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Abstract

Logicians treat assertions as true, believed or merely hypothesized sentences. The rea-
soner who uses them, however, is the sole referee who can validate their truth, their
aptness to describe an actual situation, their strength (as beliefs) or the relevance of
their use in the current logical context. Moreover, the reasoner actively counts on these
factors, as part of the reasoning process itself, and should normally be capable, when
asked to do so, to assign consistently relative strengths to the assertions used. The
paper assumes, first, that assertions have -each— an associated, measurable strength,
and that, second, this strength has significant —and measurable- effects on the truth
of the sentences, the validity of the conclusion and the soundness of the reasoning.
The concepts and formulas required for this are explored, and a semantics and proof
theory for a sentential calculus of assertions are proposed as a natural extension of or-
dinary two-valued reasoning. The resulting theory, though reminiscent of Probability,
is autonomous, self-contained and of a purely logical nature.
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INTRODUCTION

When we argue, we do not always fully assert what we say. We often make half-hearted
assertions of sentences we'are not sure about, or we even use as assertions sentences we hardly
believe to be the case. And yet we proceed by reasoning from such weak premises. If we admit
we do, and want to treat this inside Logic, we apparently need to qualify assertions, or rather
quantify their strength, and try to follow and control what effects weak assertions may have
in the reasoning process, whether and how they affect its logical validity and how we can tell
the strength of the conclusion. All this seems to be indeed a proper logical sub ject. However,
very few logicians have ever attacked it. The ones who have (like Reichenbach [11], Carnap
(2], Popper [9] —or David Lewis (7], who notes that “the truthful speaker [...] is willing to
assert only what he takes to be very probably true”) have tended to assign probability values
to logical sentences (or, more commonly, to sets) and so treat the result as probability logic.
This seems the reasonable thing to do. However, we are not sure that “probability” is the right
word or treatment. We contend that, even though probability or randomness had never been
mathematically treated, the strength of assertions would still be a fully logical subject, and
Logic would have to treat it by its own methods. To see why, we briefly give two examples.

As a first approximation, take a physical reasoning, in which one of the premises is the
positive result of an experiment. Suppose we may even quantify the error ¢ of the experiment
—meaning that the truth of the assertion ‘result is positive’ is, say, “1 — ¢”. We then perform
the formal reasoning —assumed logically valid— and obtain the conclusion. We now want to
know what confidence we may have in it, given . That, we think, is a legitimate logician’s
concern. It is what we develop at some length in our proof theory below.

For a second example, take the well-known sorites about bald men: “If a man with ¢ hairs
is not bald then a man with ¢ — 1 hairs is still not bald. Suppose a man has n hairs. Therefore,
a man with 0 hairs is still not bald”. Formally:

Ai = Aoy (i:1,...,n)
An

Ao

This is a paradox because the reasoning is formally correct (it consists of merely n appli-
cations of the Modus Ponens rule), the n + 1 premises are deemed flawless, but the conclusion
is outright false (or, more precisely, a contradictio in terminis). Usually, it is the length of the
argument that is put to blame. There is, however, a more concrete and satisfactory answer we
can offer. The n premises 4; — A;_; cannot obviously be asserted with the same assurance
whatever the index value. That’s why the argument fails: for low values of i the premises simply
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cannot be asserted, even if the rest can, so we can never have all premises asserted, and the rea-
soning is formally valid but vacuously so. As it will be later seen, we propose instead to provide
every premise A with a value v(4) in [0,1] —computed in an unspecified way (statistically, by
opinion survey, or whatever)— with the unique requirement that a zero value means that the
premise is to be taken as false, 1 means a true —and therefore fully assertable— premise, and
v(A) =1 — ¢ (¢ > 0) means that we can assert 4 but with some apprehension or risk e. Obvi-
ously, the value v(4; — A;_;) decreases with ¢, so that when i is n (or even, say, around n/2
or n/3) it is 1 or very near 1, but when ¢ approaches, say, n/10 —and surely when it becomes
zero— the value of A; — A;_; (= the predisposition we have to assert it —or the willingness

'to assume the risk) comes down to an exceedingly low number. According to our proof theory

(developed at some length below), the conclusion 4y has the same truth value, at best, as that
lowest of numbers (and, thus, the reasoner would be willing to assert the conclusion just no
more than he or she would willing to assert 4; — Ap).

Going back to David Lewis’s sentence about “truthful speakers” willing to assert only what
is “very probably true”, in this paper we want to discuss how classical sentential logic can be
extended in such a way that this willingness not to assert falsities and the resulting Lewis’s
weak assertions can be accomodated and formalized ~and classical logic generalized- in a very
natural way.

To begin with, suppose a valid argument, noted T' F B (where I' are the premises, or a
finite subset of them). Classical logic declares it valid if B is derivable from T in an appropri-
ate deduction calculus. By the completeness property, this amounts to assert the truth of B
whenever the premises in I' are true. Now, the ultimate judge of the truth of the premises is
the reasoner (Lewis’s “speaker”). It is the reasoner who decides that each premise used is true
(or to be considered true). To justify such a decision, the reasoner may apply a truth criterion
like Tarski’s well-known definition:

(T) *“A’is true if and only if 4 is true

So, the reasoner can verify the sentence and declare it true whenever the translation 4 of
the object-language sentence A is found true. It is the reasoner who is full command of the
sentences and the only one who can validate their truth. In those cases the reasoner declares
A when assured that what A describes is precisely the case. If the reasoner is not sure of the
result of his/her validation or does not want to commit him/herself to it, then the reasoner may
choose not to make a full assertion by claiming that A4’s verification does not yield an obvious
result. In that case, the reasoner may rather easily “qualify” the assertion by assigning numbers
in [0,1] such as v(A4) or £(4) [ = 1 — v(A) ] meaning that the reasoner believes or is willing to
assert A to the degree v(A) or assume it with a risk or estimated error of (A).

So the first thing to do (we do this in the next section) is to value sentences in [0, 1] with
the usual caveats so familiar from Measure Theory. The following sections 2-5 are a cursory
review of material needed for section 6 (for details, the interested reader is referred to [12]).
The core of this paper is section 6, where a Proof Theory is introduced that in the most natural
way extends standard logic so as to treat imprecise statements or weak assertions, and measure
and control whatever effect they may have on reasoning, as well as to explain some results in
approximate reasoning methods from Artificial Intelligence.



