. 
Each callback contains information about the sensors, so we have to  
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                        Figure 33. Sensors callback listener. 
 
 
ThreadPoolExecutor 
 
In SmartPedometer app we need to run the segmentation task in the background and also we                
need to perform small task that run the classification algorithm while traversing the decision tree.               
This characteristic needs to be taken into account when designing the app. 

To automatically run the task as resources become available we need to provide a managed               
collection of threads. To do so, we use an instanceof ThreadPoolExecutor, which run a task               
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from a queue when a thread in its pool becomes free. To run a task all we need to do is add it to                        
its queue. 

Once we have the overall class structure, we can start defining the thread pool. To instantiate a                 
ThreadPoolExecutor object, we need the following values: 

Initial pool size and maximum pool size: 

The initial number of threads to allocate to the pool, and the maximum allowable number.               
The number of threads we can have in a thread pool depends primarily on the number of                 
cores available for our device. This number is available from the system environment: 

 

 

Keep alive time and time unit: 

The duration that a thread will remain idle before it shuts down. The duration is interpreted                
by the time unit value, one of the constants defined in TimeUnit. 

 

A queue of tasks: 

The incoming queue from which ThreadPoolExecutor takes Runnable objects. To start           
code on a thread, a thread pool manager takes a Runnable object from a first-in, first-out                
queue and attaches it to the thread. We provide this queue object when we create the                
thread pool, using any queue class that implements the BlockingQueue interface. To            
match the requirements of our app, we can choose from the available queue             
implementations: 

 

Create a thread of pools: 

To create a pool of threads, instantiate a thread pool manager by calling             
ThreadPoolExecutor(). This creates and manages a constrained group of threads.          
Because the initial pool size and the maximum pool size are the same,             
ThreadPoolExecutor creates all of the thread objects when it is instantiated. 
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The final step is to start a task, in our application we set off the Segmentation task that is in                    
charge of doing the feature extraction and the decision tree traversal. 
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13.2 - Filter java implementation 
 
After we initiate the SensorManager and setup the listeners, we begin to collect the data that will 
pe passed to the filter in order to obtain the mapped acceleration. This data is then passed to 
segmentation algorithm and the classifier mechanism. 
 
The gyroscope needs additional processing, for that purpose we create a rotation vector which 
is similar to a quaternion. In this vector we express the rotation interval of the device between 
the last and the current gyroscope measurement. The rotation speed is multiplied with the time 
interval which passed since the last measurement, Figure 34. 
 

 

Figure 34. Rotation vector from gyro 
 

The gyroscope data is not processed until orientation angles from the accelerometer and             
magnetometer is available. This data is required as the initial orientation for the gyroscope data.               
Otherwise, our orientation matrix will contain undefined values. The device’s current orientation            
and the calculated gyro rotation vector are transformed into a rotation matrix [17]. 

The gyroMatrix is the total orientation calculated from all hitherto processed gyroscope            
measurements. The deltaMatrix holds the last rotation interval which needs to be applied to the               
gyroMatrix in the next step. This is done by multiplying gyroMatrix with deltaMatrix . This is               
equivalent to the Rotation of gyroMatrix  about deltaMatrix .  
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The rotation vector can be converted into a matrix by calling the conversion function              
getRotationMatrixFromVector from the SensoManager. In order to convert orientation angles          
into a rotation matrix, we use the following conversion function. Our last step is obtain the linear                 
acceleration from the components of the filter that result from applying our matrix, Figure 35. 

 

Figure 35. Linear acceleration components 
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13.3 - Weka training sets 
 
Weka is a workbench that contains a collection of visualization tools and algorithms for data               
analysis and predictive modeling, together with graphical user interfaces for easy access to             
these functions.  

Weka supports several standard data mining tasks, more specifically, data preprocessing,           
clustering, classification, regression, visualization, and feature selection. All of Weka's          
techniques are predicated on the assumption that the data is available as one flat file or relation,                 
where each data point is described by a fixed number of attributes (normally, numeric or               
nominal attributes, but some other attribute types are also supported).  

The data file used for our project has the form of Figure 36, where we can see the attributes                   
declared for the classification together with its value and the decision that the algorithm should               
take associated with each data. 

 

                Figure 36. Weka training set 
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