Resum

L’any 2015 li concedeixen a la Universitat Autònoma de Barcelona (UAB) un projecte europeu DIDSOLIT finançat per la UE, per avaluar el cost-benefici d’un sistema d’energia renovable. Davant d’aquest escenari, la UAB es va posa en contacte amb el centre CITCEA per dur a terme aquest projecte d’enginyeria. Posteriorment, es procedeix amb la compra d’un dish Stirling TRINUM a l’empresa INNOVA SOLAR, que és instal·lat a l’edifici del ETSEIB, UPC, Barcelona.

Davant d’aquesta oportunitat, es proposa un Treball Final de Grau enfocat en l’estudi del dish Stirling instal·lat a la universitat, centrant-se en el seu funcionament i la seva integració a la xarxa elèctrica i a una xarxa de calor.
Sumari

RESUM .......................................................... 1
SUMARI .......................................................... 3
LLISTAT DE FIGURES .............................................. 7
LLISTAT DE TAULES .............................................. 10
1. PREFACI .......................................................... 11
   1.1. Motivació.................................................. 11
   1.2. Requeriments previs .................................. 11
2. INTRODUCCIÓ .................................................. 13
   2.1. Objectius del projecte ................................ 14
   2.2. Abast del projecte ..................................... 14
3. ESTAT DEL ART ................................................ 15
   3.1. Història del dish Stirling ................................ 15
   3.2. Tecnologies renovables solars ......................... 16
       3.2.1. L’energia solar ..................................... 16
       3.2.2. Un recurs renovable ................................ 16
       3.2.3. Tecnologies solars ................................ 17
       3.2.4. Sistemes d’alta temperatura ..................... 19
   3.3. Funcionament bàsic del dish Stirling ................. 22
       3.3.1. El motor Stirling .................................... 22
       3.3.2. Tipus de motor ..................................... 23
       3.3.3. Fluid de treball .................................... 26
       3.3.4. Control del motor .................................. 27
       3.3.5. Cicle termodinàmic ................................ 28
   3.4. Descripció dels components del dish Stirling ........ 31
       3.4.1. Concentrador solar parabòlic ..................... 31
       3.4.2. Receptor ............................................. 33
       3.4.3. Sistema de generació: Motor Stirling i alternador 35
       3.4.4. Sistema de refrigeració ............................. 35
   3.5. Generació tèrmica ........................................ 36
   3.6. Generació elèctrica ....................................... 37
   3.7. Oferta comercial ......................................... 38
       3.7.1. Innova Solar Energy ................................. 38
3.7.2. Energon ................................................................. 39
3.7.3. Infinia Solar ......................................................... 40
3.7.4. United Sun System ............................................... 41
3.7.5. Ripasso Energy .................................................. 42

4. EL DISH STIRLING TRINUM ...................................... 43
   4.1. Objectius de la instal·lació ..................................... 43
   4.2. Descripció del sistema ......................................... 43
   4.3. Elements de la instal·lació ....................................... 45
   4.4. Circuit primari .................................................. 45
   4.5. Circuit secundari ............................................... 51
   4.6. Control (Monitorització) ....................................... 53
   4.7. Estructura de suport ........................................... 54

5. ESTUDI ENERGÈTIC DEL DISH STIRLING .................. 55
   5.1. La radiació solar ................................................ 56
       5.1.1. Instruments de mesura .................................. 56
       5.1.2. Moviment solar .......................................... 56
       5.1.3. Adquisició de la radiació solar ....................... 59
       5.1.4. Càlcul de la radiació solar rebuda pel dish Stirling 60
   5.2. Condicions de l’estudi ......................................... 61
   5.3. Generació d’energia ............................................. 62
   5.4. Seguiment solar ................................................ 69
   5.5. Rendiment tèrmic i elèctric .................................. 69
   5.6. Producció energètica anual ................................... 71

6. FORMA DE CORRENT DEL DISH STIRLING .................... 73

7. OPTIMITZACIÓ DEL SISTEMA ACS ............................. 77
   7.1. Configuració de la bomba ..................................... 78
   7.2. Resultats .......................................................... 79

8. ESTUDI ECONÒMIC .................................................... 81
   8.1. Condicions de l’estudi ......................................... 82
   8.2. Avaluació i comparació de les inversions. Càlcul del VAN i del TIR per els 3 supòsits. ........................................ 84

CONCLUSIONS .......................................................... 90

AGRAÏMENTS ............................................................ 91

BIBLIOGRAFIA ............................................................ 92
Referències bibliogràfiques................................................................. 92

ANNEX A: GRÀFICS DE LA GENERACIÓ DIÀRIA D’ALGUNS DELS DIES D’ESTUDI............................................................ 95
Llistat de figures

Figura 3.1. Concentrador cilíndric-parabòlic.................................................................20
Figura 3.2. Camp d'heliòstats amb torre central............................................................20
Figura 3.3. Concentrador solar parabòlic .........................................................................21
Figura 3.4. Motor Stirling tipus Alpha..............................................................................24
Figura 3.5. Motor Stirling tipus Beta..............................................................................24
Figura 3.6. Motor Stirling tipus Gamma ...........................................................................25
Figura 3.8. Motor Stirling de pistó lliure .........................................................................26
Figura 3.7. Motor Stirling cinemàtic .................................................................................26
Figura 3.9. Gràfic del cicle termodinàmic Stirling .............................................................29
Figura 3.10. Components del dish Stirling ......................................................................31
Figura 3.11. Dues possibles configuracions de concentradors .........................................33
Figura 3.12. Receptor de cavitat.......................................................................................34
Figura 3.13. Dish Stirling Trinum.....................................................................................39
Figura 3.14. Dish Stirling Energon ..................................................................................40
Figura 3.15. Dish Stirling United Sun System.................................................................41
Figura 3.16. Característiques dish Stirling Ripasso Energy ............................................42
Figura 3.17. Dish Stirling Ripasso Energy .....................................................................42
Figura 4.1. Elements principals de la instal·lació...............................................................46
Figura 4.2. Miralls del concentrador solar.......................................................................46
Figura 4.3. Moviment azimutal i moviment d'altitud......................................................47
Figura 4.4. Posició de treball i posició de seguretat del dish Stirling .............................48
Figura 4.5. Electric Control Unit & Hydraulic Control Unit

Figura 4.6. Vista interior i exterior del acumulador

Figura 4.7. Bomba de la marca Grundfos

Figura 4.8. Válvula d'expansió

Figura 4.9. Esquema sistema de monitorització

Figura 5.1. Esquema de totes les fases de conversió d'energia

Figura 5.2. Coordenades horàries

Figura 5.3. Coordenades horitzontals

Figura 5.4. Exemple diagrama solar

Figura 5.5. Exemple diagrama rectangular o cartesià

Figura 5.6. Localització del dish Stirling i el piranòmetre

Figura 5.7. Coordenades solars

Figura 5.8. Gràfic de la generació d'energia del dia 21 de maig

Figura 5.9. Gràfic de la generació d'energia del dia 23 de maig

Figura 5.10. Gràfic de la temperatura del focus calent i la potència elèctrica generada

Figura 5.11. Gràfic de la relació entre la potència elèctrica i la temperatura del focus calent

Figura 5.12. Gràfic de la temperatura del focus calent i la potència tèrmica generada

Figura 5.13. Gràfic de la relació entre la potència tèrmica i la temperatura del focus calent

Figura 5.14. Gràfic que relaciona l'energia solar diària rebuda pel dish Stirling amb la generació d'energia tèrmica i elèctrica segons INNOVA

Figura 5.15. Gràfic que relaciona l'energia solar diària rebuda pel dish Stirling amb la generació d'energia tèrmica i elèctrica segons el supòsit 2

Figura 5.16. Gràfic que relaciona l'energia solar diària rebuda pel dish Stirling amb la generació d'energia tèrmica i elèctrica segons el supòsit 3
Figura 5.17. Gràfic que relaciona l'elevació solar i azimut amb la del dish Stirling 

Figura 5.18. Energia tèrmica generada cada mes segons els 3 supòsits 

Figura 5.19. Energia elèctrica generada cada mes per els 3 supòsits 

Figura 6.1. Esquema simplificat de les connexions elèctriques 

Figura 6.2. Senyals de corrent, intensitat i potència generada pel dish Stirling mostrades al oscil·loscopi 

Figura 6.3. Senyals de corrent, intensitat i potència que arriba a la xarxa mostrades al oscil·loscopi 

Figura 7.1. Esquema simplificat de la instal·lació 

Figura 7.2. Esquema de la configuració 1 de la bomba 

Figura 8.1. Projecció d'ingressos i despeses per el supòsit 1 

Figura 8.2. Projecció d'ingressos i despeses per el supòsit 2 

Figura 8.3. Projecció d'ingressos i despeses per el supòsit 3
Llistat de taules

Taula 3.1. Característiques dish Stirling INNOVA ............................................................. 39
Taula 3.2. Característiques dish Stirling Energon ................................................................. 39
Taula 3.3. Característiques Power dish Stirling ................................................................. 40
Taula 3.4. Power Dish Stirling ............................................................................................. 41
Taula 3.5. Característiques dish Stirling United Sun System .............................................. 41
Taula 4.1. Principals característiques del dish Stirling Trinum .............................................. 44
Taula 4.2. Característiques del refrigerant ........................................................................... 51
Taula 4.3. Dades recopilades per el programari Udicom Lector ........................................... 54
Taula 5.1. Percentatge de la component difusa segons les condicions meteorològiques .... 56
Taula 5.2. Rectes de regressió per l’energia generada diària en funció de la radiació solar rebuda segons els 3 supòsits ............................................................................................... 67
Taula 5.3. Rendiments obtinguts segons els 3 supòsits ....................................................... 70
Taula 5.4. Resultats de la generació d’energia i rendiments per tots els dies estudiats...... 71
Taula 6.1. Distorsió total dels harmònics de les senyals estudiades ...................................... 74
Taula 7.1. Rendiments obtinguts amb les diferents combinacions de temperatura ............ 80
1. Prefaci

1.1. Motivació

El meu gran interès per les energies renovables així com assignatures com Màquines elèctriques i Electrotècnia van ser la principal motivació per dur a terme aquest treball amb l'objectiu d'ampliar coneixements en aquest àmbit.

És una gran oportunitat per mi posar en pràctica els coneixement adquirits en aquestes àrees, així com les competències i capacitats desenvolupades al llarg del grau, per a la realització d'un projecte de final de grau.

1.2. Requeriments previs

Els requeriments previs necessaris per a la realització d'aquest projecte són els coneixements obtinguts a les assignatures de Màquines elèctriques i Electrotècnia. Tanmateix altres assignatures, com Estadística i Organització i gestió també m'han aportat coneixements molt útils per desenvolupar el projecte amb èxit.
2. Introducció

Vivim en una societat que es dedica a la producció de béns i serveis a través de la indústria. Aquest model de societat precisa consumir grans quantitats de matèria prima i a la vegada grans quantitats d’energia per al seu funcionament. Es pot afirmar, que el creixement de les societats està estrictament relacionat amb un increment del consum. Conseqüentment, el consum mundial ha augmentat considerablement els darrers anys i res sembla indicar un possible canvi de tendència.

Aquest continu creixement del consum comporta greus problemes en termes de sostenibilitat del nostre planeta. Per una banda, les reserves de combustibles fòssils es van exhaurint any rere any, causant així una gran preocupació mundial i a la vegada tensions entre països per fer-se amb aquests recursos. Per altre banda, els gasos d’efecte hivernacle, bàsicament el diòxid de carboni (CO₂) s’acumulen a l’atmosfera impedint així que les radiacions solars puguin escapar a l’espai. Això comporta que la temperatura global del planeta augmenti. Diversos científics de la ONU afirmen que si seguim amb aquest ritme d’emissions, la temperatura global al 2100 haurà augmentat entre 4 i 5 respecte l’era preindustrial. Les conseqüències seran variables, des de el ja esmentat augment de la temperatura i del nivell del mar fins a inundacions, sequeres i ciclons. Precisament, per combatre el canvi climàtic el passat mes de Desembre es va celebrar la cimera de París, on els països més desenvolupats del món es van reunir per prendre mesures al respecte. Un dels objectius més rellevants que es van pactar durant la cimera va ser el compromís de treballar perquè l’increment futur de la temperatura mitjana del planeta estigui per sota dels 2 graus arribant fins i tot, si és possible, als 1,5 graus. Tot i que no hi ha compromisos concrets de reduccions d’emissions de gasos d’efecte hivernacle.

És evident doncs, que els països que més contribueixen al canvi climàtic s’han de replantejar les seves polítiques energètiques apostant plenament per les energies renovables amb l’objectiu de minimitzar l’impacte ambiental i a la vegada ser més independents en l’àmbit energètic.

Les energies renovables ofereixen un gran ventall possibilitats; energia solar, energia a partir de la biomassa, energia eòlica, energia hidràulica, energia mareomotriu, energia a partir de l’onatge o bé l’energia geotèrmica. Una de les tecnologies més eficientes en energia Solar, és la que utilitza un dish parabòlic amb motor Stirling. Aquesta tecnologia presenta una gran
potencial, amb un rendiment que pot arribar al 30%, competint amb altres alternatives com l’energia fotovoltaica.

És per tots aquests motius que s’ha decidit dur a terme aquest treball de final de grau. Aprofitant la instal·lació de Dish Stirling del ETSEIB es pretén estudiar les característiques funcionals del motor i el seu rendiment així com adquirir dades de la seva producció tèrmica i elèctrica tot relacionant-ho amb la radiació solar.

2.1. Objectius del projecte

Així doncs, els objectius principals del projecte són:

- Estudi i investigació de la tecnologia Stirling, sobre el seu funcionament, parts i tipus.
- Estudi del dish Stirling instal·lat al ETSEIB, UPC, Barcelona:
  - Adquisició de dades per analitzar el seu funcionament, rendiments i altres característiques.
  - Estudiar quina és la forma de la intensitat que injecta a la xarxa.
  - Optimitzar la part tèrmica amb l’objectiu d’escalfar l’aigua del gimnàs.

2.2. Abast del projecte

Aquest projecte es centrarà en dos grans blocs temàtics. En primer lloc, es procedirà en fer una recerca purament bibliogràfica per introduir-nos en la tecnologia Stirling i comprendre el seu funcionament.

En segon lloc, es pretén estudiar el Dish Stirling instal·lat al ETSEIB d’una forma més pràctica. Per una banda, s’adquiriran dades sobre el seu consum i producció i s’analitzaran per comprovar el seu funcionament i eficiència. També, s’estudiarà el seu comportament elèctric monitoritzant la seva generació. Per altre banda, també es pretén estudiar la part de generació tèrmica del dish amb l’objectiu d’optimitzar el sistema que escalfa l’aigua del gimnàs.
3. Estat del art

3.1. Història del dish Stirling

Durant els inicis de l’any 1800 Robert Stirling, de nacionalitat escocesa va inventar un nou motor tèrmic amb la intenció d’evitar els accidents que provocava la convencional màquina de vapor ja que sovint explotaven a causa de les altes pressions de treball i de les limitacions dels materials d’aquella època, causant severes danys i inclús morts dels operaris que treballaven amb ella. Els motors Stirling no podien explotar i tanmateix produïen més energia. No va ser fins l’any 1816 fins quan va ser patentat com a “motor d’aire”. Robert Stirling també serà recordat per ser l’inventor del regenerador, o economitzador tal i com ho anomenava, part important del seu motor que permet emmagatzemar la calor d’un cicle termodinàmic.

La primera aplicació solar la va efectuar un enginyer suec, John Ericsson, l’any 1850 quan va vendre unes 2000 unitats amb una potència de 0,5 a 5 CV. Malauradament, el motor Stirling va ser oblidat aquella època ja que hi havia motors més eficients com el motor Otto o Diesel. Fins que el 1950, Philips va construir un generador elèctric amb aquesta tecnologia.

La tecnologia de dish Stirling evoluciona constantment, gràcies al interès dels EEUU i Europa. L’experiència en tecnologia dish Stirling es resumeix en algunes unitats assajades principalment a EEUU, Europa i Àustràlia. En el cas d’Espanya és molt coneguda la Plataforma solar de Almería, considerat el centre de investigació, desenvolupament i assaig més gran de tot Europa, dedicat a les tecnologies de concentració solar.

Les primeres aplicacions amb disc parabòlic van ser un eficient disc Stirling anomenat Vanguard instal·lat a Califòrnia l’any 1983, el MDAC-25 disc a Los Angeles l’any 1984 i els discos Schlaich, Bergermann and Partner (SBP) instal·lats l’any 1984 a l’Àrabia Saudita. El disc Vanguard va establir el rècord en eficiència entre radiació solar directe i conversió elèctrica d’un 30%.