1. VALUATIONS IN SENTENTIAL LOGICS

First, we assume the set £ of sentences is constructed by recursive application of the A, V
and - connectives to the (possibly infinite) set of sentential letters P, Q, ... Second, we assume
sentences form a Boolean algebra (with respect to the three connectives and two special sentences
1 and T). We will have then a complete Proof Theory by identifying the “ I ” order defined
by the Boolean algebra with the deductive consequence relation. So the algebra of sentences
we started with automatically becomes the Lindenbaum-Tarski algebra of all sentences modulo
the interderivability relation “ - given by the I order (i.e. A 4+ B iff A = B). Third,
' we assume that all sentences are valued in [0,1]. This can be done in the standard way of a
normalized measure, by just requiring that the valuation is additive and that T gets a value of
1; for instance, through the following slightly redundant characterization:

There is a valuation v : £ — [0,1]: A — [A] such that:

a. [L]=0,and [T] = 1. (1)
b. If AF B then [A] < [B] (Monotonicity) (2)
c. For any 4 and B, [AAB] +[AV B] = [A] + [B] (Finite additivity) (3)

We will then have also the whole Model Theory of Sentential Logic. Notice that the
proposed valuation is no more nor less than a probability in all technical senses (though we
would like to avoid the usual probabilistic connotations so as not to be carried away from pure
Logic), and notice also that we do not require the valuations —even when interpreted as “truth”
valuations— to be “extensional” or “truth-functional” as done in many-valued logics. As for the
assumed Booleanity of the sentences, either this is assumed (imposed) or it just arises naturally
from a “minimal algebra” of sentences with only two connectives (say, = and A) (Popper [9)).

From the Booleanity of £ and the above properties of the v valuation the formulas below
follow immediately:

[~4]=1-[4] (4)

[4AB] < [4] < [4VB] (5)
[4AB] < min([4],[B]) (6)
[4V B] > max([4], [B]) (7)
If AinAj= L1 (i#5) then [ViZ} A = TIZf [4l] (8)

If we now define the conditional (or if then) and the biconditional (or equivalence) connec-
tives in the usual manner:

A—- B =df -AVB
A« B =df (A—’B) A (B—bA)

then the following formulas immediately obtain:

[A— B] = 1-[A]+[4A B] (9)
[A— B]-[B— 4] = [B]-[A4] (10)
[A—~B] = [A—> B)+[B— 4] -1 (11)
[A~ B] = 1-[AV B]+[AA B] (12)

As is to be expected in a Boolean algebra,
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AFB <= -AVB=T.
If we denote A =T by “+ A”, this can be written as:
AFB <= FA- B,
more in line with the usual formulation of the Deduction Theorem of elementary logic.
Now, we define the relation between A and B given by [A — B] =1 —that we note by
“A =y B” (notice it depends on the particular valuation v chosen)—:
[Definition:] “A =, B” ifandonly if [4— B] =1.

Parallelly we define the relation between 4 and B given by [A < B] = 1 and we note it
by “A =, B” (notice the dependence on the particular valuation v chosen):

[Definition:] “A =, B” ifand only if [4 < B]=1. (13)

Now, the definition below follows the usual line:

[Definition:] “|= A” if and only if [A] =1 for all valuations - (14)
(Remark: Here “[A] = 1 for all valuations” means “v(A) = 1 for all [0,1]-valuations v of A”.
From now on, “for all valuations” will be sometimes informally shortened to “(Vv)”.)

Naturally,

If A=DB then [A] = [B] for all valuations (15)

(because the valuation is meant to be a function in the mathematical sense).

This has a corollary:

If A then |= A4 (Soundness) (16)
(because A =T yields [A] =[T] =1 for any valuation).

Conversely, we are forced to admit —by convention— that:
If [A] = [B] for all valuations, then A = B (17)

because we have no other way to distinguish any two propositions through the semantic means
available (i.e. the [0,1]-valuations).

As a corollary of (17) we get:
If |=A then - A (Weak completeness) , (18)

The two relationships (15) and (17) shown above between propositions and values can be
combined to yield this (informally stated) semantical characterization of propositional identity:

A=B ifand only if (Vv) A=, B. (19)
Now, combining (19), (13), (14), (18) and (16) we get
A=B ifandonlyif F4A & B (20)

confirming that the Boolean algebra we assumed was just the Lindenbaum-Tarski algebra of all
sentences modulo the interderivability relation - 4 & B.

Also, the soundness and weak completeness conditions, taken together, yield this equivalence:

[Weak compleleness theorem:] F A if and only if = A
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Now we put forward this (that we state informally):

[Definition:] “A |= B” if and only if (Vo) {[A]=1 = [B]=1}.
It is easy to show that

Al=B ifandonlyif FA— B (21)
The last definition can also be written: “4 |= B iff (Vv) 4 |, B”.

Now, again from the given semantical characterization of propositional identity (30) we
‘have:

A=AAB ifandonlyif [A]=[AA B] for all valuations.

Note the the left-hand side is equivalent to writing “A F B”, while the right-hand part amounts
to saying “[A — B] = 1 for all valuations” (or else, by definition, “/= A — B”, that we have
shown to be equivalent to “A |= B”). So we are led to this new characterization of the soundness
and completeness condition:

[Strong completeness theorem: ] A+ B if and only if A | B. (22)
A could represent a list (or, better, a conjunction) of propositions 4y, .y A, —the premises—.
In that case, it would read thus, in its most general form:

[Completeness theorem: ] A, ..., Ay b B if and only if 4y,..., 4, = B (23)
where the left-hand A’s are the conjuncts of A = A;A ...AA4,, while the right-hand term is
(demonstrably) equivalent to stating “{ [A41] =...=[4,] =1 = [B] =11} for all valuations”.

2. SENTENCES AS SET EXTENSIONS

Two widely-known and yet under-exploited results in Boolean Algebra Theory (see [6])
have to do with representations of Boolean algebras on set structures. They can be stated thus:

A. Every finite Boolean algebra has a representation in the algebra of all subsets of a (finite)
set.

B. Every Boolean algebra is representable on —isomorphic to— a field of sets. (Stone’s Rep-
resentation Theorem.)

In particular, the free sentential algebra £ generated by countably many propositional
letters has a representation in —is isomorphic to— :
(a) The lattice £ of principal filters of L.

(b) A field B of sets. More specifically: B is a countable non-atomic Boolean subalgebra of the
powerset P(0O) of all ultrafilters 8 of L.

(c) The field of sets B mentioned above, where B is precisely characterizable as the class of
clopens of the P(®) Stone space of L.

