Treball de Fi de Grau

Grau en Tecnologies Industrials

Estudi de la tecnologia LED
i la seva aplicació en un cas concret

MEMÒRIA

Autor: Eduard Melo Oliver
Director: Lluís Ferrero
Convocatòria: Juliol 2016

Escola Tècnica Superior
d'Enginyeria Industrial de Barcelona
Resum

Aquest projecte té per objectiu l’estudi de la tecnologia LED a nivell teòric i pràctic. Primerament, s’ha realitzat una recerca per a tal d’adquirir els fonaments sobre la luminotècnia i en concret sobre els LEDs. Seguidament, es va triar un espai interior de l’Escola Tècnica Superior d'Enginyeria Industrial de Barcelona per a tal de proposar una millora de la qualitat lumínica de la instal·lació.

Abstract

The aim of this project is the study of LED Technology in a theoretical and a practical level. Firstly, a search has been done in order to acquire a basic knowledge of lighting science, and more precisely, of LEDs. Then, an interior space of The School of Industrial Engineering of Barcelona has been chosen in order to propose an improvement in the light quality of the installation.
Agraïments

Aquest treball està especialment dedicat als meus pares per haver-me donat el seu suport durant tota la meva formació acadèmica.

D’altre banda, aquest projecte m’ha permès conèixer una sèrie de persones, les quals han compartit de manera altruista el seu ampli coneixement en el camp de la il··luminació. Entre elles, vull agrair a la Laia Puig (Technical Project Responsable at Aura Light) i al Vicenç Rodriguez.

Finalment, vull donar les gràcies al meu tutor, el Lluís Ferrero, el qual m’ha guiat durant tot el procés del meu treball final de grau, compartint la seva gran experiència en el sector.
ÍNDEX

1. Ordre de redacció ... 5
2. Objectius del projecte ... 5
3. Problemàtica plantejada .. 6
4. Conceptes teòrics .. 7
 4.1. Principis fonamentals de la llum ... 7
 4.2. La tecnologia LED .. 8
5. Criteris de qualitat i disseny ... 14
 5.1. Il·luminació i uniformitat .. 14
 5.2. Control de l’enlluernament ... 14
 5.3. Modelat i ombres .. 15
 5.4. Ambient cromàtic .. 15
 5.5. Ergonomia del lloc de treball ... 16
 5.6. Sistema de control i regulació .. 16
 5.7. Manteniment .. 16
6. Normativa d’aplicació .. 17
7. Estudi lumínic-ambiental dels espais ... 19
 7.1. Part Ambiental ... 19
 7.2. Part Luminíca .. 24
8. Càlculs ... 26
 8.1. Mètode analític .. 26
 a. Descripció del mètode dels lúmens .. 26
 b. Aplicació del mètode ... 31
 8.2. Mètode assistit per ordinador ... 34
 a. Descripció del mètode ... 34
 b. Aplicació del mètode ... 37
9. Solució adoptada i justificació ... 39
10. Pressupost .. 46
11. Model de factura anual .. 47
12. Programa de manteniment ... 48
13. Impacte mediambiental ... 48
14. Conclusions ... 49
15. Bibliografia .. 50
Annex A. Glossari .. 51
Annex B. Dades de les il·luminàries ... 54
Annex C. Figures i taules ... 56
LLISTA DE TAULES

Taula 1. Alguns dels compostos emprats per a les capes de xips LED ... 8
Taula 2. Previsió de l'evolució de l'eficàcia luminosa dels LEDs de llum blanca càlida 13
Taula 3. Nombre de punts de mesura recomanats segons .. 14
Taula 4. Nivells d'il·luminació mesurats a l'espai 3 .. 25
Taula 5. Nivells d'il·luminació mesurats a l'espai 2 .. 25
Taula 6. Nivells d'il·luminació mesurats a l'espai 1 .. 25
Taula 7. Factors de reflexió del sostre, de les parets i del terra ... 28
Taula 8. Factors de reflexió segons el color i el material .. 28
Taula 9. Exemple de taula del coeficient d'utilització d'una lluminària ... 29
Taula 10. Alçada de les lluminàries segons el tipus d'il·luminació i de local .. 30
Taula 11. Comparació dels resultats obtinguts i els desitjats .. 33
Taula 12. Comparació dels resultats obtinguts amb el mètode dels lúmens i l'estudi lumínic 33
Taula 13. Comparació dels resultats obtinguts i els desitjats .. 38
Taula 14. Estalvi energètic i d'emissions de CO₂ dels espais ... 45
Taula 15. Manteniment del flux luminós en funció del temps ... 48
Taula 17. Classificació de les fonts d'il·luminació segons el Ra[9] .. 56
Taula 18. Taula 1 de la Norma UNE-EN 12464-1: Uniformitats i relació entre il·luminacions d'àrees circumdants[5] .. 57
Taula 21. Taula 5.6.2 de la Norma UNE EN 12464-1 ... 57
Taula 22. Taula 1.1 de la secció SU4 del Codi Tècnic de l'Edificació .. 58
Taula 23. VEEI límit segons la zona d'activitat diferenciada d'acord amb el Codi Tècnic de l'Edificació (CTE) .. 58
Taula 24. Coeficients de pas d'energia final a emissions de CO₂ i d'energia final a primària actuals publicats per IDAE[8] ... 58
LLISTA DE FIGURES

Figura 1. Vista en tall de l'esquema de la retina .. 7
Figura 2. Divisió d'un raig de llum incident .. 7
Figura 3. Símbol d'un LED .. 8
Figura 4. Esquema d'un xip de LED .. 8
Figura 5. Fotografia d'un LED ... 8
Figura 6. Esquema de la creació de llum blanca per suma additiva de colors... 9
Figura 7. Esquema de la conversió de llum blava a llum blanca per capa de fósfor ... 9
Figura 8. Encapsulats típics de LEDs de baixa intensitat ... 9
Figura 9. Encapsulatopic de LEDs d'alta intensitat .. 9
Figura 10. Encapsulats tipus SMD .. 11
Figura 11. Tipus d'encapsulats .. 11
Figura 12. LED d'alta potència ... 11
Figura 13. Esquema de les capes d'un OLED .. 11
Figura 14. Prototip de pantalla de mòvil tipus OLED .. 11
Figura 15. El lipes de MacAdam .. 12
Figura 16. Zona en la qual s'ha de complir el limit de luminància .. 14
Figura 17. Tipus d'enllumenament reflectit ... 15
Figura 18. Efecte de l'Índex de reproducció cromàtica i de la temperatura de color sobre la pell d'una persona. 15
Figura 19. Índex de reproducció cromàtica segons el tipus de llàmpada en termes genèrics.................................. 15
Figura 20. Vista en planta de la planta 9 de l'edifici H ... 19
Figura 21. Vista en planta en detall dels espais considerats 1,2 i 3 .. 19
Figura 22. Fotografia de l'espai 1 ... 20
Figura 23. Luminària tipus regleta senzilla ... 20
Figura 24. Luminària tipus regleta doble amb tubs fluorescentes de temperatures de color diferents................. 20
Figura 25. Fotografia de l'espai 2 ... 21
Figura 26. Luminària tipus regleta senzilla ... 21
Figura 27. Luminària de superfície situada sobre panell d'emergència ... 21
Figura 28. Fotografies de l'espai 3 ... 22
Figura 29. Downlight de fluorescència compacta .. 22
Figura 30. Vista en planta dels espais 1, 2, 3 ... 24
Figura 31. Subzona de l'espai 1 amb els 9 punts de mesura ... 24
Figura 32. Diagrama de flux del métode dels lúmens................................ .. 27
Figura 33. Vista isomètrica d'un espai genèric .. 28
Figura 34. Vista lateral d'un espai genèric ... 28
Figura 35. Vista lateral d'un espai genèric ... 30
Figura 36. Plànol de l'espai 2 amb la instal·lació d'il·luminació actual ... 32
Figura 37. Fotografia de la luminària i el seu diagrama polar .. 32
Figura 38. Diagrama de flux del métode assistit per ordinador amb Dialux 4.12 .. 34
Figura 39. Fotografia del panell LED i el seu diagrama polar .. 37
Figura 40. Diagrama polar, mesures i fotografia del model de luminària RI T8 136 HF 54
Figura 41. Diagrama polar, mesures i fotografia del model de luminària RFI T8 236 HF REFL/BL 54
Figura 42. Diagrama polar, mesures i fotografia del model de luminària DOWNTOWN 215 FSM2X26W TRASPAR 54
Figura 43. Diagrama polar, mesures i vista isomètrica del model de luminària Aura Lunaria Pro Mini G3 295x295 840...... 55
Figura 44. Diagrama polar, mesures i vista isomètrica del model de luminària Aura Lunaria Pro G3 26W 620x620 NW..... 55
Figura 45. Diagrama cromàtic de la CIE ... 56
Figura 46. Captura de pantalla del full de càlcul pel Mètode analític dels lúmens .. 59
Figura 47. Captura de pantalla del programa Dialux 4.12 en el pas de definició i creació del local 2 59
Figura 48. Captura de pantalla del programa Dialux 4.12 un cop afgets els elements arquitectònics del local 2 59
Figura 49. Captura de pantalla del programa Dialux 4.12 en el pas de definir els factors de reflexió de les superfícies 60
Figura 50. Captura de pantalla del programa Dialux 4.12 havent afget el mobiliari 60
Figura 51. Captura de pantalla del programa Dialux 4.12 definint la ubicació i el nombre de luminàries 60
Figura 52. Captura de pantalla del programa Dialux 4.12 havent afget les luminàries 61
Figura 53. Captura de pantalla del programa Dialux 4.12 havent afget la superfície de càlcul 61
Figura 54. Captura de pantalla del programa Dialux 4.12 havent realitzat els càlculs ... 61
Figura 55. Captura de pantalla del resum dels resultats de la simulació .. 62
Figura 56. Captura de pantalla dels resultats de la simulació en la superfície de càlcul .. 62
Figura 57. Captura de pantalla de la fulla resum dels resultats d'una simulació del local 1 63
1. Orde de redacció

Aquest treball es situa en el marc del Treball Final del Grau d’Enginyeria Industrial. Al pertànyer a dit marc acadèmic, la seva naturalesa es limita a l’explicació dels passos realitzats durant dit treball i per tant, no pretén ser un projecte que es porti a terme a la pràctica. No obstant, s’ha volgut seguir un procediment metòdic semblant al que es podria portar a terme si es tractés d’un projecte professional.

2. Objectius del projecte

Al principi del projecte es van plantegar una sèrie d’objectius globals que servirien de referència per encaminar el treball.

El primer d’ells ha sigut estudiar les bases de la luminotècnia ja que és un camp que no s’ha estudiat amb detall durant el grau i per tant, aquests coneixements servirien de pilars per poder desenvolupar la resta del projecte de manera consistent. Una vegada tingudes clares les regles físiques que regeixen dita ciència, s’ha fet un anàlisi focalitzat a la tecnologia LED. Per això, s’ha determinat les bases físiques i constructives sobre les que reposa dita tecnologia. A més a més, s’ha volgut conèixer l’estat de l’art dels LEDs ja que és una tecnologia bastant recent en comparació amb les demés tipus de fonts d’il·luminació i no deixa d’evolucionar amb gran rapidesa.

Seguidament, havent adquirit el marc teòric esmentat, s’ha volgut aplicar dita tecnologia en un cas concret de millora de la qualitat lumínica de tres espais interiors d’un edifici de pública concurrència com és l’ETSEIB. Gràcies a aquest exemple il·lustratiu, es pretenia conèixer quines pautes s’han de seguir a l’hora de dissenyar un projecte lumínic real. D’aquest objectiu es deriva el fet de familiaritzar-se amb els dos principals mètodes a l’hora de realitzar els càlculs pertinents per estudiar l’adecuació de possibles solucions al problema plantejat. Però també, ha calgut determinar quina normativa específica cal aplicar en el projecte lumínic plantejat així com els criteris de qualitat i disseny existents. Finalment, s’ha estudié l’impacte que tindria l’aplicació de la solució proposada, tant a nivell energètic, com mediambiental i econòmic.
3. Problemàtica plantejada

L’Estratègia Energètica de la Unió Europea emmarca el conegut paquet 20-20-20 Energia i Canvi Climàtic, el qual presenta una sèrie de compromisos de la Unió Europea de cara al 2020.

Un dels objectius que afecten directament al camp de la il·luminació és per una banda, la millora en un 20 % en la eficiència energètica en comparació amb els nivells de 1990. Cal destacar que es calcula que el 19 % del consum mundial d’electricitat, i el 14 % a la UE, és degut a la il·luminació.[1] Més concretament, segons el \textit{Llibre Verd: Il·luminem el Futur} (Comissió Europea 15–12–2011), entre el 10 % i el 15 % del consum total d’electricitat d’un edifici dedicat a l’ensenyança dins la UE correspon a la il·luminació interior. Això posa de manifest el paper important que juga la il·luminació en quant a consum energètic en un edifici (tot i no arribar als nivells de la climatització, que podríria suposar entre el 70 % i el 75 % en un edifici genèric).[2] Per tant, les instal·lacions luminiques tenen un clar repte per davant, per tal de millorar la seva eficiència. Una de les maneres d’aconseguir-ho és desenvolupant noves tecnologies que aportin una millora considerable en quant a la seva eficiència. Seguint precisament aquesta direcció, l’anomenada «il·luminació d’estat sòlid» (SSL) sembla ser la candidata més favorable de cara a complir dites necessitats. Es tracta d’una tecnologia innovadora, la qual ha irromput al mercat amb molta força. Aquesta comprèn les il·luminacions LED i OLED, que es basen en materials semiconductors fotoemissors que són capaços de convertir l’electricitat en llum.

