

SMART MOVEMENT DETECTION FOR ANDROID PHONES

A Degree Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Pablo Navarro Morales

In partial fulfilment
of the requirements for the degree in

TELECOMMUNICATION ENGINEERING

Advisor: Sergio Bermejo

Barcelona, October 2016

Abstract

This project describes a decision tree based pedometer algorithm and its implementation on
Android using machine learning techniques. The pedometer can count steps accurately and It
can discard irrelevant motion. The overall classification accuracy is 89.4%. Accelerometer,
gyroscope and magnetic field sensors are used in the device. When user puts his smartphone
into the pocket, the pedometer can automatically count steps. A filter is used to map the
acceleration from mobile phone’s reference frame to the direction of gravity. As a result of this
project, an android application has been developed that, using the built-in sensors to measure
motion and orientation, implements a decision tree based algorithm for counting steps.

2

Resumen

Este proyecto describe un algoritmo para un podómetro basado en un árbol de decisiones y su
aplicación en Android utilizando técnicas de aprendizaje automático. El podómetro puede
contar los pasos con precisión y se puede descartar el movimiento irrelevante. La precisión de
la clasificación general es del 89,4%. Un acelerómetro, un giroscopio y un sensor de campo
magnético se utilizan en el dispositivo. Cuando el usuario pone su teléfono en el bolsillo, el
podómetro puede contar automáticamente pasos. Un filtro se utiliza para asignar la aceleración
del sistema de referencia de teléfono móvil a la dirección de la gravedad. Como resultado de
este proyecto, la aplicación para Android que se ha desarrollado, utilizando los sensores
incorporados para medir el movimiento y orientación, implementa un algoritmo basado árbol de
decisión para contar los pasos.

3

Contents

Abstract …………………………………………………………………………………….. 2

Resumen ………………………………………………………………………………….... 3

Contents ……………………………………………………………………………………. 4

List of Figures ………………………………………………………………………………. 6

1. Introduction ……………………………………………………………………….. 7

2. Background ……………………………………………………………………….... 8

2.1. Introduction ……………………………………………………………....... 8

2.2. Hardware ………………………………………………………………….... 8

2.3. Technology …………………………………………………………………. 9

2.3.1. Accuracy …………………………………………………………….. 9

2.3.2. Integration in personal devices …………………………………….. 10

3. System Structure …………………………………………………………………... 12

3.1. Collection data …………………………………………………………….... 12

3.2. Acceleration mapping …………………………………………………….... 13

3.3. Processing the signal ……………………………………………………….. 13

3.4. Feature extraction ………………………………………………………….. 13

3.5. Decision making ……………………………………………………………. 14

4. Sensors ……………………………………………………………………………... 15

4.1. Sensors Framework ………………………………………………………… 15

4.2. Driver architecture …………………………………………………………. 15

4.2.1. SDK …………………………………………………………………. 16

4.2.2. Framework …………………………………………………………. 16

4.2.3. HAL …………………………………………………………………. 17

4.2.4. Kernel Driver ………………………………………………………... 17

4.2.5. Sensor Hub …………………………………………………………. 17

4.2.6. Sensors …………………………………………………………….... 18

4.3. Sensors coordinate system …………………………………………………. 18

4.3.1. World coordinate system …………………………………………... 18

4.3.2. Local coordinate system ……………………………………………. 19

4.3.3. Other coordinate system …………………………………………... 20

4.4. Sensors Offset ………………………………………………………………. 20

4.5. Sensors Noise ………………………………………………………………. 21

4.6. Position Sensors ……………………………………………………………. 22

4.7. Computing the devices acceleration ………………………………………. 23

5. Accelerometer ……………………………………………………………………... 24

4

5.1. Introduction ………………………………………………………………... 24

5.2. Implementation …………………………………………………………….. 25

5.3. Caveats ……………………………………………………………………... 26

5.4. Sensors code ……………………………………………………………….. 26

6. Gyroscope ………………………………………………………………………….. 27

6.1. Introduction ………………………………………………………………... 27

6.2. Implementation ……………………………………………………………. 27

6.3. Caveats ……………………………………………………………………... 28

6.4. Calibrated versus uncalibrated ……………………………………………... 28

7. Acceleration mapping ……………………………………………………………... 29

7.1. Introduction ………………………………………………………………... 29

7.2. Linear acceleration …………………………………………………………. 29

7.3. Vertical acceleration ……………………………………………………….. 30

7.4. Complementary filter ………………………………………………………. 31

7.4.1. Orientation Angles filter ……………………………………………. 32

8. Gait analysis ……………………………………………………………………….. 36

8.1. Mobile positioning …………………………………………………………. 36

8.2. Pattern recognition …………………………………………………………. 36

8.3. Walking and running ……………………………………………………….. 37

8.4. Downstair versus upstairs ………………………………………………….. 40

8.4.1. Location of the maximum ………………………………………….. 40

8.4.2. Variance of the signal ………………………………………………. 40

9. Processing the signal ………………………………………………………………. 41

9.1. Data segmentation algorithm ………………………………………………. 41

9.2. Feature extraction ………………………………………………………….. 42

9.3. Classification ……………………………………………………………….. 42

10. Results …………………………………………………………………………….... 44

11. Conclusion …………………………………………………………………………. 45

12. Bibliography ………………………………………………………………………... 46

13. Annex ………………………………………………………………………………. 48

13.1. Android development …………………………………………………….... 48

13.2. Filter java Implementation …………………………………………………. 57

13.3. Weka training set …………………………………………………………… 59

5

List of figures

1. Mobile phone in user pocket ………………………………………………………. 7

2. Sensors included on an Intel Soc …………………………………………………. 9

3. System chart of the pedometer ……………………………………………………. 12

4. Layers of the Android sensors stack ………………………………………………... 16

5. Universal coordinate system ……………………………………………………….. 19

6. Local coordinate system ……………………………………………………………. 19

7. Other coordinate system ………………………………………………………….... 20

8. Acceleration data over time ……………………………………………………….. 21

9. Android accelerometer spec ……………………………………………………….. 21

10. Android testing results ……………………………………………………………... 22

11. Acceleration data over time ………………………………………………………... 24

12. Acceleration data on each Axis …………………………………………………….. 25

13. Angular velocity over time …………………………………………………………. 27

14. Linear acceleration data over time …………………………………………………. 29

15. Linear acceleration vs raw acceleration ……………………………………………. 30

16. Filter scheme ……………………………………………………………………….. 33

17. Intermediate filter signals ………………………………………………………….. 34

18. Annotated Graph …………………………………………………………………… 35

19. Axis of the gyroscope ………………………………………………………………. 36

20. Walking stages …………………………………………………………………….... 37

21. FFT walking …………………………………………………………………………. 38

22. FFT Running ………………………………………………………………………… 38

23. Decision Boundary …………………………………………………………………. 39

24. Decision Scheme ……………………………………………………………………. 39

25. Signals of walking …………………………………………………………………... 41

26. Weka decision tree …………………………………………………………………. 43

27. Table of results …………………………………………………………………….... 44

28. Smart pedometer project files ……………………………………………………... 49

29. Smart pedometer manifest file …………………………………………………….. 50

30. Android Activity lifecycle ………………………………………………………….... 51

31. Smart pedometer lifecycle …………………………………………………………. 52

32. Registering sensors …………………………………………………………………. 53

33. Sensors callback listener …………………………………………………………... 54

34. Rotation vector from gyro …………………………………………………………. 57

35. Linear acceleration components ………………………………………………….. 58

36. Weka training set …………………………………………………………………... 59

6

1 - Introduction

Commonly used pedometers are often built as separate products and their accuracy is typically
affected by random motions. In this project, we present a method to count steps of walking
using a mobile phone. We use several sensors to extract signal features and a decision tree to
perform data classification. Gyroscopes and accelerometers are widely used to detect human
motions [1]. Gyroscope sensor is used to measure the angular velocity of an object.

The work presented here uses gyroscope to measure angular velocity of user’s thigh, when the
phone is in the user’s pocket shown in Figure 1. The accelerometer can be used as a sensor to
measure the acceleration of an object [2]. The magnetic field sensor is often used in global
positioning system navigation. In this work, data from this sensor are used to generate a rotation
matrix. Using the matrix and the original acceleration, the vertical acceleration can be
determined. Decision tree is one of the predictive modeling approaches used in statistics, data
mining and machine learning. In a decision tree [3], leaves represent target values, which are
also called class labels, and branches represent measurements about an item, which is also
called a feature.