(d) A subdirect product of copies of {0, 1}.

(e) Any countable interval algebra such as the set of rationals in [0, 1).

By the Normal Form Theorem ([6]), each sentence A4 in a free algebra L is expressable in normal
form as a finite disjunction of finite conjunctions of literals. Also, by the above (equivalent)
representations, A is the isomorphic image, respectively, of:

(a) The theory (or set of deductive consequences) derived from A.
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(b) The set of complete theories that include A (as a derivable sentence).
(c) A finitely axiomatizable theory that includes A.

(d) A set of strings of 0’s and 1’s. If £ has n generators, the strings have length n, and there
are 2" such strings: they correspond to the interpretations of the ordinary Model Theory
(truth tables) of Sentential Logic.

(e) A finite union of intervals of generators (given in some order).

All these properties are well-known (see e.g [6]) and can be considered elementary. What we
are presently interested in is, simply, that, given the Boolean sentence algebra £, there exist

‘both a set © (whatever the meaning we give to its elements §) and a ‘representation’ function

that can be characterized as
a) a homomorphism of £ into the powerset P(0) of 0, i.e.
p:L—PO): A A (ACO)
b) an isomorphism of £ into the Boolean subalgebra B of clopens in P(@), i.e.
p:L——B:A— A (BCP(O),ACO)
| (24

which is just the restriction of p to B (though we also note it by “p”). (This is the Representation
theorem)

So, every time we have a Sentential Logic we have also an inherent accompanying structure or
universe that we make here ezplicit and name O; it is explicitly definable from its sentences
A € L. (This always happens, even in strictly two-valued logics.)

Though clearly there is no need to name or qualify the members of ® , we may indulge in calling
them possible worlds, or cases (as in Laplace or Boole [1]) or, metaphorically, even observers or
states, observations, instants of time or stages of development, elementary situations or contexzts
in which things happen, and so on. © is thus configured as the real universe of discourse or
reference frame (the set of possible worlds). It also coincides with Fenstad’s [4] model space.

We can establish a general, one-to-one correspondence between the two worlds (the language
world £ and the referential universe ®, both made up of “propositions”) and their constituent
parts, thus:

L = B
A(AeL) <= A(ACO)
ANB < ANB
AVB < AUB
—-A <~ Ac
T = ©
L = ¢
AFB << ACB
A=B <+ A=B

If £ has a finite number of generators, then it has 2" atoms a and the following two bijective
correspondences also hold:
L < P(0O)
a {6}
(The arrows are meant to be read “corresponds isomorphically to”; also, “A° ” is the
set-complement of A, a is an atom of £, and 6 is an element of 0.)
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3. TRUTH AS MEASURE

The valuation
v:L —[0,1]: A — [4]

and the representation isomorphism
p:L—B:A— A
clearly induce a [0,1]-valued measure p in B C P(0).
[Definition:] p: B — [0,1] is the valuation in P(@) induced by the isomorphism
p:Le— BCP(O) insuchawaythat u=vop~?!, ie. p(A)=[A4]. (25)

Intuitively, the measure u({6}) of each individual 8 in a finite ® universe should seemingly
correspond to the relative importance or the relevance this individual has in that universe. Thus,
in a reading of © where the § are interpreted as observers, u({6}) would represent the importance
a “superobserver” assigns to each particular 8. In a tests or modal “possible worlds” reading,
1({6}) would be the relevance attributed to test 8 or the degree of realizability of the given
possible world. And so on. The u measure corresponds to the weighing function A in Fenstad’s
[4] model space. As it is known, p (or A) is not only additive but countably so; thus u is eligible
as a standard “probability” measure (in the technical sense).

Now suppose we want to express the conjunction value as a product:
[AAB]=[A] T (or [AAB] =7'-[B])
We have (provided [A] # 0):

_[AAB] v(AAB)
7 Y

= 'UA(B)

which yields on £ a new valuation vy : £ — [0, 1] with the same properties as the original
valuation v (indeed v satisfies equations (1) and (3), as is easy to prove).

The [A] # 0 proviso may be unnecessary if the 7 function has been evaluated directly (as
Popper (9] proposed back in 1959).

With the current £/P(0©) representation in mind, we have:
.- MANB)
HA)

Thus, the new valuation takes in account, out of a subset of O, only the part contained
in A, and it gives it a value related only to that part. So we define 7 as the relative truth
“[B|A] ” (ie. the “truth of B relative to A”):

(26)

[Definition:] Relative truth of B with respect to A is the quotient

[4AA B]

[Bl14] = s

([4] #0) (27)

If [B|A] = [B], then we say that 4 and B are independent (because the valuation v 4 (B) =
v(B) remains unaffected by A). In that case, the conjunction can be expressed as the product:

[4AB] = [4]-[B] (28)



In any other case we say that A and B are mutually dependent and speak of the relative truth
of one with respect to the other. Note the dependence goes both ways and the two situations
are symmetric. We have (always assuming [A] # 0 and, in the third and seventh formulas, A
not binary):

[4]-[B|A] = [B]-[A|B] = [AA B] (Bayes formula)
[AlA] =1

[Al-4] = [-4]4] =0

[4A B|A] = [B|A] = [A — B|4]

[Av B|A] =1=[A - B|B]

[B|A] + [-B|A] =1 (Complementation)

[B] = [4]-[B|A] + [-A] - [B|-~A] (Distribution)
[4— B] =1-[A]-[-B|4]

HA-+B]]_[[A—)—$AH:1_1—[[A—-+B]]

S 7 7 N 29)

Note that, in general,
[BlA] # [A — B]

Particularly, we have always
[BlA] < [A— B] (30)

ezcept when either [A] =1 or [A — B] =1, in which cases (and they are the only ones)
[BIA] = [A — B] . (This has been noticed by many people, notably by Reichenbach [11],
Stalnaker [14], Lewis {7] and Popper [9].)

The statement ‘A — B’ can have, among other readings, one logical (“A is sufficient for
B” or “B is necessary for A”), another (loosely) “causal” (“A occurs and B follows”). Because
A — B is valued in (0,1}, its value [A — B] (and the values [B|A] and [A4|B]) now mean only
degrees, and so B — A may be —and usually is— read “evidentially” (“B is evidence for A”).
Within such a frame of mind,

— [B|A] (or “o4” —or even “vp”, see next paragraph—) could be termed “degree of suffi-
ciency or causality” of A (or “causal support for B”), to be read as “degree in which A4 is
sufficient for B” or “degree in which A is a cause of B”. In view of (26), it is roughly a
measure of how much of A is contained in B.

