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Summary

In this article, joint medical and data
analysis expertise is brought to bear

using contrasting knowledge
representation  and  aggregation
techniques to solve a difficult

medical diagnosis problem, that of
sleep apnea syndrome screening.
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1. INTRODUCTION

Screening of Apnea cases is a difficult

diagnosis  problem, at present not
satisfactorily resolved by standard statistical
modelling techniques. We propose that part of
the problem is due to the inherent fuzzy
nature of a significant part of the data:
questionnaire

responses. We use fuzzy

representation for the replies to the questions

Dr. Lourdes Hernindez
Respiratory Disease Institute,
Hospital Clinic
University of Barcelona, Spain
fburgos@medicina.ub.es

in the questionnaire to capture information
which is otherwise lost, and we evaluate this
method in comparison to existing methods of
crisp data capture.

The article is structured as follows: in
section 2, a clinical description of the sleep
apnea syndrome is given; in section 3, the
theoretical aspects of building membership
functions is presented; in section 4,
aggregation techniques are detailed; in section
5, the test data is described; in section 6,
fuzzy and crisp rule based diagnosis is
described; in section 7 results for aggregation
based diagnosis are detailed; finally, section 8
discusses some conclusions on the present

work, results and future areas to be focussed

on.
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Figure 1b: Summary of methods under
evaluation

2. THE SLEEP APNEA SYNDROME

- The Obstructive Sleep Apnea Syndrome
(OSAS) is a set of secondary clinical
manifestations relating to the ceasing (apnea)
or reduction (hypopnea) of air flow during
sleep, caused by a partial or total collapse of
the upper air way at the faringe level. The
severity of the OSAS is defined by the apnea
hypopnea index (AHI) or the number of
apneas plus the number of hypopneas per
hour during sleep. Generally an AHI 310-15
is considered pathological.

2.1 CLINICAL PRESENTATION

There are diverse symptoms associated with

OSAS. They often become introduced
insidiously during a certain period of time and
are often overlooked in clinics and even by
the patients themselves, due to their lack of
specificity. The snore is one of the principal
symptoms. The long snoring history which
refer to patients with OSAS reflects the
increase of resistance of the upper air tract
during sleep. The presence of respiratory
pauses witnessed by the room partner is
another important data referenced in the

literature, and tends to be a good symptom

predictor.

2.2 PREVALENCE

The prevalence of OSAS oscillates between
1-9% according to studies. This difference in
the percentages obtained reflects the
diversity of methods and criteria used to
diagnose OSAS and the possible differences
in the populations that have been studied. The
study of reference is that realised in the
population of Wisconsin by Young et al[13],
where the prevalence obtained reached 2% for
females and 4% for males, showing minimum
symptoms. When we extrapolate these results
to the general population, 9% of women and
24% of men would present sleep related
This

prevalence in adults is considered to be a

respiratory  alterations. elevated

significant problem for public health.



2.3 MORBIDITY AND MORTALITY

Daytime hypersomnolence has been related to
a reduction of physical and mental
effectiveness, in the daily activity of the
individual, including the work environment,
and the ability to drive automobiles (drive
worse and have greater risk of suffering
traffic accidents). As well as daytime
hypersomnolence, a certain relation has been
identified between OSAS and

arterial hypertension. The patient with OSAS

systemic

tends to present an elevated sympatic activity,
which can cause an increase in the daytime

blood pressure.

2.4 DIAGNOSIS

The predictive value of the clinical data in
OSAS diagnosis is low. Hoffstein [6]
published results that indicated that clinical
data explains 36% of the variability of the
IAH (apnea hypopnea) and Katz [7] reported
a figure of 39%, other authors report lower
figures (tablel). The subjective clinical
evaluation of the interviewer has also been
evaluated and tends to have a low sensibility
and specificity, in the order of 55%-65%
respectively, for correctly classifying the sick.
On the other hand, The predictive models for
TIAH based in clinical data have a higher
sensibility of up to 90%. Their specificity, in

the best of cases, does not reach 70% (table

2).

The reference method for OSAS diagnosis is
the polysomnogram. It consists of the
simultaneous recording of a number of sleep
parameters, which allow us to identify its
different phases and the correlation of these
with cardiorespiratory events such as apneas,
desaturation of oxyhemoglobine and changes
in cardiac rhythm. For sleep measurement,
including body position changes, respiratory
effort and efficiency in ventilation, there exist
multiple methods and each clinic tends to use
its own variables which are obtained with the
resources available in each centre.