El segon gran compromís en el esmentat paquet 20-20-20, és el fet de reduir en un 20 % les emissions de gasos d’efecte hivernacle, respecte les de 1990. Això està en consonància amb l’acord internacional conegut com a Protocol de Kyoto, el qual marca la reducció desitjada d’emissions de dits gasos per als països que formen part de l’acord. I és que associat al consum elèctric, hi ha una sèrie d’emissions a l’atmosfera produïdes, entre les quals troben l’emissió de CO\textsubscript{2}. Per tant, aquest aspecte està directament relacionat amb la millora de l’eficiència energètica, ja que amb aquesta, el consum elèctric es redueix i per tant, la quantitat d’emissions de CO\textsubscript{2} a l’atmosfera pot arribar a disminuir considerablement.

A part dels acords internacionals, les directrius europees i les seves corresponents transposicions nacionals sobre reptes energètics, no s’ha d’oblidar que la tecnologia LED és molt recent. Això té dos implicacions immediates. Per una banda, encara no s’ha establert una regulació prou meticulosa per a poder garantir a l’usuari un estàndard de qualitat ben definit. La segona implicació és el fet que les virtuts i possibilitats de dita tecnologia estan a l’ordre del dia, en canvi, els seus límits i problemes no són tant coneguts, i per tant, caldrà conèixer-los per a tenir-ne una visió més completa.
4. Conceptes teòrics

4.1. Principis fonamentals de la llum

El que es coneix com a “llum” és la manifestació d’energia en forma de radiacions electromagnètiques visibles per a l’ésser humà. Dites radiacions es propaguen en línia recta, és a dir, seguint l’eix de les ones lluminoses. Es pot caracteritzar la llum per la seva longitud d’ona, que està compresa entre 380 nm (color violeta) i 780 nm (color vermell); però també per la seva velocitat de propagació en el medi en que es troba (aproximadament \(3 \times 10^8\) m/s en el buit).

La llum és perceptible per a l’ull humà gràcies a les cèl·lules fotoreceptores, situades a la retina, que permeten la transformació de l’energia lluminosa en energia nerviosa que serà interpretada pel cervell. Entre aquestes cèl·lules es troben els bastonets, responsables de la visió en condicions de baixa lluminositat; els cons per la seva banda, són els responsables de la visió en colors.

D’altra banda, quan un raig de llum incideix sobre una superfície, aquest es divideix en els diferents fluxos il·lustrats en la Figura 2. Segons l’acabat de la superfície, dits fluxos seran dirigits, difusos, semidirigits o semidifusos.

El que es coneix com a “color” consisteix en una interpretació psicofisiològica de l’espectre electromagnètic visible. La llum blanca està composada per un conjunt de radiacions lluminoses amb una longitud d’ona diferent, i cada una d’elles crea una sensació cromàtica diferent a l’ull. Dita sensació depèn de la composició espectral del raig incident, i de la divisió aquest segons s’ha vist a la Figura 2, i és que un cos no té un color en sí. Del color deriven una sèrie de conceptes a tenir en compte:

- **Corba de distribució espectral**: il·lustra com es distribueix l’energia entre les diferents radiacions, la qual generalment s’expressa en termes relatiu a l’energia màxima radiada. Si mostra interrupcions es dirà que és discontínua, i en cas contrari, contínua.
- **Diagrama (o triangle) cromàtic del CIE**: és la representació matemàtica per mitjà d’un diagrama de colors dels colors de l’espectre visible (Figura 45 a l’Annex 3).
- **Temperatura de color (T_c)**: Expresada en kelvins, és la temperatura, a la qual el "cos negre" adquireix el mateix color que la llum en qüestió. Els colors es classifiquen segons la seva aparença càlida, neutre o freda (Taula 16).
- **Reproducció cromàtica**: correspon a l’aspecte cromàtic que presenta un cos il·luminat per una font lluminosa donada, en comparació amb una font de referència. Podem trobar una classificació de les fonts d’il·luminació segons el seu índex de reproducció cromàtica (Taula 17).
4.2. **La tecnologia LED**

- **Principis físics**

El LED (Light Emitting Diode) és un dispositiu semiconductor que pertany al tipus d’il·luminació d’estat sòlid. Això significa que la llum és emesa per un sòlid (el semiconductor) i no per un gas, plasma o filaments elèctrics com en el cas d’altres tecnologies com la incandescència o la fluorescència. Així doncs, els LEDs segueixen el fenomen de la electroluminescència, la qual es pot resumir en l’emissió de llum d’un cos quan és travessat per un corrent elèctric.

Figura 4. Esquema d’un xip de LED

Un xip de LED està format per tres capes principals: la capa p, la capa n i la capa activa que es troba entre les dues anteriors. En el moment en que es polaritza en directe el diode, degut a la teoria de bandes i al tractar-se d’un material semiconductor, els electrons passen d’un nivell energètic alt a un nivell energètic inferior, alliberant la resta de l’energia entre els dos nivells en forma de fotons. Segons el compost de les capes n i p, s’emetran fotons amb longitud d’ona diferent, i per tant, s’obtindrà un color diferent (Taula 1).

Taula 1. Alguns dels compostos emprats per a les capes de xips LED

<table>
<thead>
<tr>
<th>Compost</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenur de gal·lí (GaAs)</td>
<td>Infraroig</td>
</tr>
<tr>
<td>Arsenur de gal·lí i alumini (AlGaAs)</td>
<td>Roig i infraroig</td>
</tr>
<tr>
<td>Arsenur fosfuri de gal·lí (GaAsP)</td>
<td>Roig, taronja i groc</td>
</tr>
<tr>
<td>Nitrur de gal·lí (GaN)</td>
<td>Verd</td>
</tr>
<tr>
<td>Fosfur de gal·lí (GaP)</td>
<td>Verd</td>
</tr>
<tr>
<td>Selenur de zinc (ZnSe)</td>
<td>Blau</td>
</tr>
<tr>
<td>Nitrur de gal·lí i indi (InGaN)</td>
<td>Blau</td>
</tr>
<tr>
<td>Carbur de silici (SiC)</td>
<td>Blau</td>
</tr>
<tr>
<td>Diamant (C)</td>
<td>Ultraviolat</td>
</tr>
<tr>
<td>Silici (Si)</td>
<td>Groc elèctric</td>
</tr>
</tbody>
</table>

Els principals elements que componen un LED com es pot veure a la Figura 5 són doncs:

- **Terminals:** l’ànode (positiu) i el càtode (negatiu) s’encarreguen de conduir les càrregues i solen ser de llargada diferent per a diferenciar-se l’un de l’altre.
- **Xip semiconductor:** com ja s’ha comentat anteriorment, és on es produirà el fenomen de l’electroluminescència.
- **Càtode amb reflector:** serveix per a projectar la llum emesa des del xip cap a l’exterior del LED.
- **Fil pont:** serveix per comunicar els dos terminals.
- **Encapsulat epoxi:** per una banda serveix per a protegir els components interns del LED i per altre fa de lent emissora de la llum.
- **Dissipador térmic:** en el model de la figura esmentada no n’hi ha, però sovint (per als LED d’alta intensitat), cal dissipar de manera efectiva la calor emesa pel xip per a tal d’evitar danys en els components.
Per a tal d’emetre llum blanca es pot optar per dues solucions:

- **Capa de fósfor**

El procediment més emprat és afegir una fina capa de fósfor (de color groc pàl·lid) sobre un xip de llum blava. Per a aconseguir diferents tonalitats de blanc (blanc càlid, neutre o fred), es varia la tonalitat de la capa de fósfor.

- **Barreja additiva de colors RGB**

En aquest cas, la llum blanca s’aconsegueix barrejant raigs de llum vermella, verda i blava (RGB) a diferents longituds d’ona. Tot i poder regular el to de la llum, és una opció més cara i complexa.

Figura 7. Esquema de la conversió de llum blava a llum blanca per capa de fósfor

Figura 6. Esquema de la creació de llum blanca per suma additiva de colors

- **Principals tipus de LED**

Es poden diferenciar dos tipus principals de LEDs, els de baixa intensitat i els d’alta intensitat. Ambdós tenen encapsulats transparents, amb un alt índex de refracció (el qual es reduceix afegint un material entre el xip i la lent), una relativa estabilitat a altes temperatures (amb dissipadors de calor per als d’alta intensitat) i una gran hermeticitat enfront de l'exterior.

- **LED de baixa intensitat (DIP)**

L’encapsulat per aquest cas sol ser de 5 mm i de forma hemisfèrica en la majoria dels casos, però també cilíndrica o rectangular, depenen del grau de reflexió desitjat. Aquests tipus de LED són barats i el seu muntatge en gairebé qualsevol aparell lluminós és senzill. A més a més, tenen unes bones prestacions en relació amb el seu preu, el cicle de vida i l’escassa generació de calor, per lo que no necessiten dissipador de calor. El seu ús es sol limitar a la senyalització, la decoració o altres sistemes d’il·luminació que no necessiten un flux il·luminós important.

- **LED d’alta intensitat**

Per la seva banda, el LED d’alta intensitat es sol utilitzar per la seva elevada aportació de flux il·luminós. No obstant, associada a la seva alta intensitat, també genera bastanta calor en la direcció contrària al feix de llum, la qual cal dissipar per a que els components del LED no es vegin afectats. L’encapsulat es sol fabricar de silicona ja que permet conservar les propietats del LED enfront de canvis de temperatura bruscos, a més a més de servir com a lent.

Figura 8. Encapsulats típics de LEDs de baixa intensitat

Figura 9. Encapsulat típic de LEDs d’alta intensitat
Generalment, el xip està muntat sobre una capa de silicònia per a tal d’evitar les descàrregues electrostàtiques.

a) LEDs tipus SMD (Surface Mounted Device)

Els LEDs de muntatge superficial ofereixen diversos avantatges enfront els de forat passant (o DIP). La seva eficàcia lluminosa es situa entre els 60-70 lm/W (un 50% superior al DIP). La seva mida és molt reduïda i l’angle d'obertura pot arribar a ser de fins a 360° al poder distribuir els LED per tota la lluminària. Al tenir un Índex de reproducció cromàtica de fins al 80%, reproduexen fidelment els colors. D’altre banda, es solen agrupar formant matrius o grups ja sigui en sèrie o en paral·lel per a tal d’aumentar la potència total. A més a més, tenen la característica que si un dels LED es fon, al tenir un circuit auxiliar consistent una resistència, aquesta fa de pont i permet que la resta de LEDs en sèrie segueixin funcionant. L’encapsulat és molt compacte i resistent a cops i moviments. No obstant, no estan pensats per a estar continuament encesos ja que la important generació de calor pot afectar al seu rendiment, tot i la dissipació de calor. Els principals models d’aquest tipus de LED a l’actualitat són el 3528 (petits i de poca potència, es solen emprar en les tires de LEDs); el 5050 (encapsulat equivalent a tres LEDs 3528, utilitzat en làmpades); i el 5630 (encara més potent i petit que el 5050).

b) LEDs tipus COB (Chip on board)

Com s’ha comentat, els LEDs tipus SMD tenen problemes a l’hora de dissipar la calor generada. És per aquest motiu principal que es van desenvolupar els LEDs tipus COB. Aquest integra el grup de xips SMD en un únic conjunt que dissipa millor la calor i permet obtenir una eficàcia lluminosa de fins a 120 lm/W. Acostumen a tenir un angle d'obertura de fins a 160° i el seu Índex de reproducció cromàtica pot arribar a 90.

c) LEDs de potència

Són els LEDs que aporten major flux lluminós degut a la seva major potència (a partir de 1 W). A part d’això, les seves característiques són molt similars a les del tipus COB.

d) Els OLED

El diode orgànic emissor de llum (Organic Light-Emitting Diode), és la tecnologia més recent pertany en la il·luminació d’estat sòlid. Es tracta d’un material fet a partir de polímers de carboni, que pot ser imprès en unes capes molt fines que emeten llum al ser travessades per un corrent elèctric. Si bé és cert que encara ha de millorar alguns aspectes com una vida útil curta o un procés de fabricació car, es creu que podria arribar a ser una solució amb molt potencial.
• Aspectes de fabricació

El semiconductor triat per al LED s’obté en forma d’un disc molt fi. Aquest es talla en milers de parts les quals seran els xips individuals. Com és d’esperar, els xips, al pertànyer a regions diferents del disc, tindran característiques lleugerament diferents en quant a eficàcia, color o propietats elèctriques, entre d’altres. És per això que cal classificar-los segons famílies amb un rendiment i color similar. Aquest procés s’anomena *binning* i per fer-lo s’utilitzen les el·lipses de MacAdam. Aquestes delimiten en el diagrama cromàtic les regions cromàtiques per les quals l’ull humà no és capaç de diferenciar la diferencia de tonalitat. Segons la mida (o pas) de la el·lipse, el criteri serà més o menys restrictiu.

![Figura 15. El·lipses de MacAdam](image)

• Drivers

Els LEDs consumeixen una quantitat específica d’energia en proporció a la corrent que els travessa. Independentment del nombre de LEDs d’una il·luminària, el driver alimentarà amb la mateixa quantitat d’energia a cada un dels LEDs. Existeixen diferents tipus de sistemes de control per a tal de garantir el bon funcionament de la instal·lació il·luminàcia així com tractar de generar el major estalvi energètic possible:

- Protecció contra sobretensions: com el seu nom indica, protegeix tant el driver com el LED de sobretensions (generalment es posa el límit a 3 kV).

- Temperatura: alguns LED tenen un sensor a la placa de circuit imprès, per a tal d’ajustar la intensitat que els travessa a fi d’evitar sobreescalfaments.

