
Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 1

Summary

This project is an example of the evolution of know-how in ETSEIB Motorsport. It joins

CAT07e’s telemetry with CAT08e’s data acquisition.

This document summarizes the whole process of design, construction and verification of a

Telemetry ECU for ETSEIB Motorsport Formula Student CAT09e. Moreover, it describes the

development of an Android APP to read and manage real-time data.

This memory includes both hardware and software final choices, going through each

component definition and functionality.

It aims to be useful to know car reactions to different inputs and get its best performance on

track.

Page 2 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 3

Index

SUMMARY ___ 1

INDEX ___ 3

TABLE LIST __ 7

FIGURE LIST ___ 9

1. GLOSSARY ___ 11

2. PREFACE ___ 13

2.1. Project Origins .. 13

2.2. Motivation ... 13

2.3. Previous Requirements .. 13

3. INTRODUCTION __ 15

3.1. Project Objectives ... 15

3.2. Project Scope ... 15

4. BACKGROUND AND VIABILITY ANALYSIS ___________________ 17

4.1. Background in ETSEIB Motorsport .. 17

4.1.1. CAT07e Telemetry .. 17

4.1.2. CAT08e Data Acquisition .. 17

4.2. Viability ... 18

4.2.1. Technical Viability ... 18

4.2.2. Economic Viability ... 18

4.2.3. Environmental Viability .. 18

5. SPECIFICATIONS __ 19

5.1. Module .. 19

5.1.1. Hardware specifications .. 19

5.1.2. Software specifications ... 19

5.1.3. Module environment ... 19

5.2. Android App .. 20

6. PLANNING __ 21

7. HARDWARE ___ 23

7.1. General Overview ... 23

7.2. Power ... 23

7.3. Control .. 24

Page 4 Report

7.4. CAN Bus .. 25

7.5. USB .. 26

7.6. Wi-Fi ... 26

7.7. Complete ECU schematic .. 28

8. SOFTWARE ___ 29

8.1. Microcontroller software ... 29

8.1.1. C++ Language and MPLABX ... 29

8.1.2. Files structure .. 29

8.1.3. Program structure .. 29

8.1.4. Data files .. 30

8.1.5. State machine .. 32

8.1.6. Interruption ... 32

8.2. WiFly Software ... 33

8.3. App Software ... 33

8.3.1. Java Language .. 33

8.3.2. App structure .. 34

8.3.3. App classes and functionality ... 35

9. ASSEMBLY, TEST AND VALIDATIONS _______________________ 43

9.1. Hardware – PCB assembly .. 43

9.1.1. Power ... 43

9.1.2. Microcontroller ... 43

9.1.3. WiFly module ... 44

9.1.4. Final assembly ... 44

9.2. Software ... 45

9.2.1. PCB software ... 45

9.2.2. Android APP software .. 45

10. BUDGET __ 49

10.1. Material Cost .. 49

10.2. Equipment cost .. 50

10.3. Software cost ... 50

10.4. Personal cost ... 51

10.5. Total cost ... 51

11. ENVIRONMENTAL IMPACT ________________________________ 53

CONCLUSIONS __ 55

ACKNOWLEDGEMENTS _______________________________________ 57

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 5

BIBLIOGRAPHY __ 59

Bibliographic references .. 59

Complementary bibliography ... 60

Page 6 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 7

Table List

Table 1. DC/DC characteristics. Source: Own. ... 24

Table 2. PIC32 MX795F512H characteristics. Source: Own. ... 24

Table 3. PIC libraries. Source: Own. .. 30

Table 4. Material Cost. ... 50

Table 5. Equipment Cost. ... 50

Table 6. Software Cost. .. 50

Table 7. Personal Cost ... 51

Table 8. Total Cost ... 51

Page 8 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 9

Figure List

Figure 1. CAT09e electronics. Source: Own. ... 20

Figure 2. Gantt diagram of the project planning. Source: Own. .. 22

Figure 3. PCB general overview. Source: Own. ... 23

Figure 4. RECOM Power R-78B DC/DC. Source: Own. ... 24

Figure 5. Control schematics. Source: Own. .. 25

Figure 6. Schematic of one of the CAN bus connections. Source: Own. 26

Figure 7. USB schematic to connect a memory pen. Source: Own. 26

Figure 8. WiFly module. Source: Microchip.com. ... 26

Figure 9. Antenna location in the monocoque. Source: Own. ... 27

Figure 10. WiFly module schematic. Source: Own. .. 27

Figure 11. Files structure. Source: Own. .. 29

Figure 12. State machine. Source: Own. .. 32

Figure 13. Android Studio Logo. Source: Google ... 34

Figure 14. Application Structure. Source: Own ... 35

Figure 15. Transferred data. Source: Own ... 38

Figure 16. Android Plot demo. Source: Android Plot Website. ... 41

Figure 17. Power modules. Source: Own. .. 43

Figure 18. PIC and 8MHz crystal. Source: Own. .. 43

Figure 19. Final assembly. Source: Own. ... 44

Figure 20. Output file. Source: Own ... 45

Figure 21. Wi-Fi configuration. Source: Own. ... 46

Figure 22. Main screen. Source: Own. ... 46

file:///C:/Users/Andreu/Documents/TFG/TFG%20Andreu%20Guasch%2009_01_2016%20revisat%2012_01_2016.docx%23_Toc440394754
file:///C:/Users/Andreu/Documents/TFG/TFG%20Andreu%20Guasch%2009_01_2016%20revisat%2012_01_2016.docx%23_Toc440394758
file:///C:/Users/Andreu/Documents/TFG/TFG%20Andreu%20Guasch%2009_01_2016%20revisat%2012_01_2016.docx%23_Toc440394761