 Figure 1. Mobile phone in user pocket.

7

2 - Background

2.1 - Introduction

Pedometers, now popular as an everyday exercise progress monitor and motivator, can
encourage individuals to compete with themselves in getting fit and losing weight. Early designs
used a weighted mechanical switch to detect steps, plus a simple counter. When these devices
are shaken, one can hear a metal ball sliding back and forth, or a pendulum striking stops as it
swings.

Today, advanced pedometers rely on microelectromechanical systems (MEMS) inertial sensors
and sophisticated software to detect true steps with high probability; MEMS inertial sensors
permit more accurate detection of steps and fewer false positives. Taking advantage of the low
cost and minimal space- and power requirements of MEMS inertial sensors, pedometers are
being integrated into an increasing number of portable consumer electronic devices such as
music players and mobile phones.

2.2 - Hardware

According to the Canalys’s Q4 2015 [4] global country-level smartphone market report, Google’s
Android has become the most popular mobile platform. Android consists of a kernel based on
the Linux kernel, with middleware, libraries and APIs written in C and application software
running on an application framework which includes Java-compatible libraries based on Apache
Harmony [5]. Android uses the Dalvik virtual machine with just-in-time compilation to run
compiled Java code, newer versions have substituted Dalvik for ART which improves the
performance of the virtual machine. Besides, Android has a large community of developers
writing applications that extend the functionality of the devices. One of the attractive features of
Android is that Android devices have multiple different types of hardware that are built in and
accessible to developers. Android can use video/still cameras, touchscreens, GPS,
accelerometers, gyroscopes, magnetometers, proximity and pressure sensors, thermometers,
etc. Because of additional hardware support, Android is more suitable for creating creative
applications than other smartphones [6].

This project applied Android to develop an intelligent pedometer. The user's walking motion was
detected via Android sensor. Pedometer application will analyze the signal, extract significant
features and count steps using processing signal algorithms and machine learning techniques.

8

2.3 - Technology

The technology for a pedometer includes a mechanical sensor and software to count steps.
Early forms used a mechanical switch to detect steps together with a simple counter. If one
shakes these devices, one hears a lead ball sliding back and forth, or a pendulum striking stops
as it swings. Today advanced step counters rely on MEMS inertial sensors and sophisticated
software to detect steps. The use of MEMS inertial sensors permits more accurate detection of
steps and fewer false positives. In this project we make use of three sensors: accelerometer,
magnetometer and gyro.

 Figure 2. Typical sensors included on an Intel Atom SoC used on Android devices.

2.3.1 - Accuracy

The accuracy of step counters varies widely between devices. Typically, step counters are
reasonably accurate at a walking pace on a flat surface if the device is placed in its optimal
position. Although traditional step counters get affected dramatically when placed at different
angles and locations, recent advances have made them more robust to those non-ideal
placements. Still, most step counters falsely count steps when a user is driving a car or makes
other habitual motions that the device encounters throughout the day. This error accumulates
for users with moderate commutes to work. Accuracy also depends on the step-length the user
enters. Best pedometers are accurate to within ± 5% error [7].

2.3.2 - Integration in personal devices

9

Pedometers can be found in a lot of different devices nowadays, an example:

- Apple iPod Nano

The 5th and 6th generation iPod Nano by Apple features an integrated accelerometer.

- Nike&iPod

Apple and Nike, offer the Nike+iPod Sports Kit, which uses a motion sensor that fits into
a Nike shoe or in a pocket worn on the laces of other brands of shoes. The sensor
communicates with an iPhone (3GS or higher), iPod touch (2nd generation or higher),
iPod nano (4th generation or higher), or dedicated adapter to transmit workout
information such as elapsed time, distance traveled, and calories burned.

- Apple iPhone 5

The iPhone 5s was the first iPhone to contain an Apple Motion Coprocessor which was
denoted the M7 chip paired with the first 64-bit ARM-based Apple processor, the Apple
A7 SoC. The addition of the separate always on coprocessor allows the main CPU to
snooze while it tracks the motion of the phone, through the use of an inertial
measurement unit (IMU) consisting of an accelerometer, MEMS gyroscope and digital
compass. This means that it will know when you're jogging or when you're in the car, and
can take that information and store it without needing to drain the battery by having the
main CPU run. It can retrofit the data to apps that you download at a later date, meaning
any M7-enabled app that uses the new CoreMotion API will be able to give you
information on recent training.

- Apple iPhone 6

The iPhone 6 and 6 Plus contains the next generation of the Apple Motion Coprocessors
with the M8 motion coprocessor, this chip was paired with the vastly improved Apple A8
SoC processor and gained the added sensor input of a Bosch Sensortech Barometer
allowing the M8 to sense changes in elevation by the change in barometric pressure.

- Apple iPhone 6s

The iPhone 6s and 6s Plus improved the Apple Motion Coprocessors by adding
integrating it into the die of the new Apple A9 SoC processor. This saves space allowing
for the reduction of the logic board size as well as reduced power usage within the

10

https://en.wikipedia.org/wiki/Barometer

phone. This chip is also at the heart of the iPhone SE. A variant of the Apple A9, the
Apple A9X also incorporates the M9 processor on-die and drives the Apple iPad Pro.

- Fitbit

The Fitbit is an always-on electronic pedometer, that in addition to counting steps also
displays distance traveled, altitude climbed (via a number of flights of steps count),
calories burned, current intensity, and time of day. Worn in an armband at night, it also
purports to measure the length and quality of a user's sleep.

- Android

Android integrates a step counter with version 4.4 (KitKat) [8].

A device already supporting this sensor is the Nexus 5. Another smartphone is the
Samsung Galaxy S5, which features a built-in pedometer that uses the S Health
software to display your daily step counts.

11

https://en.wikipedia.org/wiki/Pedometer#cite_note-28

3 - System Structure

The system structure of the proposed pedometer is shown in Figure 3. Signals of original
acceleration, angular velocity and magnetic field are recorded with a sampling frequency of 100
Hz. Then the signals will be cut into small segments. After that, original acceleration is mapped
to the direction of the gravity. The features are extracted from each segment. Finally, all
features are sent to the decision tree to classify each segment.

 Figure 3. System chart of the pedometer

3.1 - Collecting the data

The raw data necessary for feeding the algorithms is obtained from the Android sensors
systems. In our case the Android platform provides us with hardware sensors that let us monitor
the walking activity.

12

3.2 - Acceleration mapping

Due to the inexactitudes and limitations of the hardware sensors [9], the input raw data that we
receive needs to be filtered and mapped. Therefore a filter is used for smoothing the signal from
inherent noise of the hardware sensors.

Together with the smoothing filter a mapping matrix is used. As vertical acceleration is one of
the fundamental signals introduced by the walk and the data provided by the sensors is
respected in the device reference frame, we need to map the the acceleration data to the
direction of the acceleration of the gravity, to do so we use a rotation matrix mechanism whose
fundamentals are the magnetic and gyroscope sensors.

3.3 - Processing the signal

The main purpose of this phase is to remove the information from the filtered data that is not
necessary. This part makes possible to enable the next phases. In our case a segmentation
algorithm is used that using pattern recognition techniques is able to make segments of the
signal that include the most valuable information to extract features from.

3.4 - Feature extraction

To perform any classification process a set of features has to be extracted. They are attributes
able to characterize without ambiguity each motion mode. The features selection plays a key
role in the entire classification process and strongly affects the final performance of the
designed classifier. In particular, to reduce the probability of miss-classification, features have
been chosen in order to [10]:

- Minimize the distance among different features belonging to the same class.
- Maximize the distance among different features belonging to different classes.

In this work the feature extraction is performed after preprocessing the signal with a
segmentation algorithm that is in charge of recognizing walking patterns in the sensors input
data provided by the sensors.

The following features have been identified for the classification process:

● The gyroscope minimum acceleration.
● The maximum vertical acceleration.
● The minimum vertical acceleration.
● The position of the maximum acceleration.
● The variance of the acceleration.