- *Switching*: automatització de l’encesa i l’apagada de les il·luminàries.

- *Dimming*: regulació de la quantitat de llum aportada per les il·luminàries. Entre els principals sistemes autòmics existents, podem trobar:

 1) Regulació 1-10 V

 Es tracta d’un sistema de regulació unidireccional que permet regular el flux il·luminós entre el 1 i el 100 %. Funciona enviant una senyal analògica al driver amb un valor de tensió contínua entre 1 V (corresponent al nivell mínim de flux il·luminós) i 10 V (per al nivell màxim).

 2) Regulació DALI (Digital Addressable Lighting Interface)

 Com el seu nom indica, es tracta d’una interfície de regulació direccional que segueix l’estructura mestre-esclau (sent el controlador el mestre i les il·luminàries els esclaus). El sistema permet controlar fins a un total de 64 equips (incloent actuadors i il·luminàries), de manera individual i fins i tot, reproduir una sèrie d’escenes de llum preprogramades.

 3) Regulació BMS (Building Management System)

 Aquest sistema integra la gestió de les instal·lacions d’il·luminació, de climatització i d’alarmes d’un edifici.
Avantatges i inconvenients dels LEDs

El fet que la tecnologia LED estigui substituint altres tipus d’il·luminació es deu al gran nombre d’avantatges que presenta:

- **Avantatges de rendiment:**
 - Major eficàcia lluminosa que les làmpades incandescentes, fluorescents i halògenes
 - Encesa instantània amb el 100% del flux lluminós immediat
 - Llargà vida útil (50.000 hores) i bon manteniment del flux lluminós

- **Avantatges de disseny:**
 - Gran flexibilitat en disseny amb LEDs de tot tipus de mida i color
 - Gran varietat cromàtica des dels 3000 K fins als 7500 K
 - Índex de reproducció cromàtica alt (>80)
 - Llum direccional que permet una distribució més eficient del flux lluminós
 - Disseny compacte resistent a les vibracions
 - Possibilitat de regulació sense variació del color

- **Avantatges mediambientals:**
 - Menor consum energètic que les il·luminàries tradicionals (aproximadament un 50% menys que les de baix consum, 65% menys que les fluorescents i 80% menys que les halògenes i incandescentes)
 - Estalvi d’emissions de CO₂ degut al menor consum energètic
 - Sense mercuri ni altres metalls pesats
 - Control dels residus emesos al haver de complir la normativa CE i ROHS (“Restriction of Hazardous Substances”) Restricció de substancies perilloses segons la directiva 2002/95/CE
 - Sense radiacions d'infrarojos o ultraviolats
 - Reducció dels residus emesos al allargar la vida útil de les lluminàries
 - Menor contaminació lumínica al tenir llum direccional

- **Avantatges econòmiques:**
 - Estalvi energètic i per tant econòmic
 - Baix cost de manteniment i estalvi en reposicions degut a la llarga vida útil

- **Desavantatges:**
 - Alt cost econòmic, tot i que es va reduint progressivament
 - Baix rendiment a altes temperatures (a partir dels 65 °C es solen fer malbé)
 - Manca de regulació en quant als estàndards de qualitat i informació que han d’aportar els fabricants
 - Sovint es té en compte l’eficàcia de la làmpada en sí però no de la lluminària. I és que a part de l’eficàcia de la làmpada, cal sumar-li les pèrdues per eficiència tèrmica, del driver i de l’òptica
 - Tecnologia recent, la qual li falta recorregut per a conèixer tots els seus defectes o possibles perills per a la salut

En definitiva, es pot concloure que les avantatges dels LEDs superen amb esmeire les seves desavantatges, tot i que és necessari tenir-les present a l’hora de plantejar-se si emprar dita tecnologia. Finalment, el mercat de la il·luminació té fortes expectatives sobre aquesta tecnologia, preveient arribar a una eficàcia lluminosa de la lluminària de 170 lm/W per al 2020 (Taula 2).

![Taula 2. Previsió de l'evolució de l'eficàcia lluminosa dels LEDs de llum blanca càlida](image-url)
5. Criteris de qualitat i disseny

De cara a realitzar un projecte lumínic cal tenir clar de quins són els criteris de qualitat i disseny que es tindran en compte, ja que aquests no només ens donen pistes qualitatives de com ha de ser la solució adoptada, sinó que a més a més permeten determinar el nivell d’adecuació de dita solució a nivell quantitatiu. Ens centrarem sobretot en els criteris que afecten a la il·luminació d’espais interiors ja que és el cas tractat en aquest projecte.

5.1. Il·luminació i uniformitat

Tot espai necessita un cert nivell d’il·luminació per a tal de garantir la tasca a realitzar o bé per a garantir l’orientació i la mobilitat d’una zona de pas. De fet, aquest paràmetre determina la visibilitat de dita tasca ja que afecta a la sensibilitat de contrast o capacitat de discriminatory diferències de luminància i color, i finalment, a l’acomodació i temps d’adaptació de la visió. En concreto, cal fixar-se en el nivell mitjà d’il·luminació horitzontal, E_m (en lux), a l’alçada del pla de treball, que és de 0,85 m. Per a tal de conèixer el valor de l’E_m d’una instal·lació lumínica existent, es prenen mesures dels nivells d’il·luminació amb un luxòmetre a un nombre determinat de punts distribuïts de manera simètrica sobre el pla de treball. Aquest nombre de punts ve determinat pel valor de l’índex de cavitat del local, el qual es calcula segons la següent fórmula:

$$K = \frac{L \cdot A}{h \cdot (L + A)}$$

- L i A: longitud i amplada del local [m]
- h: alçada de la cavitat del local [m] i correspon a l’alçada de la lluminària sobre el pla de treball

<table>
<thead>
<tr>
<th>Índex de cavitat de l’espai</th>
<th>Nombre punts a recollir</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K < 1$</td>
<td>4</td>
</tr>
<tr>
<td>$1 < K < 2$</td>
<td>9</td>
</tr>
<tr>
<td>$2 < K < 3$</td>
<td>16</td>
</tr>
<tr>
<td>$K > 3$</td>
<td>25</td>
</tr>
</tbody>
</table>

Taula 3. Nombre de punts de mesura recomanats segons el Codi Tècnic de l’Edificació

No obstant, el confort visual es veu afectat negativament si existeixen grans diferències de luminància en diferents zones del camp de visió. Això es deu a la fatiga produïda en els músculs oculars els quals han de reduir la mida de la pupil·la en cas de luminànies excessives i expandir la mida de la pupil·la en cas contrari. Per evitar aquesta acomodació molestes, entra en joc el concepte d’uniformitat d’il·luminació, el qual és la relació entre el nivell d’il·luminació mínim i l’E_m. El nivell mínim d’aquest paràmetre és de 0,4.

Com a regla general, quan major sigui l’E_m, millor serà el rendiment visual del treballador. No obstant, cal evitar nivells massa alts ja que produiran enlluernament.

5.2. Control de l’enlluernament

L’enlluernament és el fenomen de visió que produeix molèsties i/o fa disminuir la capacitat de distinguir objectes degut a una mala distribució de les luminàncies o com a conseqüència de contrastos excessius a l’espai. La magnitud de la sensació d’enlluernament, també coneguda com a UGR (índex de l’enlluernament unificat), ve determinada pel nombre, la mida i la posició de les lluminàries, així com la seva luminància i el temps d’exposició a aquesta. La luminància màxima tolerable per a les persones en visió directa és de 7500 cd/m² (Figura 16). En el cas d’existir pantalles d’ordinador cal que la luminància que hi arriba de totes les direccions possibles sigui inferior a 200 cd.

Figura 16. Zona en la qual s’ha de complir el límit de luminància
Relacionat amb això últim trobem l’enlluernament reflectit, el qual ve donat per la reflexió de llum en superfícies setinades o semimat, lo qual pot generar un enfoquiment de la superfície de treball i reduir el seu contrast, provocant una disminució de la visibilitat de la tasca així com una sensació d’incomoditat. El paràmetre que determina dita magnitud s’anomena Factor de rendiment de contrast (CRF).

5.3. Modelat i ombres
La capacitat de modelat és la capacitat de les fonts de llum de mostrar les formes i la textura d’un objecte o persona. Si la llum incideix de manera difusa es diu que el modelat és suau i s’obtindrà una sensació de falta de relleu. En cas contrari, per a una llum amb forta component direccional, el modelat serà “dur” i les ombres es veuran deformades. Es considera que per tenir un modelat acceptable cal que la relació entre la il·luminació vertical i l’horitzontal sigui superior a 0,25.

5.4. Ambient cromàtic
Tant important són els paràmetres comentats anteriorment com el control de les propietats del color. I és que aquest té efectes psicofísics sobre el treballador, i pot arribar a influir el rendiment d’aquest. Cal recordar que els objectes o persones en sí no tenen un color en sí, sinó que aquest depèn de la distribució espectral de la llum. Tant la temperatura de la llum com la reproducció cromàtica d’una iluminària seran les encarregades de garantir una bona experiència lumínica de l’usuari en quant als colors de l’ambient. Si bé és cert que l’índex de reproducció cromàtica queda definit per normativa[5] per a cada tipus d’espai, i en general s’aconsella que sigui superior a 80 (Taula 17), la tria de la temperatura de color és més subjectiva. Si seguim la classificació de la Taula 16, s’acostuma a emprar temperatures de color elevades, i per tant fredes, en climes càlids. En cas d’absència de llum natural o climes freds, es sol triar temperatures de color baixes (o càlides). Aquesta decisió també té en compte el tipus d’activitat que es realitzarà en el local, així com el tipus d’usuari principal.

A l’hora de triar un model de làmpada i il·luminària, cal tenir en consideració aquests dos paràmetres.

Figura 17. Tipus d’enlluernament reflectit
Figura 18. Efecte de l’Índex de reproducció cromàtica i de la temperatura de color sobre la pell d’una persona
Figura 19. Índex de reproducció cromàtica segons el tipus de làmpada en termes genèrics
5.5. Ergonomia del lloc de treball

Per a tal poder realitzar còmodament la tasca destinada a un espai, la instal·lació luminica ha de respectar els següents punts:

1) No ha de produir problemes d’adaptació visual
2) Ha de proveir el contrast visual adequat
3) Ha de proveir la tasca visual d’un rendiment i satisfacció visual
4) Ha de limitar la producció de soroll
5) Ha d’eliminar l’efecte estroboscòpic i controlar l’efecte Flicker
6) Ha d’aportar poca càrrega tèrmica al local

Els tres primers punts es compleixen si es satisfan els criteris de qualitat esmentats anteriorment (del 5.1 al 5.4). Pel que fa a la producció de soroll per vibració, l’efecte estroboscòpic, així com l’efecte de parpelleig (o Flicker) i la càrrega tèrmica generada, és recomanable emprar balestres electrònics d’altafreqüència. Si la xarxa elèctrica acostuma a tenir una freqüència de 50-60 Hz, dits balestres treballen a una freqüència al voltant de 30 kHz, per la qual el parpelleig esdevé imperceptible per a l’ull humà.

5.6. Sistema de control i regulació

Dits sistemes estan formats pel conjunt de dispositius, cablejat i components que tenen per a funció, controlar de forma automàtica o manual l'encesa i apagada d'una instal·lació d'il·luminació, així com el seu flux lluminós. Per una banda, aquests sistemes són imprescindibles per al correcte funcionament de la instal·lació luminica, i per altre, tenen per objectiu maximitzar la seva eficiència energètica, aprofitant l’aportació d’il·luminació natural o bé controlant la presència d’usuaris. Es poden distingir quatre tipus de sistemes:

- regulació i control sota demanda de l'usuari, per interruptor manual, pulsador o comandament a distància;
- regulació d'il·luminació artificial segons aportació de llum natural per finestres, vidrieres, lluernes o claraboies;
- control de l'encesa i apagada segons presència a la zona;
- regulació i control per sistema centralitzat de gestió.

5.7. Manteniment

Per últim, a l’hora de triar els models de lluminàries, així com la seva disposició, cal pensar en triar una opció que faciliti el manteniment de la instal·lació luminica, per a tal de garantir el seu bon rendiment i eficàcia.
6. Normativa d’aplicació

- **Codi Tècnic de l’Edificació**

El Codi tècnic de l’edificació, aprovat el 17 de març pel Reial Decret 314/2006, es va publicar al BOE el 28 de març del 2006. És el marc normatiu que defineix les exigències que han de complir els edificis en relació amb els requisits bàsics de seguretat i habitabilitat establerts en la Llei 38/1999 del 5 de novembre, d’Ordenació de l’Edificació (LOE). Es tracta d’una norma de mínims obligatoris i d’objectius on s’indiquen els valors que s’han d'obtenir. Respecte a la il·luminació, conté les següents seccions:

- **Secció SU 4 - Seguretat enfront del risc derivat d’il·luminació inadequada.**

Aquesta secció recull els nivells mínims d’il·luminació de l’enllumenat normal en zones de circulació mesurats a nivell del terra (Taula 22) així com el factor d’uniformitat mínim. Per al nostre cas, al tractar-se d’espais interiors exclusiu per a persones, el nivell d’il·luminació mínima seria de 50 lx.

