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Abstract

Multiresolution representations are becoming more and more im-
portant for the visualization, operation and interrogation of very com-
plex scenes. In this paper, an automatic simplification algorithm for
general two-manifold polyhedra is presented. The algorithm is based
on the generation of an intermediate octree representation of the object
and produces a set of valid two-manifold polyhedral approximations of
the initial solid ensuring precise distance approximations between the
surface of the initial object and the surface of the resulting solids. A
restricted non-iterative version of the general algorithm is proposed
and implemented for the particular case of isothetic polyhedra. In this
case the proposed scheme is specially simple and generates a whole
family of isothetic simplifications.

Keywords: geometric modelling, realtime interaction and visual-
ization, multiresolution models, geometric simplification, octree repre-
sentations.



1 Introduction

The need for multiresolution representations was already stated in 1976. In [5] J. Clark
pointed out that objects which cover a small area in the screen could be rendered in a
simplified version and he proposed a hierarchical model supporting several representations
of an object. F. Crow [6] also proposed a data structure describing objects with several levels
of detail. Not only objects that are very small or far away from the observer must be rendered
in a simplified version but also objects that are moving quickly across the screen and which
appear blurred or can be seen for a short amount of time [11].

Multiresolution representation approaches lead to the geometry simplification problem and
make clear the need for automatic simplification methods. The goal is to have algorithms for
the automatic generation of multiresolution models of an initial object or assembly. These
algorithms must be able to simplify geometric models and generate new approximate models
involving a lower number of geometric entities.

In this context, the problem which is addressed in this paper can be precisely defined as
follows:

Given a two-manifold polyhedral solid S5 with a total of face#(S) planar faces and a set of
decreasing tolerances €1, €3, ..., £; With €x < €41, generate a set of two-manifold polyhedral
solids sy, s, ..., 8;~1, 8; such that,

dist(sur f(5),surf(sk)) < €

with a increasing number of faces, face#(sx) > face#(sk—1). The final set of solids sx form a
multiresolution approximating set to S, s; being the closest approximation to S and s, being
the coarser and simplest approximation.

The corresponding 2D problem - 2D polyline simplification - is a well known problem in 2D
computational geometry. This problem can be formulated in a direct or inverse way. The
direct or min# problem is the problem of minimizing the number of polygon vertices given
an error €. The inverse or mine problem minimizes the error ¢ given the final number of
polygon vertices [10]. Solutions exist for both the direct and inverse problem: strip trees [2],
optimal approximation [13], Delaunay pyramid [7], flintstones [25], etc.

Some attemtps to extend these results to 3D have also been proposed. The prism tree [19]
extends the strip tree and the flintstones have the corresponding 3D approach [25] [24].

The prism tree method represents polyhedra as ternary trees of truncated piramides repre-
senting enclosing boxes of parts of the polyhedron. The method is well suited for complex
3D real objects digitized as polyhedra with thousands of faces. Flintstones are also a hier-
archical scheme based on the approximation of closed polyhedra without holes. Here, the
bounding volumes are balls, the so called flintstones. This approximation approach is not
simple, specifically at the first levels in which the polyhedron may self-intersect.

In [22], an algorithm is presented for reducing, in a specified rate, the number of triangles
of a surface obtained with the marching cubes method. Turk [23] approximates a polygonal
surface by a triangular one with a specified number of vertices. In [15] a similar method is
presented; it provides a provable bound of the approximation error and it is applicable to
arbitrary polyhedral models but it may produce self-intersecting polyhedra similarly to the



flintstones method.

Some methods directly simplify data obtained from 3D digitizing cameras minimizing the
number of polygons when reconstructing the surface from these data points [8].

Other approaches [12] simplify an initial triangular mesh obtained from a scattered set of
data points minimizing an energy function. These methods produce a new triangular mesh
with a small number of vertices which approximates the data, while dealing with sharp edges
and corners.

Finally, in [20] a method for approximating arbitrary polyhedra is presented. It is also based
on the triangulation of the object surface. The method is very time efficient but may produce
non-regular and non-solid objects with isolated faces, edges and points.

Except the two last papers, most of these approaches are well suited for the automatic simpli-
fication of models representing smooth curved surfaces, but are poorly suited for polyhedral
models with well defined corners and sharp edges. Moreover, all of them deal only with
triangular faces.