13

3.5 - Decision making

In general a classification process can be considered as a mapping function [10] that given an
input characterized by a set of d features, assigns each feature vector to one [f , f , …, f]f = 1 2 d
of the possible classes . In our cases the features are the attributes and n [c , c , …, c]c = 1 2 d
the classes are the user’s motion nodes.

Classifier algorithms are traditionally divided in two groups:

- Supervised classifier: the labelled data, whose class is known, is used to train the
classifier and then to assign unlabeled data to one of the known classes.

- Unsupervised classifier: here the classes are not known a priori but are defined when the
classification is completed.

For the classification algorithm used in this work that makes uses of handle MEMS signals, the
classes and their characteristics are defined during the classifier design process and a
supervised approach has been adopted. The classification of the user’s state is performed by a
decision tree classifier.

A decision tree is a non-parametric classifier with the form of a tree whose leaves consist of all
the possible classes. In correspondence of each tree’s internal node a test regarding or more
features is specified. Traversing the decision tree from the root to the leaves any input
observation can be classified.

14

4 - Sensors

4.1 - Sensors framework

Most Android-powered devices have built-in sensors that measure motion, orientation, and
various environmental conditions. These sensors are capable of providing raw data with high
precision and accuracy, and are useful if we want to monitor three-dimensional device
movement or positioning, or we want to monitor changes in the ambient environment near a
device. For example, a game might track readings from a device's gravity sensor to infer
complex user gestures and motions, such as tilt, shake, rotation, or swing. Likewise, a weather
application might use a device's temperature sensor and humidity sensor to calculate and report
the dew point, or a travel application might use the geomagnetic field sensor and accelerometer
to report a compass bearing.

The Android platform supports three broad categories of sensors:

● Motion sensors
● These sensors measure acceleration forces and rotational forces along three axes.

This category includes accelerometers, gravity sensors, gyroscopes, and rotational
vector sensors.

● Environmental sensors
● These sensors measure various environmental parameters, such as ambient air

temperature and pressure, illumination, and humidity. This category includes
barometers, photometers, and thermometers.

● Position sensors
● These sensors measure the physical position of a device. This category includes

orientation sensors and magnetometers.

4.2 - Driver architecture

On an Android system, the sensor data is read by the Linux driver on the Kernel space, and
sent to the API by the HAL driver. Therefore, the sensor data could be converted on either the
Linux driver level or HAL level.

The figure below represents the Android sensor stack. Each component communicates only
with the components directly above and below it, though some sensors can bypass the sensor
hub when it is present. Control flows from the applications down to the sensors, and data flows
from the sensors up to the applications.

15

Figure 4. Layers of the Android sensor stack and their respective owner

4.2.1 - SDK

Applications access sensors through the Sensors SDK (Software Development Kit) API. The
SDK contains functions to list available sensors and to register to a sensor.

When registering to a sensor, the application specifies its preferred sampling frequency and its
latency requirements.

● For example, an application might register to the default accelerometer, requesting
events at 100Hz, and allowing events to be reported with a 1-second latency [11].

● The application will receive events from the accelerometer at a rate of at least 100Hz,
and possibly delayed up to 1 second.

4.2.2 - Framework

The framework is in charge of linking the several applications to the HAL (Hardware Abstraction
Layer). The HAL itself is single-client. Without this multiplexing happening at the framework
level, only a single application could access each sensor at any given time.

● When a first application registers to a sensor, the framework sends a request to the
HAL to activate the sensor.

16

● When additional applications register to the same sensor, the framework takes into
account requirements from each application and sends the updated requested
parameters to the HAL.

○ The sampling frequency will be the maximum of the requested sampling
frequencies, meaning some applications will receive events at a frequency
higher than the one they requested.

○ The maximum reporting latency will be the minimum of the requested ones.
If one application requests one sensor with a maximum reporting latency of
0, all applications will receive the events from this sensor in continuous
mode even if some requested the sensor with a non-zero maximum
reporting latency.

● When the last application registered to one sensor unregisters from it, the frameworks
sends a request to the HAL to deactivate the sensor so power is not consumed
unnecessarily.

4.2.3 - HAL

The Sensors Hardware Abstraction Layer (HAL) API is the interface between the hardware
drivers and the Android framework. It consists of one HAL interface sensors.h and one HAL
implementation we refer to as sensors.cpp.

The interface is defined by Android and AOSP contributors, and the implementation is provided
by the manufacturer of the device.

4.2.4 - Kernel driver

The sensor drivers interact with the physical devices. In some cases, the HAL implementation
and the drivers are the same software entity. In other cases, the hardware integrator requests
sensor chip manufacturers to provide the drivers, but they are the ones writing the HAL
implementation.

In all cases, HAL implementation and kernel drivers are the responsibility of the hardware
manufacturers, and Android does not provide preferred approaches to write them.

4.2.5 - Sensor hub

The sensor stack of a device can optionally include a sensor hub, useful to perform some
low-level computation at low power while the SoC can be in a suspend mode. For example, step
counting or sensor fusion can be performed on those chips. It is also a good place to implement
sensor batching, adding hardware FIFOs for the sensor events. How the sensor hub is
materialized depends on the architecture. It is sometimes a separate chip, and sometimes
included on the same chip as the SoC. Important characteristics of the sensor hub is that it
should contain sufficient memory for batching and consume very little power to enable

17

implementation of the low power Android sensors. Some sensor hubs contain a microcontroller
for generic computation, and hardware accelerators to enable very low power computation for
low power sensors.

How the sensor hub is architectured and how it communicates with the sensors and the SoC
(I2C bus, SPI bus, …) is not specified by Android, but it should aim at minimizing overall power
use.

One option that appears to have a significant impact on implementation simplicity is having two
interrupt lines going from the sensor hub to the SoC: one for wake-up interrupts (for wake-up
sensors), and the other for non-wake-up interrupts (for non-wake-up sensors).

4.2.5 - Sensors

Those are the physical MEMs chips making the measurements. In many cases, several physical
sensors are present on the same chip. For example, some chips include an accelerometer, a
gyroscope and a magnetometer.

Some of those chips also contain some logic to perform usual computations such as motion
detection, step detection and 9-axis sensor fusion.

Although the CDD power and accuracy requirements and recommendations target the Android
sensor and not the physical sensors, those requirements impact the choice of physical sensors.
For example, the accuracy requirement on the game rotation vector has implications on the
required accuracy for the physical gyroscope. It is up to the device manufacturer to derive the
requirements for physical sensors.

4.3 - Sensors coordinate system

There are a number of coordinate systems to be aware of when developing with Android
devices. Is important to take into account the coordinate system that every sensor is using,
because we can draw false conclusions if not taken into account.

4.3.1- World Coordinate System

The world coordinate system in Android is the ENU (east, north, up) coordinate system. This is
different from the NED (north, east, down) coordinate system that is commonly used in aviation
Figure 5.

18

 Figure 5. Universal coordinate system.

4.3.2 - Local Coordinate System

In general, the sensor framework uses a standard 3-axis coordinate system to express data
values.

For most sensors, the coordinate system is defined relative to the device's screen when the
device is held in its default orientation as can be seen in Figure 6. When a device is held in its
default orientation, the X axis is horizontal and points to the right, the Y axis is vertical and
points up, and the Z axis points toward the outside of the screen face. In this system,
coordinates behind the screen have negative Z values.

The most important point to understand about this coordinate system is that the axes are not
swapped when the device's screen orientation changes—that is, the sensor's coordinate system
never changes as the device moves.

 Figure 6. The axis of the gyroscope on a mobile phone.

19

4.3.3 - Other Coordinate System

The method SensorManager.getOrientation(), which is commonly used to get the orientation
vector of the device from a rotation matrix, uses a third reference coordinate system that is not
the world coordinate system. A WND (west, north, down) coordinate system is used, which is
different from both the ENU and NED coordinate systems that are more common. Also worth
noting is that the order of the axis returned in the method are different from those returned by
the sensors.

When SensorManager.getOrientation() returns, the array values is filled with the result:

● values[0]: azimuth, rotation around the Z axis.
● Values[1]: pitch, rotation around the X axis.
● Values[2]: roll, rotation around the Y axis.