- **Secció HE 3 - Eficiència energètica en instal·lacions d’il·luminació.**

Aquesta secció estableix una sèrie de criteris i paràmetres per a assegurar un ús efficient de les instal·lacions d’il·luminació d’un edifici. Per a aplicar dita secció, cal seguir el procediment de verificació següent:

- Càlcul del valor d'eficiència energètica de la instal·lació, VEEI, segona la fórmula:

 \[
 \text{VEEI} = \frac{P \cdot 100}{S \cdot E_m} \left(\frac{W}{m^2 \text{per a cada } 100 \text{ lx}} \right)
 \]

 Sent:
 - **P**: la potència total instal·lada en làmpades més els equips auxiliars [W];
 - **S**: la superfície il·luminada [m²];
 - **E_m**: la il·luminació mitjana horitzontal mantinguda [lx]

- Comprovació de l’existència del sistema de control i regulació que optimitzi l’aprofitament de la llum natural.

- Verificació de l’existència d’un pla de manteniment.

A més a més, es defineixen els valors límit del VEEI que s’han de complir segons la zona d’activitat diferenciada (Taula 23).

D’altra banda, estableix que cal incloure a la memòria d’un projecte lumínic la següent documentació justificativa:

- Per a cada zona tractada cal que figurin els càlculs justificatius amb la següent informació: Índex del local (K) utilitzat en el càlcul, nombre de punts considerats, factor de manteniment previst (MF), Il·luminació mitjana mantinguda (Em), Índex d’enlluernament unificat (UGR), Índex de rendiment del color (o reproducció cromàtica, Ra), el valor d’eficiència energètica de la instal·lació (VEEI) i les potències dels conjunts de fonts d’il·luminació més equip auxiliar.

- Justificació del sistema de control i regulació triat per a cada zona.
Finalment, el Codi Tècnic de l’Edificació té en compte la norma la UNE 12 464-1, pel que fa als paràmetres de qualitat de la instal·lació acceptats com a mínims.

➢ Norma UNE-EN 12 464-1

Aquesta norma europea, creada el 2002, especifica els requisits d’il·luminació en llocs de treball o de pas en interiors, que satisfan les necessitats de confort i rendiment visual dels usuaris de l’espai. Més concretament, estableix els valors mínims (o màxims, segons el cas) dels paràmetres de qualitat d’una instal·lació luminica (com poden ser el Em, el UGR i el Ra, entre d’altres). També presenta consideracions a tenir en compte per a proporcionar a l’usuari de la instal·lació d’il·luminació una experiència el més agradable i productiva possible. Dits requisits d’il·luminació pretenen satisfacer les tres necessitats humanes bàsiques en quant a il·luminació:

1. Confort visual, el qual garanteix als treballadors una sensació de benestar, i indirectament, contribueix a un elevat nivell de la productivitat.

2. Prestacions visuals, el qual garanteix als treballadors poder realitzar correctament les seves tasques visuals, fins i tot en circumstàncies difícils i durant períodes llargs de temps.

3. Seguretat
7. Estudi luminic-ambiental dels espais

En aquesta part es busca estudiar les característiques ambientals dels espais triats així com la seva distribució lumínica i els nivells d’il·luminació actuals. Es separa dit estudi en dues parts: l’ambiental i la lumínica.

7.1. Part Ambiental
(Realitzat el dia 18/03/2016 a les 17h)

Motiu

De cara a realitzar una primera avaluació dels espais estudiats es realitza aquest estudi que es centra en conèixer la disposició i característiques dels espais en qüestió. Els tres espais estudiats es componen pel passadís esquerra, el passadís central i el passadís dret de la planta 9 de l’Edifici H de l’ETSEIB. Com es pot veure en aquest apartat, dits espais estan il·luminats en l’actualitat per fluorescència (lineal o compacta).

Figura 20. Vista en planta de la planta 9 de l’edifici H

Figura 21. Vista en planta en detall dels espais considerats 1,2 i 3
Examen visual

Espai 1: Passadís esquerra

L’espai es pot considerar de pública concurrenci. És principalment un espai interior de pas. No obstant, s’acostuma a utilitzar com a espai d’estudi al disposar de taules destinades a dit ús.

Figura 22. Fotografia de l’espai 1

Figura 23. Lluminària tipus regleta senzilla

Figura 24. Lluminària tipus regleta doble amb tubs fluorescents de temperatures de color diferents

Il·luminació

- 8 regletes senzilles: 1x 36W 840
- 8 regletes dobles: 2x 36W 765

Entorn

- 13 taules
 - 5 taules 1,10 m x 1,65 m, 0,73 m d’alçada
 - 8 taules 0,80 m x 1,80 m, 0,76 m d’alçada

- 19 finestres a una de les parets: 1,20 m x 1,83 m amb separació de 0,25 m entre elles. Formen un conjunt de 4 mòduls de 4 finestres i 1 mòdul de 3 finestres. Separació entre mòduls: 0,34 m

- Parets (3 m d’alçada).
 - Costat finestres. Part inferior a les finestres, alçada 1,07 m. Color gris clar.
 - Altres parets. Part inferior, alçada 1,07 m. Color gris clar. Part superior: blanc una mica grisós (brutícia lleu)

- Sostre: Fals sostre, gris clar. Presència d’una reixeta d’alumini situada aproximadament 0,10 m per sota el pla horitzontal de les lluminàries.

- Terra. Marró, cert acabat polit

Consideracions

- S’utilitzen en el mateix espai i fins i tot en la mateixa lluminària tubs amb temperatures de color diferents (4000 K i 6500 K). Això no és gens recomanable de cara al confort visual de l’usuari.

- Es considera que l’efecte de reducció del flux lluminós per part de la reixeta és menyspreable.

- Es considera que els factors de reflexió de cada superfície seran els següents:
 - Sostre (gris clar): $\rho_1 = 0,7$
 - Parets (gris clar): $\rho_2 = 0,5$
 - Terra (marró polit): $\rho_3 = 0,3$
Espai 2: Passadís central

Aquest espai és únicament un espai de pas interior. Permet la comunicació amb les ales esquerra i dreta de la planta, així com als ascensors i l’escala H.1.

Il·luminació

- 7 regletes senzilles: 1x 36W 765
- 1 regleta senzilla de superfície amb protecció de vidre: 1x 36W 840

Entorn

- 13 finestres a una de les paret: 1,20 m x 1,83 m amb separació de 0,09 m entre elles
- Parets (3 m d’alçada)
 - Costat finestres. Part inferior a les finestres, alçada 1,07 m. Color gris clar.
 - Costat ascensors. Mosaic color gris clar
- Terra. Marró, cert acabat polit
- Sostre. Fals sostre modular, gris clar.

Consideracions

- No es tindrà en compte la lluminària de superfície a la paret (Figura 27) ja que es considera que la seva funció és il·luminar el panell informatiu d’emergència.
- Es considera que els factors de reflexió de cada superfície seran els següents:
 - Sostre (gris clar): $\rho_1 = 0,7$
 - Parets (gris clar): $\rho_2 = 0,5$
 - Terra (marró polit): $\rho_3 = 0,3$
Espai 3: Passadís dret

Aquest espai és un espai interior de pas. Permet accedir als diferents espais de l’ala dreta (despatxos i banys). Consta d’una zona amb taula però el seu ús es limita a rebre visites o com a espai d’espera.

Il·luminació

- 9 Downlights: 2x 26W 840 2P

Entorn

- 4 finestres a una de les parets: 1,20 m x 1,83 m
 Estan dividides en un mòdul de 3 finestres (amb separació de 0,25 m entre elles) i 1 mòdul d’una finestra.
- 1 taula 1,22 m x 2,60 m amb extrems semicirculars, 0,75 m d’alçada
- Parets (2,6 m d’alçada degut a un fals sostre)
 – Costat finestres. Part inferior a les finestres, alçada 1,07 m. Color gris clar.
 – Costat despatxos. Color blanc/crema
- Terra. Marró, cert acabat polit
- Sostre: Fals sostre modular, gris clar.

Consideracions

- Hi ha una taula però es considera que s’utilitza com a zona d’espera i per tant no cal una il·luminació diferent a la resta de l’espai.
- Es considera que els factors de reflexió de cada superfície seran els següents:
 o Sostre (gris clar): $\rho_1 = 0,7$
 o Parets (gris clar/blanc-crema): $\rho_2 = 0,5$
 o Terra (marró polit): $\rho_3 = 0,3$
Conclusions

Si bé és cert que tots tres espais estan pensats en un principi per ser simplement de pas, l’espai 1 és més conflictiu ja que al tenir taules, part del seu ús és d’estudi. Si es considera doncs aquest últim espai com a sala d’estudi, és molt possible que el nivell mitjà d’il·luminació actual sigui insuficient (cosa que es comprovarà a la part de l’estudi lumínic 7.2).

Els espais 1 i 2 tenen tubs fluorescentes de 36 W, en canvi a l’espai 3 té làmpades de fluorescència compacta de 26 W. Totes les lluminàries presenten reactàncies ferromagnètiques amb els seus corresponents encebadors. Això podria facilitar l’opció de retrofit amb làmpades LED, però al fer-ho es perdria el marcatge CE.

Les finestres permeten un flux no menyspreable de llum natural. No obstant, de cara a fer els càlculs lumínics no es tindran en compte, considerant el cas crític de falta d’il·luminació natural.

Cal realitzar un estudi lumínic per a conèixer amb precisió els nivells d’il·luminació actuals per tal d’adequar les possibles solucions a les exigències dels espais i a la normativa corresponent.
7.2. Part Lumínica
(Realitzada el dia 19/04/2016 a les 21h)

Motiu

Aquest estudi servirà per conèixer amb precisió quins són els nivells d’il·luminació actuals dels diferents espais estudiats. D’aquesta manera es sabrà per una part, si s’està complint amb la normativa i per una altre part, quins són els nivells mínims d’il·luminació que hauran de complir les possibles solucions proposades. Tots tres espais es van pensar en un principi per ser utilitzats com espais interiors de pas, pel que s’espera que presentin uns nivells d’il·luminació mínims de 50 lx\(^6\) i un nivell mitjà d’il·luminació igual o superior a 100 lx\(^5\). Les mesures s’efectuen amb un luxòmetre digital Chauvin Arnoux de la sèrie Physics lin (20/20 000 lux, 3%), en condicions de baixa radiació solar per tal d’estar en les condicions crítiques de falta d’il·luminació natural.

Metodologia emprada

De cara a realitzar les mesures s’ha aplicat la regla dels nou punts degut al valor de l’índex de cavitat del local obtingut. Aquesta consisteix en dividir l’espai en subzones i recollir 9 mesures per a cada subzona amb la disposició de la Figura 31. D’aquesta manera, es pot estimar posteriorment el nivell de il·luminació mitjà de cada subzona, lo qual dóna una bona fiabilitat dels resultats globals. La disposició dels punts es pot veure a la Figura 30, els quals estan marcats en vermell. Les fonts de llum estan marcades en verd. No obstant, en certes parts de l’espai 3 s’ha seguit la mateixa regla però aquesta vegada amb 3 punts només, degut a l’espai reduït i que s’ha considerat que el resultat obtingut seguia sent fiable.

Figura 30. Vista en planta dels espais 1, 2, 3

Figura 31. Subzona de l’espai 1 amb els 9 punts de mesura
Mesures

<table>
<thead>
<tr>
<th>Nivell d’il·luminació [lux]</th>
<th>Nivell d’il·luminació [lux]</th>
<th>Nivell d’il·luminació [lux]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columna</td>
<td>Fila 1</td>
<td>Fila 2</td>
</tr>
<tr>
<td>1</td>
<td>103</td>
<td>178</td>
</tr>
<tr>
<td>2</td>
<td>136</td>
<td>213</td>
</tr>
<tr>
<td>3</td>
<td>141</td>
<td>207</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>153</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>85</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>86</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>67</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>42</td>
<td>51</td>
</tr>
<tr>
<td>17</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>34</td>
<td>62</td>
</tr>
<tr>
<td>19</td>
<td>63</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>124</td>
<td>164</td>
</tr>
<tr>
<td>21</td>
<td>153</td>
<td>170</td>
</tr>
<tr>
<td>22</td>
<td>158</td>
<td>180</td>
</tr>
<tr>
<td>23</td>
<td>127</td>
<td>173</td>
</tr>
<tr>
<td>24</td>
<td>204</td>
<td>227</td>
</tr>
<tr>
<td>25</td>
<td>189</td>
<td>214</td>
</tr>
<tr>
<td>Mitjana</td>
<td>93,5</td>
<td></td>
</tr>
<tr>
<td>Mitjana</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Mitjana</td>
<td>158</td>
<td></td>
</tr>
</tbody>
</table>

Taula 5. Nivells d’il·luminació mesurats a l’espai 2

Taula 6. Nivells d’il·luminació mesurats a l’espai 1

* Exemple de 9 punts pertanyent a una subzona dels quals s’obté la mitjana aritmètica.
8. Càlculs

A l’hora de realitzar els càlculs necessaris per a avaluat les necessitats lumíniques d’un espai així com per validar les solucions proposades, ens trobem davant dues alternatives.

La primera és el mètode analític. És el mètode tradicional de càlcul, el qual s’emprava quan encara no existia el mètode assistit per ordinador. Aquest consta d’una sèrie d’etapes ben definides amb els seus càlculs associats. Si bé és cert que aquest mètode pot ser molt útil per a tenir una idea prou acurada del nivell d’il·luminació obtingut, com del nombre de lluminàries a instal·lar, la precisió dels resultats, no deixa de ser bastant limitada. Per exemple, quan la geometria de l’espai es complica, el mètode perd eficàcia degut a la seva falta de flexibilitat.