Page 10 Report

Figure 23. Dialog box. Source: Own. .. 47

Figure 24. Data Analytics screen. Source: Own. .. 47

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 11

1. Glossary

The acronyms used in this memory and their meanings are listed below:

ECU – Electronic Control Unit

PCB – Printed Circuit Board

CAN – Control Area Network

EMI – Electromagnetic Interferences

UART – Universal Asynchronous Receiver-Transmitter

TCP – Transmission Control Protocol

IP – Internet Protocol

LED – Light Emitting Diode

AP – Access Point

PTC – Positive Temperature Coefficient

SMD – Surface Mounted Device

TH – Through Hole

RAM – Random Access Memory

USB – Universal Serial Bus

PLL –Phase-Locked Loop

PDF – Portable Document Format

DHCP – Dynamic Host Configuration Protocol

SSID – Service Set Identifier

BOM – Bill Of Materials

SDK – Software Development Kit

API – Application Programming Interface

Page 12 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 13

2. Preface

2.1. Project Origins

The project context is the Formula Student competition and ETSEIB Motorsport Barcelona,

our school team, in which 30 students design and build a Formula Student car to compete all

over the world. Each university participating in this competition creates its own racing car and

travels through the world to race it during summer. The competition includes two types of tests,

static and dynamic. In the first ones, students have to defense their knowledge in cost analysis,

business plans and design whereas dynamic events such as accelerations or endurance are

placed in the other.

ETSEIB Motorsport was born in 2007 and one car is build each year since then. This year, the

CAT09e is going to race in Italy, Germany and Catalonia.

2.2. Motivation

Nowadays, data acquisition and post-processing is getting more importance than ever in

automotive and motorsport projects. The future of autonomous cars mostly depends on this

data.

In motorsport, data is used to setup the car and control its status in real time.

Nowadays, the current Data Acquisition of the team only allows saving data in a USB memory

pen. Once the car is stopped, the pen can be connected to the computer USB and do several

procedures to watch the acquired data. This procedure consumes a great quantity of time

when the car is on track, causing testing to be slow.

In order to optimize test time, this projects aims to join CAT08e’s Data Acquisition with

CAT07e’s Telemetry and improve both systems.

2.3. Previous Requirements

This project is based on learning by doing and the transmission of knowledge. For this reason,

the only previous requirements are reading the last projects of the team and start the season

learning how to use the software used by the team. Every season, the first month is spent in

these two objectives.

Page 14 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 15

3. Introduction

3.1. Project Objectives

The main objective of this project is to design, build and test an ECU for managing data of the

Formula Student car CAT09e, from Data Acquisition to Telemetry, and create an android app

to read real-time data and post process it.

This objective can be summarized with the following points:

 Join the Data Acquisition with the Telemetry in a unique ECU

 Add an additional CAN bus connection to make the ECU more versatile

 Make a more intelligible software structure in which it is easier to modify data

 Speed up testing using a mobile application that allows you to view data and make

graphs.

3.2. Project Scope

The project scope is based on three points:

 Arrange and improve CAT08e’s hardware: It had power problems and misconnections.

Also a new CAN bus connection will be available.

 Arrange and improve CAT08e’s software: Telemetry was not included and some user

parameters were difficult to be modified.

 Development of an Android APP to read TCP packets via Wi-Fi from the module.

Page 16 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 17

4. Background and viability analysis

4.1. Background in ETSEIB Motorsport

At the beginning of the team, a commercial Data Acquisition module was used to obtain car

data. Because of the high price and the power consumption of this solution and the fact that

competition judges prefer self-made components, in CAT06e the team started to use semi

commercial modules such as Arduino. The following year, in CAT07e season, the team

designed and built its own PCBs for the first time.

This project, as mentioned before, is based on CAT07e Telemetry and CAT08e Data

Acquisition.

4.1.1. CAT07e Telemetry

During the 2013-2014 season, one team member developed a PCB to send real-time data to

an iOs device. It used a Wi-Fi connection and an IP/TCP protocol. From that project, even

though the PCB worked, he extracted the following conclusions:

 The position of the device, behind the pilot, prevented a good Wi-Fi signal

 There was not enough sensors in the car

 With a bidirectional connections would be easy to modify car data

4.1.2. CAT08e Data Acquisition

With the next car, the CAT08e, another team member designed a Data Acquisition PCB which

included a WiFly module to implement the telemetry function but, due to the short developing

time, it never worked. However, it supposed a step forward in the team’s knowledge by using

a PIC32 from Microchip instead of a PIC18 microcontroller. It allowed him to develop a solid

and powerful Data Acquisition program.

Some of his conclusions are listed below:

 Using a PIC32 greatly improved the functionality of the ECU.

 Data was saved at the desired frequencies.

 Using DC/DC converter would increment the efficiency of the ECU

Though CAT08e’s Data Acquisition gave good results, some malfunctions were detected. Due

Page 18 Report

to wrong voltage input connections, the module reset from time to time. Also, due to bad

connections, it was impossible to send UART messages to the WI-FI module that was already

built on. To modify the data, the main code had to be modified and this was really slow and a

source of problems. Finally, some errors were detected in the exported files that did not allow

an accurate post processing.