 Figure 7. The axis of the gyroscope on a mobile phone.

4.4 - Sensors Offset

The accuracy of a sensor and the offset of a sensor can manifest in a similar way [12]. A
reasonably accurate acceleration sensor would measure the gravity of earth when the axis of
the sensor was pointed straight up towards the sky.

Determining the accuracy is a little more complicated than this because the gravity of earth
actually changes slightly depending where on earth we are and because of sensor offset. If the
positive axis of a an acceleration sensor overestimates the gravity of earth, and the negative
axis of the same sensor under-estimates the gravity of earth, there is likely some offset
occurring where the center of the axis is slightly skewed towards the positive or negative axis.

20

Figure 8. Positive Z-Axis slightly overestimation.

4.5 - Sensors Noise

Android devices black-box, meaning we have no idea what is actually going on under the hood,
we just get the sensor outputs, their sensor implementations and they vary by the model and
manufacturer. Filters may or may not be applied to sensors before providing an output, and
some sensors even have filters designed into them. It is useful to have some idea of what kind
of filtering is already occurring in cases where we would like to do filtering of our own. Knowing
how much noise exists on the sensor outputs is a good place to start.

The actual noise seen on the sensor outputs may be larger than this reported error due to
environmental noise (thermal, Vdd regulation, mechanical accelerations) on the sensor device
and then referring to data sheets to determine the expected noise density of the sensor. The
noise density, denoted in units of , is defined as the noise per unit of square root g/u √Hz
bandwidth and can be used to determine the expected noise output from a sensor [12].

Device Sensor Noise Density Maximum Output
Frequency

Nexus 4 MPU-6050 400 g/u √Hz 193Hz

Galaxy S4 Bosch Sensortec 150 g/u √Hz 100Hz

Droid Razr STMicro LISD2H 220 g/u √Hz 50Hz

 Figure 9. Android accelerometer specifications.

21

The results of some testings show that the actual noise seen on the sensor outputs may be
larger than this reported error due to environmental noise (thermal, Vdd regulation, mechanical
accelerations) on the sensor [12].

As shown in Figure 10 the error for the Nexus 4 is significantly higher than the GS4 or Droid
Razr. It is possible that the Nexus 4 is filtering the acceleration sensor where the other two
devices are not.

Device Expected Noise Measured Noise Error

Nexus 4 2390 g/u √Hz 2390 g/u √Hz 48%

Galaxy S4 2390 g/u √Hz 1430 g/u √Hz 8%

Droid Razr 2390 g/u √Hz 1680 g/u √Hz 16%

 Figure 10. Android testing results

4.6 - Position sensors

The Android platform provides two sensors that let us determine the position of a device: the
geomagnetic field sensor and the accelerometer. The Android platform also provides a sensor
that lets us determine how close the face of a device is to an object (known as the proximity
sensor). The geomagnetic field sensor and the proximity sensor are hardware-based. Most
handset and tablet manufacturers include a geomagnetic field sensor. Likewise, handset
manufacturers usually include a proximity sensor to determine when a handset is being held
close to a user's face (for example, during a phone call). For determining a device's orientation,
we use the readings from the device's accelerometer and the geomagnetic field sensor.

Position sensors are useful for determining a device's physical position in the world's frame of
reference. For example, we can use the geomagnetic field sensor in combination with the
accelerometer to determine a device's position relative to the magnetic north pole. We can also
use these sensors to determine a device's orientation in our application's frame of reference.
Position sensors are not typically used to monitor device movement or motion, such as shake,
tilt, or thrust.

22

The geomagnetic field sensor and accelerometer return multidimensional arrays of sensor
values for each SensorEvent. For example, the geomagnetic field sensor provides geomagnetic
field strength values for each of the three coordinate axes during a single sensor event.
Likewise, the accelerometer sensor measures the acceleration applied to the device during a
sensor event.

4.7 - Computing the devices orientation

By computing a device's orientation, we can monitor the position of the device relative to the
earth's frame of reference specifically, the magnetic north pole.

The system computes the orientation angles by using a device's geomagnetic field sensor in
combination with the device's accelerometer. Using these two hardware sensors, we can
provide data for the following three orientation angles:

- Azimuth (degrees of rotation about the -z axis). This is the angle between the
device's current compass direction and magnetic north. If the top edge of the device
faces magnetic north, the azimuth is 0 degrees; if the top edge faces south, the azimuth
is 180 degrees. Similarly, if the top edge faces east, the azimuth is 90 degrees, and if the
top edge faces west, the azimuth is 270 degrees.

- Pitch (degrees of rotation about the x axis). This is the angle between a plane parallel

to the device's screen and a plane parallel to the ground. If we hold the device parallel to
the ground with the bottom edge closest to us and tilt the top edge of the device toward
the ground, the pitch angle becomes positive. Tilting in the opposite direction— moving
the top edge of the device away from the ground—causes the pitch angle to become
negative. The range of values is -180 degrees to 180 degrees.

- Roll (degrees of rotation about the y axis). This is the angle between a plane

perpendicular to the device's screen and a plane perpendicular to the ground. If we hold
the device parallel to the ground with the bottom edge closest to us and tilt the left edge
of the device toward the ground, the roll angle becomes positive. Tilting in the opposite
direction—moving the right edge of the device toward the ground— causes the roll angle
to become negative. The range of values is -90 degrees to 90 degrees.

23

5 - Accelerometer

5.1 - Introduction

An accelerometer is an electromechanical device that measures acceleration forces in units of
m/s² or G-force (the gravity of earth) which is about 9.8 m/s².

Accelerometers measure both the static acceleration, like the gravity field of earth, and dynamic
acceleration caused by the movement of the accelerometer. In fact, the accelerometer cannot
differentiate between static and dynamic acceleration. This means an accelerometer can be
used to determine the tilt of the device by measuring static acceleration or the linear
acceleration of the device by measuring dynamic acceleration. However, an accelerometer
cannot measure both static and dynamic acceleration at the same time. Accelerometers usually
measure acceleration/gravity it two or three-axis, but on Android devices it is almost always
three-axis Figure 11.

 Figure 11. Acceleration data over time.

A working example of how the accelerometer works can be seen in Figure 12:

● The norm of should be close to 0 when in the free fall., y, z< x >
● When the device lies flat on the table and is pushed on its left side toward the right, the

acceleration of the device is 0 m/s² minus the force of gravity -9.81 m/s²

24

● When the device lies flat on a table and is pushed toward the sky, the acceleration value
is greater than 9.40 m/s², which corresponds to the acceleration of the device minus the
force of gravity.

Mobile Position X Y Z

UP 0 9.81 m/s² 0

LEFT 9.81 m/s² 0 0

DOWN 0 -9.81 m/s² 0

RIGHT -9.81 m/s² 0 0

FRONT UP 0 0 9.81 m/s²

BACKUP 0 0 -9.81 m/s²

 Figure 12. Acceleration values on each Axis for different device positions.

5.2 - Implementation

There are a number of different implementations of accelerometers available. Some rely on the
capacitance between two objects. If a force from acceleration moves one of the objects, the
capacitance between the objects will change. This capacitance can be converted to a voltage
which can then be used to measure the force of the acceleration. Another implementation of
accelerometers uses piezoelectric effect which rely on crystal structures that produce a voltage
when an acceleration force is applied to them. More advanced accelerometers use lasers to
measure acceleration.

Accelerometers with an analog output will produce a voltage that is directly proportional to the
sensed acceleration. Digital accelerometers usually feature a serial interface be it SPI or I²C.
Some digital accelerometers use pulse width modulation (PWM) for their output. This means
there will be a square wave of a certain frequency, and the amount of time the voltage is high
will be proportional to the amount of acceleration. Digital accelerometers are advantageous
because they are less susceptible to noise than their analog counterparts.

25

5.3 - Caveats

All accelerometers suffer from a great deal of noise, especially inexpensive accelerometers
found in mobile devices. Inexpensive accelerometers found in mobile devices are commonly
referred to as "tilt-sensors" in that they are intended to measure orientation changes which are
mostly static measurements and involve large shifts in axis-measurement magnitudes. In other
words, a tilt-sensor is great for watching gravity go from 9.82m/s (gravity of earth) in one axis to
9.82m/s in another axis as we rotate the device, but not so great for measuring small changes in
acceleration.