In the present paper, an algorithm for the generation of the multiresolution approximating
set of an inicial two-manifold polyhedron § is proposed. The presented approach accepts
arbitrary polyhedra and no triangulation process is needed: faces of the initial and simplified
polyhedra may have any number of vertices. The algorithm can be used in a preprocess step in
applications where visualization of very complex scenes is required, or in applications involving
interference detection, interrogation or complex solid operations. In the visualization case,
it is interesting to have a multiresolution representation of the objects in the scene, the
objects far from the observer being represented at a coarser level (with simplification of the
features that would be projected onto one or very few pixels). In the interference detection or
interrogation cases, interference or computations within a certain tolerance can be computed
using simplified representations s of the solid S.

Next section includes the basic definitions and outlines the proposed algorithm. Section 3
presents the general simplification algorithm, while an specific algorithm for the simplification
of isothetic polyhedra is described in section 4. Finally, practical examples are presented and
discussed in section 5.

2 Definitions and Proposed Approach

Before presenting the proposed approach, let us introduce the concepts of classical octrees
(CO), maximal division classical octrees (MDCO) and terminal grey nodes (TG):

Classical octree (CO) : It is a representation based on an adaptive hierarchical space
division [21]. The octree is an octal tree representing the subdivision process, and
contains White (W) nodes, Black (B) nodes and Grey (G) nodes.

Maximal division classical octree (MDCO) [3]: It is an octree representation contain-
ing White nodes (W) which correspond to cubic regions completely outside the object,
Black nodes (B) completely inside the object, Grey nodes (G) that contain part of the
surface of the object and are therefore subdivided, and Terminal Grey nodes (TG) that



contain part of the surface of the object but are at the deepest level of the tree and
consequently are not subdivided.

Terminal grey nodes (TG) : They are grey nodes of the minimum allowed size. They
obviously appear as terminal nodes at deepest level of the tree. Being grey nodes, they
contain part of the surface of the object. On the other hand, given any point P of
the object surface, it always exists a TG node n such that P is inside n. The eight
vertices v;,% = 1..8 of the cube associated with a TG node can be either white or black.
White vertices are those outside s;, whereas black vertices are known to be inside the
final solid si. Vertex colors can be computed from the initial solid S or through node

neighborhoods in the octree: vertices in contact with white nodes are white, whereas
those located on black nodes of the MDCO are black.

Due to the precise definition of TG nodes (they contain three faces of the corresponding cube
but are open at the rest of faces), it can be concluded that the set of TG nodes in a MDCO
is a 6-connected set forming a (6, 26) 3D picture [16].

The colors of the eigth vertices of TG nodes allow 256 different configurations that can be
grouped through complementary and rotational simetries onto the 14 equivalence classes
shown in figure 1 [17] [26].

In this context, the proposed approach can be summarized as follows,

Step 1 : Build the MDCO representation ¢; of the initial solid S. We will assume in the
following that this octree has a depth of ! levels, the edge size of the universe being 2/~!
times the edge size of the minimum size cubic nodes. '

Step 2 : Obtain a multiresolution set ¢y, ¢z, ..., ¢ of MDCO representations of the solid
S. For every k, ¢ is obtained by deleting level k 4+ 1 nodes in the octree ¢44; and
considering grey nodes at level k as new TG nodes of the octree cx. Finally, ¢; is a
simple 1-level octree containing only the grey root node.

Step 3 : For every ¢k, obtain a two-manifold polyhedral solid si such that the k-level MDCO
representation of sy is ck. Obviously, cx is a valid MDCO representation also for sy,
Sk41y o0y Sl

After step 3, a set of approximating solids s;, ..., s has been obtained. Noting as ¢ the
length of the main diagonal of ¢; TG nodes, both the surface of S and the surface of s; are
completely contained in the set of TG nodes of cx. Therefore,

dist(sur f(S),surf(sg)) < e-2/~%

On the other hand, the second requirement in the problem definition

A

faced(sk) > face#(si-1),Vk

will appear as a direct consequence of the proposed algorithm, as we will see in section 3.



Step 1 and step 2 are straightforward and need no further comments. MDCO generation is
based on a simultaneous space subdivision and clipping of the planar faces of the initial solid

S.

Next section is devoted to step 3 analysis. In this step, BRep elements (faces, edges and
vertices) of solid s must be inferred from the information in the MDCO ¢, and topological
incidence relations must be generated.