El segon mètode és l’assistit per ordinador i consisteix en utilitzar un programa informàtic que permet dissenyar solucions lumíniques de manera guiada, simular-les i obtenir els resultats de manera numèrica i visual. Aquest mètode és el més emprat actualment degut a la seva versatilitat. El seu principal atractiu és el fet de poder realitzar un gran nombre de simulacions de manera ràpida i intuitiva. El dissenyador no necessita efectuar els càlculs i per tant, pot centrar-se en trobar la millor solució per a cada cas, provant diverses opcions, sense suposar gaire esforç. Un altre motiu clau per a emprar dit mètode és el fet de poder visualitzar en tot moment l’espai en sí, la disposició de les lluminàries, els nivells d’il·luminació obtinguts, entre molts altres elements. Això permet tenir una idea més complerta del disseny efectuat.

Per tant, l’aparició del mètode assistit ha facilitat molt la tasca del dissenyador i es podria fer el paral·lelisme amb altres àrees de l’enginyeria com ara la Mecànica dels Medis Continus (amb la simulació del mètode dels elements finits) o la Mecànica de Fluids (amb la dinàmica de fluids computacional). No obstant, es considera que la metodologia òptima és la combinació d’ambdós mètodes, ja que el mètode analític permet d’una banda, entendre els càlculs que està realitzant el programari i per altre banda, permet fer-se una idea ràpida del nombre de lluminàries necessari per a mantenir un cert nivell d’il·luminació desitjat.

8.1. Mètode analític

En el mateix mètode analític trobem dues variants: el mètode dels lúmens i el mètode de punt per punt. Si el que es vol és obtenir el valor mig de lluminàries necessari per a un espai donat, el primer mètode ja ens serveix. No obstant, si cal conèixer els nivells d’il·luminació en punts concrets o el cas requereixi una major precisió, s’emprarà el segon mètode. Per al nostre cas, només considerarem el primer mètode ja que és el que s’ha aplicat.

a. Descripció del mètode dels lúmens

Com s’ha comentat, l’objectiu d’aquest mètode és calcular el valor mig en servei de la il·luminació en un local interior amb enllumenat general. Si s’esquematitza el procés de dit mètode obtenim el diagrama següent.
Obtenir les dades d’entrada

Es compleixen els criteris del disseny?

Calcular el nombre de lluminàries, \(N \)

Definir la il·luminació mitjana desitjada \((E_m) \)

Tiar el model làmpada-lluminària

Disseny vàlid

Determinar:
- Índex cavitat del local \((K) \)
- Coeficient d’utilització \((CU) \)
- Factor de manteniment \((FM) \)

Calcular el flux il·luminós total requerit, \(\Phi_T \)

Calcular:
- Flux il·luminós real, \(\Phi_r \)
- Il·luminació mitjana real, \(E_r \)
- Emplaçament lluminàries

Calcular el valor d'eficiència energètica de la instal·lació \((VEEI) \)

Es compleixen els criteris del disseny?

Figura 32. Diagrama de flux del mètode dels lúmens
A continuació es detalla cada pas del procés il·lustrat a la Figura 32.

1. **Anàlisi del projecte**

És la etapa prèvia a realitzar cap mena de càlcul. Es tracta d’avaluar el tipus de projecte que es té. Això implica saber si el tipus d’il·luminació requerida és generalitzada i/o local, quin és la naturalesa de l’edifici al que pertany el local i per a quines activitats està destinat.

2. **Obtenir les dades d’entrada**

Aquest pas correspon a determinar les condicions de contorn de l’espai, les quals són:

- Dimensions geomètriques de l’espai i alçada del pla de treball, la qual se situa sempre a 0,85 m del terra, excepte indicació contrària (per exemple, que el pla de treball es situï al nivell del terra).

- Factors de reflexió de les parets, del sostre i del terra. Aquests depenen del seu color, textura i material. Els seus valors estan tabulats en taules indicatives com la Taula 7 i la Taula 8.

3. **Definir el nivell mitjà d’il·luminació desitjada, \(E_m \)**

Dit valor està tabulat per normativa a la Norma UNE-EN 12464-1 i depèn de la naturalesa de l’espai estudiat i la o les activitats que es realitzaran al local en concret.
4. Triar el model del conjunt làmpada i luminària

Aquesta selecció es fa tenint en compte l’anàlisi del projecte que s’ha fet prèviament i el tipus d’activitat que es realitza en el local. Amb aquesta tria obtenim els següents paràmetres fotomètrics del model:
- Flux lluminós de la luminària [Im]
- Potència elèctrica consumida [W]
- Eficàcia lluminosa [Im/W]
- Diagrama polar de distribució luminosa
- Taula de coeficients d’utilització
- Índex de reproducció cromàtica, Rₐ (el qual ha de complir amb la normativa aplicada al tipus d’espai estudiat) [5].

5. Determinar K, CU, MF

- Càlcit de l’índex de cavitat del local, K
 \[K = \frac{L \cdot A}{h \cdot (L + A)} \]

- Determinació del coeficient d’utilització, CU

Aquest valor ve tabulat pel fabricant i s’obté a partir de l’índex de cavitat del local i els factors de reflexió del sostre i les parets (generalment el factor de reflexió del terra no es té en compte ja que és el que menys influeix). En el cas que no coincideixin els valors d’entrada amb els de la taula es procedeix a interpolar.

- Càlcul del factor de manteniment, MF

El factor de manteniment (Maintenance Factor, MF), és imprescindible per a tal de garantir que es mantindran uns nivells d’il·luminació donats amb el pas del temps. Dit paràmetre té en compte la disminució del flux lluminós d’una instal·lació lumínica tant per motius interns (luminària i làmpada) com externs (condicions del local). Es determina el MF per a tal de calcular el valor inicial d’il·luminació necessària. Aquest valor inicial serà superior al nivell d’il·luminació estrictament necessària ja que amb el pas del temps i la disminució del flux lluminós de la instal·lació, es segueixi complint la il·luminació necessària per a l’espai. A més a més, el MF ens indica la periodicitat amb la que cal efectuar el manteniment de la instal·lació lumínica.

El MF ve donat per la multiplicació dels quatre principals paràmetres dels que depèn.
MF = LLMF · LMF · RSMF · LSF

- LLMF (Lamp Lumen Maintenance Factor) és el factor de manteniment del flux lluminós de la làmpada. Té en compte la disminució del flux lluminós de la làmpada degut a l’envelliment de la pròpia làmpada i és la relació entre el flux lluminós de la làmpada en un moment determinat i en el moment d’instal·lar-la.

- LMF (Luminaire Maintenance Factor) és el factor de manteniment de la lluminària. Té en compte la disminució del flux lluminós de la lluminària degut a l’embrutiment d’aquesta (el qual depèn de la seva forma i de l’exposició a la brutícia). És la relació entre el rendiment de la lluminària en el moment de neteja i en el moment inicial.

- RSMF (Room Surface Maintenance Factor) és el factor de manteniment de l’espai. Té en compte la disminució del flux lluminós de la lluminària degut a l’embrutiment de les zones perimetrales de l’espai. Representa la relació entre les reflectàncies de les zones perimetrales en el moment de la neteja i en el moment inicial. Depèn de la brutícia present en el local i de l’exposició a la brutícia del local segons l’activitat que s’hi practica. També depèn de la mida del local així com de la periodicitat de neteja.

- LSF (Lamp Survival Factor) és el factor de supervivència de de la làmpada. Té en compte la duració de vida de làmpades individuals en funció de la vida mitjana de totes les làmpades. Ve tabulat pel fabricant.

Si bé és cert que és recomanable emprar les taules de cada factor (Taula 19 i Taula 20), es pot aproximar el valor del factor de manteniment a 0,8 si es tracta d’un espai net i 0,6 si es tracta d’un espai brut.

- Determinació de l’alçada de suspensió de les lluminàries. Aquest pas depèndrà del sistema d’il·luminació que s’escolli.

![Figura 35. Vista lateral d’un espai genèric](image)

<table>
<thead>
<tr>
<th>Alçada de les lluminàries</th>
<th>Taula 10. Alçada de les lluminàries segons el tipus d’il·luminació i de local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locals d’alçada normal (oficines, habitatges, aules, etc)</td>
<td>Lo més altes possible</td>
</tr>
</tbody>
</table>
| Locals amb il·luminació directa, semidirecta i difusa | Minim: $h = \frac{2}{3} (h' - 0.85)$
Óptim: $h = \frac{3}{2} (h' - 0.85)$ |
| Locals amb il·luminació indirecta | $d = \frac{1}{2} (h' - 0.85)$
$h = \frac{3}{2} (h' - 0.85)$ |

6. Càlcul del flux lluminós total requerit, Φ_T

$$\Phi_T = \frac{E_m \cdot A}{CU \cdot MF} \text{ [lm]} \text{, amb A: superfície del local [m}^2\text{]}$$
7. Càlcul del nombre de lluminàries, \(N \)

\[
N = \frac{\Phi_T}{\phi_l \cdot n}, \quad \text{amb } \phi_l: \text{flux luminós d’una làmpada [lm]}
\]

\(n: \text{nombre de làmpades per lluminària} \)

En el cas que el resultat no sigui un número sencer, s’arrodoneix al número sencer immediatament superior.

8. Càlcul del flux luminós real, \(\Phi_R \), del nivell mitjà d’il·luminació real, \(E_R \), i de l’emplaçament de les lluminàries

- Per a calcular el flux luminós real s’utilitza la següent fórmula:

\[
\Phi_R = N \cdot n \cdot \phi_l \quad [\text{lm}]
\]

- El càlcul del nivell mitjà d’il·luminació real ve donat per la fórmula:

\[
E_R = \frac{\Phi_R \cdot CA \cdot MF}{A} \quad [\text{lx}]
\]

- Pel que fa a l’emplaçament de les lluminàries, la seva disposició dependrà de la geometria del local. Com a regla general, si aquest té forma rectangular, es distribueixen de manera uniforme en files o segons una quadrícula per a repartir el flux luminós de la manera més homogènia possible al pla de treball. A més a més, s’acostuma a deixar una distància de marge entre les lluminàries i les parets per a tal d’aprofitar al màxim el flux luminós de les lluminàries en el pla de treball.

9. Càlcul del Valor d’Eficiència Energètica de la Instal·lació (VEEI).

\[
\text{VEEI} = \frac{P \cdot 100 \text{ lx}}{A \cdot E_R} \quad \left[\text{w per cada 100 lx} \right]
\]

10. Validació del disseny

En aquesta etapa cal comprovar el compliment dels resultats obtinguts amb la normativa corresponent. Per una banda, s’ha de complir que el nivell d’il·luminació real és superior o igual al nivell d’il·luminació desitjat\(^5\). Per altre banda, el valor d’eficiència energètica de la instal·lació cal estar per sota del valor establert per normativa\(^6\).

Si alguna d’aquestes condicions no es compleix, es torna al pas 4 i es tria un altre model de làmpada/lluminària (o es canvia l’alçada d’aquest en el pas 5) i es refan els següents passos.

Un cop es compleixin els criteris de disseny, es pot donar el disseny per vàlid en quant als paràmetres d’\(E_m \), VEEI i \(R_a \). No obstant, per validar-lo del tot, caldria calcular també la uniformitat i l’UGR [Equació 1 de l’Annex C].

b. Aplicació del mètode

Per mostrar la validesa del mètode dels lúmens es procedeix a aplicar dit mètode en un dels espais estudiats en aquest projecte (l’espai 2: Passadís central). Per a tal d’agilitzar el procés i els càlculs, s’ha creat un full de càlcul Excel, amb tots els càlculs necessaris durant el procés [Figura 46].
S’estudia doncs el cas d’il·luminació actual per a tal de comparar els resultats obtinguts amb aquest mètode i els recollits durant l’estudi lumínic anteriorment presentat.

Pas 1. Anàlisi del projecte: L’espai estudiat és una zona interior de pas que dóna accés als ascensors, a l’escala H.1, així com a les ales laterals de la planta 9 de l’edifici H. Per tant, cal una il·luminació de tipus general que garantitzi la orientació i la mobilitat per l’espai.

Pas 2. Es tracta d’un espai de forma rectangular, amb les següents característiques:
- Dimensions: longitud: 19 m, amplària: 4 m, alçada: 3 m
- Pla útil: 0,85 m
- Factors de reflexió:
 - Sostre (gris clar): \(\rho_1 = 0,5 \)
 - Parets (gris clar): \(\rho_2 = 0,3 \)
 - Terra (marró polit): \(\rho_3 = 0,1 \)

Pas 3. Al tractar-se d’un espai del tipus 6.2.17: Àrea de circulació, passadís, d’un establiment educatiu\(^5\) (Taula 21), caldrà complir els següents requisits:
- \(\bar{E}_m = 100 \, \text{lx} \)
- \(UGR_L = 25 \)
- \(R_a = 80 \)
- \(VEEI_{\text{limit}} = 4,5 \)

Pas 4. S’escull un model de làmpada-luminària el més semblant al model que hi ha actualment instal·lat.
- Model: regleta senzilla: 1x 36W 840
- Flux lluminós de la làmpada [lm]: 3350 lm
- Eficiència de la luminària: 94%
- Fracció del flux dirigit cap a baix: 66%
- Potència elèctrica consumida [W]: 36 W
- Índex de reproducció cromàtica, \(R_a \): >80
- Diagrama polar de distribució lluminosa

Pas 5. Emprant la metodologia descrita en el pas 5 del mètode dels lúmens, obtenim:
- \(K = 1,54 \)
- \(CU = 0,7 \)
- \(FM = 0,8 \)

Pas 6. Calculem el flux total lluminós requerit: \(\Phi_T = 13 \, 571,43 \, \text{lm} \)

Pas 7. Calculem el nombre de luminàries necessàries: \(N = 6,53 \)
Com no surt un nombre sencer, arrodonirem a \(N = 7 \).