A principis del any 2006, es va aprovar el projecte Stirling Energy Systems of Arizona que té com objectiu la instal·lació, en el desert de Imperial Valley, de 120000 dish reflectors que produiran 300MW. És d’esperar que aquest projecte ajudi en la investigació d’aquesta
tecnología perquè en un futur sigui molt accessible econòmicament així com més eficient i rentable.

Els avenços que s'estan produint en aquesta tecnologia fan preveure un disminució en el cost de compra i instal·lació que li permeti competir amb altres tecnologies solars. No obstant, tot i tenir un enorme potencial, la seva potència unitària (inferior a 25 kW) pot obstaculitzar la seva producció a gran escala. Conseqüentment, l’aplicació més coherent d’aquesta tecnologia pot ser en habitatges, subministrant aigua calenta sanitària o subministrar energia elèctrica per aplicacions múltiples, competint així amb altres sistemes ja més coneguts com la fotovoltaica.

3.2. Tecnologies renovables solars

3.2.1. L’energia solar

El sol és una font d’energia inesgotable, degut a les reaccions nucleares que s’hi produeixen, capaç d’irradiar en un segon més energia que la consumida per tota la humanitat en tota la seva història. La Terra rep a l’exterior de la seva atmosfera una potència total de $1,73 \cdot 10^4$ kW [4]. Aquesta potència, que ens arriba en forma de llum solar, és una font d’energia permanent que pot ser transformada directament en energia elèctrica o tèrmica.

Actualment, existeixen diverses tecnologies que permeten la generació d’energia tèrmica i elèctrica. Per exemple, els col·lectors solar són dispositius que converteixen la radiació solar en energia tèrmica per subministrar aigua calenta i calefacció en habitatges. Un altre tecnologia coneguda i cada cop més utilitzada, són els motors tèrmics. En aquests dispositius s’aprofit a la radiació solar per escalfar un fluid de treball fins a la seva evaporació, aprofitant així l’expansió del vapor per accionar turbines connectades a un eix de rotació d’un generador elèctric, produint així energia elèctrica. Una altra forma, molt coneguda a la societat, són les plaques fotovoltaiques, que permet la conversió de l’energia solar en energia elèctrica. En aquest capítol s’aprofundirà en totes aquestes tecnologies i es classificaran segons les seves característiques principals.

3.2.2. Un recurs renovable

Un fet important que cobrarà molta importància els progers anys és l’exhaustim dels combustibles fòssils. El carbó i el petroli s’ha estat consumint a la Terra durant centenars
d’anys però actualment s’estima que les taxes de demanda s’hauran acabat en qüestió de 100 anys. És evident doncs, que durant els darrers anys hem estat consumint els nostres recursos de forma inadequada. No obstant, es comença a avançar cap un futur on l’energia solar gaudirà d’un paper rellevant en termes d’aproveitament d’energia.

La radiació solar que rebem cada dia és inesgotable. La radiació solar que rep la Terra en 10 dies és equivalent en termes energètics a totes les reserves de petroli, gas i carbó. Tant sols utilitzant un 1% de les àrees desèrtiques del món es podria cobrir tota la demanda mundial d’electricitat i la vegada ens permetria reduir les emissions contaminants. Mitjançant un 1m² de captador solar es pot produir entre 1000 i 1500 kWh d’energia tèrmica en un any. Tanmateix, un simple panell fotovoltaic de 2m² en una habitatge permet evitar la emissió a l’atmosfera de 1 tona de CO₂ al any. [2]

Si ens centrem ens els països del continent Europeu, Espanya gaudeix d’uns excel·lents nivells de radiació solar en comparació a altres països europeus. Concretament, la seva radiació solar anual oscil·la entre els 1100 kWh/m² de la zona nord, a 1900 kWh/m² de les Illes Canàries. Espanya compte amb unes condicions molt favorables que fan possible que les tecnologies renovables solars siguin econòmicament molt competitives en diferents aplicacions [3].

És evident, doncs, que tot aquest enorme potencial s’ha de tenir en consideració per tal d’introduir un nou model sostenible que fomenti el ús de les tecnologies solars en el subministrament d’energia tèrmica i elèctrica i a la vegada afavoreixi a la reducció d’emissions contaminants.

3.2.3. Tecnologies solars

Les tecnologies tèrmiques de producció d’electricitat són considerades com una de les formes de producció d’energia elèctrica renovables més eficients. Les centrals termosolars produeixen electricitat tal i com ho fan les centrals de potència convencionals amb la excepció que les primeres adquireixen l’energia tèrmica mitjançant la radiació solar convertint-la en vapor a alta temperatura i pressió que és capaç d’accionar una turbina o un motor Stirling.

Existeixen dos tipus de tecnologies alhora de generar energia a partir de la radiació solar:
- **Energia solar fotovoltaica**
  Són un mètode de generació d'energia elèctrica mitjançant la conversió de la radiació solar en electricitat de corrent continu, utilitzant semiconductors que efectuen l'efecte fotovoltaic.

- **Sistemes de concentració solar**
  És un mètode de generació d'energia elèctrica mitjançant la concentració de l'energia solar tèrmica en un receptor per tal d'esclafar un fluid, que circula a l'interior del receptor. Aquest fluid es dirigeix fins a un motor on es produeix un cicle termodinàmic que converteix l'energia solar tèrmica en energia cinètica i finalment en electricitat a través d'un generador.

Centrant-nos en els sistemes de concentració solar, la captació de l'energia solar es dur a terme mitjançant una superfície absorbidora exposada a la radiació solar que és capaç de concentrar una gran quantitat de llum solar sobre una superfície petita. Com més petita és aquesta superfície absorbidora, menor és la pèrdua de calor. Tanmateix, com més menor siguin aquestes pèrdues, la temperatura d'equilibri que s'assolirà serà major i consequentment l'energia tèrmica obtinguda també augmentarà. Així doncs, es pot establir la següent classificació de sistemes de concentració solar en funció de la temperatura del captador:

- **Sistemes de baixa temperatura**
  Destinat a aquelles sistemes que estan enfocats a aplicacions que no necessiten una temperatura de l'aigua major de 90 ºC. El seu camp d'aplicació és ampli i variat: escalfament d'aigua de piscines, suport a la calefacció de baixa temperatura o aigua calenta sanitària (ACS) [3].

- **Sistemes de mitja temperatura**
  Destinats a aquelles aplicacions que necessiten temperatures d'aigua per sobre dels 80 ºC i fins els 250 ºC. Les aplicacions més comunes són: processos industrials, refrigeració mitjançant energia solar i dessalinització de aigua de mar [3].
• **Sistemes d’alta temperatura**

Destinats a sistemes que necessiten una temperatura de l’aigua superior a 250 ºC. Clars exemples són: generació de vapor per la producció d’electricitat a gran escala [3].

 Una vegada explicats els diferents tipus de sistemes de concentració solar, és moment d’entrar amb més profunditat amb als sistemes d’alta temperatura on podrem trobar la tecnologia del dish Stirling.

### 3.2.4. Sistemes d’alta temperatura

A continuació es presentaran les 3 tecnologies d’alta temperatura més rellevants i conegudes: Concentradors cilíndric-parabòlics, receptors central o torres de potència i dispositius de dish parabòlic [2][3]:

a) **Concentradors cilíndric-parabòlics (CCP)**

Els concentradors cilíndric-parabòlics (CCP) generen a partir d'una paràbola com a superfície reflectora. Normalment consisteixen en llargues files paral·leles de mòduls iguals. Consten d’un sistema de seguiment solar que segueix la trajectòria del sol de est a oest, concentrant així la radiació solar en un absorbidor en forma de canonada situat al llarg de la seva línia focal. Aquesta radiació absorbida transfereix la calor a un fluid, normalment oli, que circula per les canonades. Aquest oli, esclafa aigua fins provocar la seva evaporació, aprofitant així el vapor de l’aigua per moure un generador de una turbinia de vapor.

Les plantes comercials de CCP operen amb unes radiacions de entre 40 i 60 kW/m² i poden assolir temperatures superiors a 400 ºC. Actualment existeixen diverses instal·lacions on utilitzen aquesta tecnologia solar. La més coneguda és la que va es va dur a terme sota el programa SEGS (Solar Electricity Generating System) als Estats Units. Concretament a California, on hi ha una planta de mes 250 milions de metres quadrats de CCP amb una producció comercial de 354 MW elèctrics.
b) Receptor central o torres de potència

Les plantes de receptor central o torres de potència consisteixen, essencialment, en un conjunt de miralls, amb seguiment solar en dos dimensions, anomenats heliòstats i que són capaços de reflectir la radiació solar directa sobre un receptor situat en el punt més alt de la torre. És en aquest punt, on s'escalfa un fluid que transfereix la calor solar absorbida al bloc de potència on és utilitzat per escalfar un generador de vapor.

Els fluids més utilitzats són: aigua, aire i metalls líquids. Els sistemes que utilitzen l'aire per treballar, poden assolir unes temperatures de fins a 800 ºC obtenint així una bona eficiència. El valors més comuns de potència d'aquests tipus de planta oscil·len entre 30 i 160 MW.

Aquesta tecnologia permet concentracions més elevades en comparació amb els sistemes de concentradors cilíndric-parabòlics. El fluid portador (aigua, aire metalls líquids) assoleix temperatures d’entre 250ºC i 1000ºC. Aquest fluid, acciona un cicle de Rankine o Brayton.
c) Dispositius dish parabòlic (CDP)

Dins d’aquesta categoria és on es pot trobar la tecnologia de dish Stirling. Aquest sistema consisteix en un concentrador puntual en forma de disc parabòlic capaç de reflectir la radiació solar incident sobre un receptor situat en el punt focal del paraboloide de revolució. És per això, que també són anomenats sistemes reflectors de foc puntual. En el foc es col·loca un receptor que transforeix la radiació en forma d’energia tèrmica a un fluid que circula per un motor Stirling. Aquest es troba connectat a un alternador que converteix l’energia mecànica, realitzada per el motor, en energia elèctrica. El seguiment solar, en dos eixos, permet absorbir òpticament l’energia solar.

Utilitzant la tecnologia de disc parabòlic és possible acumular una gran quantitat de calor en el motor central. Aquest fet comporta grans avantatges ja que és s’eviten pèrdues de calor respecte els sistemes que utilitzen canonades.

Els sistemes de dish Stirling són els dispositius de conversió d’energia solar a elèctrica amb un major rendiment, que es troba al voltant del 30%.

Durant els darrers anys hi ha hagut un augment de projectes relacionats amb aquesta tecnologia. A continuació podem veure alguns d’aquestes projectes més importants:

- Sis discos de 10kWe en el projecte PSA a Espanya.
- L’any 1998 van ser instal·lades diverses unitats en el desert de Mojave, EEUU.
- Actualment el govern Australià està finançant una central de 2,6 MW utilitzant 28 concentradors de 50 kW.

Figura 3.3. Concentrador solar parabòlic
3.3. Funcionament bàsic del dish Stirling

El sistema de dish-Stirling funciona amb l’energia solar. Aquest motor opera amb una diferència de temperatures, de forma que el nivell d’alta temperatura s’obté gràcies a la radiació solar. La radiació solar és recollida mitjançant una superfície reflectant, normalment en forma parabòlica. Aquesta superfície parabòlica es mou al llarg de tot el dia per seguir la trajectòria solar.

3.3.1. El motor Stirling

El motor Stirling és un motor de combustió externa que converteix la calor transferida a un receptor a potència mecànica, de forma similar a els motors de combustió interna utilitzats a l’automoció.

La principal diferència és que pel seu funcionament necessita una font d’energia externa que en molts casos acostuma a ser una energia renovable com la solar o la biomassa però també pot utilitzar gas o gasoil. No funciona com un motor de combustió interna habitual on es necessita introduir el carburant dins del cilindres ja que no es realitza la combustió dins dels cilindres del motor.

Els gasos utilitzats a l’interior d’un motor Stirling mai surten del motor. No hi ha vàlvules d’escapament que ventilen els gasos a alta pressió com passa en un motor de gasolina o dièsel. Tampoc es produeixen explosions durant el cicle. A causa d’això els motors Stirling són molt més tranquil·lis en comparació a altres motors convencionals.

El motor Stirling funciona amb un fluid de treball, normalment aire, heli o hidrogen, que al escalfar-lo s’expandeix de tal manera que mou el pistó cap la zona freda. Conseqüentment, el fluid també es desplaça cap a la zona de compressió on es refreda i torna a mour el pistó. El moviment dels pistons actua un alternador que és el que genera l’electricitat. A la vegada, el fluid refrigerant que regula el sistema serà utilitzat per escalfar aigua.

Per altra banda aquesta tecnologia té la virtut de ser reversible. Si rep energia de forma externa et pot generar calor i electricitat però si rep electricitat pot generar fred i calor. De aquí la seva alta eficiència energètica, ja que aquesta tecnologia pot servir per obtenir calefacció aigua calenta i electricitat i també pot ser útil per desenvolupar sistemes de refrigeració.
El fluid de treball s’escalfa per sobre dels 700ºC amb una pressió màxima de 20 MPa i que té una eficiència del motor de conversió térmica-mecànica d’aproximadament el 40%. Per assolir aquestes elevades eficiències, existeix un regenerador que realitza un refredament del fluid de treball quan aquest es mou de la càmera d’expansió a la de compressió, i un escalfament quan és portat en sentit contrari. A la càmera d’expansió és on es rep la transferència de calor externa, mentre que en la càmera de compressió es refrigera per un circuit per el que circula un fluid refrigerant de forma similar a un radiador convencional d’automoció.

A continuació es presentaran les avantatges d’aquest cicle termodinàmic [2][4]:

- L’eficiència teòrica del cicle és la mateixa que la del cicle ideal de Carnot (màxima eficiència teòrica entre dues fonts tèrmiques degut a les limitacions termodinàmiques)
- És un motor de combustió externa, per tant, pot utilitzar diferents tipus de fonts de calor com poden ser l’energia solar, la biomassa i els combustibles fòssils.
- És un cicle tancat. Això significa que pot utilitzar un regenerador per intercanvi tèrmic entre diferents processos d’un mateix cicle.
- No té vàlvules d’admissió i sortida.
- Es tracte d’un motor força silenciós i em poques vibracions.
- El motors Stirling de pistó lliure es consideren molt fiables.
- Poden ser utilitzats tant com a refrigeradors com bombes de calor.
- La seva vida útil és llarga en comparació a altres motors.

Per altre banda, els seus principals inconvenients [2][4]:

- Resposta lenta per augments i disminucions de càrrega.
- El seu treball específic és baix fet que comporta que el seu ús en mitjans de transport sigui limitat degut al pes i volum addicionals que requereixen.
- Pot presentar problemes d’estanqueïtat quan s’utilitzen fluids de treball com l’hidrogen o l’heli.

3.3.2. Tipus de motor

Les configuracions mecàniques dels motors Stirling es divideixen generalment en tres grups coneguts com l’Alfa, el Beta i el Gamma [5].
- **Motor Stirling de tipus Alfa**

Aquest tipus de motor no utilitza un desplaçador com en la patent original però des del punt de vista termodinàmic el funcionament és similar. Consta de dos cilindres independents connectats entre si per un tub on es troba situat el regenerador que emmagatzema i cedeix la calor. Un dels cilindres s’escalfa mitjançant una font externa calenta mentre que l’altre es refreda mitjançant unes aletes o bé aigua. El moviment dels dos pistons fa que el fluid de treball passi d’un cilindre al altre escalfant-se i refredant-se i produint així el treball que permet que funcioni el motor. El principal problema d’aquest tipus és que presenta problemes d’estanqueïtat en el zona calenta.

![Figura 3.4. Motor Stirling tipus Alpha](image)

- **Motor Stirling de tipus Beta**

El motor original Stirling era d’aquest tipus. Consta d’un cilindre amb una zona calenta i una zona freda. En el interior del cilindre hi ha un desplaçador amb la principal funció és passar l’aire de la zona freda a la calenta i viceversa. Des del punt de vista termodinàmic, és el motor més eficaç, però la seva construcció és complicada ja que el pistó ha de tenir dues bieles i permetre el pas del desplaçador. A diferència, dels motors tipus alfa, aquests motors no presenten problemes d’estanqueïtat.