4.2. Viability

4.2.1. Technical Viability

Due to the previous experience of the team and the first month of learning, the hardware design

of the project did not represent a great difficulty. All the chosen components had been tested

before and most of the hardware solutions too.

The difficulty comes in the software, because it is the second year using a PIC32

microcontroller with the consequent lack of experience. Moreover, an android app will be used

for the first time so java developing knowledge is required.

4.2.2. Economic Viability

The ECU will be used in a prototype racing car, therefore only a few number will be assembled.

It must take into account that some of the components used in the ECU have been provided

by sponsors of the team, which significantly reduces costs. The tablet used as interface for

data analysis is a sponsored product too.

In point 10 of this project report, the cost analysis is described extensively.

4.2.3. Environmental Viability

The environmental viability is not a limiting aspect in the development of this project, because

we only manufacture a prototype. There are a set of international guidelines (such as the

RoHS), which restricts the use of certain hazardous materials in the manufacture of electronic

components.

Point 11 in this document exposes a detailed study of the environmental impact.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 19

5. Specifications

Inside this chapter, the requirements for each component of this project will be specified: firstly

the module specifications including both hardware and software and secondly the App

specifications.

5.1. Module

The objective of the module is to read CAN bus messages from the car, codify them into a

predefined specified format and send all the data to an app via Wi-Fi connection.

5.1.1. Hardware specifications

 Rated input voltage of 12V

 2x CAN bus connections

 Wi-Fi module

 USB connection (memory pen)

 Antenna in a surface position

5.1.2. Software specifications

 Read and send data through CAN bus

 Up to 100Hz data recording in csv format

 IP/TCP protocol and AP mode

 Easily modifiable data

5.1.3. Module environment

CAT09e’s electronics are composed by one main control unit (MicroAutoBox) from dSPACE,

one BMS, and self-made PCBs connected to all the sensors and actuators of the car. Four

CAN networks connect all the subsystems to share information.

Sensors data are sent to dSPACE, which analyzes them, makes decisions and also sends all

the information through a CAN bus.

Page 20 Report

Figure 1. CAT09e electronics. Source: Own.

5.2. Android App

The main functionality of the app is to know the status of the car in real time. Moreover, it has

to allow the possibility to record and display the data to provide a fast analysis in a car test

session. Therefore, it must include:

 Wi-Fi connection

 File Storing

 Graphic Viewer

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 21

6. Planning

The project has a duration of 4 months. It begins on September with the start of one formula

student year and ends in late December, with the aim to be ready for testing the car in

February.

The project has been split into 7 phases: Study of previous projects, definition of specifications,

technical viability study, design, assembly, program and test.

One of the most important values in the formula student world is the transmission of knowledge

each year from the former members to the new ones. That is why every member of the team

starts the season learning from the previous projects.

After that, the specifications of the product are defined and the design phase starts. This is the

most complex part because all the project depends on the good design of the product more

than on any of the other steps.

Once the design is done, the Assembly phase starts, in which the PCB is soldered and all the

connections expected to work on the design are tested.

The last and most important part in this project is related to the software. It has to join each

component of the PCB with the others. Also the android app is created in this part.

When everything is finished, the final step in the project is to check and validate all the

components in a real test situation.

Fig. 2 shows a Gantt diagram with all these described phases, indicating its start and end

dates, including some subtask that should be done during the project.

Page 22 Report

Figure 2. Gantt diagram of the project planning. Source: Own.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 23

7. Hardware

This chapter will discuss only the hardware of the designed PCB because the analysis of the

hardware of an android device is not part of this project.

7.1. General Overview

Fig. 3 shows the final PCB layout with all the components on board. Its function, as mentioned

before, is to provide the team all the data from the car sensors via csv files and TCP messages.

We can divide it into 5 basic parts explained during this chapter: Connectors, Power, Control,

CAN-Bus, USB and Wi-Fi.

Figure 3. PCB general overview. Source: Own.

7.2. Power

To solve the power and temperature problems of the last year Data Acquisition PCB, the

module will be powered by two RECOM Power DC/DC converters. One for the 3.3V

components and the other for powering the USB, which needs a 5V input voltage.

Page 24 Report

These converters will reduce the consumption of the ECU at the same time that protect the

circuit from overloads and short-circuits.

Table 1. DC/DC characteristics. Source: Own.

7.3. Control

To control the communications and data flow a PIC32MX795F512H is used with a maximum

clock frequency of 80MHz that allows high speed data processing. In addition, it has the

requirements needed for our purpose, as shown in Table 2.

Number of pins 64 Temperature range -40 to 105 ºC

Maximum frequency 80 MHz CAN module 2

Power voltage 2.3-3.6 V UART module 5

Program memory

(Flash)

512 KB USB module 1

Data memory (RAM) 128KB Timers 5

Table 2. PIC32 MX795F512H characteristics. Source: Own.

To ensure the clock precision an external 8 MHz crystal oscillator has been added to the

microcontroller.

RECOM Power R-78B series characteristics

Input Range 4.75 – 32 V DC

Output current 1A

Efficiency ~90%

Figure 4. RECOM Power R-78B DC/DC. Source: Own.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 25

Figure 5. Control schematics. Source: Own.