5.4 - Sensor Code

On Android devices, we can access the device's accelerometer sensor using the Android
sensors API. In our project we will request sensor updates with 100Hz frequency. Also the
sensor events are registered in onResume() and removed in onPause() . This is done so the
acceleration sensor is stopped when the user navigates away from the activity to save battery
life as sensors use a lot of battery life. In our project we have created a background service that
collects the data independently of the activity.

This service called StepManager is fired up as soon as the MainActivity is show to the user and
is stop and soon as the MainActivity calls onDestroy() .

26

6 - Gyroscope

6.1 - Introduction

The gyroscope measures the rate of rotation in rad/s around a device's x, y, and z axis. The
sensor's coordinate system is the same as the one used for the acceleration sensor. Rotation is
positive in the counterclockwise direction; that is, an observer looking from some positive
location on the x, y or z axis at a device positioned on the origin would report positive rotation if
the device appeared to be rotating counter clockwise. This is the standard mathematical
definition of positive rotation and is not the same as the definition for roll that is used by the
orientation sensor.

 Figure 13. Angular velocity data over time.

6.2 - Implementation

Most gyroscopes on Android devices are vibrational and measure the rotation of a device with a
pair of vibrating arms that take advantage of what is known as the Coriolis effect, which is
caused by the Earth's rotation. By measuring changes in the direction of the vibrating arms
caused by a rotation and the Coriolis effect, an estimation of the rotation can be produced. The
gyroscope is one of three sensors that are always hardware based (the other two are the
magnetic and the acceleration sensors) on Android devices. In conjunction with the acceleration
sensor, the gyroscope can be used to create other sensors like gravity, linear acceleration or

27

rotation sensors. These sensors are all useful for detecting the movement of the device, which
can either be a result of the user inputs or an external physical environment In our project we
use it to indirectly determine the position of a device, like tilt-compensation on the magnetic
sensor for a compass.

6.3 - Caveats

Like all sensors, a gyroscope is not perfect and has small errors in each measurement. Since
the measurements from a gyroscope are integrated over time, these small errors start to add up
and result in what is known a drift.

Over time, the results of the integration can become unreliable and some form of compensation
is required to help compensate for the drift. This requires another sensor to provide a second
measurement of the devices orientation that can then be used to augment the gyroscopes
integration back towards the actual rotation of the device. This second sensor is usually a
acceleration or magnetic sensor, or sometimes both. A weighted average, Kalman filter or
complementary filter are common implementations of fusing other sensors to the gyroscope
sensor, each with their own advantages and disadvantages. When we really get down into the
implementations, we also run into real limitations with the "support" sensors as well. For
instance, an acceleration sensor cannot determine the difference between the tilt of the device
and linear acceleration, which makes for a vicious circular reference when trying to implement a
linear acceleration sensor.

In fact, the Android Sensor TYPE_LINEAR_ACCELERATION is terrible at measuring linear
acceleration under the influence of a physical environment such as the acceleration of a car
because of the circular reference. The magnetic sensor is another option, but it is limited by the
effects of hard and soft iron offsets and it can only measure roll and yaw, so it isn't perfect,
either. It can take a lot of effort, fine tuning and possibly multiple sensor fusions and calibrations
to get reliable estimations.

6.4 - Calibrated versus uncalibrated

As of Android 4.3, a new uncalibrated gyroscope sensor is available. No gyro-drift
compensation has been performed to adjust the given sensor values. However, such gyro-drift
bias values are returned separately in the result values so we use them for custom calibrations.
This allows us to implement our own sensor fusions without having to worry about black-boxed
underlying sensor fusions wrecking our carefully implemented custom calibrations and fusions.
On the Nexus 4 and Nexus 5 devices, the uncalibrated gyroscope actually works fairly well on
its own, but will eventually drift over long periods of time or after a lot of dynamic rotation. Since
hardware implementations vary with each device and manufacturer, this may not be the case
will all Android devices.

28

7 - Acceleration Mapping

7.1 - Introduction

An accelerometer can measure the static gravitational field of earth or it can measure measure
linear acceleration but it cannot measure both at the same time. The acceleration given by the
mobile phone is respected in the mobile phone reference frame shown in Figure 7. Vertical
vibration is a significant signal induced by the walk. Therefore, original acceleration needs to be
mapped to the direction of the gravity to generate the signal of vertical vibration Figure 14.

 Figure 14. Linear acceleration data over time.

7.2 - Linear Acceleration

When talking about linear acceleration in reference to an acceleration sensor, what we really
mean is Linear Acceleration = Measured Acceleration - Gravity so we can determine the actual
acceleration of the device no matter how the device is oriented.

Android offers its own implementation of linear acceleration with
Sensor.TYPE_LINEAR_ACCELERATION. Most of the time the device must have a gyroscope
for this sensor type to be supported. However, some devices implement Sensor
TYPE_LINEAR_ACCELERATION without a gyroscope, presumably with a low-pass filter.
Regardless of the underlying implementation, Sensor TYPE_LINEAR_ACCELERATION works
well for short periods of linear acceleration, but not for long periods Figure 15.

29

Figure 15. Linear acceleration vs Raw Acceleration over time.

In the figure above we can see how the linear acceleration linear acceleration estimation, taken
Sensor TYPE_LINEAR_ACCELERATION, begins to deviate heavily from the actual
acceleration, taken using Sensor TYPE_ACCELERATION, after a short period of time. This is
presumably because deep under the hood of the linear acceleration algorithm, a gyroscope is
used to estimate the orientation of the device, which then calculates the gravity vector which is
then subtracted from the acceleration to produce linear acceleration.

The deviation occurs because the acceleration sensor is also used to compensate the drift of
the gyroscope and under sustained periods of linear acceleration, the gyroscope begins to
compensate for what it thinks is a long term gravity signal, but is really sustained linear
acceleration. While using the API sensors is very convenient, we find the need of using a more
specialized implementation.

7.3 - Vertical Acceleration

Vertical vibration is a significant signal induced by the walk [14]. Therefore, original acceleration
needs to be mapped to the direction of the gravity to generate the signal of vertical vibration.
There are two methods to achieve it.

In the first method, we calculate the angle between vector of linear acceleration provided by
linear acceleration sensor and the vector of g provided by gravity sensor, where g denotes the

30

acceleration due to gravity, and |g|=9.8 m/s² . Let denote the linear acceleration, AGD Alinear
denote the value of the acceleration in the direction of gravity, and xlinear, ylinear and zlinear
denote elements of the vector of respectively, then they can be computed as follows:Alinear

 (1) A|| linear

|| = √x² ² z² linear + y linear + linear

os A · g (2) c < linear linear > = A · glinear linear
 A · g| linear| | linear|

os A · g AGD = − c < linear linear > (3) A|| linear

||

In the second method, a rotation matrix is generated using data from the accelerometer and the
magnetic field. Then the original acceleration can be mapped to the direction of gravity. Let AGD

denote the value of the acceleration in the direction of gravity, denote the rotation M rotation

matrix and denote the vector of acceleration respecting to mobile phone’s reference Aoriginal

frame, then:

x A (4) 0, ,[0 AGD] = Mrotation original

In this project we use the second method which provides us an acceptable solution to obtain the
data necessary for the pedometer implementation.

7.4 - Complementary Filter

The complementary filter is a frequency domain filter. In its strictest sense, the definition of a
complementary filter refers to the use of two or more transfer functions [15[, which are
mathematical complements of one another. Thus, if the data from one sensor is operated on by
G(s), then the data from the other sensor is operated on by I-G(s), and the sum of the transfer
functions is I, the identity matrix. In practice, it looks nearly identical to a low-pass filter, but uses
two different sets of sensor measurements to produce what can be thought of as a weighted
estimation.

In most cases, the gyroscope is used to measure the device's orientation, which can then be
used to produce a gravity vector, which can then be subtracted from the acceleration vector to
produce the linear acceleration vector. However, the gyroscope tends to drift due to roundoff
errors and other factors.