![Figura 3.5. Motor Stirling tipus Beta](image)
- **Motor Stirling de tipus Gamma**
  Els motors Stirling de tipus Gamma són semblants als tipus Beta però tenen el pistó i el desplaçador en cilindres diferents. Els fluid de treball pot fluir lliurement pels dos cilindres com si fos un sol cos. Aquesta configuració ofereix una relació de compressió menor però és mecànicament més simple.

  ![Figura 3.6. Motor Stirling tipus Gamma](image)

- Per altra banda, existeix un altre classificació dels motors Stirling, que es divideix entre motor Stirling cinemàtic i motor Stirling de pistó lliure [6] [7]:

  - **Motor Stirling cinemàtic**
    Són els motors Stirling tradicionals. El seu funcionament està basat en un pistó connectat a un eix de sortida giratori. Degut a la connexió mecànica de les seves parts internes és més fàcil de controlar la velocitat a la que treballa el motor.

  - **Motor Stirling de pistó lliure**
    En aquest cas el pistó no està connectat mecànicalement amb un eix de sortida. El pistó rebota entre l’espai que conté el gas de treball gràcies a l’acció d’una molla. Un imant, unit al pistó, extreu l’energia elèctrica obtinguda. Aquest motor és més simple, més barat i a la vegada més durador. No obstant és més difícil de controlar i és necessari un disseny molt precís.
3.3.3. **Fluid de treball**

L'elecció del fluid de treball també és important ja que ens determinarà alguns dels paràmetres característics del cicle termodinàmic. Els criteris que s'han de tenir en compte alhora de escollir el fluid de treball són els següents:
- **Capacitat calorífica**
  Aquest paràmetre determinarà la forma del cicle termodinàmic així com les seves propietats. És interessant valors elevats de capacitat calorífica ja que significarà un intercanvi de calor més ràpido entre el focus fred i el calent.

- **Seguretat**
  S’ha de vigilar quins gasos s’escullen ja que alguns poden explotar quan es barregeu amb l’aire. Conseqüentment, s’haurà d’evitar qualsevol fuga de gas ja que podria resultar perillós.

- **Cost**
  El mercat ofereix una gran varietat de gasos a diferents preus i com és lògic s’ha d’escollir aquell que ofereixi una millor relació qualitat-preu.

- **Reactivitat química**
  S’ha de vigilar de no escollir un gas que reaccioni químicament amb els materials del sistema ja que podria afectar al funcionament global.

L’hidrogen és el fluid que presenta les millors propietats, però és el més difícil de confinar al motor degut a la seva alta difusió, a més de resultar explosiu quan entra en contacte amb l’oxigen. Tanmateix, la seva alta reacció química i pot reaccionar amb alguns components del motor Stirling, majoritàriament metalls.

L’heli és una de les opcions més recomanades ja que tot i que no presenta una capacitat calorífica tant elevada com l’hidrogen, no presenta problemes de combustió i reacciona químicament amb els component del motor.

Altres gasos que poden ser usats són l’aire i el nitrogen. No obstant, aquestes dues opcions presenten una capacitat calorífica inferior al hidrogen i l’heli.

3.3.4. **Control del motor**

El motor Stirling es pot controlar de diverses maneres, a continuació s’exposen les més rellevants:
- **Variació de la temperatura del focus calent**
  Reduint la temperatura del focus calent implica reduir el rendiment del sistema. Una possible manera de controlar-la és desajustant el seguiment solar del dish.

- **Variació de la pressió**
  Mitjançant un sistema de vàlvules es pot variar pressió del cicle. Si s’augmenta la pressió mitjana del cicle, també augmentarà el parell i disminuirà la velocitat de gir.

- **Variació del volum mort**
  Mitjançant també un sistema de vàlvules es pot variar el volum mort amb l’objectiu de reduir la relació de compressió. No obstant, s’afegeix peso i volum mort al motor.

- **Variació del angle de fase**
  Si es varia l'angle de fase entre els dos èmbols es pot disminuir la potència generada. Fins i tot pot arribar a ser nul·la o invertir-la actuant així com a fre.

- **Variació de carrera**
  Variant la carrera es pot canviar la relació de compressió i el volum mort.

3.3.5. **Cicle termodinàmic**

El cicle Stirling és un cicle termodinàmic del motor Stirling que busca obtenir el rendiments màxim tal i com el cicle de Carnot. La principal diferència entre el cicle Stirling i el cicle de Carnot és el seu funcionament termodinàmic. El cicle Stirling està constituït per dues isotermes, dues isocores i un sistema regeneratiu [2][5][8]:

- **1-2: Compressió isotèrmica.** El gas de treball és comprimit isotèrmicament del estat 1 al 2. Durant aquest procés s'expulsa calor cap a la font freda.
- **2-3: Compressió isocòrica.** El gas de treball és escalfat a volum constant del estat 2 al 3 i per tant pateix un augment de pressió.
• **3-4: Expansió isotèrmica.** El gas de treball pateix una expansió isoterma del estat 3 al 4 mitjançant un intercanvi tèrmic amb la font calenta.

• **4-1: Expansió isocòrica.** El procés del estat 4 al 1 és un refredament de la temperatura alta a la baixa a volum constant amb la corresponent baixada de pressió.

Figura 3.9. Gràfic del cicle termodinàmic Stirling

Les calor es intercanviades en els processos iscòrics es poden calcular de la següent manera [2]:

\[ Q_{2-3} = n \cdot C_v \cdot (T_{3-4} - T_{1-2}) \]

\[ Q_{4-1} = n \cdot C_v \cdot (T_{1-2} - T_{3-2}) \]

Tal i com podem observar aquestes dues calor tenen el mateix mòdul. Per tant, poden ser emmagatzemades en un procés per el regenerador i recuperades en l’altre. Conseqüentment, la única aportació de calor del cicle es produeix del estat 2 al 3:

\[ Q_{3-4} = W_{\text{expansió}} = W_{3-4} = \int_3^4 P \, dV = n \cdot R \cdot T_{3-4} \cdot \ln \left( \frac{V_4}{V_3} \right) \]

El treball que es produeix per compressió entre l’estat 1 i 2 és el següent:

\[ W_{\text{compressió}} = W_{1-2} = Q_{1-2} = \int_1^2 P \, dV = n \cdot R \cdot T_{1-2} \cdot \ln \left( \frac{V_2}{V_1} \right) \]

Finalment el rendiment del cicle es calcula de la següent manera:
\[ \eta = \frac{\text{Treball net}}{\text{Calor aportat}} = \frac{W_{\text{expansió}} + W_{\text{compressió}}}{Q_{3-4}} \]

tenint en compte la següent relació de volums:
\[ \frac{V_2}{V_1} = \frac{V_3}{V_4} \]

obtenim l’expressió final del rendiment:
\[ \eta = \frac{T_{3-4}-T_{1-2}}{T_{3-4}} = 1 - \frac{T_{1-2}}{T_{3-4}} \]

Aquest rendiment és idèntic al del Cicle de Carnot, suposant que la regeneració és perfecte. En cas l’eficiència de regeneració \( Ef \) sigui menor de 1 el rendiment es calcula de la següent manera:
\[ \eta = \frac{T_{3-4}-T_{1-2}}{T_{3-4} + (1-Ef) \left( \frac{T_{3-4}-T_{1-2}}{\ln(V_1/V_2)} \right)} \]
on:
\[ \gamma = \frac{C_p}{C_v} \]
éss la constant adiabàtica i igual al coeficient entre el calor específic a pressió constant i el calor específic a volum constant

Finalment, l’eficiència de regeneració es calcula segons la següent expressió:
\[ Ef = \frac{T_{\text{reg}}-T_{1-2}}{T_{3-4}-T_{1-2}} \]
3.4. Descripció dels components del dish Stirling

Els components bàsics del Dish Stirling són els següents:
- Concentrador solar parabòlic
- Receptor
- Sistema de generació: Motor Stirling i alternador
- Sistema de refrigeració

A continuació explicarem amb més detall cadascuna de les parts més rellevants.

3.4.1. Concentrador solar parabòlic

Els sistemes dish Stirling utilitzen concentradors solars que efectuen el seguiment solar mitjançant dos eixos. Els concentradors solar estan formats per una superfície reflectant, de metall o vidre, encarregada de reflectir la radiació solar directe en una petita regió anomenada focus. La seva forma de paràbola de revolució contribueix considerablement a reflectir la màxima radiació possible provinent del sol, assolint així altes temperatures de treball. Aquestes altes temperatures permeten aconseguir uns bons nivells de rendiment del
cicle termodinàmic. La temperatura màxima que es podria assolir en un cos situat en el punt focal del concentrador ve determinat per la següent expressió, suposant que el receptor és un cos negre [2]:

\[ C_G I_s = \varepsilon \sigma T^4 \]

on \( C_G I_s \) és el flux d'energia lumínica i \( \varepsilon \sigma T^4 \) és el flux tèrmic.

No obstant, degut a les pèrdues degut a les grans pèrdues de conducció, convecció i radiació no es poden assolir les temperatures màximes ideals.

La grandària del concentrador ve determinada per la potència nominal i per l'energia que es genera durant un cert període en unes determinades condicions de radiació solar i rendiment del sistema. Generalment, el màxim de radiació directe sol ser de 1000W/m\(^2\). El diàmetre del dish dependrà de la quantitat d'energia es vol produir i pot oscil·lar entre uns 3 m fins als 20-25 m.

Els concentradors solen estar construïts per facetes de diferents grandàries del material reflectant que aproximen la forma de la geometria del paraboloide. Els materials usats són miralls de vidre amb diferents espessors, amb els quals es poden aconseguir unes relacions de concentració de fins a 3000 fet que es tradueix a unes temperatures molt elevades en el concentrador. Degut a que els concentradors tenen unes longituds focals curtes, són necessaris miralls de vidre amb espessors reduïts amb l'objectiu d'adquirir les curvatures desitjades. Tanmateix, miralls de vidre amb un contingut baix en ferro contribueixen a millorar la reflexió de la radiació solar. Les reflectivitats que s'acostumen a assolir, depenent del material emprat i el seu espessor, oscil·len entre un 90-95%. No obstant, per assolir aquests valors de reflectivitat és altament recomanat mantenir el concentrador sense brutícia.
El seguiment solar en dos eixos es pot dur a terme de dues maneres diferent:

- **Seguiment azimut-elevació**
  El dish gira en un pla perpendicular a la Terra (azimut) i en un altre perpendicular a aquest (altitud). La majoria de sistemes Dish Stirling utilitzen aquest mètode de seguiment.

- **Seguiment polar**
  El disc rota al voltant d'un eix paral·lel al eix de rotació de la Terra al mateix rati de rotació que ella. El segon eix, anomenat de declinació, és perpendicular al eix polar. La orientació cap el sol ve determinada per un sensor de seguiment.

### 3.4.2. Receptor

El receptor és la part del sistema dish Stirling que s’encarrega d’absorbir la radiació solar reflectida per el concentrador i a la vegada transferir l’energia absorbida al fluid de treball que utilitza el motor.

Existeixen dos tipus de receptor; els receptor de cavitat i els receptors externs:

- **Receptors de cavitat**
  La radiació concentrada entra per una obertura situada en el focus del paraboloide, incidint posteriorment sobre l’absorbidor. La cavitat, de

---

*Figura 3.11. Dues possibles configuracions de concentradors*
material ceràmic, disminueix les pèrdues per radiació i convecció així com les pèrdues per acumulació de pols sobre les superfície reflectora. Tanmateix, homogeneïzta i limita el valor màxim del flux radiant sobre l’absorbidor, reduint així la fatiga tèrmica dels materials. La temperatura de treball es troba al voltant dels 800ºC. Un dels inconvenients que presenta és que pot rebre menys radiació que el receptor extern.

Un element important del receptor és l’absorbidor que s’encarrega de transmetre l’energia tèrmica captada per el receptor al fluid de treball. Els dos tipus d’absorbidor que existeixen són els següents:

- **Receptor extern**
  Aquest tipus de receptors són capaços d’aprofitar més eficientment la radiació solar al poder rebre els rajos en qualsevol direcció gràcies a la seva forma esfèrica. No obstant, les pèrdues tèrmica són majors que els receptors de cavitat.

Un element important del receptor és l’absorbidor que s’encarrega de transmetre l’energia tèrmica captada per el receptor al fluid de treball. Els dos tipus d’absorbidor que existeixen són els següents:

- **De reflux**
  Els absorbidors de reflux utilitzen un metall líquid, normalment sodi, com a fluid per la transmissió de calor. El metall líquid, s’evapora en augmentar la temperatura i condensa sobre els tubs pels quals circula el fluid de treball de motor Stirling. Aquest tipus d’absorbidor presenta una menor sensibilitat a diferències de radiació sobre la superfície, així com una bona capacitat
Anàlisis d'un sistema d'energia renovable basat en un dish Stirling

Pàg. 35

de transmissió de calor. No obstant, a causa de la seva complexitat, no s'han desenvolupat alternatives fiables per el ús de dish Stirling.

- **De tubs directament il·luminats**
  Aquest sistema la radiació incideix sobre un feix de tubs per als quals circula el fluid de treball del motor Stirling. En aquest cas, no consta d’un sistema intermig per transmetre la calor sinó que la transmet directament al fluid de treball.

### 3.4.3. Sistema de generació: Motor Stirling i alternador

El sistema generador està compost per una màquina tèrmica que segueix un cicle termodinàmic de potència, tal i com s'ha explicat anteriorment, i un alternador que transforma l’energia mecànica en elèctrica. Les potències dels motors oscil·len entre 3 i 25 kW, amb uns rendiments propers al 30%. A continuació entrarem en més detall en l’alternador ja que és un component de rellevància:

- **Alternador**
  Aquest dispositiu s’encarrega de convertir l’energia mecànica produïda per el dish Stirling en electricitat. Els motors Stirling utilitzen generadors d’indució per connectar-se a la xarxa. Un cop sincronitzats, els generadors poden subministrar potència trifàsica ja sigui a 230 o 460 volts. L’eficiència de conversió d’energia mecànica a elèctrica és d’un 95%. Tanmateix, el sistema disposa d’uns inversors que converteixen la corrent continua en alterna.

### 3.4.4. Sistema de refrigeració

Els motors necessiten transmetre al medi ambient grans quantitats de calor degut a les seves capacitats estructurals. Els motors Stirling utilitzen un radiador per dur a terme l’intercanvi de calor entre motor i atmosfera.

El refrigerador s’encarrega de mantenir la temperatura del focus fred dintre dels intervals adequats per assegurar un bon funcionament del motor Stirling. S’acostuma a utilitzar un intercanviador format per uns tubs per on passa el fluid de treball i una carcassa per on
passa el fluid refrigerant. El fluid refrigerant acostuma a ser aigua amb una certa proporció d’anticongelant. Aquest fluid circula per un circuit tancat per on pot perdre la calor directament amb l’ambient o bé pot servir per alimentar un sistema de cogeneració. Per assegurar el bon funcionament alhora de fer circular el refrigerant per el circuit tancat s’acostuma a utilitzar una bomba per assegurar una bona circulació del fluid en qüestió.

3.5. Generació tèrmica

Una de les aplicacions més típiques de l’energia solar són els sistemes dedicats al escalfament del aigua. Concretament, l’agua calenta es pot utilitzar per millorar la calefacció o bé el sistema d’aigua calenta sanitària (ACS). No obstant, no es recomanable centrar tota la calefacció o l’agua calenta d’una instal·lació amb energia solar. Conseqüentment, els sistemes de escalfament solar no poden abastar tota la demanda tèrmica sinó que s’hauran de dimensionar amb l’objectiu de donar suport als sistemes d’energia convencionals. Els elements bàsics d’una instal·lació tèrmica solar són:

- Acumulador tèrmic i els intercanviadors
- Circuit hidràulic
- Bombes i Sistema de control
- Termòstats diferencials
- Dipòsit d’expansió
- Aïllament tèrmic

El funcionament d’aquest sistema és relativament senzill. El fluid a escalfar, en el cas d’un ACS el fluid és aigua, entra dins d’un acumulador tèrmic on es troben els intercanviadors. L’acumulador és l’element de la instal·lació que s’encarrega d’acumular l’energia tèrmica en forma de fluid calent. Aquesta acumulació és necessària ja que la disponibilitat energètica no coincideix sempre amb la producció. Per tant, aquest element és capaç de proporcionar energia en moments del dia on la insolació és baixa o nul·la.