7.4. CAN Bus

A controller area network (CAN bus) is a vehicle bus standard designed to

allow microcontrollers and devices to communicate with each other in applications without

a host computer. It is a message-based protocol.

Data is transmitted without a clock signal in an asynchronous format and must contain an ID

and the message data.

With the objective of making this ECU more versatile, it includes 2 CAN transceivers which

allow two CAN bus connections. That can be useful to reduce the net jam and to acquire data

from different networks.

https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Message-based_protocol

Page 26 Report

Figure 6. Schematic of one of the CAN bus connections. Source: Own.

7.5. USB

The USB (Universal Serial Bus) is a standard asynchronous protocol very extended in

personal computers. It is the simplest way to connect the PIC to a mass storage because the

C compiler has predefined USB 2.0 libraries.

Figure 7. USB schematic to connect a memory pen. Source: Own.

7.6. Wi-Fi

The Wi-Fi connection of the module is based on the WiFly RN131C

module from Microchip. It receives UART messages from the PIC

and sends it via TCP.

UART (Universal Asynchronous Receiver-Transmitter) is a

standard protocol to send a byte flux from a buffer via digital pulses

that represent the bits. Figure 8. WiFly module. Source:
Microchip.com.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 27

TCP (Transmission Control Protocol) is a protocol to communicate two devices and provides

reliable, ordered and error-checked delivery of a stream of bytes.

To improve the range of the Wi-Fi signal an external antenna will be placed in front of the pilot.

Figure 9. Antenna location in the monocoque. Source: Own.

Figure 10. WiFly module schematic. Source: Own.

Page 28 Report

7.7. Complete ECU schematic

Figure 11. Complete ECU schematic

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 29

8. Software

In this chapter the software, including both microcontroller and WiFly module and the Android

App, is explained. As the project is an evolution of previous projects, there will be a general

summary with special emphasis on their improvements.

8.1. Microcontroller software

8.1.1. C++ Language and MPLABX

C++ is a general purpose programing language with imperative, object-oriented and generic

programing features. It is one of the languages used to program PIC microcontrollers using

the Microchip platform MPLAB IDE. To make things easier for the programmer, Microchip

developed a series of libraries and a configurator plugin called Harmony [8], which is useful to

start building any PIC32 application.

8.1.2. Files structure

MPLAB Harmony projects are structured in a way that isolates

the code necessary to configure the PIC32 from the library

modules themselves and from your application code.

The main.c file contains primarily just the program loop. The

application files (app.c and app.h), where the user introduces

the app functions, are separated from the configuration files in

the system_config folder. The library modules that make up

the MPLAB Harmony framework, saved in the framework folder,

use the definitions stored in the header system_config.h. It

starts every peripheral, timer and interrupt that will use when

called from the Sys_initialize function.

8.1.3. Program structure

The program starts in the main file, composed by only two functions: the system initialize and

the program loop with the system tasks.

Figure 12. Files structure. Source:
Own.

Page 30 Report

During the initialization, the PIC oscillator is configured as external with a multiplier. This

allows the microcontroller to run at its maximum speed, 80MHz. In addition, the GPIO pins

are configured. After that, all the peripherals are initialized using the following libraries.

Libraries

CAN Functions to initialize, send and receive CAN messages

USB Functions to initialize the USB as host and establish connection with the

microcontroller

UART Functions to initialize, send and receive UART messages

File System Functions to manage files (create, read, write…).

Timer Functions to control interrupts

Table 3. PIC libraries. Source: Own.

Once every component is initialized, the program enters in the loop and executes the system

tasks, which include the interruptions and the control of the state machine.

8.1.4. Data files

One of the main solutions for making the module more versatile is to accept modifications in

the data received. That is why a new data organization is implemented in this prototype. The

keys are runnable data and a good structure.

SYS_Initialize (NULL);

while (true){

SYS_Tasks ();

}

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 31

Creating arrays of CAN_ID structures (see example below) allow any user to easy modify

variables and Can messages in the function set_data().

struct info{ //Data information for each variable

 char name[10]; //Variable name

 int lenght; //Number of bytes

 int gain; //Gain

 int offset; //Offset

 int value; //Variable value

};

struct CAN_ID{ //CAN information

 int ID; //ID

 struct info data[8]; //Contained variables

};

struct CAN_ID IDs[ID_number]; //ID list

void set_data(){

 IDs[0].ID = 0x201; //First ID

 strcpy(IDs[0].data[0].name,"TIME"); //Variable 1 name

IDs[0].data[0].lenght = 1; //Nº of bytes

IDs[0].data[0].gain = 0; //Gain

IDs[0].data[0].offset = 0; //Offset

 strcpy(IDs[0].data[1].name,"FAIL"); //Variable 2 name

IDs[0].data[1].lenght = 1; // Nº of bytes

IDs[0].data[1].gain = 0; // Gain

IDs[0].data[1].offset = 0; // Offset

Page 32 Report

8.1.5. State machine

The program is structured as a state machine, being different functions executed in each state:

OPEN HOST LAYER: starts the USB module as host

WAIT FORT HOST ENABLE: waits for the USB host configuration.

WAIT FOR DEVICE ATTACH : waits for an USB device plug

DEVICE CONNECTED: pass to MOUNT DISK if a device is plugged

MOUNT DISK: starts the connection with the memory of the USB device

WAIT DSPACE: waits for the CAN start message

OPEN FILE: creates a new file in the USB device

TRANSMIT DSPACE: transmit de response to Dspace through CAN

WAIT VARIABLES: start the variables

ASSIGN VARIABLES: receive the messages and assign value to each variable

Figure 13. State machine. Source: Own.