Most gyroscopes work by measuring very small vibrations in the earth's rotation, which means
they really do not like external vibrations. Because of drift and external vibrations, the gyroscope
has to be compensated with a second estimation of the devices orientation, which comes from

31

the acceleration sensor and magnetic sensor. The acceleration sensor provides the pitch and
roll estimations while the magnetic sensor provides the azimuth. A complementary filter is used
to fuse the two orientations together.

It takes the form of:

yro[0] alpha gyro[0] (1 alpha) accel/magnetic[0] (5) g = * + − *

Alpha is defined as alpha = timeConstant / (timeConstant + dt) where the time constant is the
length of signals the filter should act on and dt is the sample period (1/frequency) of the sensor.

7.4.1 - Orientation Euler Angles Complementary Filter

The common way to get the attitude of an Android device is to use the
SensorManager.getOrientation() method to get the three orientation angles. These two angles
are based on the accelerometer and magnetometer output. In simple terms, the accelerometer
provides the gravity vector (the vector pointing towards the centre of the earth) and the
magnetometer works as a compass. The Information from both sensors suffice to calculate the
device’s orientation. However both sensor outputs are inaccurate, especially the output from the
magnetic field sensor which includes a lot of noise.

The gyroscope in the device is far more accurate and has a very short response time. Its
downside is the dreaded gyro drift. The gyro provides the angular rotation speeds for all three
axes. To get the actual orientation those speed values need to be integrated over time. This is
done by multiplying the angular speeds with the time interval between the last and the current
sensor output. This yields a rotation increment. The sum of all rotation increments yields the
absolute orientation of the device. During this process small errors are introduced in each
iteration. These small errors add up over time resulting in a constant slow rotation of the
calculated orientation, the gyro drift.

To avoid both, gyro drift and noisy orientation, the gyroscope output is applied only for
orientation changes in short time intervals, while the magnetometer/accelerometer data is used
as support information over long periods of time. This is equivalent to low-pass filtering of the
accelerometer and magnetic field sensor signals and high-pass filtering of the gyroscope
signals. The overall sensor fusion and filtering looks like in Figure 16.

32

 Figure 16. Filter Scheme.

The sensors provide their data at more or less regular time intervals. Their values can be shown
as signals in a graph with the time as the x-axis, similar to an audio signal. The low-pass filtering
of the noisy accelerometer/magnetometer signal (accMagOrientation in the Figure 16) are
orientation angles averaged over time within a constant time window.

Later in the implementation, this is accomplished by slowly introducing new values from the
accelerometer/magnetometer to the absolute orientation:

ccMagOrientation (1 factor) accMagOrientation factor newAccMagV alue; (6) a = − * + *

The high-pass filtering of the integrated gyroscope data is done by replacing the filtered
high-frequency component from accMagOrientation with the corresponding gyroscope
orientation values:

usedOrientation (1 factor) newGyroV alue factor newAccMagV alue; (7) f = − * + *

Assuming that the device is turned 90° in one direction and after a short time turned back to its
initial position, the intermediate signals in the filtering process would look something like in
Figure 17.

33

 Figure 17. Intermediate filtered signals to obtain the Rotation Matrix.

The gyro drift in the integrated gyroscope signal. It results from the small irregularities in the
original angular speed. Those little deviations add up during the integration and cause an
additional undesirable slow rotation of the gyroscope based orientation.

The final result of applying the complementary filter to obtain the rotation matrix needed for
obtaining the linear acceleration can be seen in Figure 18, where we can see acceleration,
magnetic and rotation data used in the filter and linear acceleration obtained after applying the
mapping function.

34

Figure 18. Annotated graph where we can see the accelerometer sensor, linear sensor, magnetic sensor
and the rotation sensor over time.

35

8 - Gait Analysis

8.1 - Mobile Position

Most mobile phones now have a large screen and occupy most space of user’s pocket.
Therefore, the position of mobile phone is usually stable in the user’s pocket and it is reliable to
use the x-axis to detect Forward Rotation FR and Backward Rotation BR .

 Figure 19. The three axis of the gyroscope.

The rotation movement that occurs inside the pocket allows us to identify an easily recognizable
pattern that we can use to create an algorithm to segment the signal Figure 19.

8.2 - Pattern Recognition

From the characteristics that can be used to analyze running or walking, we choose
acceleration as the relevant parameter. When thinking about the nature of walking we can
observe a unit cycle of walking behavior, showing the relationship between each stage of the
walking cycle and the change in vertical and forward acceleration Figure 20.

36

 Figure 20. Walking stages and acceleration pattern [15].

From figure above we can deduct that tt least one axis will have relatively large periodic
acceleration changes, no matter how the pedometer is worn, so peak detection and a dynamic
threshold-decision algorithm for acceleration on all three axes are essential for detecting a unit
cycle of walking or running.

8.3 - Distinguish walking and running

When observing the data from the accelerometer we can see that there is some periodicity
involved. Most of the energy captured by the acceleration and angular rates associated to
human movement is below 15Hz [16].

Human walk presents a particular signature due to the periodic repetition of two main phases:
the stance phase, when the foot is in contact with the ground, and the swing phase, when the
foot is in the air. As shown in Figure 21 and 22, the analysis in the frequency domain of inertial
signals recorded with handheld devices allows capturing the periodicity of accelerometer signals
due to the user’s walking activity or running activity. In fact, periodicities in the time domain
produce peaks in the frequency domain. Observing the presence or absence of the above
peaks, for example in the accelerometer signal, it is possible to test the signal periodicity and,
subsequently, understand if the inertial force sensed by the IMU is really related to the user’s
walking, running or to a random motion of the user’s hand.

37

 Figure 21. Fourier Transform of walking pattern.

 Figure 22. Fourier Transform of running pattern.

The frequency analysis of the accelerometer signal is performed using the Short Time Fourier
Transform (STFT) in order to take into account the non-stationary nature of the signal. This
technique assumes that a generic non stationary signal can be considered stationary for short
periods of time. Then the spectrogram can be obtained by squaring the absolute value of the
STFT.

38

 Figure 23. Decision boundary between walking and running events.

We can draw a conclusion, that is walking and running have different peak energies and
different dominant frequencies. With that two features we can establish the basis for a decision
tree algorithm that could distinguish between running and walking gaits as seen in Figure 23
and Figure 24.

Dominant Frequency Peak Energy Event

6.277902 1873.131579 Running

5.859375 2008.083333 Running

5.998884 2022.9600 Running

6.138393 1881.8064 Running

2.51116 399.54506 Walking

2.37165 391.7410 Walking

2,341.769 341.7692 Walking

 Figure 24. Machine learning features and decision scheme.

39

8.4 - Downstairs or Upstairs

8.4.1 - Location of the maximum

Data of a segment is recorded in an array. Each data point has its own index. denotes ndexSI
the index of the start point. denotes the index of the end point. denotes the ndexEI ndexM I
index of the data point with maximum value. denotes the length of a segment. engthSL engthM L
denotes the distance between the start point and the point with the maximum value.

engthM ndexM IndexE (8) L = I −

engthS ndexE IndexS (9) L = I −

ocation Maximum x 100 (10)L = LengthS
LengthM

Signal in a segment represents the Backward rotation of user’s thigh. In motions of walking on
level ground or downstairs, when the user begins to rotate his thigh backward, his foot will soon
touch the surface, due to the small distance to between the ground and the foot. Then vibration
is induced by heel strike. Therefore, the maximum is located near the start point of a segment.
When walking downstairs, the distance between the food and the ground is larger, due to this
fact the maximum is not located near the start point.

8.4.2 - Variance of the signal

We calculate the variance of a segment as follows, where Da denotes the average of data
values:

a i (11)D = n
1 ∑
n

i=1
D

ar (Di a)² (12)V = n
1 ∑
n

i=1
−D

The variance of a segment of walking on level ground will be larger than that in a segment of
walking up stairs. Using this feature, the motion of walking on level ground can be distinguished
from the motion of walking up stairs.

40

9 - Processing the signal

9.1 - Data segmentation algorithm

The principle of the algorithm is to detect FR of user’s thigh and use it to separate signal of each
step. The system will continue to monitor the angular velocity of x-axis and detect FR. If there
are 15 consecutive data points whose values are all less than -0.5 rad/s, an FR is detected. The
start point of a segment is the first data point with positive value after the FR.