3 Simplification Algorithm

3.1 Further definitions

Before presenting the proposed algorithm, this subsection introduces the concepts of closed
MDCO, regular TG nodes, two-manifold TG nodes, two-manifold MDCO representations,
TG maps and polyhedral TG. maps. TG_. maps and Polyhedral TG. maps will be the basis
of the proposed algorithmn presented in section 3.2: the generation of the approximating
solid involves the estimation of an starting TG_ map which is subsequently improved through
modify operations until a final polyhedral TG_. map is obtained.

Closed MDCO : A MDCO is closed if every halfline starting from any black node or any
black vertex of any TG node intersects at least one TG node of the MDCO.

Regular TG : A regular TG is a TG node having both white and black vertices. There is
only one class corresponding to a non-regular node (class 0 in figure 1, with all vertices
having the same color).

Two-manifold TG : Two-manifold TG nodes are regular TG nodes with a configuration
of black and white vertices that is compatible with the surface of the solid within the
node having a single connected component.

In order to classify classes from 1 to 13 into two-manifold and non-manifold TG nodes,
we will follow Lorensen approach [17]. In his approach, nodes are traversed by a tri-
angular surface; this results in classes 1, 2, 5, 8 and 11 being traversed by one sheet
and the remaining by more than one sheet. In our case, nodes must be traversed by
a boundary element of a polyhedron and, thus, only classes 4 and 13 are traversed by
more than one sheet. For the remaining classes, a face, edge or vertex topology interior
to the node can be found [1]. Nevertheless, resulting topologies for classes 7, 10 and
12 are concave vertices with eight or nine faces while all classes other than those have
simpler topologies involving a maximum of four faces. In the present approach these
three classes are not considered two-manifold in order to avoid complex topologies. In
fact it can be shown that, under this assumption, the number of final faces traversing
the TG node is reduced to a maximum of three faces [1].

Column A of table 1 shows the resulting classification of the 14 equivalence classes.

Two-manifold MDCO : A two-manifold MDCO is a closed MDCO such that every TG
node is a two-manifold TG node.



[G=] & [ B ]

0 | non-regular
1| 2-manifold | in, on, join
2 | 2-manifold | in, on, join
3 | 2-manifold on, join
4 | non-manifold
5 | 2-manifold on, join
6 | 2-manifold join
7 | non-manifold
8 | 2-manifold | in, on, join
9 | 2-manifold | in, on, join
10 | non-manifold
11 | 2-manifold join
12 | non-manifold
13 | non-manifold

Table 1: A) Classification of nodes into two-manifold, non-manifold and regular. B) Classifi-
cation of two-manifold nodes in types in, on and join.

It can be shown that non-manifold nodes can be subdivided into eight two-manifold
sons [1]. Consequently, it is always possible to process the inicial MDCO obtaining a
second two-manifold MDCO with TG nodes of two consecutive sizes.

TG_map : A TG_map is a classification of every TG node in a MDCO into in, on or join
types. This classification is related to a certain underlying set of regions r; ...r, defined
in the set of TG nodes of the MDCO. A region r; is a connected set of 6-connected TG
nodes. A TG node will be classified as in if the node is inside the region r;, that is,
the node is in(r;). It will be classified as on in the case it belongs to the boundary of
a certain region 7 being on(r;), and there exists a value j such that the node is also
on(r;). Finally, it will be classified as join if there exist at least three values ¢, 7, k such
that the node is on(r;), on(r;) and on(7).

Column B of table 1 shows the classification of two-manifold nodes in types in, on or
join.

In fact, a TG. map uniquely determines the type of every TG node in the MDCO,
solving all indeterminations in table 1-B. TG_maps are however not unique: for a given

MDCO, every possible classification of its TG nodes into connected regions produces a
different TG_map.

Polyhedral TG map : A TG_map is a polyhedral TG_map if there exists a polyhedron
such that,

o The polyhedron has a vertex inside every join TG node of the map.

¢ For every pair of join TG nodes which are 6-connected through a chain of on TG
nodes - a join_chain -, there exists an edge of the polyhedron which is interior to



(and only to) the on and join nodes of the chain.

e For every region in the TG.map, there exists a planar face of the polyhedron
which separates all white vertices from all black vertices for every in TG node in
the region.