En el seu interior és on es troba un altre element important: l’intercanviador. Existeixen diferents tipus d’intercanviadors com ara els d’evolvents o de capa, els de serpentí, els de tub contracorrent o bé els de plaques. Tots ells però tenen una mateixa funció; transferir la calor del fluid refrigerant cap al fluid que es vol escalfar.
Alhora de dissenyar el circuit hidràulic d’una instal·lació és molt important seleccionar de forma correcte els materials que s’usaran per les conduccions, degut a les importants variacions de temperatura que hi poden haver en el circuit primari. Els materials més utilitzats en aquests tipus d’instal·lacions són el coure i el polipropilè. El coure presenta un coeficient de dilatació baix, és fàcil de treballar i és pot molt estès en el mercat. No obstant, presenta una alta conductivitat tèrmica. Per altra banda el polipropilè té l’avantatge que el seu coeficient de conductivitat tèrmica és baix i és compatible amb materials metàl·lics. El principal inconveni és el seu cost elevat.

La _bomba_ s’encarrega de mantenir el moviment del fluid caloportador. El seu funcionament ve determinat per un _sistema de control_ o sonda. Aquest sistema és necessari per evitar, entre altres coses, un funcionament ininterromput de la bomba durant tot el dia, incloent moments del dia on les radiació solar és baixa. S’acostuma a utilitzar un _termòstat diferencial_, denominat així perquè compara el valor de la temperatura d’una sonda instal·lada en el receptor amb la temperatura d’una sonda que es troba al acumulador. La bomba s’activa si la diferència de temperatures assoleix un valor determinat. Tanmateix, també es defineix un diferencial de temperatures d’aturada amb l’objectiu d’aturar la circulació del fluid quan aquest no es troba a una temperatura suficientment alta.

Un altre element important és el _dipòsit d’expansió_, que té com a funció principal absorbir l’augment del volum del fluid caloportador degut al important salt tèrmic que pateix durant el cicle de funcionament, ja que pot passar de la temperatura ambient a temperatures properes a l’ebullició. El dipòsit d’expansió simplement permet l’expansió del fluid contrarestant els augmentos de volum i pressió.

Finalment, la majoria d’aquests elements han d’estar recoberts amb un _àïllament tèrmic_ amb l’objectiu de reduir la transmissió de calor entre el fluid i l’ambient millorant així el seu rendiment global de la instal·lació.

### 3.6. Generació elèctrica

El generador elèctric és l’element encarregat de transformar l’energia mecànica en energia elèctrica. Existeixen diferents tipus de generadors elèctrics. El més comú són les màquines...
asíncrones, però també s'acostumen a utilitzar les màquines síncrones sense escombretes. En general, les màquines asíncrones solen ser més barates i són molt útils ja que poden començar a treballar a la freqüència de la xarxa. Tanmateix, les màquines asíncrones es poden utilitzar com un generador o com un motor i en el cas del disc Stirling s'utilitza per arrencar el motor. El seu funcionament es basa en una espira de rotor en curtcircuit en el s'indueix una \( f.e.m \) (força electromotriu) que farà circular corrent, en el sentit oposat al de la variació de flux degut a la rotació del camp magnètic causat per el moviment relatiu entre rotor i estator.

Algunes dels avantatges d'aquest tipus de màquines són la seva simplicitat ja que no necessita dispositius d'arrencada, sincronització i regulació. Tanmateix, propicia únicament potència activa fet que converteix aquest generador amb una de les opcions més senzilla i econòmica.

Les màquines síncrones, brushless o les màquines de corrent contínua acostumen a ser més cares més complexes i poc comunes en aplicacions Stirling. Per altra banda, les màquines també poden ser rotatives o lineal segons si el motor Stirling és cinemàtic o de pistó lliure. Per altra banda, presenta la desavantatge que necessita corrent d'excitació completament reactiu el consum del qual no es pot controlar. Tanmateix, existeix el perill d'augment de la velocitat si la carrega es reduceix dràsticament.

3.7. Oferta comercial

3.7.1. Innova Solar Energy

Innova Solar és una empresa italiana que es dedica a desenvolupar noves tecnologies solars i estudiar noves alternatives de concentració solar per competir amb les actuals. Innova ja ha llençat sistemes basats en la tecnologia Stirling amb una potència elèctrica de 1kW i 3kW de potència tèrmica. El dish Stirling, anomenat Trinum, consta d'un concentrador parabòlic de 3,75m de diàmetre. El motor que utilitza és de pistó lliure. El seu sistema, completament automàtic, és capaç de dur a terme el seguiment solar, la generació elèctrica i tèrmica. Tanmateix, també és capaç de passar a un mode de seguretat en cas de condicions meteorològiques adverses com ara forts vents, pluges o sobreescalfament del sistema. L'eficiència global del sistema és d'un 55,2% dividit en un 13,8% elèctric i un 41,4% tèrmic. Innova solar compte amb diferents instal·lacions a ciutats italianes [9].
3.7.2. Energon

Energon és una empresa mexicana fundada l’any 2008 que va desenvolupar una investigació dish Stirling. Segons Energon, han dissenyat un sistema que és capaç de produir 1,5 kW·e i 4,5 kW·t amb un dish de 3.75m Diàmetre. Els rendiments que s’assoleixen amb aquesta instal·lació són del 20% elèctric i 55% tèrmic. No obstant, encara es troben en fase de desenvolupament de prototips [10].

<table>
<thead>
<tr>
<th>Companyia</th>
<th>Nom</th>
<th>Potència elèctrica</th>
<th>Potència tèrmica</th>
<th>Diàmetre</th>
<th>Pes</th>
<th>Fluid de treball</th>
<th>Rendiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energon</td>
<td>No definit</td>
<td>1.5 kW·e</td>
<td>4.5 kW·t</td>
<td>3.75 m</td>
<td>450 kg</td>
<td>No definit</td>
<td>No definit</td>
</tr>
</tbody>
</table>

Taula 3.2. Característiques dish Stirling Energon
3.7.3. Infinia Solar

Infinia Solar es tracte d’una empresa d’Estats Units que ha desenvolupat la tecnologia Stirling des de fa anys. En els seus inicis, van intentar desenvolupar sistemes a petita escala, però recentment han canviat la seva estratègia cap a projectes a gran escala. Per aquesta raó, produeixen dish Stirling de 3,5 kW elèctrics. El diàmetre del dish és de 7m. Un desavantatge d’aquest dish és que només és útil per producció elèctrica ja que no aprofita la calor produïda pel motor per generar energia tèrmica. Tenen instal·lacions a Nou Mèxic. Tanmateix estan provant 6 discos Stirling en unes de les zones més assolellades dels EUA. Malauradament, l’empresa ha fet fallida [11]

<table>
<thead>
<tr>
<th>Companyia</th>
<th>Nom</th>
<th>Potència elèctrica</th>
<th>Potència tèrmica</th>
<th>Diàmetre</th>
<th>Pes</th>
<th>Fluid de treball</th>
<th>Rendiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinia Solar</td>
<td>Power Dish</td>
<td>3.5 kWe</td>
<td>No definit</td>
<td>6 m</td>
<td>1525 kg</td>
<td>No definit</td>
<td>30%</td>
</tr>
</tbody>
</table>

*Taula 3.3. Característiques Power dish Stirling*
3.7.4. United Sun System

United Sun Systems es tracte d’una empresa procedent de Suècia i Regne Unit que produeix dish Stirling orientats a mitja i gran escala. Els seus discos Stirling són capaços de produir 25 kW elèctrics [12].

<table>
<thead>
<tr>
<th>Companyia</th>
<th>Nom</th>
<th>Potència elèctrica</th>
<th>Potència tèrmica</th>
<th>Diàmetre</th>
<th>Pes</th>
<th>Fluid de treball</th>
<th>Rendiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Sun System</td>
<td>No definit</td>
<td>25-30 kW</td>
<td>No definit</td>
<td>11,73 m</td>
<td>6800 kg</td>
<td>Hidrogen</td>
<td>30%</td>
</tr>
</tbody>
</table>

*Taula 3.5. Característiques dish Stirling United Sun System*
3.7.5. Ripasso Energy

Ripasso Energy és una empresa privada fundada l’any 2008. De fabricant suec, que produeix grans dish Stirling amb la finalitat de generar al voltant de 30 kWe per unitat. Un dels seus dish instal·LAT a l’Àfrica té un record d’eficiència elèctrica d’un 32% [13].

<table>
<thead>
<tr>
<th>Companyia</th>
<th>Nom</th>
<th>Potència elèctrica</th>
<th>Potència tèrmica</th>
<th>Diàmetre</th>
<th>Pes</th>
<th>Fluid de treball</th>
<th>Rendiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripasso Energy</td>
<td>Solar dish</td>
<td>30 kW</td>
<td>No definit</td>
<td>No definit</td>
<td>No definit</td>
<td>Hidrogen</td>
<td>30%</td>
</tr>
</tbody>
</table>

*Figura 3.16. Característiques dish Stirling Ripasso Energy*

*Figura 3.17. Dish Stirling Ripasso Energy*
4. **El dish Stirling Trinum**


En aquest apartat, s’exposaran les principals característiques que presenta el dish Stirling Trinum així com els elements més rellevants de la instal·lació.

### 4.1. **Objectius de la instal·lació**

L’objectiu principal d’aquesta instal·lació és doble. Per una banda, l’energia elèctrica generada per el dish Stirling s’injecta a la xarxa de la ETSEIB. Per altra banda, l’energia tèrmica produïda s’utilitza per pre-escalfar l’aigua del gimnàs de la universitat. Un dels principals problemes que presenta la instal·lació és que existeix una gran distància entre el dish Stirling i el gimnàs. En apartats posteriors, s’estudiaran possibles solucions amb l’objectiu de millorar la situació actual amb els problemes que presenta.

### 4.2. **Descripció del sistema**

El dish solar instal·lat al ETSEIB s’anomena TRINUM i va ser proporcionat per l’empresa **INNOVA**. La instal·lació consisteix en un dish Stirling format per un concentrador solar i un motor Stirling de pistó lliure. Es tracta d’un sistema de cogeneració, que és capaç de generar fins a 1 kW elèctric (230 V AC 50Hz) i 3 kW tèrmics. El sistema produeix energia elèctrica que es pot utilitzar de forma instantània o bé pot generar energia tèrmica i emmagatzemar-la en un acumulador.

La instal·lació està formada per un dish de 3,75m de diàmetre amb un seguiment solar en dos eixos (azimut i altitud) i enfoca la radiació solar directament cap al motor Stirling.

Segons **INNOVA**, una de les avantatges d’aquest sistema és que amb la mateixa superfície ocupada, el dish solar Trinum genera fins a un 40% més d’energia elèctrica que un panell fotovoltaic normal. La companyia italiana també destaca el seu bon rendiment, xifrant-lo amb un 55,2% global (conversió d’energia solar a energia tèrmica i elèctrica), amb un 13,8% de rendiment elèctric i un 41,4% de rendiment tèrmic [14].
Una altra avantatge que remarquen és la seva autoprotecció. El dish Trinum es pot tancar sobre ell mateix protegint així tot el sistema en cas de males condicions ambientals. Trinum està equipat amb un sistema de seguiment solar automàtic i amb sistemes digitals per el control remot.

El dish Stirling Trinum és altament recomanat per la producció d’energia tèrmica per sistemes ACS i calefacció. Les possibles aplicacions són diverses, des de plantes industrials, piscines, gimnasos, edificis públics etc.

A continuació s’adjunta una taula amb les característiques principals del dish Stirling Trinum proporcionades per el fabricant:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power output</td>
<td>3</td>
<td>kW</td>
</tr>
<tr>
<td>Electric power output</td>
<td>1</td>
<td>kW</td>
</tr>
<tr>
<td><strong>Operation</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot water production at ΔT 30 °C</td>
<td>80</td>
<td>l/h</td>
</tr>
<tr>
<td>Hot water production at ΔT 40 °C</td>
<td>70</td>
<td>l/h</td>
</tr>
<tr>
<td>Hot water production at ΔT 50 °C</td>
<td>60</td>
<td>l/h</td>
</tr>
<tr>
<td>Electric power at DNI=750 W/m²</td>
<td>1</td>
<td>kW</td>
</tr>
<tr>
<td>Electric power at DNI=650 W/m²</td>
<td>0,65</td>
<td>kW</td>
</tr>
<tr>
<td>Electric power at DNI=600 W/m²</td>
<td>0,3</td>
<td>kW</td>
</tr>
<tr>
<td>Heating water regulation</td>
<td>6 to 60 °C</td>
<td></td>
</tr>
<tr>
<td>Coolant flow</td>
<td>7 to 19 l/min</td>
<td></td>
</tr>
<tr>
<td>Maximum Working Pressure</td>
<td>6</td>
<td>bar</td>
</tr>
<tr>
<td><strong>Environment conditions</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum wind speed at operation</td>
<td>50</td>
<td>Km/h</td>
</tr>
<tr>
<td>Maximum wind in safe position</td>
<td>150</td>
<td>Km/h</td>
</tr>
<tr>
<td>Minimum operating temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
<tr>
<td><strong>Electric supply</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric peak consumption</td>
<td>400</td>
<td>W</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>230</td>
<td>V AC</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 +/- 0,5 Hz</td>
<td></td>
</tr>
<tr>
<td><strong>Dimensions</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflector diameter</td>
<td>3750</td>
<td>mm</td>
</tr>
<tr>
<td>Operating area</td>
<td>D 5000 x H 4600 mm</td>
<td></td>
</tr>
<tr>
<td>Gross reflective surface</td>
<td>11,23</td>
<td>m²</td>
</tr>
<tr>
<td>Net reflective surface</td>
<td>9,58</td>
<td>m²</td>
</tr>
<tr>
<td>Weight</td>
<td>600</td>
<td>Kg</td>
</tr>
<tr>
<td>Height at close position</td>
<td>3000</td>
<td>mm</td>
</tr>
</tbody>
</table>

*Taula 4.1. Principals característiques del dish Stirling Trinum*
4.3. Elements de la instal·lació

En aquest apartat s’exposaran els elements més rellevants que configuren la instal·lació del dish Stirling. Tal i com es pot veure la figura, el sistema està compost per una estructura on es troba el dish i el motor i una part on es troben tots els sistemes auxiliars.

No obstant, Innova no proporciona tots els elements de la instal·lació ja molts dels elements que la formen s’han de dimensionar diferent en funció del client.

Els elements inclosos són:
- Concentrador solar
- Sistema de seguiment solar
- Motor Stirling
- Sensors de temperatura
- ECU (Electronic control unit)
- HCU (Hidraulic control unit)

i els elements no inclosos:
- Acumulador
- Intercanviador
- Cablejat elèctric
- Vàlvula de purgament
- Vàlvula d’expansió

En la figura 4.1 es pot observar en color vermell aquells elements de la instal·lació que no estan inclosos en el producte comercial.

A continuació s’entrarà en més detall en els elements de més rellevància de la instal·lació.

4.4. Circuit primari

- Concentrador solar

El concentrador solar és d’un diàmetre de 3,75m. L’àrea total de captació és d’uns 11 m² tot i que l’àrea de captació neta és de tant sols 9,58m² [15]. Mitjançant aquestes dues àrees es pot calcular fàcilment la reflectivitat que presenta el concentrador utilitzant la següent fórmula:
\[
\rho = \frac{A_{CN}}{A_C} = \frac{9.58}{11} = 0.87
\]

El concentrador està format per una àrea de captació parabòlica ortogonal composta per 11 miralls individuals d’alumini altament reflectants, subjectats al esquelet metàl·lic per cargols M16. En la figura 4.1 podem observar el concentrador solar amb els seus corresponents miralls.

**Figura 4.1. Elements principals de la instal·lació**

**Figura 4.2. Miralls del concentrador solar**
**Motor Stirling**

El dish Stirling Trinum està equipat per un motor Stirling de pistó lliure amb potència elèctrica d’1kW anomenat LFPEG (Linear Free Piston Engine Generator) classe EM1 fabricat per la companyia MEC (Microgen Engine Corporation).

El motor Stirling utilitza heli per el seu funcionament, amb una temperatura mitja de treball d’uns 500ºC i una pressió inferior a 28 bars. El motor s’engega quan la temperatura del focus calent assoleix els 190ºC tot i que la potència nominal no es produeix fins que el motor es troba a 400ºC.

El sistema de refrigeració és l’encarregat de transferir l’energia tèrmica del focus fred del motor al acumulador que donarà suport al sistema ACS. Degut a que el motor treballa a una freqüència de 50Hz no és necessari un inversor per connectar-lo a la xarxa.