 Figure 25. Signals of walking

The start point is located by monitoring the first positive point after detecting the 15 consecutive
negative points. The end point of a segment is the last peak before the FR of the next step. A
peak is located by checking whether there is a data point denoted by that meets the (n)x
requirement : , where n denotes the index of the data x(n) (n) and x(n) (n) − x − 1 > 0 + 1 − x < 0
point.

41

After setting the start point, if no FR is detected, the end point of the segment will be set to be
the 150th data point after the start point. The signals of angular velocity and vertical vibration
are segmented according to start points and endpoints as shown in Figure 25. FR is an
important element of a walk-like event. If no FR is detected, no segments will be created as
illustrated by the signals after the segmentation. Therefore, some irrelevant motions are
discarded and the reliability of the system is improved. Using this algorithm, one segment
represents a walk-like event. The system can simply count the number of segments, which are
considered to be true walk events by a decision tree, and obtain the number of steps of different
gait patterns. The mobile phone only monitors one of user’s thighs. Therefore, one segment
represents 2 steps.

9.2 - Feature extraction

This phase aims at extracting and evaluating meaningful parameters able to univocally
characterize each class, therefore enabling the classification process.
Six features are selected to create the decision tree:

● The gyroscope minimum acceleration.
● The maximum vertical acceleration.
● The minimum vertical acceleration.
● The position of the maximum acceleration.
● The variance of the acceleration.

9.3 - Classification

We choose the decision tree as the classification engine since it has a very low computational
complexity and can be implemented on a mobile computing unit.

In order to avoid imbalanced distribution of different classes in a decision tree, the amount of
each class in a training set should be balanced. If one class is the majority in a training set, the
decision tree created by this training set is more likely to classify an unknown instance to that
class, for that purpose three subjects with different gait patterns are asked to participate in the
training set. Then C4.5 algorithm in Weka is used to identify distinct features and create a
decision tree, according to the training set.

While creating the classifier Weka also evaluate the performance of this predictive model. Cross
validation is a common method to evaluate the accuracy of classifiers. In Leave One-Out (LOO)
cross validation, Weka result is 95.2663%.

42

 Figure 26. Weka decision tree.

43

10 - Results

The decision tree based pedometer is tested in a walking experiment and an anti-interference
experiment. Two subjects were asked to put an Android device in their pockets using Runtastic
Pedometer, in the other pocket they were asked to were the SmartPedometer app developed
for this project. Then the efficiency of the proposed system can be compared with that of
Runtastic Pedometer.

The subjects were asked to do two experiments. In the walking experience, each subject was
asked to take steps on level ground. In the anti-interference experiment, subjects were asked to
shake or swing the mobile phone and the Runtastic Pedometer, 10 times at the same time and
to see whether the SmartPedometer and Runtastic Pedometer, take those motions as steps.

SmartPedometer

Runtastic Pedometer

 Total Steps Steps detected Accuracy Steps detected Accuracy

Subject 1 250 230 92% 282 87%

Subject 2 100 86 86% 122 78%

 350 316 89% 404 82.5%

 Figure 27. SmartPedometer vs Runtatic Pedometer.

44

11 - Conclusion

A decision-based pedometer that can count steps is developed. An angular velocity based
algorithm is used in this pedometer to segment signals and enable the pedometer to count
steps of different gait patterns easily. The decision tree is used to improve the accuracy and
reliability of the pedometer. The system has been tested in several experiments with good
results. The experiment results show that the proposed pedometer produces much less false
step count than a commercial product.

45

12 - Bibliography

[1] "A single gyroscope method for spatial gait analysis,"
http:// ieeexplore.ieee.org/iel5/5608545/5625939/05626397.pdf .

[2] "Accelerometer-based fall detection for smartphones"
http:// ieeexplore.ieee.org/iel7/6850263/6860015/06860110.pdf .

[3] Rokach, L., O.Maimon,(2008) Data mining with decision trees: theory and applications,
World Scientific Pub Co Inc, pp vii and 71.

[4] Canalys, “Google’s Android becomes the world’s leading smart phone platform,”
http://www.canalys.com/pr/2011/r2011013.pdf

[5] Android Developer, http://developer.android.com

[6] Google, Android Developer Challenge,
https://developers.google.com/fit/challenge/get-inspired

[7] Susan D. Vincent; Cara L. Sidman (2003). "Determining Measurement Error in Digital
Pedometers". Measurement in Physical Education and Exercise Science . 7 (1): 19–24.

[8] Low-power sensors, https://developer.android.com/about/versions/kitkat.html#44-sensors

[9] Real Time Sensing on Android http://www.cse.buffalo.edu/~lziarek/jtres14.pdf

[10] Jain, K. Statistical pattern recognition:
http:// www.ccas.ru/voron/download/books/machlearn/webb02 statistical .pdf .

[11] Configuring Android sensors for lower latency
http://www.eetimes.com/document.asp?doc_id=1279399

[12] Sensor Skew and Offset
http://www.kircherelectronics.com/blog/index.php/11-android/sensors/14-sensor-skew-and-offse
t-ellipsoidfit

[13] Android Accelerometer Noise, Offset and Skew
http://www.kircherelectronics.com/blog/index.php/11-android/sensors/7-android-accelerometer

[14] An accurate and adaptative perdometer,
http:// ieeexplore.ieee.org/iel5/5738676/5741058/05741074.pdf

46

http://ieeexplore.ieee.org/iel5/5608545/5625939/05626397.pdf
http://ieeexplore.ieee.org/iel5/5608545/5625939/05626397.pdf
http://ieeexplore.ieee.org/iel7/6850263/6860015/06860110.pdf
http://ieeexplore.ieee.org/iel7/6850263/6860015/06860110.pdf
http://www.canalys.com/pr/2011/r2011013.pdf
http://developer.android.com/
https://developers.google.com/fit/challenge/get-inspired
https://developer.android.com/about/versions/kitkat.html#44-sensors
http://www.cse.buffalo.edu/~lziarek/jtres14.pdf
http://www.ccas.ru/voron/download/books/machlearn/webb02statistical.pdf
http://www.ccas.ru/voron/download/books/machlearn/webb02statistical.pdf
http://www.ccas.ru/voron/download/books/machlearn/webb02statistical.pdf
http://www.ccas.ru/voron/download/books/machlearn/webb02statistical.pdf
http://www.eetimes.com/document.asp?doc_id=1279399
http://www.kircherelectronics.com/blog/index.php/11-android/sensors/14-sensor-skew-and-offset-ellipsoidfit
http://www.kircherelectronics.com/blog/index.php/11-android/sensors/14-sensor-skew-and-offset-ellipsoidfit
http://www.kircherelectronics.com/blog/index.php/11-android/sensors/7-android-accelerometer
http://ieeexplore.ieee.org/iel5/5738676/5741058/05741074.pdf
http://ieeexplore.ieee.org/iel5/5738676/5741058/05741074.pdf

 [15] Full-Featured Pedometer Design Realized with 3-Axis Digital Accelerometer, Neil Zhao
http://www.analog.com/media/en/technical-documentation/technical-articles/pedometer.pdf

 [16] Motion Mode Recognition and Step Detection Algorithms for Mobile Phone Users,
http://www.mdpi.com/1424-8220/13/2/1539/pdf

[17] Quaternion IMU Sensors with complementary filter
http://stanford.edu/class/ee267/lectures/lecture10.pdf

47

http://www.analog.com/media/en/technical-documentation/technical-articles/pedometer.pdf
http://www.mdpi.com/1424-8220/13/2/1539/pdf
http://stanford.edu/class/ee267/lectures/lecture10.pdf

13 - Annex

13.1 - Android development

Environment

For the development of the SmartPedometer we have used Android Studio. Android Studio is
the official Integrated Development Environment (IDE) for Android app development, based on
IntelliJ IDEA. Android Studio offers even more features that enhance our productivity when
building Android apps, such as:

● A flexible Gradle-based build system
● A fast and feature-rich emulator
● A unified environment where we can develop for all Android devices
● Instant Run to push changes to our running app without building a new APK
● Code templates and GitHub integration to help us build common app features and

import sample code
● Extensive testing tools and frameworks

Project Structure

Each project in Android Studio contains one or more modules with source code files and
resource files. Types of modules include:

● Android app modules
● Library modules
● Google App Engine modules

By default, Android Studio displays our project files in the Android project view, as shown in
Figure 25. This view is organized by modules to provide quick access to our project's key
source files.