At present, it is not appropriate to define rigid
diagnostic criteria in this rapidly developing
area. Neither is it possible to identify the ideal

equipment for sleep studies.

3. QUESTIONNAIRE RESPONSE
REPRESENTATION
3.1 THEORETICAL BACKGROUND

Parmenidean Pairs

In general, the representation which we adopt
is based on the use, already habitual, of fuzzy
partitions with trapezoidal membership
function. In [2] a method is presented which
automatically constructs a system of 5
linguistic labels which represent the ordered
values of a variable derived from what we

call a parmenidean pair’, which responds to



the basic antagonistic values that the variable
may assume. This method is very appropriate

for variables which represent responses to

we cane define the fuzzy values NEVER,
RARELY, SOMETIMES, FREQUENTLY,
ALWAYS derived from the basic antagonism

questions like 'Do you snore while you sleep  of NEVER, ALWAYS.
or have you been told that you do?' for which
Table 1. Multiple linear regression models
Study n Diagnostic Predictive variables r
criterion
Stradling 1001 ID4%>5 Neck circumference, alcohol 0.14
(1991) consumption, age, obesity
Davies 150 ID4% Sleep when inactive 0.13
(1992) Neck circumference 0.35
Hoffstein 594 AHI>10 BMl,age, sex, snoring, exploration of 0.36
(1993) ORL
Flemons 180 AHI>10 Neck circumference, HTA, snoring, 0.34
(1994) observed apneas
Deegan 250 AHI&~15  BMI, age, alcohol consumption 0.19
(1994)

ID4%: index de desaturation with fall of 4%. AHI: apnea-hypopnea index. r*: regression coefficient. BMI: body
mass index. ORL: otorrinolaringologic exploration. HTA: arterial hypertension.

Grade of
Membership

Grade of Response
Figure 2. Representation of Ordinal
Variables

Figure (2) shows a

representation for a typical questionnaire

simple  fuzzy
'response’ variable.
From a semantic point of view, a FLV (Fuzzy

Linguistic Variable) can be identified by 3

parameters: its relative position with respect
to the other ones, its degree of imprecision,
and its degree of uncertainty, these last can be
merged into a single concept of softness, as

opposed to crispness.

Characteristics

Separability / cluster separation: the

overlap between two trapezoids s
proportional to the degree of separability of
the two corresponding fuzzy sets. If fuzzy
sets A and B have a 40% overlap (by average
overlap of their respective trapezoid areas) we

could assign a 'goodness' of distinguishability



of 40%. We could assign a threshold within
which it is desirable to maintain (for example
50%). Only one cluster can have 100%
membership at a time. The sum of the
100%. Only 2

memberships are allowed at a time.

memberships must be

S =

Figure 3. Cluster Overlap = Separability

Degree of fuzziness: in terms of the
trapezoids, the more gradient the sides have,
the fuzzier is the corresponding fuzzy set. If

the sides are vertical the set becomes crisp.
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Figure 4. Degree of Fuzziness Df = a+b.
Df=0=crisp.The wider a and b, the more
fuzzy is the corresponding fuzzy set.

Interpolation
We consider fitting a membership function to
a finite number of known membership values.

Assuming continuity, we can determine the

remaining membership values using an

Traditional

satisfy

interpolation scheme.

interpolation schemes fail to
restrictions of membership functions such as
the [0,1] boundedness condition and the
fuzzy-convex property. Chen and Otto[1]
presented a constrained interpolation scheme
as a solution. Chen and Otto used McAllister
and Rouliers idea of a second order Bernstein
constrained

polynomial to perform a

interpolation.

Why would we use interpolation? In the
described

previously, we have discussed some aspects

Parmenidean  Pairs  method
involved in trapezoidal membership function
definition. The assumption for trapezoids is
that they are a simplification of what is really
a non-linear function. To best fit the true
function we should apply a technique which
is able to construct a curve from a limited
number of initial points, or from the original

data characteristics.

Converting linear membership function
into non-linear

We now consider the ascendant and
descendent gradient lines on each side of the
trapezium. In practise we can try different
forms of trapezium with differing gradients,

and determine which gives bests results.

Also we can try a curve instead of a straight

line for the ascending and descending



gradients. To achieve this, we can use an
interpolation technique such as that described
in the previous section to construct the curve.
Or we can  simply define a
sine/cosine/'S',/sigmoid curve. We can try
different curves and establish that which
gives best results and is therefore a best "fit"
to the data. This method, along with
defuzzification techniques, is considered by
Gerstorfer in [4]

In some cases we may wish to strengthen
a transition with hedges like "very" or
"extremely" or weaken it with, for example,

"slightly". We can perform strengthening by,

for example, a sigmoid-like function.