**Seguiment solar**

La instal·lació inclou un sistema de seguiment solar amb dos eixos. El moviment d’azimut és en un rang de -110º a +110º mentre que el rang d’altitud és de -90º a +90º [14]. Aquest sistema ha de permetre el seguiment solar amb l’objectiu de concentrar la radiació solar en el receptor. El seguiment es dur a terme gràcies a un algoritme que determina el grau d’azimut i d’altitud a través de coordenades GPS. El sistema actualitza la seva posició cada poc segons per assegurar la concentració òptima d’energia solar.

![Figura 4.3. Moviment azimutal i moviment d’altitud](image-url)
**Estructura**

L'estructura és d'acer galvanitzat i dóna suport al concentrador i al tronc. A l'interior d'aquesta estructura és on es connectaran els circuits elèctrics i hidràulics. L'estructura també conté unitat de connexió per facilitar la instal·lació i manteniment del dispositiu.

**Sensors ambientals**

Els sensors de temperatura es basen en un PT100. El valor de la temperatura mesurada correspon a un canvi en la resistència i es converteix en una senyal analògica elèctrica [15].

A causa de les elevades temperatures que assoleix el motor Stirling el focus calent ha de ser controlat per un sensor de temperatura amb l'objectiu d'activar el sistema de seguretat en cas que superi la temperatura màxima de 585°C. D'altra banda, també hi ha un altre sensor instal·lat en el circuit hidràulic que controla que la temperatura del fluid refrigerant no superi els 70°C. També hi ha instal·lat anemòmetre amb la finalitat de detectar la força del vent i un sensor de pluja [15].

Si es detecten condicions desfavorables com ara temperatures excessives, pluja o forts vents, s'activa el sistema de seguretat. Amb aquesta configuració el motor s'atura, s'activa un sistema de refrigeració auxiliar, i el dish es col·loca en posició de seguretat. En la següent figura 4.5 podem veure aquest mode de seguretat:

![Figura 4.4. Posició de treball i posició de seguretat del dish Stirling](image-url)
- **ECU (Electronic Control Unit)**
  Aquesta unitat inclou tota l’electrònica, el control i la interfície d’usuari. També inclou el tauler de control del motor Stirling, la junta de protecció de la xarxa i el control principal. La placa de control té la funció de mantenir el sistema en el funcionament adequat. Tanmateix, està connectat als sensors mediambientals per activar el mode de seguretat en cas que sigui necessari. Finalment, també controla el seguiment solar mitjançant coordenades GPS [15].

- **HCU (Hydraulic Control Unit)**
  La unitat de control hidràulic té com a objectiu gestionar l’energia tèrmica produïda i activar el mode de seguretat quan sigui necessari. Aquesta unitat conté diversos elements: la bomba hidràulica, un mesurador de flux, sensors de temperatura, una vàlvula de 3 vies i una vàlvula d’expansió. És important mantenir aquesta unitat fora de l’abast del dish Stirling, per evitar qualsevol impacte. L’interval òptim de temperatura del refrigerant a l’entrada ha d’estar entre 6ºC i 60ºC i el flux d’aproximadament 15 l/min [15].

![Figura 4.5. Electric Control Unit & Hydraulic Control Unit](image-url)
Acumulador

L’acumulador és un model BSV300 de la marca comercial Elbi. Aquest tipus d’acumulador està destinat a instal·lacions residencials per produir aigua calenta sanitària. L’intercanviador es troba en el seu interior tal i com es pot apreciar a la figura 4.6. Les característiques principals del acumulador són les següents:

- Pressió màxima permesa: 10 bars
- Temperatura màxima: 95ºC
- Superfície intercanvi: 1,05 m²
- Pressió màxima intercanviador: 12 bars
- Temperatura màxima intercanviador: 95ºC

Tot el dipòsit està recobert per poliuretà amb l’objectiu de mantenir-lo aïllat. El gruix de l’aïllant és de 50 mm.

Figura 4.6. Vista interior i exterior del acumulador
• Refrigerant
El refrigerant és una mescla entre aigua i propilenglicol que té com a objectiu dissipar la calor del motor Stirling. Aquest additiu és necessari per baixar el punt de congelació de l’aigua. Tanmateix, la seva baixa toxicitat el fan molt adequat per aquest ús. L’elecció sobre la quantitat de propilenglicol que ha de ser barrejat amb l’aigua dependerà de la ubicació del sistema. S’acostuma a escollir la temperatura mínima històrica del lloc en qüestió. En el cas de Barcelona, la proporció de propilenglicol ha de ser del 29% tenint en compte que la temperatura mínima històrica és de -10ºC [15].

<table>
<thead>
<tr>
<th>Propylene Glycol in solution [%]</th>
<th>Temperature at freezing point [ºC]</th>
<th>Temperature at boiling point [ºC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>-3</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>-8</td>
<td>101</td>
</tr>
<tr>
<td>30</td>
<td>-14</td>
<td>102</td>
</tr>
<tr>
<td>40</td>
<td>-22</td>
<td>104</td>
</tr>
<tr>
<td>50</td>
<td>-34</td>
<td>106</td>
</tr>
<tr>
<td>60</td>
<td>-48</td>
<td>108</td>
</tr>
</tbody>
</table>

Taula 4.2. Característiques del refrigerant

4.5. Circuit secundari
• Bomba
L’objectiu principal de la bomba és bombejar el flux d’aigua que circula per el circuit secundari. D’aquesta manera, l’aigua escalfada del dipòsit és capaç d’arribar fins el segon dipòsit on es troba l’aigua provinent de la xarxa. La bomba instal·lada és un model MAGNA 1 32-80 de la marca comercial Grundfos. Les principals característiques d’aquest model són [15]:

- Baix consum d’energia
- Baix nivell de soroll
- Larga vida útil sense manteniment.
- Rang de temperatures del líquid: -10 a 110ºC
- Pressió màxima 10 bar
- Potència màxima: 150W
• Vàlvula d'expansió
La vàlvula d'expansió ha de ser capaç d'absorbi l'augment de volum del fluid refrigerant causat per l'augment de la temperatura. Preferiblement la vàlvula d'expansió ha d'estar connectat a l'aspiració de la bomba.

• Intercanviador
És necessari instal·lar un intercanviador de calor per extreure l'energia tèrmica del circuit secundari al circuit terciari.
4.6. Control (Monitorització)

El sistema de control té com a objectiu garantir el funcionament correcte de les operacions mitjançant la gestió de les diferents variables recopilades per als sensors:

- Data (dia/mes/any)
- Hora (hora/minut/segon)
- Energia elèctrica produïda (kWh)
- Velocitat del vent (km/h)
- Temperatura del focus calent del Stirling (ºC)
- Temperatura del refrigerant d’entrada (ºC)
- Temperatura del refrigerant de sortida (ºC)
- Temperatura ambient (ºC)
- Temperatura de la caldera (ºC)
- Cabal del refrigerant (l/min)
- Voltatge (V)
- Freqüència (Hz)
- Potència subministrada (W)
- Intensitat subministrada (A)

Aquests sistema de monitorització funciona mitjanant un Modbus RTU, connectat a un administrador de xarxa que és capaç de registrar les dades recopilades i enviar-les a un ordinadors perquè siguin analitzades. El sistema també s’encarrega d’executar els algorismes de seguiment solar ja que disposa coordenades GPS i un relotge astronòmic. Finalment, el sistema també és capaç d’actuar sobre el sistema en termes de posada en marxa o tancament.

El sistema està equipat amb un HMI (Human-Machine-Interface) que permet mostrar totes les dades amb diferents pantalles en temps real. Tanmateix, totes les dades monitoritzades poden ser descarregades utilitzant una targeta SD. Les dades també queden registrades gràcies a la interfície online SCADA Power Studio [15][16].
Per altre banda, també es recullen les dades a través d’un programari anomenat Udicom Lector que permet la descarrega de les dades enregistrades a un ordinador personal en un arxiu CSV [16]. Les dades que recopia són les següents:

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Unit</th>
<th>Field instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Date and Time</td>
<td>DD/MM/YYYY HH:MM</td>
<td>(PLC)</td>
</tr>
<tr>
<td>2</td>
<td>Energy TD</td>
<td>W</td>
<td>(PLC)</td>
</tr>
<tr>
<td>3</td>
<td>Wind speed</td>
<td>m/s</td>
<td>Anemometer</td>
</tr>
<tr>
<td>4</td>
<td>Head set point</td>
<td>ºC</td>
<td>(PLC)</td>
</tr>
<tr>
<td>5</td>
<td>Control temperature</td>
<td>ºC</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>6</td>
<td>Limit temperature</td>
<td>ºC</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>7</td>
<td>Coolant inlet temperature</td>
<td>ºC</td>
<td>Thermistor</td>
</tr>
<tr>
<td>8</td>
<td>Coolant outlet temperature</td>
<td>ºC</td>
<td>Thermistor</td>
</tr>
<tr>
<td>9</td>
<td>Coolant flowrate</td>
<td>l/min</td>
<td>Flowmeter</td>
</tr>
<tr>
<td>10</td>
<td>Ambient temperature</td>
<td>ºC</td>
<td>Thermistor</td>
</tr>
<tr>
<td>11</td>
<td>Boiler temperature</td>
<td>ºC</td>
<td>Thermistor</td>
</tr>
<tr>
<td>12</td>
<td>Voltage</td>
<td>V</td>
<td>(PLC)</td>
</tr>
<tr>
<td>13</td>
<td>Current</td>
<td>A</td>
<td>(PLC)</td>
</tr>
<tr>
<td>14</td>
<td>Electrical power</td>
<td>W</td>
<td>(PLC)</td>
</tr>
<tr>
<td>15</td>
<td>Frequency</td>
<td>Hz</td>
<td>(PLC)</td>
</tr>
<tr>
<td>16</td>
<td>Phase angle</td>
<td>º</td>
<td>(PLC)</td>
</tr>
<tr>
<td>17</td>
<td>Error code</td>
<td>-</td>
<td>(PLC)</td>
</tr>
<tr>
<td>18</td>
<td>Azimuth</td>
<td>º</td>
<td>(PLC)</td>
</tr>
<tr>
<td>19</td>
<td>Elevation</td>
<td>º</td>
<td>(PLC)</td>
</tr>
<tr>
<td>20</td>
<td>Automation</td>
<td>-</td>
<td>(PLC)</td>
</tr>
</tbody>
</table>

*Taula 4.3. Dades recopilades per el programari Udicom Lector*

### 4.7. Estructura de suport

Tot el conjunt dish Stirling més els seus elements auxiliars estan recolzats sobre una base dissenyada per l’ETSEIB. Aquesta base, va ser dissenyada considerant el pitjor cas possible, és a dir, considerant que el sistema està exposat a ràfegues de vent de 155km/h. Ja que no estava permès, no es va poder fixar l’estructura al terrat així que es va decidir utilitzar un suport amb perfiles HEB 160 per les connexions principals i perfiles HEB 140 per el dish Stirling [15].
5. Estudi energètic del dish Stirling

En aquest apartat del treball es pretén analitzar el funcionament energètic del dish Stirling, gràcies a les pròpies dades que ofereix el dish i altres dades externes recopilades com pot ser la radiació solar. Aquest estudi es centrarà en calcular la generació d’energia del dish, tant tèrmica com elèctrica, amb l'objectiu de conèixer quins són els rendiments que presenta i comparar-los amb els del fabricant. Tanmateix, aquests rendiments seran útils posteriorment per realitzar un informe econòmic del projecte. No obstant, al no tenir suficients dades, serà impossible valorar el rendiment de cada etapa de conversió d’energia, sinó que s’optarà per calcular el rendiment global del sistema amb la radiació solar com a variable d’entrada i l’energia tèrmica i elèctrica com a variables de sortida. En la figura 5.1 es pot observar un esquema de totes les fases de conversió d’energia, on les fletxes de l’esquerra indiquen les pèrdues que es produeixen en cada etapa, les fletxes de la dreta indiquen factor clau de cada etapa i els números de color blau indiquen els diferents rendiments. Finalment, també s’estudiaran altres variables d’interès com pot ser la temperatura del focus calent o l’orientació solar del dish.

Figura 5.1. Esquema de totes les fases de conversió d’energia
5.1. La radiació solar

La radiació solar global està composta per la radiació directe i la difusa \[2][3][18]:

- **Radiació directe:** És aquella que prové directament del sol sense cap modificació però filtrada per l’atmosfera. Els feixos de llum són perfectament paral·lels.

- **Radiació difusa:** És aquella radiació que arriba distorsionada i els feixos de llum han perdut el paral·lelisme. Aquesta energia suposa un 15% de la radiació global en dies assolellats. El percentatge augmenta considerablement en dies ennuvolats ja que la radiació solar directe és molt baixa.

En la següent taula 5.1 podem observar el percentatge de la component difusa segons les condicions meteorològiques:

<table>
<thead>
<tr>
<th>Condicions meteorològiques</th>
<th>Radiació solar (W/m²)</th>
<th>Component difusa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cel clar</td>
<td>750-1000</td>
<td>10-20</td>
</tr>
<tr>
<td>Parcialment ennuvolat</td>
<td>200-500</td>
<td>20-90</td>
</tr>
<tr>
<td>Completament cobert</td>
<td>50-150</td>
<td>90-100</td>
</tr>
</tbody>
</table>

*Taula 5.1. Percentatge de la component difusa segons les condicions meteorològiques*

5.1.1. Instruments de mesura

La radiació solar global fa referència a la suma de la radiació solar directe i la difusa incident. La unitat de mesura en el sistema internacional és W/m², és a dir, potència rebuda per unitat de superfície. Els sensors que s’utilitzen per calcular aquest paràmetre meteorològic són els piranòmetres termoelèctrics. El seu funcionament es basa en l'electricitat generada a partir de la diferència de temperatura entre dues parts del sensor i mesuren en el rang de longitud d’ona de 0.3 a 3µm, que correspondría a l’espectre que va de l’ultraviolat a l’infraroig, passant pel visible. La diferència de temperatures entres les unions càlides i fredes genera un voltatge que és proporcional a la radiació solar. [26]

5.1.2. Moviment solar

El moviment solar es pot definir mitjançant dos sistemes de coordenades diferents cadascun
d'ells amb uns angles de referència concrets:

- **Coordenades horàries**
  
  **Declinació solar (°) \( \delta_s \)** Posició angular entre el raig incident solar i el pla del equador.

  **Angle horari solar (°) \( \omega_s \)** Desplaçament angular del solar sobre el pla de la trajectòria solar.

- **Coordenades horitzontals**

  **Altura solar (°) \( h_s \)** Angle que forma la radiació solar directe i el pla del horitzó. L'angle complementari s'anomena angle zenital solar.

  **Azimut solar (°) \( a_s \)** Angle que forma la radiació solar directe i el meridià del observador.
Diagrames de la trajectòria solar

Existeixen dos tipus de diagrames diferents per representar la trajectòria solar, els que s’anomenen diagrames solars i els diagrames rectangulars o cartesians.

Els diagrames solars es caracteritzen per representar l’elevació solar mitjançant una successió de cercles concèntrics mentre que l’azimut es representat per l’angle del disc.

Els diagrames rectangulars o cartesians representen l’azimut solar en l’eix d’ordenades mentre que l’elevació es dibuixa en l’eix d’abscisses.

Figura 5.4. Exemple diagrama solar
5.1.3. Adquisició de la radiació solar

Tenint en compte que el dish Stirling funciona gràcies a la radiació solar directe va ser necessari recopilar dades de la radiació solar global i difusa. Gràcies a la col·laboració de la UB, ha sigut possible adquirir aquestes dades ja que disposen d’un piranòmetre termoelèctric a la facultat de física que es troba a pocs metres del nostre dish Stirling. En el següent enllaç es troben les dades meteorològiques que ofereixen i que s’han utilitzat per realitzar l’estudi energètic: [http://infomet.am.ub.es/metadata/](http://infomet.am.ub.es/metadata/)
5.1.4. Càlcul de la radiació solar rebuda pel dish Stirling

Un cop obtinguda la radiació solar directe és necessari corregir-la mitjançant l’angle d’incidència (i) ja que el piranòmetre només calcula la proporció de radiació que incideix directament sobre la superfície horitzontal (la normal al seu pla) amb l’objectiu d’obtenir la radiació directe incident quan el pla receptor i el sol es troben alineats.