3.2 General algorithm

Let us assume that a closed MDCO ¢ is given. On the other hand, we will also assume that
the generation of the approximating solids s;, ..., Sk, ..., s; is performed in a sequential
way, so that the solid s¢—; is known at the moment the MDCO ¢ is processed. A general
description of the proposed algorithm is as follows:

compute_vertex_colors

obtain_two.manifold MDCO

generatestarting (TGnap)

while not polyhedral (TG_map) do
modify (TG_map)

endwhile

After the compute_vertex_colors procedure, for all TG nodes in the MDCO the color of every
vertex v;,7 = 1...8 of the corresponding cube has been computed. Vertex colors can be
obtained using node neigborhood information in the MDCO when possible, or alternatively
using the point in polyhedron test in the initial solid S.

The obtain_two_manifold_MDCO procedure guarantees that every TG node in the output tree
is a two-manifold TG node.

The rest of this section describes the polyhedral test and the generate_starting and modify
routines in the most general case of a polyhedral solid S.

3.3 Polyhedral test for a TG_map

The test for a polyhedral TG_map first obtains the explicit topology of the TG _map, and then
detects if there exists a polyhedron with the obtained topology and with faces completely
inside TG nodes of the TG._map. More specifically, the generation of the explicit topology of
the TG_map is performed in the following way,

e A vertex of the polyhedron BRep is generated for every join node in the TG._map.

o An edge of the polyhedron BRep is generated for every join_chain connecting pairs of
join nodes in a 6-connected way, and for every pair of neighbour join nodes (void
join_chains).

¢ A face of the polyhedron BRep is generated for every edge loop so that its corresponding
on and join nodes in the TG_map enclose either a region containing only in nodes or
a null region.



At this moment, the TG_map is a polyhedral one if there exists a polyhedron with a vertex
within each join TG node of the TG_map and such that,

¢ For every polyhedron edge and for every node - either on or join - of its corresponding
join_chain in the TG_map, this node is 6-connected to another node of same join-chain
through the node face which is intersected by the polyhedron edge.

¢ Every polyhedron face is planar and interpolates the polyhedron vertices belonging to
the face.

e White vertices of in TG nodes in the TG_map region corresponding to a polyhedron
face, are separated from Black vertices of the same nodes by the polyhedron face.

In this context, the algorithm for testing polyhedral TG_maps must solve an optimization
problem: the best location of the polyhedron vertices within join nodes must be found, in
order to minimize a weighted sum of the magnitudes dv;;, nv;; and nc;,

sp=m Z Z dv,-j+agz Z nv;; + as Z ne;

faces vertices Jaces innodes join—chains

where,

¢ dv;; is the distance from the weighted plane approximating the vertices of the polyhedron
face i, to the polyhedron vertex j. Vertex j must be one of the vertices of the face 1.

e nv;; is the number of white/black vertices of TG in nodes that are not well separated
by the weighted plane approximating the vertices of the polyhedron face 1.

o nc; is the number of faces of the nodes of the join_chain i which are intersected by the
polyhedron edge ¢, and which are not 6-connected to nodes of the same chain.

In the case the optimization reaches a null minimum, it can be guaranteed that the tested
TG.map is a polyhedral one:

function polyhedral (TG.map) return boolean
initialize_polyhedron_vertex_locations
compute_weighted sum (sp)
repeat
change_vertexJocations_within_join_ TG _nodes
compute_weighted sum (sp1)
spa:= sp
sp := spl
until sp > spa
return (sp < epsilon )
endfunction



3.4 Generate_starting procedure

This routine obtains a first TG_map for ci, that will be afterwards refined in successive
iterations with the modify routine. The algorithm is trivial in the case ¢;; in other cases ¢,
it uses the polyhedral TG_map obtained in the processing of the previous MDCO ¢x_; as an
initial guess, by computing a initial TG_map with the previous topology. In this way, the
algorithm explodes a coherence based on the intrinsic hierarchical nature of the MDCO. More
specifically,

A join TG node in the TG.map of ¢, is generated for every join TG node in the polyhedral
TGmap of cx-;. This join node is searched among the TG son nodes of the join TG node
in ¢x_1. In the case where more than one TG son node exists, any of them can be choosen as
a candidate.

In a second step, join TG nodes in ¢ are grouped onto regions, following the same topology
of the polyhedral TG map of ¢x_;.