All the build files are visible at the top level under Gradle Scripts and each app module contains
the following folders:

● manifests: Contains the AndroidManifest.xml file.
● java: Contains the Java source code files, including JUnit test code.
● res: Contains all non-code resources, such as XML layouts, UI strings, and bitmap

images.

48

 Figure 28. SmartPedometer project files.

Application fundamentals

Android apps are written in the Java programming language. The Android SDK tools compile
our code along with any data and resource files into an APK: an Android package , which is an
archive file with an .apk suffix. One APK file contains all the contents of an Android app and is
the file that Android devices use to install the app.

App Components

App components are the essential building blocks of an Android app. Each component is a
different point through which the system can enter our app. Not all components are actual entry
points for the user and some depend on each other, but each one exists as its own entity and
plays a specific role each one is a unique building block that helps define our app's overall
behavior.

The components used in our SmartPedometer are:

- Activities: An activity represents a single screen with a user interface. In
SmartPedometer we have MainActivity which is the activity shown when the application
is started.

49

- Services: A service is a component that runs in the background to perform long-running
operations. A service does not provide a user interface. In SmartPedometer we use a
service to collect data and to process signals in the background away from the UI thread
that is in charge to update the user interface.

The Manifest File

Before the Android system can start an app component, the system must know that the
component exists by reading the app's AndroidManifest.xml file. Our app must declare all its
components in this file, which must be at the root of the app project directory.

The manifest does a number of things in addition to declaring the app's components, such as:

● Identify any user permissions the app requires, such as Internet access or
read-access to the user's contacts.

● Declare the minimum API Level required by the app, based on which APIs the app
uses.

● Declare hardware and software features used or required by the app, such as a
camera, bluetooth services, or a multi touch screen.

 Figure 29. SmartPedometer manifest file.

50

Activities Lifecycle

Unlike other programming paradigms in which apps are launched with a main() method, the
Android system initiates code in an Activity instance by invoking specific callback methods that
correspond to specific stages of its lifecycle. There is a sequence of callback methods that start
up an activity and a sequence of callback methods that tear down an activity.

During the life of an activity, the system calls a core set of lifecycle methods in a sequence
similar to a step pyramid. That is, each stage of the activity lifecycle is a separate step on the
pyramid. As the system creates a new activity instance, each callback method moves the
activity state one step toward the top. The top of the pyramid is the point at which the activity is
running in the foreground and the user can interact with it.

As the user begins to leave the activity, the system calls other methods that move the activity
state back down the pyramid in order to dismantle the activity. In some cases, the activity will
move only part way down the pyramid and wait, from which point the activity can move back to
the top and resume where the user left off.

 Figure 30. Android activity lifecycle.

All this aspects need to be taken into account when designing the SmartPedometer, that’s why
we have carefully paid attention to this aspects as can be seen in Figure 30. We can sum up
some aspects as follows:

51

- OnCreate: Application start and we need to setup the views and the main structure. Is in
this method where we bind ourselves to the StepManager’s service to receive
information about the steps taken so we can update the steps counter UI.

- OnResume: Right after OnCreate OnResume method is called. Is here where we create
WakeLock that prevents the device from falling into battery saving mode.

- OnStop: Before calling OnDestroy method we need to inform the device that we no
longer want to prevent it from going to battery saving mode so we get rid of the
WakeLock.

- OnDestroy: The application is finishing so we need to tell de StepManager to stop its
work.

 Figure 31. SmartPedometer lifecycle.

52

Receiving data from the Sensors

On Android devices, we can access the devices sensors sensor data using Android API. In our
project we are requesting the data using a frequency of 100Hz. Also that the sensor events are
registered in onResume() and removed in onPause(). This is done so the sensor are stopped
when the user navigates away from the activity to save battery life as sensors use a lot of
battery life.

In Figure 30 we can see the portion of code used to inform the Android device that we would
like to receive the sensors data periodically, to do so we register a listeners using the Android’s
API.

 Figure 32. Registering the sensors.

After registering the listeners a callback function will be triggered at the specified sampling rate.
Each callback contains information about the sensors, so we have to

53

 Figure 33. Sensors callback listener.

ThreadPoolExecutor

In SmartPedometer app we need to run the segmentation task in the background and also we
need to perform small task that run the classification algorithm while traversing the decision tree.
This characteristic needs to be taken into account when designing the app.

To automatically run the task as resources become available we need to provide a managed
collection of threads. To do so, we use an instanceof ThreadPoolExecutor, which run a task

54

from a queue when a thread in its pool becomes free. To run a task all we need to do is add it to
its queue.

Once we have the overall class structure, we can start defining the thread pool. To instantiate a
ThreadPoolExecutor object, we need the following values:

Initial pool size and maximum pool size:

The initial number of threads to allocate to the pool, and the maximum allowable number.
The number of threads we can have in a thread pool depends primarily on the number of
cores available for our device. This number is available from the system environment:

Keep alive time and time unit:

The duration that a thread will remain idle before it shuts down. The duration is interpreted
by the time unit value, one of the constants defined in TimeUnit.

A queue of tasks:

The incoming queue from which ThreadPoolExecutor takes Runnable objects. To start
code on a thread, a thread pool manager takes a Runnable object from a first-in, first-out
queue and attaches it to the thread. We provide this queue object when we create the
thread pool, using any queue class that implements the BlockingQueue interface. To
match the requirements of our app, we can choose from the available queue
implementations:

Create a thread of pools:

To create a pool of threads, instantiate a thread pool manager by calling
ThreadPoolExecutor(). This creates and manages a constrained group of threads.
Because the initial pool size and the maximum pool size are the same,
ThreadPoolExecutor creates all of the thread objects when it is instantiated.

55

The final step is to start a task, in our application we set off the Segmentation task that is in
charge of doing the feature extraction and the decision tree traversal.

56

13.2 - Filter java implementation

After we initiate the SensorManager and setup the listeners, we begin to collect the data that will
pe passed to the filter in order to obtain the mapped acceleration. This data is then passed to
segmentation algorithm and the classifier mechanism.

The gyroscope needs additional processing, for that purpose we create a rotation vector which
is similar to a quaternion. In this vector we express the rotation interval of the device between
the last and the current gyroscope measurement. The rotation speed is multiplied with the time
interval which passed since the last measurement, Figure 34.

Figure 34. Rotation vector from gyro

The gyroscope data is not processed until orientation angles from the accelerometer and
magnetometer is available. This data is required as the initial orientation for the gyroscope data.
Otherwise, our orientation matrix will contain undefined values. The device’s current orientation
and the calculated gyro rotation vector are transformed into a rotation matrix [17].

The gyroMatrix is the total orientation calculated from all hitherto processed gyroscope
measurements. The deltaMatrix holds the last rotation interval which needs to be applied to the
gyroMatrix in the next step. This is done by multiplying gyroMatrix with deltaMatrix . This is
equivalent to the Rotation of gyroMatrix about deltaMatrix .

57

The rotation vector can be converted into a matrix by calling the conversion function
getRotationMatrixFromVector from the SensoManager. In order to convert orientation angles
into a rotation matrix, we use the following conversion function. Our last step is obtain the linear
acceleration from the components of the filter that result from applying our matrix, Figure 35.

Figure 35. Linear acceleration components

58

13.3 - Weka training sets

Weka is a workbench that contains a collection of visualization tools and algorithms for data
analysis and predictive modeling, together with graphical user interfaces for easy access to
these functions.

Weka supports several standard data mining tasks, more specifically, data preprocessing,
clustering, classification, regression, visualization, and feature selection. All of Weka's
techniques are predicated on the assumption that the data is available as one flat file or relation,
where each data point is described by a fixed number of attributes (normally, numeric or
nominal attributes, but some other attribute types are also supported).

The data file used for our project has the form of Figure 36, where we can see the attributes
declared for the classification together with its value and the decision that the algorithm should
take associated with each data.

 Figure 36. Weka training set

59

60