Pas 8. Calculem el flux lluminós real: \(\Phi_R = 14 \, 548 \, \text{lm} \)
Calculem el nivell mitjà d’il·luminació real: \(E_R = 107,2 \, \text{lx} \)
Pel que fa a l’emplaçament de les lluminàries, es considera la disposició actual (Figura 36).

Pas 9. Calculem el Valor d’Eficiència Energètica de la Instal·lació:

\[
\text{VEEI} = 3,09 \frac{W}{m^2 \text{ per cada } 100 \text{ lx}}
\]

Pas 10. Validem els resultats

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Valors requerits</th>
<th>Valors obtinguts</th>
<th>Compleix amb la normativa?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_m [\text{lx}])</td>
<td>100</td>
<td>107,2</td>
<td>Sí</td>
</tr>
<tr>
<td>(R_e)</td>
<td>> 80</td>
<td>> 80</td>
<td>Sí</td>
</tr>
<tr>
<td>(\text{VEEI} [(W/m}^2) \text{ per cada } 100 \text{ lx}])</td>
<td>< 4,5</td>
<td>3,09</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Taula 11. Comparació dels resultats obtinguts i els desitjats

Per tant, es pot comprovar com es compleix teòricament la normativa amb la solució proposada. Així doncs, es pot validar el disseny triat.

Si es comparen els resultats de l’ \(E_m \) seguint el mètode dels lúmens i l’obtingut durant l’estudi lumínic amb la regla dels 9 punts, tenim:

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Mètode dels lúmens</th>
<th>Estudi lumínic</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_m [\text{lx}])</td>
<td>107,2</td>
<td>106,9</td>
<td>0,31</td>
</tr>
</tbody>
</table>

Taula 12. Comparació dels resultats obtinguts amb el mètode dels lúmens i l’estudi lumínic

Com es pot veure, l’error és del 0,31%, el qual es pot considerar com a menyspreable. Això posa de manifest per una banda l’efectivitat del mètode dels lúmens i per altre, la validesa de l’estudi lumínic portat a terme.
8.2. Mètode assistit per ordinador

a. Descripció del mètode

Aquest mètode utilitza un programa informàtic luminotècnic. Un dels més utilitzats en l’actualitat és el Dialux, el qual és un programa gratuït que permet realitzar dissenys d’instal·lacions d’il·luminació tant interiors com exteriors. En aquest treball s’ha emprat la versió Dialux 4.12. Dit programa segueix les normatives vigents europees i està reconegut per la majoria dels fabricants de làmpades i il·luminàries internacionals, els quals posen a disposició de l’usuari els seus catàlegs interactius per a dissenyar nous projectes. Una de les avantatges d’aquest tipus de mètode és el fet de poder reproduir tant fidelment com es vulgui l’espai estudiat. Això implica des d’importat fotografies de superfícies per tenir el seu color i factor de reflexió el més semblant a la realitat, fins a importar objectes tridimensionals que formen part del mobiliari de l’espai.

Figura 38. Diagrama de flux del mètode assistit per ordinador amb Dialux 4.12
A continuació es passa a descriure els passos següits en el cas concret d’estudi.

1. Anàlisi del projecte
Seguiríem el mateix procés que pel mètode dels lúmens.

2. Obtenir les dades d’entrada
Seguiríem el mateix procés que pel mètode dels lúmens i inclouríem el pas de definir el nivell mitjà d’il·luminació desitjada, E_m (pas 3 del mètode dels lúmens).

3. Definir i crear el local
Aquesta part es pot desglossar en vàries etapes. Primerament, cal decidir si es comença un nou projecte interior o exterior, característica que es defineix en el pas 1. Seguidament, es defineixen les dimensions del paral·lelepíped fictici que contindrà el nostre local així com el factor de manteniment de l’espai. A partir d’aquí, es pot o bé crear des de cero la geometria interna del local o bé importar-la des d’un arxIU .cad del plànol del local. Una vegada fet aquest pas, s’afegixeixen els elements arquitectònics que componen l’espai, com ara les columnes, les finestres o les portes, entre d’altres. Ara es passa a definir les superfícies que componen l’espai. Començant per l’alçada del plànol útil, la qual es situa generalment a 0,85 m, i la zona marginal del local (sovint 0,5 m). Cal assignar tant al terra, com al sostre i a les parets el seu factor de reflexió i si es vol es pot importar una imatge d’una mostra de cada superfície per a que la simulació sigui el més semblant possible a les condicions reals. Un pas que no és obligatori però si recomanable fer és afegir a l’espai tots els elements de mobiliari i decoratius que es cregui que puguin afectar a la distribució de la llum, o bé per tenir una millor idea visual de l’espai. Això es fa important objectes modelats en 3D internos o externs al Dialux. Arribats a aquest punt, ja tenim el nostre local ben definit i el més semblant possible a la realitat.

4. Triar el model de la làmpada i la Lluminària
El Dialux ofereix una sèrie de catàlegs instal·lables i interactius dels principals fabricants de làmpades i lluminàries mundials. Aquests permeten cercar el model buscat segons el tipus de làmpada, la família a la que pertany, el número identificador o bé emprant altres filtres. Una vegada trobat un possible conjunt làmpada-lluminària candidat, es pot accedir a les seves dades luminotècniques, al seu diagrama polar i la seva taula de coeficients d’utilització. Hi ha fabricants que també indiquen el UGR màxim de la seva lluminària, cosa que simplifica una part del procés, com es veurà més endavant. Aquest conjunt d’informació serveix per triar o descartar els models que farem servir per a les posteriors simulacions. Per exemple, en aquesta informació apareix l’índex de reproducció cromàtica de la lluminària, R_a, el qual ha de complir la normativa de l’espai[5].

5. Determinar el nombre de lluminàries i la seva ubicació
Amb el model làmpada-lluminària seleccionat, s’introdueix en el assistent de Dialux el nivell mitjà d’il·luminació desitjada, E_m, determinat en el pas 2. A partir d’aquí, el programa ens proposa un nombre de lluminàries per a garantir dit nivell. No obstant, és recomanable validar dit valor amb el pas 7 del mètode dels lúmens, ja que la proposta del Dialux no té per que ser la millor solució per al nostre cas (ja que aquest valor també depèn de la ubicació de les lluminàries) i cal utilitzar-la més...
aviat per a tenir una idea orientativa. Segons la geometria del local les il·luminàries es poden inserir a l’espai de manera individual, en fila, en camp o de forma circular. La posició, orientació i alçada de muntatge és totalment parametritzable. En la majoria dels casos es cerca emprar el menor nombre possible de il·luminàries per a garantir el E_m establert, per tant, una ubicació que aprofiti al màxim els seus fluxos lluminosos és essencial.

6. Definir les superfícies i els punts de càlcul

Sovint interessa conèixer el E_m, l’UGR o altres paràmetres luminotècnics sobre una superfície o punt en concret, com per exemple la superfície de treball, o el punt de visió d’un treballador executant la seva tasca. D’aquesta manera, es pot assegurar que es compleixen els criteris de disseny allà on es desenvoluparan les tasques dels usuaris del local.

7. Inicialitzar els càlculs de la simulació

Un dels grans avantatges del mètode assistit per ordinador com ja s’ha comentat, és que els càlculs luminotècnics els fa el programari, i per tant, el dissenyador pot obtenir els resultats de manera pràcticament immediata.

8. Analitzar els resultats obtinguts

Dialux ofereix un llistat extens de resultats possibles. Generalment només caldrà analitzar una part de dits resultats. Aquesta part consta d’un resum dels resultats, el qual conté pràcticament tota la informació necessària per avaluar la validesa de la opció dissenyada.

Per una banda, apareix el nivell mitjà d’il·luminació obtingut en el pla útil i la uniformitat de la il·luminació corresponent. També apareixen les dimensions del local així com una vista en planta d’aquest amb les corbes isolux. També es pot veure el llistat de il·luminàries utilitzades amb els seus corresponents fluxos lluminosos (de la làmpada i de la il·luminària) així com la seva potència. A més a més, també apareix el VEEI obtingut.

També si es desitja, es pot accedir al llistat de il·luminàries emprades, on apareixen les principals característiques d’aquestes amb els seus diagrames polars.

Si s’ha afegit superfícies i punts de càlcul, el programa també aporta els corresponents valors de E_m, uniformitat d’il·luminació o UGR segons el cas. A més a més, es poden visualitzar les taules de valors del nivell d’il·luminació o de l’UGR per un nombre de punts parametritzable per a tenir una idea més precisa dels resultats en les diferents parts de la superfície creada. En el cas que totes les il·luminàries emprades d’un espai tinguin garantit el seu nivell UGR en la documentació facilitada pel fabricant, no caldrà calcular dit valor en la simulació.

Una de les eines que ens poden ser molt útil en la visualització dels resultats, són les opcions “Mostrar en CAD les isolínies” i “Representació en colors falsos”. Aquestes permeten veure els nivells d’il·luminació (i també de luminància per a la segona opció) en el espai tridimensional creat en el pas 3, definint l’escala de valors que es cregui convenient.

9. Validació del disseny

Aquesta etapa té per objectiu determinar si es compleixen els criteris del disseny establerts. Per una banda, cal comprovar que els següents paràmetres no tinguin un valor inferior al que estableix la normativa\(^9\).
- Nivell mitjà d’il·luminació en el pla de treball, E_m
- Uniformitat d’il·luminació, E_m/E_{min}
- Índex de reproducció cromàtica, R_a (això teòricament s’ha comprovat en el pas 4).

D’altre banda, cal assegurar-se que els següents paràmetres no tinguin un valor superior al que estableix la normativa:\[5\][6]:

- Índex de l’enllumenament unificat, UGR
- Valor d’Eficiència Energètica de la Instal·lació, VEEI

Si algun d’aquests valors no compleix amb la normativa, cal tornar al pas 4, al pas 5 o al pas 6, segons el cas i refer els següents passos. Per exemple, si el valor de l’E_m no és suficient, es pot augmentar el nombre de lluminàries, triar un altre model amb un flux lluminós més gran, variar l’alçada de suspensió de les lluminàries, entre altres opcions.

Finalment, un cop validat el disseny, es pot exportar la solució amb un document PDF amb tota la documentació que es cregui pertinent presentar, el qual és generat pel mateix programa.

b. Aplicació del mètode

Amb la finalitat de comparar el procediment del mètode dels lúmens amb el mètode d’assistit per ordinador, s’estudia el cas aplicat de l’espai 2: Passadís Central. No obstant, aquesta vegada es proposa un nou disseny d’il·luminació LED per a l’espai.

Pas 1. Anàlisi del projecte: Ídem que pel mètode dels lúmens

Pas 2. Obtenir les dades d’entrada: Ídem que pel mètode dels lúmens.

D’acord amb la normativa el nivell mitjà mantingut d’il·luminació és de 100 lx

Pas 3. Definir i crear el model: Es tracta d’una espai interior, al qual se li assigna un valor de factor de manteniment de 0,8 (al Dialux anomenat “Factor de degradació”, Figura 47). En el nostre cas, s’ha importat el plànol de la planta 9, en format .cad i s’ha delimitat l’espai interior del local (Figura 47). Se li afegeixen els elements arquitectònics (Figura 48). Es defineixen els factors de reflexió de les superfícies definint el seu color (Figura 49) i s’afegeix el mobiliari (Figura 50).

Pas 4. S’escull un model de làmpada-lluminària que consisteix en un panell de tecnologia LED molt utilitzat per a reemplaçar tubs fluorescents, el qual seria fàcil d’instal·lar en el fals sostre modular.

- Làmpada: Panell LED, Lunaria Mini Pro*
- Flux lluminós de la lluminària [lm]: 1130 lm
- Potència elèctrica consumida [W]: 18 W
- Eficàcia lluminosa [lm/W]: 74 lm/W
- UGR: <19
- Índex de reproducció cromàtica, R_a: >80
- Diagrama polar de distribució lluminosa

![Figura 39. Fotografia del panell LED i el seu diagrama polar](image-url)
Pas 5. Determinar el nombre de lluminàries i la seva ubicació: A la Figura 51 es pot veure com s’ha triat una distribució en línia de 7 lluminàries equidistantment separades.

Pas 6. Definir les superfícies i els punts de càlcul: Com a la fitxa tècnica de la lluminària triada, el fabricant garantitza un nivell UGR<19, no caldrà crear superfície o punts de càlcul de dit paràmetre. D’altra banda, es crea una superfície de càlcul en la que es calcularà el nivell d’il·luminació que arriba perpendicularment des de les lluminàries (Figura 53).

Pas 7. Inicialitzar els càlculs de la simulació: Simplement cliquem sobre la icona d’”inicialitzar càlcul”.

Pas 8. Analitzar els resultats obtinguts: A la Figura 55, es pot veure el resum dels resultats dels càlculs obtinguts amb la simulació feta. A més a més, la Figura 56, mostra els resultats de la superfície de càlcul afegida al pas 6.

Pas 9. Validació del disseny

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Valors requerits</th>
<th>Valors obtinguts</th>
<th>Compleix amb la normativa?</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{av} [lx] (en la superfície de càlcul)</td>
<td>100</td>
<td>126</td>
<td>sí</td>
</tr>
<tr>
<td>E_{av}/E_{min} (en la superfície de càlcul)</td>
<td>> 0,4</td>
<td>0,49</td>
<td>sí</td>
</tr>
<tr>
<td>R_a</td>
<td>> 80</td>
<td>> 80</td>
<td>sí</td>
</tr>
<tr>
<td>UGR</td>
<td>< 25</td>
<td>< 19</td>
<td>sí</td>
</tr>
<tr>
<td>VEEI [(W/m²) per cada 100 lx]</td>
<td>< 4,5</td>
<td>1,16</td>
<td>sí</td>
</tr>
</tbody>
</table>

Taula 13. Comparació dels resultats obtinguts i els desitjats

A la vista dels resultats obtinguts es pot afirmar que el disseny compleix tots els criteris marcats per normativa i per tant, es pot donar el disseny com a vàlid. A partir d’aquí, es podria generar un arxiu .pdf amb tota la informació que es cregués oportuna.
9. Solució adoptada i justificació

Pel que fa al canvi d’ill·luminació proposat, s’ha emprat el mètode assistit per ordinador degut a totes les avantatges anteriorment presentades. S’han presentat les solucions per a cada espai de forma resumida en les següents taules. Les dades tècniques de cada il·luminària es poden trobar a l’Annex B.