We can use Zadeh's S-Function:

K x<a
|
Sx;0.8,7) =l (x—aY  a<x<p
-
|
[(xBY  Box<y
I \y—B/
L1 Y <x
Now /
l+V(x=1/2)  x>1/2
2 2xV(1/2)
fix) =
| 1=aV(12—x)  x<1/2

2 2x\(1/2)

The use of f(S(x;0,B,y)) increases all the

membership values above 0.5, and decreases

all the others. This is the definition for "very";
for "extremely" we can replace in formula 2
the 3rd root by the nth root (for a suitable n >
3, nodd).
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Figure 5. Zadeh’s s-function used to
customise membership transition

For linear and non-linear membership
gradients, we assume a symmetrical relation
between the descending membership value
for the preceding fuzzy set and the ascending
membership grade for the following fuzzy set

(which sum to 1).

3.2 SLEEP STUDIES QUESTIONNAIRE

For each question we designed a membership
function which can be overlaid on each scale
to calculate grade of membership to each
linguistic label.

The patient draws a cross on the
continuous scale (see next page, S5) to

indicate his/her response to the question.

(e



$5. DO YOU FALL ASLEEP WHEN DRIVING ON THE
MOTORWAY?

-
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Membership Functions

Figure 6. Example of representation for a
critical question

In the questionnaire, this question would

appear as:

SS. Do you fall asleep while you are driving
on the motorway?

| | | | P

never rarely sometimes frequently always

Note that we can convert to categorical if
we so desire, and that way we have both crisp
and fuzzy data capture.

The

generated by various methods. We have

membership functions can be
chosen and applied the following methods to
the same questionnaire and have contrasted
the results:

(i) Direct drawing of membership
functions - the simplest solution for triangular
and trapezoidal forms.

(ii) Use of parmenidean pair algorithm to

calculate the form, size, overlap, geometric

characteristics of the functions, still being
triangular and trapezoidal forms.

(iii) Use of automatic generation method
using interpolation technique from the input

data values (Chen and Otto).

4 AGGREGATION TECHNIQUES
4.1 FUNCTION DESCRIPTIONS

In this section we consider methods of
grouping input variables. The objective is to
improve the quality of the inputs, rank their
'usefulness', and achieve a representation
which is closer to the underlying nature of the
data. Another effect of grouping variables is
to reduce the dimensionality of the model,
which leads to a simpler interpretation of the

results.

411 WM - WEIGHTED MEAN

Weighted mean has as input a data vector and
a weight vector. The weight vector contains
one degree of reliability value between 0 and

1, for each corresponding data value.

412 OWA - ORDERED WEIGHTED
AVERAGE

Ordered weighted average has as input a data

vector and a weight vector. The weight vector

contains one degree of relevance value

between 0 and 1, for each corresponding data

value.

The approach of Yager [12] is to consider



the problem of aggregating criteria functions
to form overall decision functions. One of the
main factors in the determination of the
structure of aggregation functions is the
relationship between the criteria involved. At
one extreme we have the case where all the
criteria have to be satisfied. At the other
extreme we have the case where the
satisfaction of any of the criteria is sufficient.

The former can be interpreted as an
‘AND' situation and the latter as an 'OR'
situation. Dubois defined in [3] a class of
operators called t-norms which provide a way
of quantitatively implementing the 'AND'
aggregation. A related class of operators
called

implementing the 'OR' operator.

co-t-norms, provide a way of

Often, when we wish to formulate a multiple
criteria decision function, the type of
aggregation really needed is neither 'AND'
nor 'OR', but somewhere inbetween these. It
is in this situation where the ordered weight
averaging (OWA) operator can be deployed.
OWA permits an adjustment of the degree of
‘anding' and ‘oring' implicit in the
aggregation.

Definition: A mapping F from
I" - I (where I = [0, 1])

is called an OWA operator of dimension n if

associated with F, is a weighting vector W,

such that

1) Wi €(0,1)
2) W, = 1

and where

F(ai, az, ..., a)) = Wiby + Waby + ... +

Whbn,

where b; is the ith largest element in the
collection ay, a,, ..., a,. B is called an ordered
argument vector if each element b; €[0,1] and
bi > b; if j > i. Given an OWA operator F with
weight vector W and an argument tuple (aj,
az, ..., ;) We can associate with this tuple an
ordered input vector B such that B is the
vector consisting of the arguments of F put in
descending order. It is important to note that
weights are associated with a particular
ordered position rather than a particular

element.