If any of these states do not succeed, the program jumps to an error state to reset the program.

8.1.6. Interruption

To make the ECU more versatile and stop relying on the dSPACE ECU, the software uses an

interrupt to run the variables and send it every ten milliseconds. By using interrupts, the

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 33

acquisition of the data can be done at different frequencies avoiding the saturation of the CAN

network.

8.2. WiFly Software

In our application, the module has to receive bytes through UART, create a WLAN and send

the information via TCP to client devices.

The WiFly module has two modes of operation: Data mode and Command mode. In data

mode, which is usually used, the module can accept incoming connections or initiate outgoing

connections. To configure the module, you must put it in Command mode.

The easiest way to configure the module is via Wi-Fi with the app “WiFly apps”. To access

command mode, you must send to the module the characters $$$ together.

The commands used to configure the module are listed in the following table.

Command Description

Set uart baud 115200 Sets the uart baudrate to 115200

Set uart flow 0x00 Sets the flow control mode and parity to

none.

Set ip dhcp 4 Enables DHCP mode

Set wlan join 7 Create a soft AP network using the stored

SSID, IP address, netmask, channel, etc.

Set wlan ext_antenna 1 Sets the antenna to external

Set wlan ssid CAT09e Sets the SSID

8.3. App Software

8.3.1. Java Language

Java is a general purpose object oriented computer programming language. Java code can

run on all platforms that support Java without the need for recompilation. The syntax of Java

is largely influenced by C++. It was built almost exclusively as an object-oriented language. All

https://en.wikipedia.org/wiki/C%2B%2B

Page 34 Report

code is written inside classes, and every data item is an object, with the exception of the

primitive data types. Java does not compile to native processor code but rather it relies on a

“virtual machine” which understands an intermediate format called Java bytecode. Each

platform that runs Java needs a virtual machine (VM) implementation.

The official android programming language, used in the development tool Android Studio, is

Java complemented with XML for the interface design.

Figure 14. Android Studio Logo. Source: Google

There are some alternatives to Android Studio for android developing such as Corona,

Basic4Android or Phonegap that do not use Java.

Corona is a high level SDK built on the LUA programming language. LUA is much simpler to

learn than Java and the SDK takes away a lot of the complex syntax in developing Android

apps.

Basic4Android is a rapid application development tool for Android applications. It uses a

language similar to Visual Basic and has a visual designer that makes easy the process of

designing the interface. It also has many APIs, allowing to speed up work.

PhoneGap is an open source framework for quickly building mobile apps for different platforms

using HTML5, Javascript and CSS. It is useful if you are used to program websites.

In this project, the Android Studio platform has been used to learn the basics of the Android

development and Java programming language before using an embedded product for a faster

application development.

8.3.2. App structure

An Android project contains everything that defines the Android application, from app source

code to build configurations and test code. The SDK tools require that your projects follow a

specific structure so it can compile and package your application correctly.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 35

The modules created with the project are: the Android Application Modules, the Test Modules

and the Library Modules.

The Android Application Modules include all the source code, resource files, manifest file, etc.,

of the application. From this module, the .apk file used to install the app into the device will be

created. Our application includes one manifest file, six java files, two layout xml files and the

other resources.

Figure 15. Application Structure. Source: Own

The Test Modules contain the code to test the applications.

The Library Modules contain all the libraries used in the project such as the Android Plot library.

8.3.3. App classes and functionality

As mentioned before, the application is developed with the Android Studio software. The app

receives TCP packets with the variables and shows them. All the process is done with classes

and objects written in Java and it is shown via the XML layout and resource files. The classes

of the program are explained below and its significant parts are shown.

 Data Structure: Class that defines the data format type. Contains the characteristics of

Page 36 Report

each variable and functions to interact with it. All the variables of the car will be objects

of this class with different characteristics.

The content of each object is private and can only be modified through the setter

functions.

Every variable has its name that will be its unique ID. The length represents the number

of bytes that the variable has, this is needed when variables are split in the Wi-Fi

message. The gain and the offset are applied to the received data to get the final value.

Finally, the raw data are the values with no gain and offset.

public class DataStructure {

 //Variables

 private String name;

 private int lenght;

 private int gain;

 private int offset;

 private long value;

 private long rawdata;

 //Getters

 public String getName(){..}

 public int getLenght(){..}

 public int getGain() {..}

 public int getOffset() {..}

 public long getValue() {..}

 public long getRawdata() {..}

 //Setters

 public void setName(String name) {..}

 public void setGain(int gain) {..}

 public void setLenght(int lenght) {..}

 public void setOffset(int offset) {..}

 public void setValue(long value) {..}

 public void setRawdata(long rawdata) {..}

 /// this function transforms the data with its

 gain and offsets and sets the value

}

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 37

 Data: Contains the array of data and functions to interact with it. The user must modify

this file to change the variables.

Using an arraylist allows data to be runnable. That makes the insertion of data values

easy.