L’angle d’incidència pot ser calculat mitjançant les coordenades rectangulars amb la següent expressió trigonomètrica:

$$\cos(i) = \sin(h_s) \cos(\beta) + \sin(h_s) \sin(\beta) \cos(a_s - a_c)$$

on $i$ és l’angle d’incidència, $h_s$ l’altura solar i $\beta$ la inclinació del pla. Es pot observar fàcilment, que per el cas particular d’un pla horitzontal ($\beta = 0$) l’expressió es simplifica de la següent manera:

$$\cos(i) = \sin(h_s)$$

Gràcies a l’anterior expressió, coneixent l’altura solar també sabem el valor del angle d’incidència. Un cop conegut l’angle d’incidència és fàcil calcular la radiació total directe que rep el dish amb un simple càlcul:

$$R_{foc} = \frac{R_{dir}}{\cos(i)}$$
Anàlisis d’un sistema d’energia renovable basat en un dish Stirling

on \( R_{dir} \) és la radiació rebuda per un pla horitzontal i \( R_{foc} \) és la radiació total directe que rebrà el dish.

Nota: El valor de l’altura solar s’obté gràcies al portal web:


5.2. Condicions de l’estudi

L’estudi energètic s’ha dut a terme en el període comprès entre el 1 d’abril i el 31 de maig sumant un total de 28 dies. Hauria estat desitjable analitzar més dies per millorar l’extrapolació anual dels resultats però no ha estat possible per les restriccions de temps del projecte.

Les dades meteorològiques, com s’ha explicat anteriorment, s’han obtingut a través del portal INFOMET per obtenir la radiació solar i el portal SUNTOOLS per obtenir l’angle de l’elevació i azimutal. Per altre banda, s’han extret les dades de generació del propi dish Stirling.

A causa de la diferent procedència de les dades de radiació solar i de generació, no ha estat possible sincronitzar les dades ja que la recopilació es fa en intervals diferents. Per una banda les dades de radiació solar es recopilaven cada 10 minuts. Per altra banda les dades de generació cada 5 minuts.

Durant el període d’estudi hi ha hagut dies amb una radiació solar molt elevada i consequentment un bon rendiment del motor Stirling. Per altra banda, també hi ha hagut dies on la radiació era tant baixa que la producció tèrmica i elèctrica era pràcticament nul·la i per tant, el rendiment era quasi nul. Degut a aquests diferents rendiments del Dish Stirling es va decidir analitzar 3 casos d’estudi diferents:

- **Supòsit 1**: Es considera que el rendiment, tèrmic i elèctric, del Dish Stirling és el que ens proporciona el fabricant.
- **Supòsit 2**: Es considera que el rendiment, tèrmic i elèctric, del Dish Stirling és la mitjana dels dies on hi ha hagut més radiació solar.
- **Supòsit 3:** Es considera que el rendiment, tèrmic i elèctric, del Dish Stirling és la mitjana de tots els dies d’estudi.

### 5.3. Generació d’energia

En aquest apartat s’estudiarà la generació d’energia tèrmica i elèctrica del Dish Stirling, valorant així la seva eficiència, amb l’objectiu de comprovar si compleix amb les especificacions del fabricant. Tanmateix, es presentaran gràfics dels resultats d’alguns dels dies estudiats i es valoraran per extreure conclusions. En l’ANNEX A podreu consultar els resultats d’alguns dels dies estudiats durant el projecte.

Per calcular el valor de la potència tèrmica produïda per el Dish Stirling es pot utilitzar la següent equació:

\[
P_t = \frac{T_c - T_h}{60} \cdot C_w \cdot F
\]

on:

- \(P_t\) és la potència tèrmica [kW]
- \(T_c\) és la temperatura del fluid refrigerant a la sortida del motor [ºC]
- \(T_h\) és la temperatura del fluid refrigerant a l’entrada del motor [ºC]
- \(C_w\) és el calor específic\(^1\) [kJ / K \cdot kg]
- \(F\) el flux del fluid refrigerant [l/min]

\(^1\) El valor del calor específic del fluid refrigerant és de 4.1796 J cm\(^{-3}\)K\(^{-1}\)
El valor de la potència elèctrica ve donada per el propi Dish Stirling i el valor de la potència solar prové de multiplicar la irradiància directe, calculada segons l’apartat anterior, per la superfície neta del dish (9,58m$^2$).

En les figures 5.8 i 5.9 es pot contemplar una potència tèrmica pròxima als 3 kW mentre que la potència elèctrica es troba propera a 1 kW, dades que concorden amb les especificacions del dish.

![Figura 5.8. Gràfic de la generació d'energia del dia 21 de maig](image1)

En la figura 5.9, es pot observar clarament l’efecte de la radiació solar en la generació d’energia tèrmica i elèctrica. A les 18.00h es produeix una disminució de la radiació solar fet que provoca un disminució evident en la generació tèrmica i elèctrica.

![Figura 5.9. Gràfic de la generació d'energia del dia 23 de maig](image2)
En la figura 5.10 es pot observar l’efecte de la temperatura del focus calent en vers l’energia elèctrica produïda. També es pot observar com la temperatura no supera els 475°C ja que és la temperatura límit del focus calent configurada. Un cop s’assoleix aquesta temperatura el dish Stirling es desenfoca fet que es tradueix amb una disminució de l’energia generada.

En la figura 5.11 podem observar la relació lineal que existeix entre la temperatura del focus calent i la generació d’energia elèctrica. Com es pot observar a la figura, existeix una forta correlació entre aquestes dues variables, amb un elevat coeficient de determinació $R^2$ de valor 0,9979. Aquest fenomen és l’esperat, ja que la generació d’energia elèctrica és instantani un cop el focus calent es comença a escalfar.

Figura 5.10. Gràfic de la temperatura del focus calent i la potència elèctrica generada

Figura 5.11. Gràfic de la relació entre la potència elèctrica i la temperatura del focus calent
Per altra banda, aquesta correlació no és tant evident quan parlem de producció d’energia tèrmica. Tal i com s’observa en les figures 5.12 i 5.13, continua existint una relació lineal entre la temperatura del focus calent i la potència tèrmica, tal i com passava en la potència elèctrica, però en aquest cas el coeficient de determinació $R^2$ és força menor amb un valor de 0.7722.

![Gràfic de la temperatura del focus calent i la potència tèrmica generada](image1)

*Figura 5.12. Gràfic de la temperatura del focus calent i la potència tèrmica generada*

![Gràfic de la relació entre la potència tèrmica i la temperatura del focus calent](image2)

*Figura 5.13. Gràfic de la relació entre la potència tèrmica i la temperatura del focus calent*
També és interessant graficar l’energia tèrmica i elèctrica diària en funció de la energia solar diària per descobrir quina és la relació entre aquestes variables ja que pot ser útil per saber quin és l’eficiència del motor. En la figura 5.14 es pot observar un gràfic proporcionat per INNOVA on es pot veure aquesta relació.

![Gràfic que relaciona l’energia solar diària rebuda pel dish Stirling amb la generació d’energia tèrmica i elèctrica segons INNOVA](image)

Figura 5.14. Gràfic que relaciona l’energia solar diària rebuda pel dish Stirling amb la generació d’energia tèrmica i elèctrica segons INNOVA

Així doncs, es va procedir a calcular l’energia tèrmica i elèctrica diària pels supòsits 2 i 3 amb la finalitat de comparar els resultats amb els que ens presenta INNOVA (supòsit 1).

Per efectuar el càlcul de l’energia tèrmica o elèctrica es van utilitzar els valors de potència instantània calculats, en Watts, per cada període de 5 minuts. D’aquesta manera, i suposant que la potència és constant en tot el període, es va calcular l’energia tèrmica i elèctrica de la següent manera:

\[ E_t = P_t \cdot 5 \cdot 60 \]

on \( P_t \) és la potència tèrmica o elèctrica de cada període de 5 minuts.
Per altra banda, es va calcular l’energia solar seguint el mateix procediment però en aquest cas utilitzant un període de 10 minuts, corresponent a la resolució de les dades de la radiació solar.

Posteriorment es va realitzar un sumatori de totes les potències instantànies per calcular el valor de l’energia diària generada.

Finalment, va ser necessari efectuar un factor de conversió per convertir els Joules en kWh.

Els resultats obtinguts es troben a les figures 5.15 i 5.16 amb les seves corresponents regressions lineals.

Tal i com s’observa els pendents obtinguts de la regressió lineal entre l’energia tèrmica i elèctrica respecte la solar són relativament pròxims als que presenta INNOVA, tant pel supòsit 2 com per el supòsit 3.

La següent taula 5.2 mostra els diferents valors de la regressió dels 3 supòsits:

<table>
<thead>
<tr>
<th></th>
<th>Energia tèrmica</th>
<th>Energia elèctrica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recta de regressió</td>
<td>$R^2$</td>
</tr>
<tr>
<td>Supòsit 1</td>
<td>$y=0,3263x+0,9447$</td>
<td>0,96210</td>
</tr>
<tr>
<td>Supòsit 2</td>
<td>$y=0,3805x+1,2377$</td>
<td>0,91019</td>
</tr>
<tr>
<td>Supòsit 3</td>
<td>$y=0,4153x-1,3586$</td>
<td>0,95309</td>
</tr>
</tbody>
</table>

*Taula 5.2. Rectes de regressió per l’energia generada diària en funció de la radiació solar rebuda segons els 3 supòsits*
Figura 5.15. Gràfic que relaciona l'energia solar diària rebuda pel dish Stirling amb la generació d'energia tèrmica i elèctrica segons el supòsit 2.

Figura 5.16. Gràfic que relaciona l'energia solar diària rebuda pel dish Stirling amb la generació d'energia tèrmica i elèctrica segons el supòsit 3.
5.4. Seguiment solar

Tal i com s’ha explicat en apartats anteriors, el dish Stirling es mou seguint dos moviments: el moviment d’azimut amb un rang -110º a +110º i el moviment d’elevació amb un rang de -90º a +90º. En la figura 5.17 es pot observar una comparació entre l’azimut i l’elevació solar amb els del dish Stirling.

![Figura 5.17. Gràfic que relaciona l’elevació solar i azimut amb la del dish Stirling](image)

Com es pot observar, el seguiment solar del dish Stirling funciona perfectament ja que tant l’azimut com l’elevació solar del dish es troben totalment sincronitzats. També es pot observar com el dish Stirling no inicia el seguiment solar fins a certa hora del matí, quan comença a detectar la radiació i s’atura quan els nivells de radiació ja són massa baixos.

5.5. Rendiment tèrmic i elèctric

L’objectiu principal d’aquest apartat és calcular el rendiment total del dish Stirling, mitjançant el càlcul del rendiment tèrmic i l’elèctric. Per fer-ho, es va calcular les energies solar, tèrmica i elèctrica del dish Stirling amb el procediment esmentat anteriorment.

Un cop calculades totes les energies, es va procedir a calcular els rendiments tèrmics i elèctrics, mesurant la fracció d’energia útil en vers l’energia total captada:
\[ \eta_t = \frac{E_t}{E_s} \]

\[ \eta_e = \frac{E_e}{E_s} \]

on:

\( \eta_t \) és el rendiment tèrmic

\( \eta_e \) és el rendiment elèctric

\( E_t \) és l’energia tèrmica diària

\( E_e \) és l’energia elèctrica diària

\( E_s \) és l’energia solar diària

Els resultats obtinguts durant els dies estudiats es troben a la taula 5.4. Un cop calculats els rendiments, es va calcular la mitjana dels millors dies (supòsit 2) i la mitjana de tots els dies (supòsit 3). Cal recordar que el supòsit 1 fa referència als rendiments que presenta INNOVA. Els resultats obtinguts es mostren a la taula 5.3:

<table>
<thead>
<tr>
<th>Rendiment</th>
<th>Supòsit 1</th>
<th>Supòsit 2</th>
<th>Supòsit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>55%</td>
<td>49%</td>
<td>41%</td>
</tr>
<tr>
<td>Tèrmic</td>
<td>41%</td>
<td>39%</td>
<td>34%</td>
</tr>
<tr>
<td>Elèctric</td>
<td>14%</td>
<td>9%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Taula 5.3. Rendiments obtinguts segons els 3 supòsits

Com era d’esperar, els rendiments calculats es troben per sota dels rendiments exposats per INNOVA. No obstant, s’aconsegueixen uns rendiments tèrmics força acceptables, amb un rendiment del 75% respecte el que presenta INNOVA segons el supòsit 3 i un 95% segons el supòsit 2.

Per altra banda, el rendiment elèctric no presenta tants bons resultats, amb un 43% respecte el rendiment d’INNOVA segons el supòsit 3 i un 64% segons el supòsit 2.
Anàlisi d'un sistema d'energia renovable basat en un dish Stirling

<table>
<thead>
<tr>
<th>Dia</th>
<th>Energia solar [kWh]</th>
<th>Energia tèrmica [kWh]</th>
<th>Energia elèctrica [kWh]</th>
<th>Rendiment total [%]</th>
<th>Rendiment tèrmic [%]</th>
<th>Rendiment elèctric [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Abril</td>
<td>3</td>
<td>0,80</td>
<td>0,03</td>
<td>27%</td>
<td>42%</td>
<td>1%</td>
</tr>
<tr>
<td>5 Abril</td>
<td>2</td>
<td>0,80</td>
<td>0,04</td>
<td>27%</td>
<td>40%</td>
<td>2%</td>
</tr>
<tr>
<td>7 Abril</td>
<td>57</td>
<td>25,70</td>
<td>6,20</td>
<td>56%</td>
<td>45%</td>
<td>11%</td>
</tr>
<tr>
<td>9 Abril</td>
<td>60</td>
<td>21,40</td>
<td>5,90</td>
<td>46%</td>
<td>36%</td>
<td>10%</td>
</tr>
<tr>
<td>11 Abril</td>
<td>57</td>
<td>23,00</td>
<td>5,50</td>
<td>50%</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>13 Abril</td>
<td>61</td>
<td>24,90</td>
<td>6,50</td>
<td>51%</td>
<td>41%</td>
<td>11%</td>
</tr>
<tr>
<td>15 Abril</td>
<td>51</td>
<td>23,00</td>
<td>5,00</td>
<td>55%</td>
<td>45%</td>
<td>10%</td>
</tr>
<tr>
<td>17 Abril</td>
<td>43</td>
<td>18,30</td>
<td>3,10</td>
<td>50%</td>
<td>43%</td>
<td>7%</td>
</tr>
<tr>
<td>18 Abril</td>
<td>58</td>
<td>26,00</td>
<td>6,00</td>
<td>55%</td>
<td>45%</td>
<td>10%</td>
</tr>
<tr>
<td>20 Abril</td>
<td>36</td>
<td>10,00</td>
<td>1,00</td>
<td>31%</td>
<td>28%</td>
<td>3%</td>
</tr>
<tr>
<td>22 Abril</td>
<td>33</td>
<td>6,00</td>
<td>0,00</td>
<td>18%</td>
<td>18%</td>
<td>0%</td>
</tr>
<tr>
<td>2 Maig</td>
<td>70</td>
<td>26,40</td>
<td>7,40</td>
<td>48%</td>
<td>42%</td>
<td>11%</td>
</tr>
<tr>
<td>4 Maig</td>
<td>70</td>
<td>29,00</td>
<td>7,60</td>
<td>52%</td>
<td>42%</td>
<td>14%</td>
</tr>
<tr>
<td>7 Maig</td>
<td>8</td>
<td>1,10</td>
<td>0,03</td>
<td>14%</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td>8 Maig</td>
<td>3</td>
<td>0,00</td>
<td>0,00</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>9 Maig</td>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>11 Maig</td>
<td>43</td>
<td>14,00</td>
<td>1,80</td>
<td>37%</td>
<td>33%</td>
<td>4%</td>
</tr>
<tr>
<td>13 Maig</td>
<td>48</td>
<td>18,70</td>
<td>3,40</td>
<td>46%</td>
<td>39%</td>
<td>7%</td>
</tr>
<tr>
<td>15 Maig</td>
<td>67</td>
<td>28,20</td>
<td>6,40</td>
<td>52%</td>
<td>42%</td>
<td>10%</td>
</tr>
<tr>
<td>17 Maig</td>
<td>32</td>
<td>12,40</td>
<td>0,70</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>19 Maig</td>
<td>58</td>
<td>22,60</td>
<td>3,80</td>
<td>46%</td>
<td>39%</td>
<td>7%</td>
</tr>
<tr>
<td>21 Maig</td>
<td>70</td>
<td>26,30</td>
<td>6,50</td>
<td>47%</td>
<td>37%</td>
<td>9%</td>
</tr>
<tr>
<td>23 Maig</td>
<td>63</td>
<td>25,50</td>
<td>4,80</td>
<td>48%</td>
<td>40%</td>
<td>8%</td>
</tr>
<tr>
<td>25 Maig</td>
<td>39</td>
<td>14,10</td>
<td>2,30</td>
<td>42%</td>
<td>36%</td>
<td>6%</td>
</tr>
<tr>
<td>27 Maig</td>
<td>63</td>
<td>25,20</td>
<td>5,00</td>
<td>48%</td>
<td>40%</td>
<td>8%</td>
</tr>
<tr>
<td>29 Maig</td>
<td>72</td>
<td>26,30</td>
<td>5,90</td>
<td>45%</td>
<td>37%</td>
<td>8%</td>
</tr>
<tr>
<td>31 Maig</td>
<td>62</td>
<td>22,20</td>
<td>5,40</td>
<td>46%</td>
<td>37%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Taula 5.4. Resultats de la generació d'energia i rendiments per tots els dies estudis

5.6. Producció energètica anual

Per obtenir la producció energètica anual, era necessari recopilar la radiació solar de cada mes durant un any sencer. Una vegada més, gràcies al piranòmetre instal·lat a la facultat de física, va ser possible aconseguir aquestes dades de radiació. A continuació, es va calcular la potència solar mensual multiplicant els resultats de la radiació per l'àrea de captació neta. Finalment, es va calcular l'energia solar multiplicant la potència per el corresponent període de temps (10 minuts) tal i com s'ha descrit en apartats anteriors.