— [A|B] (or “v4” or “op”) could be termed “degree of necessity” or “evidence” of A (or
“evidential support for A”, to be read as “degree in which A is necessary for B” or “degree
in which B is evidence (= support of hypothesis) for A (=the hypothesis)”. With (26) in
mind, it can be seen as how much of B overlaps with A,

Such measures may be directly estimated by experts, normally by interpreting the s frequen-
tially, in terms of cases, like Boole [1]. (“Cases” may be statistically-based or simply imagined,
presumably on the basis of past experience or sheer plausibility.) Thus, o4 in a causal reading of
“A — B” would be determined by answering the question: “How many times (proportionally)
—experience shows— A occurs and B follows?” For vy4, the question would be: “How many
times effect B occurs and A has occurrred previously as a cause?” (Similarly for the evidential
reading of “4 — B”.) Once ¢ and v have been guessed, they may be adjusted (via the

oa _ [B]
e = [ (31)
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relation) and then lead —by straightforward computation— to [A — B], [B — A] and the a p
compaltibility value (see below), which allows one to compute all other values for connectives
and also to get a picture of the structural relations linking A and B.

4. CONNECTIVES AND SENTENTIAL STRUCTURE

The goal here is to find the truth value of composite propositions in £. For the negation
connective this is easy: it is given by formula (4). For the rest we have the three following
formulas that are a direct spin-off of additivity (3) and the definitions of — and «:

[Av B] = [A] + [B] - [A A B] (32)
[A— B] = 1-[A]+[AA B] (33)
[A- B] = i-[A]-[B]+2-[AA B] (34)

(formula (33) is (9) again, and (34) immediately derives from (11) ).

So the problem now reduces to finding the numerical expression [AA B]-of the conjunction AAB
as a function of the (numerical) “truth” values [A] and [B] of the component propositions A
and B.

For any A = p(A4) and B = p(B) we have, obviously:
pCANBCACAUBCO (35)
and, because of the induced monotonicity of u:
0<u(ANB)<p(A)<pu(AUB)<1
or, equivalently,
0<[AAB]<[A]l<[AVB]<1.

In (35) there is a smooth, comprehensive gradation of possible cases. By tracking what happens
with measure p when A (as B) goes all the way —in smooth gradation— from ¢ to © (see
(35)), it is easy to see that not one but many values are possible for z(A N B) and p(A U B),
and that those values are strictly bounded. This has a straightforward translation into truth
values and composite propositions. The first thing we learn is that the binary connectives —as
propositional functions— are not functional, i.e. they yield different values for a proposition
despite the fact that the operands may have stable values. (We shall see below, however, that
the binary connectives are actually functional, but in three —not two— variables.) The second
is that the range of values of composite propositions has, nevertheless, strict and prescribable
bounds. We analyze that, and distinguish the two extreme cases we mentioned (for details, see

[12):
A) Case @ : This situation is what we call mazimum compatibility between two propositions
A and B. The value of the connectives is given by:

[AAB] = min ([4],[B])

[Av B] = max ([4],[B])

[A— B] = min (1,1~ [A4] + [B])

[A- B] = 1-|[4] - [B]

We shall often abbreviate the right-hand members as “[A A B]*”, “[AV B]**, “[A — B]*”
and “[4 & B]*”, respectively.



Case @ corresponds to any of those situations:
A CB (or,equivalently, AF B)
B C A (or, equivalently, BF A4)

which justifies our speaking of “mazimum compatibility”. We could have called this case also
simply compatibility or coherence (because of lack of incoherence, see case 8) or mutual impli-
cation (because here either A - B or B - A). The situation here is one of [mutual] dependence,
as [B|A] —or [A|B]— equals one. (We could speak of correlation as well.)

B) Case © : There is what we call minimum compatibility between two propositions A and B.
The value of the connectives is given by:

[AA B] max (0, [A] + [B] - 1)
[AVB] = min (1,14 + [B])
[A— B] = max (1-[4],[B])
(4~ B] = [[A]+[B]-1]

We shall often abbreviate the right-hand members as “[A A B]~”, “[[yA vV B]~”, “[A —» B]™”
and “[A « B]~". respectively.

I

Case © corresponds to any of the situations described next:
ANB=¢ (or,equivalentlyy, AANB=1)
AUB =0 ( or, equivalently, - AV B)

which justifies our speaking of “minimum compatibility”. We could have called this case also
simply incompatibility or incoherence (because either AA B = L or ~A A B = 1), or mutual
contradiction (because here either A+ —B or A F B).

So, in summary, the value of the connectives is always inside a slack interval, with bounds ©

and @:
Connective Case Minimum value Actual value Maximum value Case
A S max (0, [4] + [B] - 1) [4A B] min ([A], [B]) ®
v ® max ([4], [B]) [4V B] min (1, [A] + [B]) ©
- o max (1 — [A], [B]) (4 — B] min (1,1 - [A] + [B]) ®
o S I[A] + [B] - 1] [4 < B] 1 - [[A] - [B]| ®

We have, perhaps more graphically:

e [AAB]- < [AAB] < [AAB]t o
@ [Av B]* < [AvB] < [Av B}~ e
© [A-B]" <[A-B] < [4-B]* @
© [A4oB]" <[A-B] < [A-B]* o
l l !
0 c a d 1

The above diagram is actually oversimplified: each connective would have a different projection
on the [0,1] line, and each would have a different triple of values ¢, a and d; in each triple, ¢ and
d are the minimum (c) and maximum (d) values, respectively, that the actual value (a) of the
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corresponding composite proposition can reach, as the swing along [0,1] takes a from the © to
the @ case.

A rather stunning fact about the above graph is that the width d — ¢ is constant for the three
first connectives (and exactly double that length for the biconditional). Indeed,

[AAB]* —[AAB]  =[AVB]- -[AVB]t =[A—- B]t -[A- B} =
= ([4 = B]" - [4 & B]")/2 = min ([4], [B], 1-[4], 1-[B]),
a’quadruple minimum that only depends on the values of [A] and [B] and is always < 1/2. We

note this value by “ A(4, B)” or “ A4p” and notice that A(4, B) = A(-4,B) = A(4,-B) =
A(—vA, —1B).