- **Local 1**

| 1. Definició de l’ús de l’espai a il·luminar i les hores d’utilització estimades |
|-----------------------------|-----------------------------|
| Espai interior de pas en un edifici educatiu, amb una zona dedicada a l’estudi. Ús: 1800 hores anuals |

| 2. Definició dels requisits luminotècnics a nivell qualitatiu i quantitatiu |
|-----------------------------|-----------------------------|
| Nivell mitjà d’ill·luminació, E_{m} | 500 lx |
| Uniformitat, E_{m}/E_{min} | ≥ 0.4 |
| Índex de l’enlluernament unificat, UGR | ≤ 19 |
| Índex de reproducció cromàtica, Ra | ≥ 80 |
| Valor d’Eficiència Energètica de la Instal·lació, VEEI | ≤ 4 (W/m²) per cada 100 lx |

Distribució lluminosa: Al tractar-se principalment d’una zona de pas, cal una distribució que garantitzi la mobilitat i l’orientació dels usuaris. A més a més, al constar també d’una zona d’estudi cal tenir especial atenció amb els criteris luminics de qualitat i disseny necessaris.

Possibilitat de regulació: Sistema de control DALI amb sensors crepusculars per a tal de generar un estalvi energètic

3. Comparativa de la situació actual i la proposada

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Actual</th>
<th>Proposada</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 regletes senzilles: 1x 36W 840</td>
<td>8 regletes dobles: 2x 36W 765.</td>
<td>10 panells LED 15 W (295x295) i 22 panells LED 26 W (620x620)</td>
</tr>
</tbody>
</table>

Vista isomètrica de l’espai
<table>
<thead>
<tr>
<th>Vista en planta de l’espai actual</th>
<th>Vista en planta de l’espai proposat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Temperatura de color | 4000 K i 6500 K
(s’utilitzen tubs amb temperatures de color diferents en la mateixa il·luminària doble sense motiu aparent) | 4000 K |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivell mitjà d’il·luminació, (E_m) (en el pla de treball)</td>
<td>152 lx</td>
<td>533 lx</td>
</tr>
<tr>
<td>Uniformitat, (E_m/E_{\min}) (en el pla de treball)</td>
<td>0,48</td>
<td>0,610</td>
</tr>
<tr>
<td>Índex de l’enlluernament unificat màxim, UGR (en el pla de treball)</td>
<td>24</td>
<td>< 19</td>
</tr>
<tr>
<td>Índex de reproducció cromàtica, Ra</td>
<td>> 80</td>
<td>> 80</td>
</tr>
<tr>
<td>Valor d’Eficiència Energètica de la Instal·lació, VEEI</td>
<td>2,96 (W/m(^2)) per cada 100 lx</td>
<td>1,14 (W/m(^2)) per cada 100 lx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Compliment dels requisits luminotècnics</th>
<th>No es compleix l’(E_m)</th>
<th>Es compleixen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux lluminós total</td>
<td>63 298 lm</td>
<td>90 000 lm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribució lluminosa</th>
<th>Si bé és cert que si fos exclusivament una zona de pas no només compliria la normativa sinó que presentaria una distribució lluminosa del tot correcte, aquest no és el cas. Tenint en compte la zona d’estudi, dita distribució no és prou uniforme i l’enlluernament pot produir molèsties a l’estudiant.</th>
<th>La distribució lluminosa permet estar dins uns nivells d’uniformitat i UGR que permeten l’ús de la zona d’estudi amb tota seguretat i comoditat. A més a més, es compleix que la (E_m) de les àrees circumdants immediates, és superior a 300 lx com marca el CTE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulació</td>
<td>Interruptor ON/OFF</td>
<td>Interruptor ON/OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Estalvi energètic i impacte mediambiental</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència instal·lada</td>
<td>1058,9 W; 8,2 W/m(^2)</td>
</tr>
<tr>
<td>Demanda energètica anual en kWh</td>
<td>1058,9 W x 1800 h = 1906,0 kWh</td>
</tr>
<tr>
<td>Estalvi energètic en kWh/any i en %</td>
<td>-</td>
</tr>
<tr>
<td>Emissions anuals evitades en kg de CO(_2)</td>
<td>-</td>
</tr>
</tbody>
</table>
1. Definició de l’ús de l’espai a il·luminar i les hores d’utilització estimades
Espai interior de pas en un edifici educatiu que dóna accés als ascensors i a l’escala H.1, així com a les ales laterals de la planta 9 de l’edifici H. Ús: 1800 hores anuals

2. Definició dels requisits luminotècnics a nivell qualitatiu i quantitatiu

<table>
<thead>
<tr>
<th>Nivell mitjà d’il·luminació, E_m</th>
<th>100 lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformitat, $E_m/E_{	ext{min}}$</td>
<td>> 0,4</td>
</tr>
<tr>
<td>Índex de l'enlluernament unificat, UGR</td>
<td>< 25</td>
</tr>
<tr>
<td>Índex de reproducció cromàtica, Ra</td>
<td>> 80</td>
</tr>
<tr>
<td>Valor d’Eficiència Energètica de la Instal·lació, $VEEI$</td>
<td>$\leq 4,5$ (W/m2) per cada 100 lx</td>
</tr>
</tbody>
</table>

Distribució lluminosa
Al tractar-se d’una zona de pas, cal una distribució que garantizzi la mobilitat i l’orientació dels usuaris.

Possibilitat de regulació
Sistema de control DALI amb sensors crepusculars per a tal de generar un estalvi energètic

3. Comparativa de la situació actual i la proposada

| Descripció | 7 regletes senzilles: 1x 36W 840 | 7 panells LED 15 W (295x295) |

Vista isomètrica i en planta de l’espai

<table>
<thead>
<tr>
<th>Temperatura de color</th>
<th>6500 K</th>
<th>4000 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivell mitjà d’il·luminació, E_m (en el pla de treball)</td>
<td>153 lx</td>
<td>126 lx</td>
</tr>
<tr>
<td>Uniformitat, $E_m/E_{	ext{min}}$ (en el pla de treball)</td>
<td>0,697</td>
<td>0,49</td>
</tr>
<tr>
<td>Índex de l'enlluernament unificat màxim, UGR (en el pla de treball)</td>
<td>16</td>
<td>< 19</td>
</tr>
<tr>
<td>Índex de reproducció cromàtica, Ra</td>
<td>> 80</td>
<td>> 80</td>
</tr>
<tr>
<td>Valor d’Eficiència Energètica de la Instal·lació, $VEEI$</td>
<td>$2,23$ (W/m2) per cada 100 lx</td>
<td>$1,16$ (W/m2) per cada 100 lx</td>
</tr>
</tbody>
</table>

4. Compliment dels requisits luminotècnics
Es compleixen

Local 2
Estudi de la tecnologia LED i la seva aplicació en un cas concret

<table>
<thead>
<tr>
<th>Flux il·luminós total</th>
<th>22 065 lm</th>
<th>10 500 lm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribució lluminosa</td>
<td>La distribució lluminosa permet l’orientació i la mobilitat per l’espai.</td>
<td>La distribució lluminosa permet l’orientació i la mobilitat per l’espai.</td>
</tr>
<tr>
<td>Regulació</td>
<td>Interruptor ON/OFF</td>
<td>Interruptor ON/OFF</td>
</tr>
</tbody>
</table>

5. Estalvi energètic i impacte mediambiental

<table>
<thead>
<tr>
<th>Potència instal·lada</th>
<th>302,4 W; 4,0 W/m²</th>
<th>112,4 W; 1,5 W/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consum anual = 302,4 W x 1800 h = 544,3 kWh</td>
<td>Consum anual = 112,4 W x 1800 h = 202,2 kWh</td>
</tr>
<tr>
<td>Estalvi energètic en kWh/any i en %</td>
<td>-</td>
<td>342,1 kWh/any ; 62,8 %</td>
</tr>
<tr>
<td>Emissions anuals evitades en kg de CO₂</td>
<td>-</td>
<td>222,0</td>
</tr>
</tbody>
</table>

Local 3.1

1. **Definició de l’ús de l’espai a il·luminar i les hores d’utilització estimades**

 Espai interior de pas en un edifici educatiu que dóna accés a despatxos i als banyos. Ús: 1800 hores anuals

2. **Definició dels requisits luminotècnics a nivell qualitatiu i quantitatiu**

<table>
<thead>
<tr>
<th>Nivell mitjà d’il·luminació, Em</th>
<th>100 lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformitat, Eₘi/Eₘₗₛ</td>
<td>> 0,4</td>
</tr>
<tr>
<td>Índex de l’enlluernament unificat, UGR</td>
<td>< 25</td>
</tr>
<tr>
<td>Índex de reproducció cromàtica, Ra</td>
<td>> 80</td>
</tr>
<tr>
<td>Valor d’Eficiència Energètica de la Instal·lació, VEEI</td>
<td>≤ 4,5 (W/m²) per cada 100 lx</td>
</tr>
</tbody>
</table>

- **Distribució lluminosa**: Al tractar-se d’una zona de pas, cal una distribució que garantitzi la mobilitat i l’orientació dels users.
- **Possibilitat de regulació**: Sistema de control DALI amb sensors crepusculars per a tal de generar un estalvi energètic.
3. Comparativa de la situació actual i la proposada

<table>
<thead>
<tr>
<th>Descripció</th>
<th>4 Downlights: 2x 26W 840 2P</th>
<th>7 panells LED 15 W (295x295)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vista isomètrica i en planta de l’espai 3.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatura de color</th>
<th>4000 K</th>
<th>4000 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivell mitjà d’il·luminació, E_m (en el pla de treball)</td>
<td>151 lx</td>
<td>234 lx</td>
</tr>
<tr>
<td>Uniformitat, E_m/E_{min} (en el pla de treball)</td>
<td>0,29</td>
<td>0,51</td>
</tr>
<tr>
<td>Índex de l’enlluernament unificat màxim, UGR (en el pla de treball)</td>
<td>< 19</td>
<td>> 19</td>
</tr>
<tr>
<td>Índex de reproducció cromàtica, Ra</td>
<td>> 80</td>
<td>> 80</td>
</tr>
<tr>
<td>Valor d’Eficència Energètica de la Instal·lació, VEEI</td>
<td>4,39 (W/m2) per cada 100 lx</td>
<td>1,37 (W/m2) per cada 100 lx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Compliment dels requisits luminotècnics</th>
<th>No es compleix el criteri d’uniformitat ni el VEEI</th>
<th>Es compleixen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux lluminós total</td>
<td>5 465 lm</td>
<td>15 000 lm</td>
</tr>
<tr>
<td>Distribució lluminosa</td>
<td>La distribució lluminosa permet l’orientació i la mobilitat per l’espai.</td>
<td>La distribució lluminosa permet l’orientació i la mobilitat per l’espai.</td>
</tr>
<tr>
<td>Regulació</td>
<td>Interruptor ON/OFF</td>
<td>Interruptor ON/OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Estalvi energètic i impacte mediambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència instal·lada</td>
</tr>
<tr>
<td>Consum anual = 249,6 W x 1800 h = 449,3 kWh</td>
</tr>
<tr>
<td>Estalvi energètic en kWh/any i en %</td>
</tr>
<tr>
<td>Emissions anuals evitades en kg de CO$_2$</td>
</tr>
</tbody>
</table>
Local 3.2

1. Definició de l’ús de l’espai a il·luminar i les hores d’utilització estimades

Idem que el local 3.1

2. Definició dels requisits luminotècnics a nivell qualitatiu i quantitatiu

Idem que el local 3.1

3. Comparativa de la situació actual i la proposada

<table>
<thead>
<tr>
<th>Descripció</th>
<th>5 Downlights: 2x 26W 840 2P</th>
<th>8 panells LED 15 W (295x295)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vista isomètrica i en planta de l’espai</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatura de color</th>
<th>4000 K</th>
<th>4000 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivell mitjà d’il·luminació, E_m (en el pla de treball)</td>
<td>156 lx</td>
<td>261 lx</td>
</tr>
<tr>
<td>Uniformitat, E_m/E_{min} (en el pla de treball)</td>
<td>0,2</td>
<td>0,566</td>
</tr>
<tr>
<td>Índex de l'enlluernament unificat màxim, UGR (en el pla de treball)</td>
<td>23</td>
<td>< 19</td>
</tr>
<tr>
<td>Índex de reproducció cromàtica, Ra</td>
<td>> 80</td>
<td>> 80</td>
</tr>
<tr>
<td>Valor d’Eficiència Energètica de la Instal·lació, VEEI</td>
<td>4,88 (W/m²) per cada 100 lx</td>
<td>1,38 (W/m²) per cada 100 lx</td>
</tr>
</tbody>
</table>

4. Compliment dels requisits luminotècnics

<table>
<thead>
<tr>
<th></th>
<th>No es compleix el criteri d’uniformitat ni el VEEI</th>
<th>Es compleixen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux lluminós total</td>
<td>6831 lm</td>
<td>12 000 lm</td>
</tr>
<tr>
<td>Distribució lluminosa</td>
<td>La distribució lluminosa permet l’orientació i la mobilitat per l’espai.</td>
<td>La distribució lluminosa permet l’orientació i la mobilitat per l’espai.</td>
</tr>
<tr>
<td>Regulació</td>
<td>Interruptor ON/OFF</td>
<td>Interruptor ON/OFF</td>
</tr>
</tbody>
</table>

5. Estalvi energètic i impacte mediambiental

<table>
<thead>
<tr>
<th>Potència instal·lada</th>
<th>312,0 W; 9,5 W/m²</th>
<th>128,4 W; 3,9 W/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cons. anual = $312,0 \text{ W} \times 1800 \text{ h}$ = 561,6 kWh</td>
<td>Cons. anual = $128,4 \text{ W} \times 1800 \text{ h}$ = 231,1 kWh</td>
<td></td>
</tr>
<tr>
<td>Estalvi energètic en kWh/any i en %</td>
<td>-</td>
<td>330,5 kWh/any; 58,8 %</td>
</tr>
<tr>
<td>Emissions anuals evitades en kg de CO₂</td>
<td>-</td>
<td>214,5</td>
</tr>
</tbody>
</table>
Per a calcular la potència instal·lada s’han considerat unes pèrdues aproximades actuals del 20% degut a l’estabilitzador ferromagnètic. Pel que fa a les pèrdues futures, al ser l’estabilitzador electrònic per a tecnologia LED, s’aproximen les pèrdues al 7%.