Una vegada calculades les energies solars per cada mes, va ser possible calcular l'energia tèrmica i elèctrica mensuals gràcies als rendiments de cada supòsit exposats a la taula 5.3. Els resultats es poden veure reflectits en les següents figures 5.18 i 5.19.
Figura 5.18. Energia tèrmica generada cada mes segons els 3 supòsits

Figura 5.19. Energia elèctrica generada cada mes per els 3 supòsits
6. Forma de corrent del dish Stirling

Degut a la falta d’informació en les especificacions tècniques d’INNOVA, es va decidir mesurar la forma de corrent del Dish Stirling mitjançant un oscil·loscopi.

Aquest aparell permet visualitzar gràficament senyals elèctriques variables en el temps. També van ser necessaris sensors de tensió i corrent que interconnecten el punt on es vol mesurar el corrent o la tensió amb l’oscil·loscopi. També va ser necessari un transformador per disminuir la tensió del circuit elèctric.

A continuació es pot observar un esquema simplificat de les connexions on es va mesurar el corrent i la tensió:

![Figura 6.1. Esquema simplificat de les connexions elèctriques](image)

El sensor de tensió s’ha col·locat entre els punts L1 i N i s’ha connectat al canal 1 (color groc) del oscil·loscopi. Per altra banda, s’ha col·locat un sensor de corrent al punt L1 per mesurar la corrent de la xarxa elèctrica i un altre al 12.1 per mesurar el corrent del Dish Stirling. El sensor de corrent de la xarxa s’ha connectat al canal 2 del oscil·loscopi (color verd) i el sensor de corrent del Dish Stirling al canal 3 (color rosa).

Finalment les formes de corrent i tensió obtingudes van ser les que es poden observar a la figura 6.2.
Pàg. 74

Memoria

Com es pot observar, de color groc veiem la forma de tensió de la xarxa. Tot i que sembla ser sinusoidal, es pot observar com les parts superiors i inferiors no acaben de ser perfectes. Aquest problema pot ser degut als harmònics presents a la xarxa. En segon lloc, podem veure de color verd la intensitat de la xarxa. En aquest cas també de forma sinusoidal però clarament distorsionada pels harmònics. Finalment, de color rosa, la forma de corrent del dish Stirling. En la següent taula 6.1 es pot observar la distorsió total dels harmònics (THD, Total Harmonic Distortion):

<table>
<thead>
<tr>
<th></th>
<th>THD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensió de la xarxa</td>
<td>1,64</td>
</tr>
<tr>
<td>Corrent de la xarxa</td>
<td>15,70</td>
</tr>
<tr>
<td>Corent del dish Stirling</td>
<td>5,80</td>
</tr>
</tbody>
</table>

Taula 6.1. Distorsió total dels harmònics de les senyals estudiades

Els valors eficaços de cada senyal, que es poden observar a la part inferior són els següents:

- Rms (C1) = 234,149 V (Tensió de la xarxa)
Anàlisis d’un sistema d’energia renovable basat en un dish Stirling

- Rms (C2) = 1,60071 A (Corrent de la xarxa)
- Rms (C3) = 2,03209 A (Corrent del dish Stirling)

Es pot apreciar com les dues formes de corrent, es troben pràcticament sincronitzades una amb l’altra. La diferència entre una i l’altra és el corrent que ha consumit el quadre electrònic.

Tanmateix, s’observa com la tensió de la xarxa es troba avançada respecte les dues corrents, concretament en contrafase. Per últim, de color vermell, s’observa la potència instantània generada per el Dish Stirling amb el següent valor mitjà corresponent a la potència activa que és la que calcula l’oscil·loscopi:

- Mean (M1) = -474,018 W (Potència generada pel Dish Stirling)

Per obtenir aquest valor, es va configurar l’oscil·loscopi perquè multipliqués els canals 1 i 3.

A continuació es demostrarà el procediment per calcular aquesta potència així com l’angle de fase de la tensió i el corrent del dish Stirling:

Les expressions que estem buscant en fasorial són les següents:

\[ U = U_{ef} \angle 0^\circ \]
\[ I = I_{ef} \angle Neg \]

Imposarem a 0 l’angle de la tensió i calcularem l’angle de la corrent del dish Stirling, que equivaldrà a la diferència angular entre la tensió i la corrent.

En primer lloc cal saber el valor eficaç de la intensitat que és mostrat a la pantalla del oscil·loscopi com hem comentat anteriorment:

\[ I_{ef} = 2,3 A \]

\[ T = 20 \text{ mS} \Rightarrow f = \frac{1}{T} \Rightarrow \omega = 2\pi f = 100\pi \text{ rad/s} \]

En el punt de màxima intensitat:

\[ I_{max}(t) = \sqrt{2} I_{ef} \cos(\omega t + \varphi_i) \]
\[ \cos(\omega t + \varphi_i) = 1 \Rightarrow \omega t + \varphi_i = 0 \]
\[ \varphi_i = -\omega t = -100\pi \cdot 10 \cdot 10^{-3} = -\pi \text{ rad} = -180^\circ \]
Per tant el resultat final és el següent:

\[ U = 234,15 \angle 0^\circ \text{ V} \]

\[ I = 2,03 \angle -180^\circ \text{ A} \]

Finalment, si voleu calcular la potència generada per el dish Stirling haurem de realitzar el següent càlcul:

\[ S = U \cdot I^* = 234,15 \angle 0^\circ \cdot 2,03 \angle 180^\circ = -475,32 + 0 \text{ i V A} \]

Com es pot observar, el valor calculat és pràcticament el mateix que el que mostra l’oscil·loscopi, corroborant que el procediment és correcte. Tanmateix, tal i com s’esperava el valor de la potència aparent és tota activa. Per últim també comentar que el valor negatiu de la potència activa significa que aquesta potència va del dish Stirling a la xarxa.

Per altra banda, també es va calcular amb l’oscil·loscopi la potència que arriba a la xarxa. La senyal de la potència es pot veure en la figura 6.3.

En aquest cas, la potència obtinguda és de 368,332 W. Sembla evident doncs, que entre el dish Stirling i la xarxa es perden uns 100 W que són absorbits per el quadre electrònic.

**Figura 6.3.** Senyals de corrent, intensitat i potència que arriba a la xarxa mostrades al oscil·loscopi
7. Optimització del sistema ACS

Tal i com s'ha exposat amb anterioritat, un dels objectius principals del dish Stirling és pre escalifar l'aigua del gimnàs de la universitat. El gimnàs està situat en una de les parts amb més ombra del edifici i per tant existeix una gran distància entre el concentrador Stirling i el consum tèrmic. Concretament, els conductes entre el dipòsit acumulador del terrat i el dipòsit que subministra l'aigua del gimnàs tenen una longitud de 142 m i per tant és previsible que existeixin pèrdues de calor. En la figura 7.1 es pot observar un esquema de la instal·lació amb tots els elements més rellevants i la seva ubicació.

Un dels problemes que ha sorgit des dels inicis d'aquesta instal·lació és el desfasament que existeix entre la producció d'energia tèrmica i el seu consum, amb un major consum a l'hora de dinar i al acabar l'horari lectiu. Per ajustar aquests paràmetres és necessari configurar la bomba que regula el flux del circuit secundari amb la intenció d'ajustar la producció amb el consum.

Malauradament, configurar la bomba per sincronitzar el consum d'aigua calenta sanitària amb la generació d'energia tèrmica és pràcticament impossible. Per tant, s'ha optat per optimitzar la producció d'energia tèrmica escollint aquella configuració de la bomba que maximitzi el rendiment tèrmic amb l'objectiu de generar la major quantitat d'energia tèrmica possible.

En el següent apartat s'exposarà tota l'evolució que s'ha seguit per optimitzar el sistema ACS, des de les configuracions de funcionament de la bomba que s'han usat fins les condicions de temperatura d'engegada i aturada de la bomba. També s'exposaran els resultats obtinguts durant el procés.

**Figura 7.1. Esquema simplificat de la instal·lació**
7.1. Configuració de la bomba

La bomba encarregada de controlar el flux del circuit secundari està governada per una centraleta de la marca *Delta Sol* i té la funció de regular les engegades i aturades de la bomba amb la finalitat d’ajustar el consum i la producció tèrmica.

La centraleta en qüestió presenta diversos sistemes de funcionament. La tria del sistema depèndrà segons les necessitats de la instal·lació.

L’objectiu era escollir el sistema més senzill possible perquè ens permetés canviar les condicions d’arrencada i aturada de la bomba amb facilitat i celeritat. Així doncs, es va optar per la configuració més senzilla de totes, la número 1:

![Figura 7.2. Esquema de la configuració 1 de la bomba](image)

Aquesta configuració regula l’engegada i l’aturada de la bomba segons la diferència de temperatura entre els punts S1 i S2, fixant un diferència de temperatures d’engegada i una diferència de temperatures d’aturada.
Cal remarcar que l’esquema que es mostra a la figura 7.2 no descriu exactament el nostre cas particular d’estudi, ja que la bomba es troba instal·lada al circuit secundari tal i com es pot observar a la figura 7.1.

Degut a que a la nostre instal·lació només hi ha una termoresistència, es va fixar la variable S1 utilitzant una resistència de valor òhmic igual al del valor de la termoresistència a 0 graus, de tal manera que només ens havíem de preocupar del valor de la temperatura S2 equivalent a la temperatura del dipòsit-intercanviador.

Utilitzant aquest configuració, es van provar diferents rangs de temperatura per controlar l’activació i l’aturada de la bomba. Com ja s’ha comentat, l’objectiu principal és maximitzar el rendiment tèrmic per millorar la producció d’energia tèrmica donant suport així al sistema d’aigua calenta sanitària.

Els diferents rangs de temperatura que s’han provat durant el període del projecte són els següents:
- 35-32°C (14 abril-21 abril)
- 40-37°C (21 abril-5 Maig)
- 37-34°C (5 maig-26 Maig)
- 35-32°C (26 maig-31 Maig)

on la temperatura més elevada correspon a la temperatura d’engegada i la temperatura més baixa correspon a l’aturada.

7.2. Resultats

En la taula 7.1 es poden observar els rendiments obtinguts amb cadascuna de les diferents combinacions de temperatura que s’han estudiat durant el projecte.

Tal i com es pot observar la combinació de temperatures que maximitzala rendiment tèrmic és la primera; engegada a 35°C i aturada a 32°C. Aquesta configuració es va a dur a terme durant dos períodes, amb un rendiment tèrmic mig del 39%, molt per sobre que les altres configuracions.

No obstant, seria recomanable estudiar altres configuracions de temperatura amb l’objectiu de trobar-ne alguna que millorés l’actual. En treballs posteriors es podria valorar fer un estudi.
de disseny factorial amb les temperatures d’engegada i aturada i el cabal de la bomba com a variables de control. En aquest projecte, no ha estat possible dur-lo a terme per qüestions de temps.

Finalment també seria oportú analitzar aquestes configuracions de temperatura durant el mes de juny ja que és el mes on la radiació solar és més elevada i per tant quan els rendiments poden ser més elevats.

<table>
<thead>
<tr>
<th>Data</th>
<th>Temperatura engegada</th>
<th>Temperatura apagada</th>
<th>Rendiment tèrmic</th>
<th>Rendiment elèctric</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Abril-21 Abril</td>
<td>35</td>
<td>32</td>
<td>40%</td>
<td>8%</td>
</tr>
<tr>
<td>21 Abril-5 Maig</td>
<td>40</td>
<td>47</td>
<td>33%</td>
<td>7%</td>
</tr>
<tr>
<td>5 Maig-26 Maig</td>
<td>37</td>
<td>34</td>
<td>28%</td>
<td>5%</td>
</tr>
<tr>
<td>26 Maig-31 Maig</td>
<td>35</td>
<td>32</td>
<td>38%</td>
<td>8%</td>
</tr>
</tbody>
</table>

*Taula 7.1. Rendiments obtinguts amb les diferents combinacions de temperatura*
8. Estudi econòmic

En aquest apartat del projecte s’estudiarà la viabilitat econòmica de la instal·lació del Dish Stirling en base a les dades calculades dels tres supòsits presentats en aparats anteriors, amb l’objectiu principal de comprovar la rendibilitat i la liquiditat del projecte.

S’utilitzaran dos indicadors de selecció d’inversions per verificar la rendibilitat:

- **Valor Actualitzat Net (VAN):** Suma actualitzada dels fluxos de tresoreria durant l’horitzó del projecte o inversió. El criteri de selecció a seguir és, si el VAN és positiu la inversió és rentable.

  \[
  VAN = \sum_{t=0}^{T} \frac{Q_t}{(1+i)^t}
  \]

  on: \(Q_t\) és el flux de tresoreria en període \(t\)
  \(i\) és la taxa d’interès

- **Taxa Interna de Rendibilitat (TIR):** Donada una inversió amb un horitzó d’avaluació \(T\), es denomina TIR de la inversió a la taxa \(i\) amb el valor del qual el resultat del VAN és nul.

  \[
  VAN = \sum_{t=0}^{T} \frac{Q_t}{(1+i)^t} = 0
  \]

  Per altra banda, per valorar la liquiditat del projecte serà útil el següent indicador:

- **Període de retorn (payback):** Temps necessari per aconseguir resultats positius o en recuperar la inversió inicial.
8.1. Condicions de l'estudi

Per calcular els indicadors presentats anteriorment, és necessari primer, calcular els fluxos de caixa de la nostra inversió. Les despeses projectades s’han obtingut del pressupost de la instal·lació. Prèviament, s’especificaran les condicions i suposicions del estudi:

1. El període de retorn es fixarà en 15 anys, ja que és la vida útil del motor Stirling. Passats aquests 15 anys probablement serà necessària una reparació o manteniment del motor perquè pugui continuar funcionant correctament.

2. Les despeses projectades es dividiran en les següents partides:
   - **Material**: Correspon a tots els materials necessaris per la instal·lació.
   - **Instal·lació**: Correspon a tota la instal·lació i muntatge del dish Stirling.
   - **Sistema de monitorització**
   - **Projecte**: Correspon al projecte executiu, permisos, llicències i legalitzacions).
   - **Manteniment inicial**.
   - **Manteniment anual**.

3. Inversió inicial, correspon a la suma de les despeses esmentades projectades per al primer any, és de: -44.229,38 €

4. Els ingressos projectats corresponen als guanys econòmics per cada kWh tèrmic i elèctric generat per el dish Stirling.
   - Preu del kWh tèrmic: 0,05 €/kWh. S’ha fixat aquest preu en referència al preu del gas natural a Octubre del 2015 [23].
   - Preu del kWh elèctric: 0,117 €/kWh. S’ha fixat aquest preu en referència al preu de l’electricitat a Octubre del 2015 [21].

5. Variació anual del preu del kWh tèrmic: Es considera que el preu per cada kWh tèrmic incrementarà un 1,77% anualment en base a l’evolució mitjana dels últims 8 anys [23].