The dataInfo.add() function adds a new DataStructure object with its name,

length, gain, offset and raw value to the arraylist.

public class Data {

 private ArrayList<DataStructure> dataInfo = new

ArrayList<>();

 public Data(){

 dataInfo.add(new DataStructure("TIME",4,1,0,0));

 dataInfo.add(new DataStructure("TIMD",1,1,0,0));

 dataInfo.add(new DataStructure("FAIL",1,1,0,0));

 dataInfo.add(new DataStructure("TMAX",1,1,0,0));

 dataInfo.add(new DataStructure("CMAX",1,1,0,0));

 dataInfo.add(new DataStructure("VMN5",1,1,0,0));

 }

 public ArrayList getData(){..}

 public int getDataLenght(){..}

 public Long getSingleValue(String name){ ..}

 public DataStructure getSingleData(String name){ ..}

 public ArrayList getNames(){..}

 public ArrayList getValues(){..}

 public void setRawData(ArrayList<Integer>

rawDataList){ ..}

 //This function call the setRawData() function for

each member of the array taking in account the length of

each variable.

}

Page 38 Report

 File Manager: Contains functions to create, delete and modify files.

 TCP: This class establishes the connection with the Wifly module and receives TCP

messages. It is also the bridge between the previous classes and the Screen Activity

class. Figure 16 shows the transferred data via Wi-Fi. This class also interprets this

data before assigning it to the variables.

Figure 16. Transferred data. Source: Own

The decoding process starts by searching the four flags of the start message, the

numbers 0,1,0,1 and assigning the rawvalue to each variable depending on its length.

Public class FileManager {

 public String dir = "";

 public String filename = "";

 public File file;

 public void setDir(String directory){..}

 public void setFileName(string filename){..}

 public void createFile(){..}

 public void rename{..}

 public void savearray(ArrayList data) {..}

 //This function save any array with “,” between

the elements

}

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 39

public class TCP extends AsyncTask{

//Variables

 public Data data = new Data(); //Data

 public FileManager fileManager = new FileManager();

 private String ip = "192.168.1.1"; //Host IP

 private int port = 2000; // Host Port

 private Socket s; //Socket

 private boolean hostConnection = false; //Connection

Status

 private int savePeriod = 10; //Actualization period

 private ArrayList<Integer> dataArray = new

ArrayList<>(); ; //Data from TCP

 private Timer saveTimer = new Timer(true);

 // Background process

 @Override

 protected Object doInBackground(Object[] params) {

 //Getters

 public String getIp(){

 public int getPort(){

 public ArrayList<Integer> getTcpData(){

 public boolean isConnected(){

 //Setters

 private void setSavePeriod(int period){

 public void setIp(String ip){

 public void setPort(int port){

 //Class functions

 public void start(){

 public void stop(){

 public void save(final boolean yes){

}

Page 40 Report

 Screen Activity: Creates the Views of the variables and updates them.

public class ScreenActivity extends AppCompatActivity {

 TCP tcp = new TCP();

 protected void onCreate(Bundle savedInstanceState) {

 //Button definition

 final Button rec = (Button)

findViewById(R.id.button_rec);

 final Button stop = (Button)

findViewById(R.id.button_stop);

 Button dataAnalytics = (Button)

findViewById(R.id.button_data_analytics);

 //Button actions

 rec.setOnClickListener(..)

 //Starts saving data

 stop.setOnClickListener(..)

 //Stops saving data

 dataAnalytics. setOnClickListener(..)

 //Starts data analytics activity

 tcp.start();

//If the device is connected to a wifi network

starts the connection.

 Timer screenRefresh = new Timer(true);

 //Update the screen

 ArrayList<Integer> values = tcp.data.getValues();

 screenRefresh.schedule(new TimerTask() {

 textView2.setText(..);

 },0,200);

}

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 41

 Data Analytics: This class, implemented with the free library “Android Plot” [11]

(androidplot.com), makes X-Y graphics of the selected variables from an archive inside

the disk.

Figure 17. Android Plot demo. Source: Android Plot Website.

Page 42 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 43

9. Assembly, test and validations

This chapter is divided into two sections: the assembly and validation of the hardware and the

software tests.

9.1. Hardware – PCB assembly

9.1.1. Power

The first step is soldering the power modules (DC/DC converters) in the PCB. Once they are

soldered, a 12V power supply is connected and they are tested to check the correct operation

in case of short circuit or voltage rise.

A power indicator led is soldered next to the power modules to verify the proper operation.

Figure 18. Power modules. Source: Own.

9.1.2. Microcontroller

Soldering the microcontroller is a difficult task. For this reason, Flux and a 0,6mm soldering tip

has been used to facilitate the work. To test the PIC32, it is connected to the PC through a

PICKIT programmer and it is programed with and old program to see if the program runs on it.

Figure 19. PIC and 8MHz crystal. Source: Own.

When it works as it is supposed to, all the peripherals such as the clock source or the CAN

Page 44 Report

transceivers are soldered and tested one by one.

9.1.3. WiFly module

The WiFly module manufacturer gives few recommendations to solder the module:

 The solder temperature must be below 220ºC

 Don’t clean with water

 Don’t use No Clean Flux

When the module is connected, its functioning can be checked by the notification LEDs

according to the datasheet [6].

9.1.4. Final assembly

The following image shows the final assembly of the ECU which will be inside a Hammond

Manufacturing case.

Figure 20. Final assembly. Source: Own.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 45

9.2. Software

9.2.1. PCB software

As this project is an evolution of previous projects, the software of the microcontroller is based

on CAT08e’s software. All the modifications made on it have been tested in the base program

to check the compatibility with it.