Another striking fact about connectives is that we can parameterize their values through a
unique parameter we name “ a(4, B) ” or “ a4 ” and we call “degree of compatibility between
propositions A and B” or “relative position of propositions A and B (inside ©)”. Its value is:

_ [AAB]-[AAB]-
*AB = [ANB]* - [AAB]- (36)

Symmetrically we define a second parameter we name “ B(A,B) ” or “ B4p " —that we call
“degree of incompatibility between propositions A and B”— through the formula

Bap =45 1—aup

Naturally, 0 < a4p <1 and, simultaneously, 1 > S5 > 0 —where the leftmost and rightmost
bounds refer to cases © and @, respectively, so that both cases are completely determined by
one parameter (or both of them):

Case @ (Mazimum compatibility): a,p =1 (or B4p = 0).
(Note that then —and only then— [A A B] = [4 A B]t.)

Case © (Minimum compatibility): a5 = 0 (or fap = 1).
(Note that then —and only then— [A A B] = [A A B]~.)

Both cases coincide if —and only if— at least one of the propositions A4 or B is valued binarily.
In this situation —which is equally well described by both case profiles— a,p and B45 are
undetermined, and the actual value of the connectives is given by any of the formulas above.

In the general case, the parameter a4 acts as an indicator or measure of “relative position”
of propositions A and B inside ©, and also as a cursor ranging inside the (fixed) interval between
bounds, pointing to the actual value of the connective. We could formulate each connective as
a linear function (a convex combination of case ® and case © values) “interpolating” between
bounds (=the extreme @ and © values), so that its effective value is given by the values [A]
and [B] and the parameter a. (Thus each connective is functional in three variables, the third
being a.)

Indeed we can, and get the following set of formulas (where (37) derives directly from (36) while
(38-40) are obtained from (37) via (3) and (33-34)):
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[AAB] = aap-[AAB]* + Bap-[AAB]- (37)

IIA \ BIl = asp- HA \% B]]+ + Bap - [[A \ B]]_ (38)
[A— B] = asp-[A— B]* + Bap-[A— B]~ (39)
[IA(——)B]] = aAB-IIAHB]]+ + ﬂAB'IIAHB]]_ (40)

So by knowing a single value (either of [A A B], [AV B], [A — B], [A < B], asp or B4p) we
can compute the other five. »

Alternatively, formulas (37-40) can be replaced by this set:

[AAB] = min ([A],[B]) - Ban-Aup (41)
[4v B] = max ([A],[B]) + Bap-Aas (42)
[A— B] = min (1,1 - [A]+[B]) — Ban-Auz (43)
[A-B] = 1- [[A]-[B]| - 2-Bap-Aus (44)

where it is prominent that the value of the connectives is the value for case @ plus a negative
correction (except for V, whose correction is positive) of size proportional to the incompatibility
Bap and the (constant) interval length A 4p (which is a function of [A] and [B] only).

We said that two propositions A and B were independent when their conjunction could be
expressed —in value— as the product of [A] and [B]:

[AAB] = [A]-[B]
It is easily shown that the necessary and sufficient condition for that to happen is:
asp = max ([4],[B]) if[4]+[B]<1
= max ([-A], [-B]) if [A]+[B] >1
(the expression in the second row is equivalent to 1— min ([A], [B]) ). Analogously,

Bap = min ([-A],[-B]) if [A] +[B] <1
= min ([4],[B]) if[4]+[B]>1

When two propositions are independent, the connectives can be expressed —in value— in
this way:
[AnB] = [A]-[B]
[Av B] = [A]+[B] - [4]-[B]
[A— B] = 1-[A]+[A]-[B]

12



[4~ B] = 1-[A]-[B]+2-[4] [B]
[41B] = [4] and [B|A4] = [B]

Two particular points about conditionals that we want to emphasize —and that will be
exploited in section 6— refer to the degree (“truth value”) one can reasonably ascribe to a
conditional statement.

First, when a conditional A — B is asserted, it seems just natural to suppose that the
utterer is ipso faclo stating implicitly that A — B is a stronger (“truer”, more plausible)
assertion than the associated conditional A — -B. So, in terms of the [0, 1]-valuations, any of
the following equivalent conditions will be supposed to hold whenever asserts ‘if A then B’ (4
and B assumed not binary-valued):

[A— B] > [A— -B] (45)
[AAB] > [A]/2 > [AA-B] (46)
o4 = [B|A] > 1/2 (47)
p(ANB) > p(A - B) (48)

all of which add up to stating —after (48)— that “most A is B” or, more precisely, that “most
possible worlds of A are in B”. (That such assumption is in force, anyway, is directly observable
through the expert’s elicited value for o 4; if the given value is under 1/2, then the assumption
is not enforceable.)

Second, when we use a conditional A — B pretending there is some kind of logical or
intrinsic (not merely material) relation between the operands A and B, it seems reasonable
to suppose that there is some dependence between them (i.e. they are not independent, so
[AAB] # [A] - [B] ) and, moreover, that there is a positive correlation. So (again 4 and B not
binary):

[AAB] > [4]-[B]. (49)

Such fact is a mere equivalent of stating that o4 = [B|A] > [B] and v4 = [4|B] > [4]; if this
were not the case, again we would know it immediately through the expert’s elicited values, and
then we could hardly pretend that A and B are related in a positive way: on the contrary, A and
B would be, at best, independent; at worst, they would be negatively correlated (an anomalous,
rather perverse relation to be predicated of an antecedent A and a consequent B).

Both conditions (45) and (49) are compactable into either one of those equivalent two:
[AAB] > [A] max ([B],1/2) (50)
[A— B] > 1-[A] min ([-B],1/2) (51)

as is easy to check. Somewhere later, in our Proof Theory below (see section 6), such require-
ments will be exploited to analyze the Modus Ponens rule.