6. Variació anual del preu del kWh elèctric: Es considera que el preu per cada kWh elèctric incrementarà un 2,9% anualment en base a l’increment mitjà de la UE [22].
7. Producció energètica anual:
   - Supòsit 1:
     Generació tèrmica: 4884,786 kWh
     Generació elèctrica: 1628,262 kWh
   - Supòsit 2:
     Generació tèrmica: 4629,135 kWh
     Generació elèctrica: 1104,712 kWh
   - Supòsit 3:
     Generació tèrmica: 4049,434 kWh
     Generació elèctrica: 735,077 kWh

8. En aquest estudi s’obevien els possibles cànons que caldria pagar per vendre l’energia elèctrica generada a una companyia elèctrica, ja que caldria analitzar el cas concret.

9. Es considera que tota l’energia generada, tant tèrmica com elèctrica, és consumida.

10. L’IVA es considera que no és recuperable per no ser deduïble per una universitat.

11. El impost de societats no és aplicable a una universitat.

Finalment, és necessari calcular la taxa d’interès per poder calcular els fluxos de caixa actualitzats. S’ha usat el mètode de valoració d’actius fixes (CAPM, Capital Asset Pricing Model), que estima la taxa de rendiment esperat segons la següent expressió:

\[ i = r_f + \beta (r_m - r_f) \]

on \( i \) és la taxa d’interès, \( r_f \) (risk free) és el rendiment d’un actiu lliure de risc, \( \beta \) és el paràmetre Beta característic de l’empresa i \( r_m \) és el rendiment del mercat.

- \( r_f \): l’estimem en funció del interès del bo a 10 anys del estat espanyol, 1,49%.
- \( \beta \): Prenem com a beta la d’una empresa elèctrica, que podria tenir característiques similars. En aquest cas s’aproxima amb la d’Iberdrola amb una beta de 0,77 ja que comparteix la mateixa naturalesa de l’activitat econòmica.
- \( r_m-r_f \): La diferència entre la rendibilitat del mercat de l’empresa i la del actiu lliure de risc, s’anomena prima de risc. En aquest cas la rendibilitat de
mercat també s’aproxima a la d’Iberdrola, sent aquesta 6%. Finalment la prima de risc en aquest cas seria de 4,51% (6%-1,49%).

Conseqüentment, d’acord amb el model CAPM, el valor de la taxa d’interès particular del nostre estudi és d’un 4,962%.

8.2. Avaluació i comparació de les inversions. Càlcul del VAN i del TIR per els 3 supòsits.

Un cop definides les condicions d’estudi, es procedeix amb el càlcul del VAN i TIR de cada un dels 3 supòsits presentats, amb l’objectiu de poder analitzar-los i comparar-los en un mateix període de retorn de 15 anys. Els fluxos de tresoreria per cada supòsit es poden consultar a les figures 8.1, 8.2 i 8.3.

**Supòsit 1:**

Recordem que aquest supòsit es basa en que els rendiments, tant tèrmics com elèctrics, són els proporciona el fabricant. Per tant, dels 3 supòsits, aquests és el que presenta una major generació energètica fet que comporta un augment en els ingressos econòmics. El VAN i TIR calculats són els següents:

- **VAN:** -41.004,01 €
- **TIR:** -21%
- **Payback:** 61 anys

Que el valor del VAN sigui negatiu ens indica que la inversió que es vol realitzar no es recuperarà en el futur. És a dir, que el sumatori de fluxos actualitzats durant l’horitzó d’estudi serà menor que la inversió inicial. Per tant, no es pot justificar aquesta inversió si només seguim criteris econòmics.

El valor de la TIR negatiu implica, que per tal de no perdre diners i tenir un VAN igual a zero caldria rebre ajudes o subvencions anualment equivalents a un 21%. Sinó es rebessin ajudes el projecte no seria econòmicament viable.

El payback d’aquest supòsit és de 61 anys, molt major dels 15 anys que s’havien fixat. Per tant és evident que s’hauria de replantejar el període de retorn o bé rebre ajudes
Anàlisis d'un sistema d'energia renovable basat en un dish Stirling

Supòsit 2:

Recórdem que aquest supòsit es basa ens els rendiments calculats del dish Stirling considerant només els millors dies és a dir, aquells on el rendiment va ser més òptim. Com era d'esperar el VAN i el TIR han empitjorat respecte el supòsit 1:

- VAN: -41.962,47 €
- TIR: -23%
- Payback: 68 anys

Tal i com es pot observar en la figura 8.2 després de la inversió inicial, el valor actualitzat net comença a millorar ja que els beneficis són superiors a les despeses. No obstant el ritme de creixement és força petit ja que la diferència entre guanys i perdus no és massa elevat. Seguint aquest ritme és impossible aconseguir un VAN positiu amb l'horitzó que s'ha fixat.

El payback d'aquest supòsit és de 68 anys, com era d'esperar major que el supòsit 1.

Supòsit 3:

Recórdem que aquest supòsit es basa en els rendiments calculats del dish Stirling de tots els dies estudiats. Conseqüentment, és el supòsit que presenta pitjors resultats:

- VAN: -42.882,52 €
- TIR: -27%
- Payback: 79 anys

Observant la figura 8.3 veiem que els fluxos de tresoreria continuen sent positius per massa petits per revertir el VAN negatiu en l'horitzó del projecte. El TIR, negatiu, també ens indica que la inversió no rentable amb aquest tipus d'interès i aquest període de retorn. Com ja s'ha esmentat, caldrien ajudes o subvencions equivalents al 27% perquè el projecte fos rentable econòmicament.

El valor del payback és de 79 anys, evidentment major que el del supòsit 1 i 2. Tal i com s'ha comentat anteriorment, o bé s'hauria d'augmentar el període de retorn o rebre algun tipus d'ajuda per intentar que el projecte fos viable econòmicament.
**Projecció d’ingressos i despeses supòsit 1**

### Ingressos projectats DS

<table>
<thead>
<tr>
<th>Períodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingressos térmics</td>
<td>244,24 €</td>
<td>248,56 €</td>
<td>252,98 €</td>
<td>257,44 €</td>
<td>262,00 €</td>
<td>266,63 €</td>
<td>271,35 €</td>
<td>276,16 €</td>
<td>281,04 €</td>
<td>286,02 €</td>
<td>291,08 €</td>
<td>296,23 €</td>
<td>301,48 €</td>
<td>306,81 €</td>
<td>312,24 €</td>
</tr>
<tr>
<td>Ingressos elèctrics</td>
<td>190,51 €</td>
<td>196,03 €</td>
<td>201,72 €</td>
<td>207,57 €</td>
<td>213,59 €</td>
<td>219,78 €</td>
<td>226,15 €</td>
<td>232,71 €</td>
<td>239,46 €</td>
<td>246,40 €</td>
<td>253,55 €</td>
<td>260,90 €</td>
<td>268,47 €</td>
<td>276,25 €</td>
<td>284,27 €</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>434,75 €</td>
<td>444,59 €</td>
<td>454,68 €</td>
<td>465,01 €</td>
<td>475,58 €</td>
<td>486,41 €</td>
<td>497,51 €</td>
<td>508,87 €</td>
<td>520,50 €</td>
<td>532,42 €</td>
<td>544,63 €</td>
<td>557,14 €</td>
<td>569,95 €</td>
<td>583,07 €</td>
<td>596,51 €</td>
</tr>
</tbody>
</table>

### Despeses projectades

<table>
<thead>
<tr>
<th>Períodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instal.lació DS</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>32,447,62 €</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>4,250,00 €</td>
<td></td>
</tr>
<tr>
<td>Monitoring System</td>
<td>4,736,51 €</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>2640,00 €</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>320,00 €</td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>44,394,13 €</td>
<td></td>
</tr>
<tr>
<td>manteniement anual</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>210,00 €</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>44,394,13 €</td>
<td>210,00 €</td>
</tr>
</tbody>
</table>

### Beneficis projectats

<table>
<thead>
<tr>
<th>Períodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
</table>

**Figura 8.1. Projecció d’ingressos i despeses per el supòsit 1**
### Projecció d'ingressos i despeses supòsit 2

#### Ingressos projectats DS

<table>
<thead>
<tr>
<th>Períodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingressos tèrmics</td>
<td>233,46 €</td>
<td>235,55 €</td>
<td>239,72 €</td>
<td>248,28 €</td>
<td>252,68 €</td>
<td>257,15 €</td>
<td>261,70 €</td>
<td>266,33 €</td>
<td>271,05 €</td>
<td>275,85 €</td>
<td>280,73 €</td>
<td>285,70 €</td>
<td>290,75 €</td>
<td>295,90 €</td>
<td></td>
</tr>
<tr>
<td>Ingressos elèctrics</td>
<td>129,25 €</td>
<td>133,00 €</td>
<td>136,86 €</td>
<td>140,83 €</td>
<td>144,91 €</td>
<td>149,11 €</td>
<td>153,47 €</td>
<td>157,89 €</td>
<td>162,47 €</td>
<td>167,18 €</td>
<td>172,02 €</td>
<td>177,01 €</td>
<td>182,15 €</td>
<td>187,43 €</td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>360,71 €</td>
<td>368,55 €</td>
<td>376,58 €</td>
<td>384,79 €</td>
<td>393,19 €</td>
<td>401,79 €</td>
<td>410,59 €</td>
<td>419,59 €</td>
<td>428,80 €</td>
<td>438,23 €</td>
<td>447,87 €</td>
<td>457,74 €</td>
<td>467,84 €</td>
<td>478,18 €</td>
<td></td>
</tr>
</tbody>
</table>

#### Despeses projectades

<table>
<thead>
<tr>
<th>Períodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instal.lació DS Material</td>
<td>32.447,62 €</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>4.250,00 €</td>
<td></td>
</tr>
<tr>
<td>Monitoring System</td>
<td>4.736,51 €</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>2.640,00 €</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>320,00 €</td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>44.394,13 €</td>
<td></td>
</tr>
<tr>
<td>Manteniment anual</td>
<td></td>
<td>210,00 €</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>44.394,13 €</td>
<td>210,00 €</td>
<td></td>
</tr>
</tbody>
</table>

#### Beneficis projectats

<table>
<thead>
<tr>
<th>Períodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux tresoreria actualitzat</td>
<td>-44.033,42 €</td>
<td>-151,06 €</td>
<td>-151,20 €</td>
<td>-151,16 €</td>
<td>-150,93 €</td>
<td>-150,55 €</td>
<td>-150,01 €</td>
<td>-149,33 €</td>
<td>-148,52 €</td>
<td>-147,60 €</td>
<td>-146,56 €</td>
<td>-145,43 €</td>
<td>-144,20 €</td>
<td>-142,89 €</td>
<td>-141,51 €</td>
</tr>
<tr>
<td><strong>VAN</strong></td>
<td>-41.962,47 €</td>
<td></td>
</tr>
</tbody>
</table>

VAN: -41.962,47 €
Taxa d'interès: 4.96%
TIR: -23%
Projecció d'ingressos i despeses supòsit 3

### Ingressos projectats DS

<table>
<thead>
<tr>
<th>Períodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingressos tèrmics</td>
<td>202,47 €</td>
<td>206,06 €</td>
<td>209,70 €</td>
<td>213,41 €</td>
<td>217,19 €</td>
<td>221,04 €</td>
<td>224,95 €</td>
<td>228,93 €</td>
<td>232,98 €</td>
<td>237,11 €</td>
<td>241,30 €</td>
<td>245,57 €</td>
<td>249,92 €</td>
<td>254,34 €</td>
<td>258,85 €</td>
</tr>
<tr>
<td>Ingressos elèctrics</td>
<td>86,00 €</td>
<td>88,50 €</td>
<td>91,06 €</td>
<td>93,71 €</td>
<td>96,42 €</td>
<td>99,22 €</td>
<td>102,10 €</td>
<td>105,06 €</td>
<td>108,10 €</td>
<td>111,24 €</td>
<td>114,46 €</td>
<td>117,78 €</td>
<td>121,20 €</td>
<td>124,72 €</td>
<td>128,33 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>288,48 €</td>
<td>294,55 €</td>
<td>300,77 €</td>
<td>307,12 €</td>
<td>313,61 €</td>
<td>320,26 €</td>
<td>327,05 €</td>
<td>333,99 €</td>
<td>341,09 €</td>
<td>348,34 €</td>
<td>355,77 €</td>
<td>363,36 €</td>
<td>371,12 €</td>
<td>379,06 €</td>
<td>387,38 €</td>
</tr>
</tbody>
</table>

### Despeses projectades

| Instal.lació DS | Material | 32.447,62 € |
|                | Installation | 4.250,00 € |
|                | Monitoring System | 4.736,51 € |
|                | Project | 2.640,00 € |
|                | Maintenance | 320,00 € |
| TOTAL | 44.394,13 € |

#### Manteniment anual

| Pròduts | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |
|=========|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Instal.lació DS | 210,00 € | 210,00 € | 210,00 € | 210,00 € | 210,00 € | 210,00 € | 210,00 € | 210,00 € | 210,00 € | 210,00 € | 210,00 € |
| TOTAL | 44.394,13 € |

### Beneficis projectats

| Flux de tresoreria | - 44.105,65 € | 84,55 € | 90,77 € | 97,12 € | 103,61 € | 110,26 € | 117,05 € | 123,99 € | 131,09 € | 138,34 € | 145,77 € | 153,36 € | 161,09 € | 169,06 € | 177,18 € |
| Flux tresoreria actualitzat | - 44.105,65 € | 80,56 € | 83,39 € | 85,99 € | 85,99 € | 86,54 € | 87,53 € | 88,34 € | 89,98 € | 90,47 € | 90,03 € | 90,14 € | 90,08 € | 89,94 € |
| VAN | - 44.105,65 € | - 44.025,09 € | - 43.942,71 € | - 43.850,72 € | - 43.773,91 € | - 43.686,81 € | - 43.599,28 € | - 43.510,94 € | - 43.421,95 € | - 43.332,49 € | - 43.242,87 € | - 43.152,05 € | - 43.062,54 € | - 42.972,46 € | - 42.882,52 € |

| Taxa d'interès | 4,96% |
| TIR | -27% |

**Figura 8.3. Projecció d'ingressos i despeses per el supòsit 3**
Conclusions

La tecnologia dish Stirling pot jugar un paper molt important en el futur de les energies renovables degut a la seva alta eficiència en comparació a altres tecnologies solars. No obstant, el seu elevat preu d'adquisició i instal·lació suposa una gran barrera alhora d'establir-se com una alternativa als actuals sistemes d'energia renovable com les fotovoltaiques.

La inversió inicial que suposa la instal·lació d'un dish Stirling és massa elevada i els beneficis obtinguts per la potència generada no són suficients per convertir aquesta inversió en rentable. Per revertir aquesta situació, és necessari un augment de la demanda d'aquesta tecnologia amb l'objectiu de incrementar la producció i disminuir així els costos de fabricació.

L’estudi del comportament de la instal·lació del dish Stirling, situada a l’Escola d’Enginyeria Industrial de Barcelona (ETSEIB), ha estat realitzat durant 28 dies compresos entre el període del 1 d’abril al 31 de maig del 2016.

En els dies analitzats l’eficiència mitjana global del dish Stirling és d’un 41%, amb un valor mitjà d’eficiència tèrmica i elèctrica del 34% i 7% respectivament. Tot i ser valors força acceptables, encara queden lluny del 41% i 14% que ens presenta INNOVA. Gràcies a aquest valors, es pot concloure que els nivells de l’eficiència que presenta el fabricant fan referència als millors dies d’estudi. En cap cas, es pot esperar que l’eficiència diària del dish Stirling sigui l’especificada per INNOVA.

No obstant, per corroborar aquests resultats obtinguts, es recomanaria prolongar l’estudi als mesos de juny, juliol i agost ja que són els mesos on es pot obtenir una radiació solar major i com a conseqüència uns millors rendiments.

Finalment, s’espera que les dades recopilades i estudiades en aquest projecte ajudin a la investigació i recerca d’aquesta tecnologia ja que té un futur molt prometedor.
Agraïments

M'agradaria donar les gràcies al meu tutor Antoni Sudrià Andreu per la seva ajuda i orientació durant l'elaboració del projecte. També m'agradaria agrair l'ajuda del Andreu Vidal Clos que en tot moment s'ha ofert a col·laborar amb mi per estudiar i extreure dades del dish Stirling. Finalment agraeixo també l'ajuda d'en Jordi Giral per haver-me proporcionat tota la informació necessària referent al dish Stirling Trinum.
Bibliografia

Referències bibliogràfiques


[22] Evolució del preu del kWh elèctric. [En línia]. “http://www.20minutos.es/noticia/2491524/0/factura-electricidad/contador/por-horas/”


[26] Mesura de la radiació solar. [En línia].