Pel que fa a les hores d’ús s’escull 1800 h anuals tenint en compte un horari estàndard de treball.

Per a calcular l’estalvi en emissions de CO\(_2\) s’aplica el factor de pas d’energia final a emissions de CO\(_2\) (Taula 24) provinent del mix energètic. Per a electricitat convencional peninsular, el seu valor és de 0,649 kg CO\(_2\)/kWh.

Si es recapitulen els resultats obtinguts pel que fa tant a l’estalvi energètic com d’emissions:

<table>
<thead>
<tr>
<th>Espais</th>
<th>Estalvi energètic total [kWh/any]</th>
<th>Estalvi d’emissions de CO(_2) total [kg CO(_2)/any]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>515,4</td>
<td>334,5</td>
</tr>
<tr>
<td>2</td>
<td>342,1</td>
<td>222,0</td>
</tr>
<tr>
<td>3.1</td>
<td>247,1</td>
<td>160,3</td>
</tr>
<tr>
<td>3.2</td>
<td>330,5</td>
<td>214,5</td>
</tr>
<tr>
<td>Total</td>
<td>1 435,0</td>
<td>931,3</td>
</tr>
</tbody>
</table>

Taula 14. Estalvi energètic i d’emissions de CO\(_2\) dels espais

Per tant, amb la solució proposada es produiria un estalvi anual de 1435 kWh i de 931,3 kg CO\(_2\). Si aquests resultats ja semblen considerables, i si es té en compte que només es tracta d’aproximadament el 20% de tot l’espai amb il·luminació de la planta, d’un edifici amb 11 plantes similars, es pot veure l’enorme impacte positiu energètic i d’emissions que pot tenir una solució com la presentada. El cas més il·lustratiu és l’espai 1. Amb la nova solució, no només s’incrementa tres vegades i mitja el nivell mitjà d’il·luminació, per a tal de complir amb la normativa, sinó que a més a més es té un estalvi energètic del 27%. Això demostra el potencial que pot tenir la il·luminació amb tecnologia LED.

Però no només es pot veure una millora en quant a l’eficiència energètica, sinó que hi ha una millor distribució del flux lluminós, ja que en la majoria dels espais hi ha un augment del flux lluminós total, així com una millorà de la uniformitat d’il·luminació.

Finalment, cal tenir un compte que amb la solució plantejada es respectaria la normativa per a tots els espais, a diferència del cas actual.

Es va considerar l’opció de dotar a les lluminàries dels espais 1 i 2 de sistemes de control tipus DALI juntament amb sensors crepusculars per a tal d’aprofitar la llum natural. No obstant, aquesta opció, a part d’encarir el projecte (com es mostrarà a l’apartat següent), feia augmentar el consum energètic local perjudicant el VEEI, tot i aportar una reducció considerable del consum energètic global. Malgrat ser una opció totalment vàlida, és considera que degut a les característiques de les instal·lacions lumíniques dels espais en qüestió, és més convenient dotar a les instal·lacions d’un sistema de control tipus ON/OFF.

D’altra banda, també es va estudiar l’opció de retrofit dels tubs fluorescents per tubs LED. No obstant, es va descartar ja que tot i donar unes prestacions prou bones, s’invalidaria el marcatge CE, lo qual es va considerar no desitjable en el cas estudiat ya que es tracta d’un edifici educatiu de pública concurrència.
10. **Pressupost**

A continuació es presenta la llista de materials emprat així com el pressupost desglossat de la solució proposada (sense i amb la opció de control DALI).

- **Sistema de control tipus ON/OFF**

<table>
<thead>
<tr>
<th>CODI</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu unitari [€]</th>
<th>Total [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>468516</td>
<td>Ut</td>
<td>Aura Light Lunaria Pro Mini G3, 295x295 840 700mA 2,5 m 2x0,75 mm² cable amb endoll</td>
<td>32</td>
<td>63,75</td>
<td>2040</td>
</tr>
<tr>
<td>468514</td>
<td>Ut</td>
<td>Aura Light Lunaria Pro G3, 595x595 840 700mA 2,5 m 2x0,75 mm² cable amb endoll</td>
<td>22</td>
<td>93,64</td>
<td>2060,08</td>
</tr>
</tbody>
</table>

Costos materials: 4100,08
Mà d’obra (150 hores a 30€/hora): 4500,00
Pressupost d’Execució Material: 8600,08
13% de Despeses Generals: 1118,10
6% de Benefici Industrial: 516,00

Suma: 10 234,18
I.V.A. 21%: 2149,18
Pressupost d’Execució per Contracta: **12 383,36**

- **Sistema de control tipus DALI**

<table>
<thead>
<tr>
<th>CODI</th>
<th>Unitat</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu unitari [€]</th>
<th>Total [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>468536</td>
<td>Ut</td>
<td>Aura Light Lunaria Pro Mini G3, 295x295 840 700mA DALI 2,5 m 2x0,75 mm² cable amb endoll 2,5 m 2x0,75 mm² cable DALI</td>
<td>32</td>
<td>70,98</td>
<td>2271,36</td>
</tr>
<tr>
<td>468534</td>
<td>Ut</td>
<td>Aura Light Lunaria Pro G3, 595x595 840 700mA DALI 2,5 m 2x0,75 mm² cable amb endoll 2,5 m 2x0,75 mm² cable DALI</td>
<td>22</td>
<td>101,62</td>
<td>2235,64</td>
</tr>
<tr>
<td>760138</td>
<td>Ut</td>
<td>Sensor Universal PIR, model EBDSPIR-DD</td>
<td>5</td>
<td>77</td>
<td>385</td>
</tr>
</tbody>
</table>

Costos materials: 4892,00
Mà d’obra (150 hores a 30€/hora): 4500,00
Pressupost d’Execució Material: 9392,00
13% de Despeses Generals: 1220,96
6% de Benefici Industrial: 563,52

Suma: 11 076,48
I.V.A. 21%: 2326,06
Pressupost d’Execució per Contracta: **13 402,54**
11. Model de factura anual

Per a tal d’exemplificar l’estalvi econòmic anual del subministrament elèctric de la instal·lació lumínica, es segueix un model de factura estàndard. Dit rebut està compost dels següents conceptes:

- **Terme fixe**: Potència contractada en kW
- **Terme variable**: Energia consumida en kWh
- **Impostos**: Impost elèctric, IVA

Es tria una tarifa 2.0.A normalitzada, amb una potència contractada de 6,928 kW. No es consideren descomptes ni lloguer d’equips de mesura i control. L’import per potència contractada és de 0,114873 Eur/kW per dia, considerarem 365 dies. L’import per energia consumida és de 0,144211 Eur/kWh. L’impot elèctric correspon al 5,11269632 % del subtotal. L’impot de l’IVA NORMAL correspon al 21 % del total.

❖ Rebut actual

Import per potència contractada	6,928 kW x 0,114873 Eur/kW x 365 dies.......... 290,48 €
Import per energia consumida	3,461,2 kWh x 0,144211 Eur/kWh.................... 499,14 €
SUBTOTAL	789,62 €
Impost electricitat	789,62 x 5,11269632 % .. 40,37 €
SUBTOTAL	829,99 €
Impost IVA NORMAL	829,99 x 21 % .. 174,30 €
TOTAL	1.004,29 €

❖ Rebut futur

Import per potència contractada	6,928 kW x 0,114873 Eur/kW x 365 dies.......... 290,48 €
Import per energia consumida	2,026,2 kWh x 0,144211 Eur/kWh..................... 292,20 €
SUBTOTAL	582,68 €
Impost electricitat	582,68 x 5,11269632 % .. 29,79 €
SUBTOTAL	612,47 €
Impost IVA NORMAL	612,47 x 21 % .. 128,62 €
TOTAL	741,09 €

Es pot observar com amb la nova solució hi hauria un estalvi anual de 263,20 € a la factura de la llum, és a dir un 26,21 % d’estalvi respecte a la situació actual.
12. **Programa de manteniment**

Per a tal de garantir la major eficiència i eficàcia possible de la nova instal·lació lumínica, cal establir un programa de manteniment adient. Per una banda, cal tenir en compte l’entorn al qual està exposat dita instal·lació. I és que la brutícia que es va acumulant amb el pas del temps sobre les lluminàries pot generar una disminució del flux lluminós emès per aquestes així com provocar un sobreescalfament dels drivers degut a la mala evacuació de la calor emesa. D’altra banda, la brutícia que s’acumula sobre les superfícies del local pot fer variar la seva reflectància i per tant, fer disminuir el nivell d’il·luminació sobre el pla de treball. A més a més, existeix la depreciació lumínica que experimenten les pròpies lluminàries amb el temps. Per als models de lluminàries triades, el fabricant presenta el manteniment del flux lluminós esperat en funció del temps (Taula 15), així com una vida útil de 50 000 hores. Tot això ja s’ha tingut en compte en els càlculs realitzats per Dialux, al triar un factor de manteniment de 0,8.

Per tant, seria indispensable realitzar una neteja periòdica tant de les lluminàries com de les superfícies dels locals, i programar la substitució de les lluminàries a partir d’un cert nivell de depreciació del flux lluminós.

<table>
<thead>
<tr>
<th>Taula 15. Manteniment del flux lluminós en funció del temps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumen maintenance</td>
</tr>
<tr>
<td>L70850</td>
</tr>
<tr>
<td>L80850</td>
</tr>
<tr>
<td>L90850</td>
</tr>
</tbody>
</table>

13. **Impacte mediambiental**

A l’hora de triar una solució per a un projecte cal tenir molt en compte l’impacte que aquest tindrà a l’entorn immediat i al medi ambient.

Primerament, pel que fa a la generació de residus i al seu reciclatge, destacar que els models de lluminària triats tenen cablejats lliures d’halògens. D’altra banda, al tenir una vida útil projectada de 50 000 hores, tot i que calgui canviar abans de finalitzar dita vida útil les lluminàries degut a la depreciació lumínica, això allarga molt el temps de recanvi de les lluminàries en comparació amb la situació actual (entre 10 000 h i 20 000 h de vida útil de les làmpades). Això provoca una disminució considerable dels residus generats deguts als recanvis.

Un altre detall important de cara als usuaris de la nova instal·lació lumínica és el fet que els models de les lluminàries triades no emeten radiació ultraviolada, la qual pot arribar a ser perjudicial per als ulls i la pell de les persones.

Finalment, com s’ha vist a la Taula 14, al produir-se un estalvi energètic, degut a la major eficiència de la instal·lació, es produirà també un estalvi important en quant a emissions de CO₂, generant un impacte positiu per al medi ambient.
14. Conclusions

Es considera que s’han assolit els objectius marcats per al projecte. L’estudi teòric de la luminotècnia ha sigut una eina indispensable per a entendre la problemàtica plantejada, així com les possibilitats i els límits de la tecnologia LED. D’altra banda, per a tal d’aplicar dita tecnologia en un cas concret, s’han hagut de seguir uns criteris tècnics i de disseny específica, no només per complir amb la normativa corresponent, sinó per aportar una solució que millora la qualitat de la instal·lació actual, així com el confort de l’usuari.

Amb aquest projecte es vol posar de manifest el potencial que té la tecnologia LED, no només per a millorar la qualitat luminica, sinó pel gran estalvi energètic i d’emissions de CO₂ i per tant, el seu impacte positiu al medi ambient. No obstant, com tota tecnologia, té els seus límits, els quals cal tenir sempre presents.

Com a possible continuació d’aquest projecte es podria plantejar l’estudi del canvi de la instal·lació luminica de tota la planta 9, així com d’altres plantes. Això obriria la opció de tenir un control centralitzat de la il·luminació, i per tant, gràcies a sistemes de control tipus DALI o BMS, aportar un major estalvi de consum global.
15. Bibliografía

[8] *Factores de emisión de CO₂ y coeficientes de paso a energía primaria de diferentes fuentes de energía final consumidas en el sector de edificios en España*, Resolució conjunta dels Ministeris d’Industria, Energia i Turisme i Ministeri de Foment, Gener 2016

[9] *Guía Técnica de Eficiencia Energética en Iluminación. Oficinas*, Instituto para la Diversificación y Ahorro de la Energía (IDAE) y el Comité Español de Iluminación (CEI), Març 2001