One of the advantages of the new developed program, the capacity to control the data saving

time, has been tested using CAN messages and observing the precision of the frequency in

the PC using a CAN interface from Kvaser.

In Figure 21 the output file in the USB can be seen, a csv file that can be imported to the data

analysis software GEMS. Every file starts with the name of the variables in the first line starting

with TIME and all the other lines are the rest of the data.

Figure 21. Output file. Source: Own

9.2.2. Android APP software

To assembly the final app, several test applications have been made to simulate single parts

of the program. Some of these apps are listed below:

 Intent app: Starts an activity by clicking a button

 TCP app: Establishes connection with a host, receive messages and print it

 Timer app: Makes an action at a specified frequency

 Asynctask app: Runs background processes

Page 46 Report

 File managing app: Reads and Writes to files

 Graphics app: Prints X-Y graphics

The final app joins these small apps in a single one. It has one rec/stop button and the data

analytics button. Once it is opened and the device is connected to CAT09e WLAN, it starts

receiving all the data (see Fig. 22).

Figure 22. Wi-Fi configuration. Source: Own.

Figure 23. Main screen. Source: Own.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 47

To record data the user has to press the button rec and when the stop button is pressed a

dialog box appears to set the filename. If the dialog is canceled, the run is deleted.

Figure 24. Dialog box. Source: Own.

The Data analytics screen shows the files stored in the system, the variables in the selected

file and the graphic of the selected variables.

Figure 25. Data Analytics screen. Source: Own.

Page 48 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 49

10. Budget

The following tables detail the costs of the project, including material cost, equipment cost,

software cost and personal cost.

10.1. Material Cost

The material cost table includes all the components of the ECU.

 PART COST

 M
A

T
E

R
IA

L
 C

O
S

T

Res 10 0,09 €

Res 100 0,36 €

Res 120 0,18 €

Res 220 0,09 €

Res 260 0,82 €

Res 470 0,18 €

Res 1000 0,18 €

Res 4700 0,18 €

Res 10000 0,18 €

Res 100000 0,18 €

Cond 20pF 0,27 €

Cond 560pF 0,36 €

Cond 100nF 1,99 €

Cond 1uF 1,17 €

Cond 10uF 0,26 €

Cond 47uF 1,14 €

CEFC 10uF 1ohm 7,63 €

XTAL 8MHz 0,33 €

CAN Transceiver 5,20 €

DC5 8,44 €

DC3.3 8,44 €

Led Green 1,11 €

Led Red 0,24 €

Led Yellow 0,29 €

Led Blue 0,67 €

RN-131C/RM Wifi Module 33,42 €

USB 2,49 €

Zener 3.3V 0,18 €

Page 50 Report

Box Hammond 1455J1201 18,81 €

LEMO 0F305 105,11 €

LEMO 0F307 114,85 €

PIC 32 7,94 €

USB 6,99 €

PCB 290,00 €

Subtotal 619,78 €

Table 4. Material Cost.

10.2. Equipment cost

E
Q

U
IP

M
E

N
T

 C
O

S
T

Personal Computer 700,00 €

Power Supply 948,00 €

Oscilloscope 798,00 €

Kvaser Leaf light 2 326,28 €

Multimeter 50,00 €

Pickit 3 42,50 €

Android Device 200,00 €

Subtotal 3.064,78 €

Table 5. Equipment Cost.

10.3. Software cost

S
O

F
T

W
A

R
E

 C
O

S
T

Altium designer 6.795,00 €

MPLAB X 0,00 €

MPLAB Harmony 0,00 €

Kvaser CanKing 0,00 €

Android Studio 0,00 €

Matlab 2.000,00 €

Subtotal 8.795,00 €

Table 6. Software Cost.

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 51

10.4. Personal cost

 PART HOURS COST
 P

E
R

S
O

N
A

L
 C

O
S

T
 Project Study 152 7.600,00 €

Hardware design 144 7.200,00 €

PCB Assembly 16 800,00 €

Software Design 68 3.400,00 €

Validations 48 2.400,00 €

Subtotal 428 21.400,00 €

Table 7. Personal Cost

10.5. Total cost

As it can be seen in Table 8, the total cost of the project is around 33.800€. The 63% of the

cost is due to human resources and the other 34% corresponds to the equipment and software

licenses. This ECU can be made because the project is voluntary and all the equipment and

software is provided by sponsors.

T
O

T
A

L
 C

O
S

T
 Material Cost 619,78 €

Equipment Cost 3.064,78 €

Software Cost 8.795,00 €

Personal Cost 21.400,00 €

Total 33.879,56 €

Table 8. Total Cost

Page 52 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 53

11. Environmental impact

The environmental impact analysis of this project is focused on two points: the electronic

components used in the PCB and the electromagnetic waves produced by the Wi-Fi module.

The RoHS directive (Restriction of Hazardous Substances) regulates the use of some

materials in electric and electronic components. These materials, such as Mercury or

Cadmium, represent an environmental hazard, therefore they must be recycled in specific

plants. Since 2006, the members of the RoHS directive forced companies to stop using these

substances.

All the components of the PCB and the Android device are RoHS compliant.

The other point of the environmental impact analysis, as mentioned before, is the

electromagnetic effect of the Wi-Fi signal to the human body. Even though there are not clear

evidences of this effect, the module manufacturer establishes that the module can be used at

a distance of at least 20cm from the body without consequences for human health.