This method, besides using the coherence inferred by the hierarchical structure of the MDCO,
guarantees the second postcondition of our simplification problem: as it will be shown in the
next section, the algorithm of the modify routine can only increase the number of regions of
the TG_map, and therefore,

face#(sk) > faced(sy-1),Vk

3.5 Modify procedure

This routine works in twosteps. In the first one, the magnitude @3 3_;,in_chains nCi is decreased
by changing the location of join nodes in the TG_map while keeping its topology. This
location change is performed by marking a previous join node as non join and marking a
previous in or on node as the new join node. The candidate join node for the location
changing is the node with the greatest sum of the ne¢; values of the join_chains converging
to it. Any location change of a join node induces a recomputation of the on nodes of the
join_chains emerging from it.

In the second step, the magnitudes 3 .. ices dvi; and Y ;.. qe, 70i; for every region in the
TG_map are analysed. The TG_map topology in the region with the highest weighted value
of these magnitudes is modified by increasing the number of regions. This is performed
through a split region or a create ring operation. New join and on TG nodes appear and are
marked accordingly.

3.6 Particular cases

In the extreme case of a MDCO with a single TG node - the root node -, the two first
preprocess steps of the algorithm convert it to a set of eight half-size TG nodes, each of them
having seven white vertices and a black one. In this case, it is easy to see that the proposed
algorithm generates the BRep of a cube with 6 orthogonal faces.

For the restricted class of isothetic polyhedra, a simple algorithm based on the direct classi-
fication of TG nodes can be derived. It will be presented and discussed in the next section.



4 Simplification Algorithm for Isothetic Polyhedra

An isothetic polyhedron is a polyhedron with all its edges and faces oriented in three orthog-
onal directions [14]. In this section, a simple version of the general simplification algorithm
is presented for the particular case of isothetic polyhedra.

4.1 TG node types

The fourteen equivalence classes of the TG nodes configurations are completely defined in the
isothetic case.

Figure 2 shows the fourteen equivalence classes and corresponding types.

There are six classes corresponding to two-manifold nodes: one Face-type node, one Edge-
type node and four Vertex-type nodes corresponding to the four possible isothetic vertices [14].
One class corresponds to the non-regular node and the remainding seven classes correspond
to non-manifold nodes.

4.2 Node subdivision

In order to obtain a two-manifold MDCO in the preprocess part of the simplification algo-
rithm, our approach consists on subdividing every non-manifold node into its eight sons in
such a way that all resulting nodes are two-manifold TG nodes. The resulting MDCO will
contain TG nodes of two consecutive sizes.

We can decide without loss of generality, that the isothetic boundary traversing TG nodes
intersects its edges - those having end vertices of different color - following a black proximity
criterium: the intersection point is located at the edge at a 0.25 distance from its black vertex
and at a 0.75 distance from the white one. Following this, it can be easily shown [1] that all
non-manifold nodes can be subdivided into eight two-manifold sons. Furthermore, applying
this black proximity criterium implies subdividing also class 11 node, thus considering it as a
non-manifold node. Table 2 shows the resulting subdivisions.

Non-regular nodes are also subdivided into eight two-manifold sons in a straightforward way.
In this case, subdivision is performed by taking into account the node neighborhoods. Figure
3 shows the three possible neighborhoods of non-regular nodes together with the resulting
surface [1]. It can be observed that in fact, non-regular TG nodes represent non-regular parts
of the surface of the final solid at the present approximation level. The reconstruction scheme
presented in figure 3 is necessary in order to ensure the distance approximation between the

surface of the initial object and the surface of its simplification, in the regions with non-regular
TG nodes.

4.3 Algorithm.

In this section, the application of the general algorithm introduced in section 3.2 to this
particular isothetic case is presented.

The compute_vertez_colors procedure is the general case routine.
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[class[| 0 1 2 3 4 5 6 7|
3 W W W W 1 W W 1
3 8 5 5 8 W 2 2 W
4 W W W 1 1 W W W
4 ) 5 5 W W 35 5 5
6 W W W 1 2 2 W W
6 5 2 5 W W W 5 2
7 W W W 1 W 1 1 W
11 5 W 2 W 5 2 W W
12 5 2 W W 2 W W 1
13 W 1 1 W 1 W W 1

Table 2: Node subdivision for the isothetic case (the numbering of sons is the same of the
numbering of vertices shown in figurel).