In the general case of all connectives, the values of asp (or B4p) are usually not known,
but two considerations stand out: first, all computations can proceed if we know [A], [B] and
—just— one of these nine values: [A A B], [AV B}, [4 — B], [B — A], [4 « B], [4|B],
[B|A];, @ ap or 845 —from which all others are derivable at once by the above formulas (36-44).
Also, by being given [B|A] and [A|B] (i.e. the o4 and v4 easily elicited from experts) we can
compute every value, e.g.:

aap = x— (04 [A]- max (0,[A] + [B] - 1)] (orelse =1—B4p)
Ban = 55 [min (LA} IB]) - o4 - [4]] (orelse =1 aup )
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[AAB] = o4-[A] = va4-[B]

[AVvB] = (1-04)-[A]+[B] = [A]+ (1-wva)-[B]

[A-B] = 1-[A]-(1-04) = 1-[A]+v4-[B]

[B— 4] = [4— B]+([A] - [B])

[A-B] = [A— B]+[B— A]-1 = 1-[A] - [B]+2-[AA B]
= 1-[A]-(1-04) = [B]- (1 - va)

5. DISTANCE, TRUTH LIKELIHOOD AND INFORMATIVENESS IN £,

The fact that we have:
[Ao Bl=1-([AV B] - [AAB]),

which is equivalent to stating that “4 =, B iff (Vv) [AA B] = [AV B]”, strongly suggests
using 1 - [A < B] = [AV B] — [AA B] as a measure of the distance AB (under a given
valuation v). So we do. (We remark that all definitions we give from now on of distance and
related concepts are not only applicable to propositions but to theories as well, because for a
general lattice £ the lattice £ of theories derived from each sentence in £ is isomorphic to L.)

[Definition:] Distance (or Boolean distance) between two propositions or theories 4 and B is:
d(4,B) =y 1 -[A— B]=[AV B] - [AA B} = |[A] - [Bl| +2-Bap-Aup  (52)
(Naturally, if A+ B then d(4,B) = [B]-[A4].)

[Definition:] Compatible distance between two propositions or theories A and B is:

d*(4,B) = |[A] - [B]l=1-[4 - B]* (53)
This distance can also be expressed in this way:

d*(4, B) = [A] + [B] - 2 min ([4], [B]) (54)
Note that:

— the distance between two propositions or theories is the same as the distance between their
negations or antitheses (i.e. d(A4,B)= d(-~4,-B), and the same holds for d+)

— the Boolean distance d(A, B) equals the value of the symmetric difference between A and B
[ defined by AAB =4 (AA-B)V(-4AB)]so we have:

d(4,B) = [AAB]  and  d(4,1) = [4]

In view of the previous relations, we could define a truth likelihood value for A —approxi-
mating Popper’s (and Miller’s) [10] verisimilitude measure— by making it to equal the distance
between A and falsehood, i.e. d(4, L). We obtain, immediately:

d(4,1)=d(T,L)-d(T,A)=1 -d(4,T)=1-d(AAT,L)=1 —d(-4,1)=1-[-4] = [4]

So here we have a further interpretation of our “truth values” [A] in terms of truth likelihood or
Popper’s verisimilitude. We remark that we might as well consider [A4] as a rough measure of
partial truth or “truth content” of A. In a similar spirit, we are reminded that Scott [13] once
suggested the “truth value” [A] of many-valued logics could be interpreted as one (meaning
truth) less the error of A (or rather of a measure settling the truth of A) or the inezactness
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of A (as a theory); in this framework, it comes out that, in our terms, [A] = 1—¢(4) and
e(4) =1 - [A] = d(4, T).

We now observe that, for any propositional letters P and @, any uniform truth valuation
yields [P] = [-P] = .50, [P A Q] = .25 and [P V Q] = .75, which is like saying that, if all
letters are equiprobable, the given values are the probability of the given proposition being true
(a number that Bar-Hillel and Hintikka once called, appropriately, “truth-table probability™).
So this value’s complement to one should seemingly correspond to the amount of information
—in a loose sense— we have when the proposition is true. This is precisely what Bar-Hillel and
Hintikka define as “degree of information”, semantic information or informativeness I(A)of a
proposition A. (Viewed in our terms, J(A) equals 1 — [A], or [-A].)

6. PROOF THEORY

The proof theory we now develop is a slightly extended version of the standard one. Here
we understand by proof theory the usual syntactical deduction procedures plus the computation
of numerical coefficients that we must perform alongside the standard deductive process. We
do that because a final value of zero for the conclusion would invalidate the whole argument
as thoroughly as though the reasoning were formally —syntactically— invalid. As always, any
formally valid argument will have, by definition, the following sequent form:

T't+B (55)

where B is the conclusion and I stands for a list of premises. Given an infinite £, the list could
be infinite too, but it would always be reducible by the compactness property to a finite list
A1,..., Ay. Ambiguously, I' will also —and most often— stand for the conjunction A A4; of the
premises Ay,..., A,. We have, elementarily:

I'+B & TB (23)
TkB & T>B & (MW)[T-B]=1 = [[-B]=1 = [I]<[B]

Summing it all up we have, for any arbitrary argument:

T+B = [I]<[B]. (56)

We henceforth assume that we have a valid argument (so T + B will always hold), and
that all premises are non-zero (i.e. Vi [4;] > 0). We distinguish four possible cases:

1) [I] =0 (ie. the premises are —-materially— inconsistent). Here by (56) [B] can be anywhere
between 0 and 1; this value is in principle undetermined, and uncontrollably so (though a
limiting condition —an upper bound— will sometime appear in the formulas). This is a
case no logician would be interested in, since if one has a formally valid argument but one is
in no way risking to assert the conjunction of its premises, it is only natural that the value
of the conclusion turns out to be anything. (Yet there are cases —when contradictions are
involved— in which logicians can and do get interested, see the QS rule below).

2) [B] = 0. This entails, by (56), [I'] = 0 and we are in a special instance of the previous
case. The reasoning is formally valid, no premise is asserted, and the conclusion is false.

3) [r] e (0,1) (i.e. the premises are consistent). Then, by (56), [B] > 0. We have a formally
valid argument, we risk assessing the premises (though with some apprehension) and get
a conclusion which can be effectively asserted though by assuming a ~bounded- risk. This
will be the case we will set to explore below.
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4) [I] = 1. This condition means that [4;] = ... = [4,] = 1 and, by (56), [B] = 1. So the
premises are all asserted —with no risk incurred— and the conclusion holds inconditionally
(remember I' - B is formally valid). This is the classical case studied by ordinary two-
valued Logic.

We are interested in examining case 3 above, i.e. formally valid reasoning plus assertable
premises (though not risk-free assertions) plus assertable conclusion (but at some measurable
cost). Cases 3 and 4 characterize in a most general way all sound reasoning. We must first find
out the conditions for case 2 —so as to exclude it— which characterizes unsound arguments
(since in this case having a formally valid argument I - B does not preclude getting an irrelevant
conclusion ([B] = 0). Case 1 is apparently the worst of the four, since a formally valid argument
'+ B hides a possibly uncontrollably-valued conclusion B. Nevertheless, for reasons that will
later become apparent (it is the case of the medioeval ab absurdo quodlibet sequitur rule), we
will consider it also under tllle sound reasoning case. So, as case 2 is the one to avoid, we have:

[Definition 1:] Unsoundness of a valid argument I' - B is having [B] = 0 though the premises
are themselves non-zero.