Linguistic Quantifiers and OWA Operators

In binary logic we have linguistic quantifiers
such as 'there exists' and 'for all'. In natural
language we have linguistic quantifiers such
The
weights associated with the OWA function

as 'almost all’, 'few', 'many', 'most'.

determine the kind of quantifier it is effecting.

By varying the assignment of the weights in



W we can move from a Min type "for all",
quantifier, to a Max type "there exists"
quantifier. Also we can capture aggregations
which emulate concepts like "most", etc. For
these reasons, the OWA operators provide an

interesting class of operators.

413 THE WOWA OPERATOR

Torra in [9] described the Weighted OWA
(WOWA), which

advantages of the weighted mean and the

operator combines
OWA operator, thus solving some of the
shortcomings of the latter two operators. It
considers two  weight vectors: p
corresponding to the relevance of the sources
(as in weighted mean), and © corresponding
to the relevance of the values (as in OWA).
One of the difficulties in using
aggregation operators is the initial fixing of
the associated parameters, for example the
weights of each information source. In [10],
Torra explains a machine learning method for
determining the weights of the aggregation

function.

4.2 APPLICATION DETAILS

421 USE OF THE WEIGHTING
VECTORS FOR APNEA DATA

For weighted mean the weights tell us the
reliability of each information source. For
OWA the weights tell us the ordering of the

values, so that extreme values can be

diminished and central values made more
significant. For WOWA operators, we have
two weighting vectors, as explained in the
previous section.

422 DATA PROCESSING

We typically use aggregation techniques to
fuse values into a smaller number of factors.
We do this for at least two reasons: (i)
Increase the information content per data; (ii)
Simplify the inputs and the resulting data
model; (iii) Make the data more manageable;
(iv) In aggregating we discover relations
between the linguistic labels and between the
variables.

There are two levels of aggregation which
we consider: (a) Aggregate all the crisp
responses of the patient to the subjective
questions (a total of 41); (b) Aggregate a
preselected subset of variables with high
discriminant value, which include clinical
data (age, neck circumference, etc. .) and
some question responses.

In aggregating we have considered all
data as numeric. The crisp question responses
have orderable numeric values from 1 to 5,
where 1 represents the linguistic label never

and 5 represents the linguistic label always.

WOWA aggregation applied to questionnaire
responses

For WOWA operators, weighting vector o

contains the relative weight of each data



source and weighting vector p contains the
reliability of each data source.

To each question we assign these two
weights: ® in this context indicates the
significance of each question to the global
outcome; p indicates the reliability of the
response to each question. We can use o to
eliminate outliers, for example, giving more
weight to the values closest to the mean.

Consider the following:

Q Q Q3
p 0.25 0.50 0.25
o 0.10 0.80 0.10

,Zp=1
,20=1

In this case, via the @ vector, we have said to
give more consideration to Q,, while Q; and
Q3 do not influence so much in the outcome.
This may occur, for example, in the situation
that the patient only has to respond
affirmatively to one of the questions (Q) in
order to give a positive global outcome. If, on
the other hand, we had assigned 0.33 to Q,
Q; and Qj3, the patient would have to respond
affirmatively to all three questions in order

for the global outcome to be positive.

S. TEST DATA

We have available the data of the
standard crisp questionnaire, for 154 patients,
captured over a 1 year period. The test set
consists of 68,2% positive outcome and

31.8% are negative outcome.

The questionnaire consists of two main
sections: the first records clinical data;, the
second section consists of 41 questions to
which the patient responds. The questions are
divided in 3 subsections: 15 general sleep
questions, 16 respiratory related questions
and 9 somnolence related questions. Based on
this information, the doctor then gives a
clinical evaluation: healthy, simple snorer;
doubtful; typical apnea; other illness. We
simplify this to: typical apnea; no apnea.

We have chosen a subset of variables
from the questionnaire which in the literature
(see tables 2 and 3) have been identified as
the most discriminatory variables with respect
to apnea diagnosis. These are: age, sex,
weight, body mass index, neck
circumference, alcohol intake, blood pressure,
snoring and daytime sleepiness. The first 7
variables are clinical data and are crisp. For
snoring information, we have used the
responses to 4 respiratory related questions:
RI1, R2, R11 and R13 (see table 2).