Page. 54 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 55

Conclusions

The main objective of the project is the implementation of an ECU according to the needs of

the Formula Student car CAT09e and an Android application to read car data. It started from

two ECUs used in previous cars that did not work as expected. This project wanted to optimize

both software and hardware.

These goals have been achieved, as a fully operational ECU has been assembled and tested.

The code, which is much more understandable, more structured and easy to modify, has also

been optimized.

The application, despite having possible improvements, is able to read data in real time, save

it and show X-Y graphics on a tablet display.

Using both solutions together optimizes testing time and allows a faster decision making to get

the best performance of the car.

As a further improvement, a bidirectional communication between the Android application and

the car should be implemented. This fact was already stated in the CAT07e Telemetry project

but never implemented because was not a priority. In addition, the application could have more

options and displays to show different type of data.

Page 56 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 57

Acknowledgements

In the first place, I would like to thank my Formula Student Colleagues. The continuous work

and discussion over hundreds of hours has been an invaluable source of knowledge and

expertise in group projects.

I would also like to thank my project supervisor, Manuel Moreno, for his significant technical

support as well as for his important contribution to the team’s electronic department.

Finally, I also want to thank my family for the support they give me every day in my education.

Page 58 Report

Telemetry for ETSEIB Motorsport Formula Student CAT09e Page 59

Bibliography

Bibliographic references

[1] GASCÓN DOMINGO, D. Telemetria basada en WIFI per a l’equip ETSEIB

Motorsport Barcelona de la Formula Student. Barcelona, ETSEIB, 2014.

[2] CABUTÍ BORRELL, P. Disseny i millora del sistema d’enregistrament de dades per

a l’equip ETSEIB Motorsport de la Formula Student. Barcelona, ETSEIB, 2015.

[3] KVASER. Kvaser Leaf Light 2 User’s Guide. 2015.

[https://www.kvaser.com/products/kvaser-leaf-light-hs-v2/, December 2015]

[4] MICROCHIP TECHNOLOGY. PIC32MX795F512H Datasheet. 2015.

[http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf, December de 2015]

[5] MICROCHIP TECHNOLOGY. PIC32 Family Reference Manual. 2015.

[http:// www.microchip.com, December de 2015]

[6] MICROCHIP TECHNOLOGY. RN131 Datasheet. 2014.

[http://ww1.microchip.com/downloads/en/DeviceDoc/rn-131-ds-v3.2r.pdf, December

2015]

[7] MICROCHIP TECHNOLOGY. WiFly Module Command Reference User’s Guide.

2014.

[http://ww1.microchip.com/downloads/en/DeviceDoc/rn-131-ds-v3.2r.pdf, December

2015]

[8] MICROCHIP TECHNOLOGY. MPLAB Harmony v1.03.01 HELP. 2015

[http://www.microchip.com/pagehandler/en_us/devtools/mplabharmony/home.html]

[9] NEIL SMITH. Android Studio Development Essentials. 2015

[10] GOOGLE. Android developers. 2015

[http://developer.android.com/index.html, December 2015]

[11] Android Plot. 2015

[http://androidplot.com, December 2015]

Page 60 Report

Complementary bibliography

FORMULA SAE. 2016 Formula SAE® Rules.
[http://students.sae.org/cds/formulaseries/rules/, January 2015]

FORMULA STUDENT GERMANY. Formula Student Electric Rules 2015. 2015.
[http://www.formulastudent.de/fse/2015/rules/, January 2015]

	Summary
	Index
	Table List
	Figure List
	1. Glossary
	2. Preface
	2.1. Project Origins
	2.2. Motivation
	2.3. Previous Requirements

	3. Introduction
	3.1. Project Objectives
	3.2. Project Scope

	4. Background and viability analysis
	4.1. Background in ETSEIB Motorsport
	4.1.1. CAT07e Telemetry
	4.1.2. CAT08e Data Acquisition

	4.2. Viability
	4.2.1. Technical Viability
	4.2.2. Economic Viability
	4.2.3. Environmental Viability

	5. Specifications
	5.1. Module
	5.1.1. Hardware specifications
	5.1.2. Software specifications
	5.1.3. Module environment

	5.2. Android App

	6. Planning
	7. Hardware
	7.1. General Overview
	7.2. Power
	7.3. Control
	7.4. CAN Bus
	7.5. USB
	7.6. Wi-Fi
	7.7. Complete ECU schematic

	8. Software
	8.1. Microcontroller software
	8.1.1. C++ Language and MPLABX
	8.1.2. Files structure
	8.1.3. Program structure
	8.1.4. Data files
	8.1.5. State machine
	8.1.6. Interruption

	8.2. WiFly Software
	8.3. App Software
	8.3.1. Java Language
	8.3.2. App structure
	8.3.3. App classes and functionality

	9. Assembly, test and validations
	9.1. Hardware – PCB assembly
	9.1.1. Power
	9.1.2. Microcontroller
	9.1.3. WiFly module
	9.1.4. Final assembly

	9.2. Software
	9.2.1. PCB software
	9.2.2. Android APP software

	10. Budget
	10.1. Material Cost
	10.2. Equipment cost
	10.3. Software cost
	10.4. Personal cost
	10.5. Total cost

	11. Environmental impact
	Conclusions
	Acknowledgements
	Bibliography
	Bibliographic references
	Complementary bibliography