[Definition 2:] Soundness of a valid argument T' + B is having [B] > 0 whenever the premises
are non-zero.

Before we examine two basic inference rules, we emphasize one further point about the
truth-value [B] of the conclusion. There are at least four kinds of reasons to advocate for
equating [B] to [[']. The first is that, in the absence of more particular information, we place
ourselves on the side of prudence and parsimony, since [I'] is the lowest possible value, and
therefore our surest bet. The second is that, because [I'] < [B] holds for truth values, so
I(T') > I(B) holds for informativeness; thus, if we equate [B] with [I'] we lose the least possible
amount of information. The third is that if we choose [I'] as the value of [B] then —because
I(B) equals the distance of B from truth— we avoid the rather counterintuitive result that a
conclusion B from a theory I' is nearer the truth than the theory itself is (an anomaly David
Miller [8] has repeatedly noticed). A further kind of reasons have to do with our interpretation
of sentences in a referential universe P(0) of possible worlds: indeed, the [T] value is exactly the
measure (or weighted mean) of the possible worlds (logical interpretations, polled individuals,
etc.) 6 making up the I' conjunction that also make up B. To understand what this may mean,
assume the fs are logical interpretations, in the standard sense; then [B] = [I'] is just the
“truth” of the argument, i.e. the proportion of interpretations in which the argument T + B
has been effectively performed and yielded true as value. Or assume the s are independent
elementary reasoners, each having full reasoning capabilities and completing his/her own line
of argument in view of the premises he or she has: [B] then equals [I'] and so p([); A;). The
fs in (); A; are precisely the ones in B that have all A;s as premises, so that they —and only
they— have been able actually to complete the I' - B reasoning. (Equivalently, if we executed
a stochastic process tuning the frequency of each 6 to its u(8) value and performing the T' - B
reasoning each time it were possible, the proportion of cases in which the conclusion B would
be reached in the long run would just equal u(B), i.e. [B].)

We next examine two basic inference rules, modus ponens and the A-introduction rule (with
quodlibet sequitur as a special case).

a. Modus Ponens

We can now turn to the basic inference rule, the Modus Ponens (MP). From a strictly logic
point of view, this rule is
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A—- B )

(57)
B P

where m, n and p stand for the strength or force (or “truth value”) we are willing to assign
each assertion; so, in our terms, m, n and p are just our [A], [4 — B] and [B]. They are
numbers in [0,1] that take part in a (numerical) computation which parallels and runs along
the logical, purely syntactical deduction process. This is well understood and currently used
by reasoning systems in Artificial Intelligence that must rely on numerical evaluations —given
by users— that amount to credibility assignments (or “certainty factors”), belief coefficients, or
even —rather confusingly— probabilities (often just a priori probability estimates); this is the
case of successful ezpert systems such as Mycin or Prospector. The trouble with such systems
is that they tend to view Modus Ponens as a probability rule (this is made explicit in systems
of the Prospector type). They use it to present the MP rule in this way:

A(m)
A — B(o)

(58)
B(p)

where m and p are the ‘probability’ (a rather loose term here) of 4 and B, and “A — B(0)”
means that “whenever A happens, B happens with probability ¢”. Here o turns out to be just
[B|A], the relative truth of B given A. (It is what we called “degree of sufficiency” o of 4
—or of necessity of B— and assumed easily elicitable by experts.) So it is just natural, and
_ immediate, to compute the p value thus:

pzo-m
or, in our notation,
[B] = [BIA] - [4]
which is just another version of formula (6).

The problem is that what we have, from our purely logical, probability-rid standpoint, is (57),
not (58), and in (57) n is not [B|A] but [4 — B]. Recall that [B|A] and [4 — B] not only do
not coincide (as we know from (30) already) but mean different things. [A — B] is the value
(“truth” we may call it, or “truth minus risk”) we assign to the (logical) assertion 4 — B.
Instead, [B|A] is a relative measure linking materially, factually, A and B (or, better still,
the A and B sets), with no concern whether a true logical relation between them exists; we
might even have [B|A] < [B], thereby indicating there exists an anticorrelation (thus rather
contradicting any —logical or other— reasonable kind of relationship between 4 and B). So
we turn back to our (57) rule; note that m+n > 1 (this always holds), and that [B|A] can he
obtained from [A — B] through (29) or —more usefully (because [B|A] is directly obtainable
from experts— [A — B] from [B|A] through

[4— B] = 1-[A]-(1-[B|A]). (59)

As an application of all considerations above we now have the following two easy propo-
sitions (where, as can be noted, the soundness condition (142) translates into four equivalent
conditions):
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[Theorem 1:] The Modus Ponens rule

A m
A—- B n
-— (we assume m and n are both non-zero)
B p
is unsound (so [B] = 0) only if one of these four equivalent conditions hold:
1) m+n=1 (60)
2) [BIA] =0
3) [AAB] =0

4) A and B are incompatible (a4p = 0) and [A] + [B] < 1.
If any such condition holds, then [B] < n =1- m (so [B] is either zero or unpredictably
somewhere between 0 and n).
The contrapositive theorem states the soundness condition for the MP rule.
[Theorem 2:] The Modus Ponens rule

A m
A—- B n

(we assume m and n are both non-zero)
B P

is sound (and thus [B] # 0) if one of these four equivalent conditions hold:

1) m+n>1 (61)

2) [BJA] >0

3) [AAB]>0

4) Either [A] + [B] > 1 (and thus [B] > 1 — m) or both 4 and B are compatible

(asp > 0) and not binary-valued.

In both sound and unsound cases we have the following easily computable bounds for the
value [B] of the MP conclusion:

[A]+[A—-B]-1 < [B] < [4- B] : (62)
or equivalently, in shorter notation:

m+n—-1< p < n.