For daytime sleepiness information, we
have used the responses to 4 somnolence
related questions: S3, S4, S5, S6 (see table 2).
They were chosen as the key discriminatory
questions with the highest statistical
correlations with the output flag (apnea, yes
or no).We have test data to demonstrate the

techniques used in a simplified manner, as



Table 2. Discriminant variables: example minimum set with weighting factors for aggregation

variable description relia- rele-
bility*  vance*

age age in years 1 0.5

sex sex 1 or 2 1 0.7

weight weight in Kg 1 0.7

IMC body mass index in Kg/m? 1 0.7

Neck circum- Neck circumference in cm. 1 1

ference

alcohol Alcohol intake 0.7 0.5

HTA Arterial hypertension mmHg 1 0.7

Rl Do you snore when sleeping or have you been told that 0.7 0.9
you do?

R2 Does your snoring wake your partner or can it be heard 0.7 0.9
from another room?

R11 Do you have head-ache when you wake up in the 0.7 0.9
morning?

R13 Do you feel as if you haven’t rested when you get up in 0.7 0.9
the mornings?

S3 Do you fall asleep when at the cinema, theatre, or other 0.4 1
spectacle?

S4 Do you sleep in meetings or in public places? 0.5 1

S5 Do you fall asleep while driving on the motorway? 04 1

S6 Do you fall asleep against your will during the daytime? 0.6 1

*the values of these columns are then converted proportionately to normalised values so that 2p=1and

Yo =1, as in Table 4,

summarised in tables 3 and 4, and in the

following section 6.

6. RULE BASED DIAGNOSIS

We consider as example a reduced
questionnaire consisting of a selection of the
variables in table 2 (above). This results in 3
rules and 1 meta-rule, which provide an

overall diagnosis with respect to the inputs.

6.1 CRISP RULES

In the crisp form the patient has the following

clinical ~ descriptive  data:  Sex=male;

age=upper-middle; weight=middle; neck-

middle.

responded in the questionnaire with the

circumference= The patient has
following: Qgry = frequently, Qg2 = frequently,
Qr11 = sometimes, Qg3 = sometimes; Qg3 =
frequently, Qs4 = frequently, Qss = rarely, Qss

= sometimes. The crisp rules will be:



IF  sexis male Rule 1

AND ageis  (middle or upper-middle
or upper)

AND weight is (middle or upper-middle
or upper)

AND neck-circumference is (middle or

upper-middle or upper)
THEN outcome is positive
IF R is frequently Rule 2

AND R; is frequently

AND Ry; is (sometimes or frequently)
AND Ry; is frequently

THEN outcome is positive

IF S3 is frequently Rule 3

AND Sy is frequently

AND Ss is (rarely or sometimes)
AND S is (rarely or sometimes)
THEN outcome is positive

and the crisp version of the meta rule:

IF Rule 1 is positive Meta Rule 1
AND Rule 2 is (positive or negative)
AND Rule 3 is positive
THEN Diagnosis = positive
If we pass the example data given previously
through the rules, rule 1 gives positive, Rule 2
gives negative, rule 3 gives positive, and meta
rule 1 gives positive.
6.2 FUZZY RULES
In the fuzzy form we consider the patient has
the same clinical descriptive data and has
given the same responses to the questionnaire.
But this time, the responses have been
indicated on a continuous scale which has
been used to read off as the membership
grade for each linguistic label. The fuzzy

rules will be:

{Rule 1 stays the same as its variables
are not considered as fuzzy}

IF Ry is frequently{0.7}
ANDR; is frequently {0.6}
AND Ry; is (sometimes{0.8} or
frequently{0.2})
AND Ry; is frequently{0.0}
THEN outcome is positive
{t-norm(0.7,0.6,
tconorm(0.8,0.2),0.0)}

Rule 2

IF S;  is frequently {0.8} Rule 3

AND 8, is frequently {0.75}

AND Ss is (rarely {0.8} or
sometimes{0.35})

AND S is (rarely{0.4} or
sometimes{0.7})

THEN outcome is positive

{t-norm(0.8,0.75,t-conorm(0.8,0.35),
t-conorm(0.4,0.7)}

gives positive {0.0} for rule 2 (assuming that
t-norm takes the Min and t-conorm takes the
Max. Rule 3, using the same processing, gives
positive {0.4}. These values correspond to
row 1 of table 3.