Obtain_two_manifold_MDCO processes all non-manifold and non-regular nodes (section 4.2),
obtaining a MDCO with two-manifold TG nodes of two consecutive sizes. Subdivision of
non-manifold nodes is done by traversing the MDCO and processing such nodes in an inde-
pendent way. Processing non-regular nodes, instead, needs neighbour information and must
use techniques for neighbour-finding[21]

The generate_starting procedure generates an initial TG_map. In this particular isothetic case,
two-manifold nodes can be unambiguosly classified in types in (class 8), on (class 2) and join
(classes 1, 5 and 9) which correspon to a face, an edge and three vertices (see section 4.1)
Therefore, the TG_map is unique and defines completely the geometry and topology of the
embedded polyhedron. Thus, it can be stated that this initial TG_map is already a polyhedral
TG-map and hence, in this particular case, the general algorithm becomes sequential, the
while loop being superfluous.

Consequently, the generate_starting procedure includes, as its final step, the reconstruction
of the polyhedron. This reconstruction algorithm is similar to the Extended Octree to BRep
conversion algorithm and is based on the fact that all the required information is in Vertex-
type nodes [4], [18]. The algorithm traverses the MDCO and processes all Vertex-type TG
nodes (classes 1, 5 and 9), inferring the embedded geometry by using the black proximity
criterion i.e. choosig the boundary to pass at a 0.25 distance from black vertices of the node,
for the non-subdivided nodes, and at a 0.5, for the subdivided ones.

It is important to remark that the isothetic polyhedron reconstruction algorithm presented
here does not produce holes as some isosurface generation methods do. Figure 4 shows the
continuous reconstruction of the presented method in the case in which the marching cubes
algorithm produces a hole in the surface [9].

11



5 Examples

Figure 5 shows two examples of an isothetic scene. This scene corresponds to the “Pla Cerda”
architectonic project of Barcelona. The initial MDCO of figure 5 b), ¢;, has been obtained, and
several successive MDCO simplifications have been generated by simply deleting successive
levels in the initial MDCO. Finally, figure 6 shows several successive simplifications of the
example obtained from the presented isothetic algorithm.

6 Conclusions and future work

An automatic simplification algorithm for general two-manifold polyhedra has been presented.
The algorithm is based on the generation of an intermediate MDCO representation of the solid
and produces a set of two-manifold polyhedral approximations of the initial solid ensuring
precise distance approximations between the surface of the initial object and the surface of
the resulting solids. In the general case the algorithm is computationally expensive, involving
the generation and modification of TG_maps together with testing their closeness to polyhe-
dral . TG_maps. Nevertheless, the time complexity of the algorithm can be usually be afforded,
provided that the multiresolution simplification is performed in a - batch - preprocess prior
to their use in interactive applications. A remarcable advantage of the proposed algorithm
is that all geometric algorithms are concentrated in the polyhedral test for TG_maps, once
the MDCO of the initial object has been generated. This is specially important in terms of
robustness considerations.

A restricted non-iterative version of the general algoi'ithm has been proposed and implemented
for the particular case of isothetic polyhedra. In this case the proposed scheme is specially
simple and generates a whole family of isothetic simplifications.

Future work includes the study and implementation of specific algorithms for other spe-
cific classes of initial solids S, the robustness analysis of the geometric algorithms and the
implementation of the general algorithm, including more efficient algorithms for the Gener-
ate_starting and Modify routines.

Besides polyhedron simplification, the presented algorithm can be used in solid operations
in solid modelers: step 3 of the proposed algorithm can be used, for instance, for robust
boolean operations among a large set of solids. By converting the initial solids onto their
MDCO representations, performing boolean operations in the discrete octree space, and back-
converting the resulting MDCO onto a final BRep, an error bounded by eps on the surface
of the final solid can be guaranteed. However, standard BRep algorithms involve robustness
problems and cannot ensure this bounded precission, mainly when a sequence of boolean
operations has to be performed - boundary evaluation of CSG trees, for instance -.
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Figure 1: The 14 equivalence classes. (Class 0 includes the selected numbering of vertices)

[~

non - R \j = non .- M nown - M\ \V) non - Vi

F \% “nen-M V nown - M nen - ™

Figure 2: The 14 equivalence classes for the isothetic case
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Figure 3: Neighborhoods for non-regular nodes. a) an isolated node; b) a column of nodes;
c) a slice of nodes.

Figure 4: Polyhedron surface generated from two neighbour TG nodes of class 3 (see figure
2)
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Iligure 5.

h) Isothetic solid. A front of a building,

11l




Figure 6. Successive simplifications of model in figure 5 b).
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