(Such bounds have been discovered again and again by quite diverse authors; see e.g.
Nilsson [5]). The lower bound —which equals [A A B] — is reached when a4 p = 1 and
[A] > [B], while the upper bound is reached when a4p = 0 and [A] + [B] > 1. Naturally we
know neither [B] nor a4p beforehand usually, so we don’t know whether the actual value [B]
reaches either bound or not, nor which is it; we can merely locate [B] inside the [m + n — 1, 7]
interval. Admittedly, this result is not very helpful in pinpointing [ B] except when either m = 1
(then [B] = n = [A A B]) or n =1 (then [B] is undetermined, and merely > m).
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Though we will later give an exact formula to compute the actual, precise value of [B], we
now recall the two conditions (45) and (49) we supposed a conditional A — B should reasonably
fulfill. Applying the second (i.e. A and B assumed non-independent —and not binary-), we have:

[A]+[4-B]-1 < [B] < [B|A]. (63)

Here, if A and B are fully or strongly compatible, [B] will be nearer the lower bound;
if they are independent, [B] will have the highest value. (While this may seem a paradox, it
is not: given the -fixed- values n and m of [A — B] and [A4]), it is considerably easier for a
low-valued [B] to yield the given [A — B] if A and B are compatible; conversely, if they are
not fully compatible, or even independent, it will take a high value [B] to match the given
[A — B]. And we could get a still higher value, but only by demanding that A and B are
anticorrelated, a rather absurd proposition.)

Thus, we can only increase our [B] if we are assured that A and B are independent (in the
sense of (28)): we then obtain a higher value [B] = [B|A] (but we may consider this one as
a rather unwanted side case). Or, the more we confide in a strong logical relation between A
and B, the more we should lean towards the low value given by

[Bl=[AAB]=m+n-1. (64)

In absence of the relevant information, it seems we should reasonably stick to the [A4 A B] value
(= m+n—1) as our safest bet. As we said, this value is exactly the measure (or weighted mean)
of the possible worlds (logical interpretations, polled individuals, etc.) § making up A that also
make up B. So, as before, assume the s are logical interpretations, in the standard sense; then
[B] = [A A B] is just the “truth” of the argument, i.e. the proportion of interpretations in
which the argument (the MP) has been effectively performed and yielded true as value. Or
assume the §s are independent elementary reasoners, each having full reasoning capabilities and
completing its own line of argument in view of the premises it has: [B] then equals [A A B] and
so (A NB). ANB are precisely the s in B that have both A and 4 — B as premises, so that
they —and only they— have been able actually to complete the Modus Ponens. (Equivalently, if
we executed a stochastic process tuning the frequency of each 8 to its p(6) value and performing
the MP reasoning each time it were possible, the proportion of cases in which the conclusion B
would be reached in the long run would just equal p(B), i.e. [B].) Under the (64), (45) and
(49) hypotheses, we easily get these bounds for [B]:

[4]/2 < [B] < [A]

There are other reasons for the [B] = [AA B] = m + n — 1 choice for the MP rule
in absence of more relevant information. They have been mentioned above and deal with
parsimony, informativeness and distance to the truth. So, we will stick in general to the value
for [B] given by (64) or, in any case, by the bounded interval defined in (62) or, much better,
by the narrower interval of (63).

Now imagine we want not merely a pair of bounds for the conclusion B of an MP but the
ezact value [B]. Two obvious candidate formulas for this follow immediately from (9-12):

[B] = [AvVB]+[A— B]-1 (65)

[B] = [A)+[A— B]-[B — 4] (66)

To get something useful out of it, let us suppose we are given not only o4 = [B|A] but
also v4 = [A|B] that we shorten to ¢ and v and assume estimated by experts (see above). We
then formulate MP as
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(67)
B(p)

which is exactly (58) except that the conditional has prompted evaluation of relative truths of
A and B in both directions. The value is computable at once from (27):

R e (68)

(Note this value is the one approzimate reasoning systems (e.g. Prospector) unqualifiedly assign
to [B] on purely probabilistic grounds —and falsely assuming, as we saw, that [B|A] is the
same as [4 — BJ; see, for instance, Genesereth & Nilsson [5].) If we wanted the MP presented
in the more traditional way (57), first we would directly estimate the truth value [A — B]
of the conditional, or compute it from o through (59) —or both, and use each estimate as a
cross-check on the other—, so we would now have, along with the expert guess of v:

A m
A—-B n (v)

— (69)
B p

(wheren=1-m-(1-0)), and so

_ [AAB] m+4n-1
-~ [4B] v

(70)

that naturally fits the (63) bounds (when v runs along from 1 to [A]). Or else we can use (66)
directly, if we previously estimate [B — A], or compute it from v.

In Scott’s [13] € error terms, the Modus Ponens rule and the above formulas (57) and (62)
take the form, respectively, of:

A 1-¢
A— B 1-46
(71)
B 1-79
and
6<n<e+d
and so on.
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b. A-Introduction, and the Quodlibet Sequitur (QS) rule

The A- Introduction rule is:

A m
A n

_— (72) (m and n are here not necessarily non-zero)
ANA P

In this case we have that that the argument is sound only when m and n are both non-zero.
If m =0 or n = 0 the rule is then unsound. For the general case (i.e. [4],[A’] € (0,1)), the
A-introduction rule is unsound if and only if [A A A’] = 0, which amounts to [A] + [4'] < 1
and a4 4 = 0. :

A particularly interesting special case of the argument is where A’ is ~A. Then the argu-
ment can be stated in this way:

A m
-A l1-m

(73) (m is not necessarily non-zero)
L 0

which is a valid and sound argument provided A is binary (since in that case the antecedent
“Vi [A;] # 0” of the soundness definition trivially fails). Instead, (73) is unsound when A is
not binary (since then the antecedent holds but [B] # 0 does not).

A related type of argument is the QS rule (the medieval quodlibet sequitur or, equiva-
lently, the weak intuitionistic —-elimination), a very important element in Logic, since it allows
detection of contradictions, and subsequent action after that. We have:

A m
-4 1-m

(74) (m is not necessarily non-zero here)
B P

This argument is always sound, because either the antecedent “Vi [Ai] # 0” also trivially
fails (when A is binary) or else it holds, but then [B] # 0. In this case, there is a net increase
in information (or, equivalently, a net shortening of distance to the truth) precisely equal to
[B]. Whether this is to be accepted unqualifiedly or else we are required to justify the reason
and origin of such net increase is a matter for philosophical discussion related to the relevance
of the conclusion given the premises (into which we will not delve). If we admit the QS as
a valid inference rule, and thus we accept inconditionally ~without further explanation- the
(uncontrollably) arbitrary, non-zero [B] value, then the fact that an argument has logically
inconsistent premises (a null conjunction) is sufficient for inferring an arbitrary conclusion B
(through the QS rule or directly through the general (56) property).
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