The fuzzy version of the meta rule is:

IF Rule 1 is positive Meta Rule 1
AND Rule 2 is (positive{0.0} or
negative{1.0})
AND Rule 3 is positive {0.4}
THEN Diagnosis = admit
{t-norm(tconorm(0.0,1.0),0.4)}



admit | admit

Grade 1 0.20 0.40 0.20

of m.
donot |donot | admit
admit | admit

Grade 1 0.70 0.80 0.70

of m.

admit | admit admit
Grade 0 0.80 0.00 0.00
of m.

do not |donot | donot
admit | admit admit

Table 3. Membership grades for 3 rules and 1 meta rule with corresponding outcomes for
crisp and fuzzy rules.

Data vector 060 | 0 60 | 0. 060 | 0.20 1.15291
ovector* | 012 | 012 | 012 | 012 | 013 | 013 | 013 | 0.13
pvector* | 015 | 015 | 015 | 015 | 009 | 011 | 009 | 011 admit admit admit
Data vector | 0.60 | 0.60 | 040 | 060 | 0.60 | 060 | 020 | 020 0.49 0.84 1.15324
o vector 012 | 012 | 012 [ 012 | 013 | 013 | 013 | 013
o vector 015 | 015 | 015 | 015 | 009 | 011 | 0.09 | 011 |donotadmit| admit admit
Data vector | 0.60 | 0.60 | 060 | 060 | 060 | 060 | 0.40 | 0.40 0.56 0.89 1.15466
® vector 012 | 012 | 012 | 012 | 013 | 013 | 013 | 013
o vector 015 | 015 | 015 | 015 | 000 | 011 | 009 | 011 admit admit admit
Datavector | 0.40 | 040 | 060 | 060 | 0.60 | 0.60 | 020 | 0.20 0.46 0.84 1.15353
® vector 012 [ 012 | 012 | 012 | 013 | 013 | 013 | 013
o vector 015 | 015 | 015 | 015 | 009 | 011 | 009 | 011 |donotadmit| admit admit

Table 4. Input responses for 8 questions with corresponding outcomes from aggregation
methods. (the 8 question responses correspond to the inputs to rules 2 and 3 defined
previously in Table 2). *w vector=relevance; **p vector=reliability.

If we pass the example data given
previously through the fuzzy rules, rule 1
gives positive, Rule 2 gives negative{l.0},
rule 3 gives positive{0.4}, and meta rule 1
gives positive{0.4}.

Comparing the fuzzy and crisp rules in

this example, although the outcomes for

individual rules and meta rule are the same,
the membership grade gives a weaker support
for the fuzzy case. This information of course,
is not apparent for the crisp decision based
rules. In Table 3 we see a summary of fuzzy
and crisp rule diagnosis which agrees in 3 out

of 4 cases.



7. AGGREGATION TEST RESULTS

In interpreting the aggregations results for
all aggregation techniques, we need to define
a threshold which indicates where 'do not
admit' ends and 'admit' starts. We establish
this by running known cases through and
noting the values generated as output. We
need a spectrum of cases, from a strongly
positive case, to a strongly negative case, and
a spectrum of intermediate cases ordered by
degree of evidence of the apnea syndrome.
This is measured clinically in terms of < 10
apneas / hour and >= 10 apneas / hour, so it is
possible to assign a numeric quotient to the
grade of incidence of apnea.

In Table 4 (previous page), we
benchmark 3 aggregation methods. Rows 1 to
3 are positive cases (admit), case 2 being
borderline: from which we derive the %
success rate of correct diagnosis of.patients
who have apnea syndrome; and row 4 is a
strongly negative case (do not admit): from
which we derive the % success rate of correct
diagnosis of patients who do not have apnea
syndrome.

We see that WOWA agrees with OWA
and principal components for cases 1 and 3,
and does not agree for the borderline case (2)
and the strongly negative case (4). Principal

and OWA give

outcomes for all four cases, thus having a

components positive

high precision for positive diagnosis and low
(high

sensibility and low specificity as commented

precision for negative diagnosis
in section 2.4) which is a typical result for
standard statistical techniques used in the

literature [11].

8. CONCLUSIONS

This work has been jointly developed
with medical and data analysis expertise. We
have chosen an area in which there is real
room for improvement, due to the lack of
precision of existing screening methods
(especially for negative case prediction), and
the high cost and resource requirements for
sleep centre testing. We have considered two
fundamental aspects from a data analysis
point of view: representation of the data and
aggregation.

We have evaluated a selection of
techniques for generating membership
functions, and aggregating data values. We
can compare these different techniques to
choose the most effective for different
question variables and data types.

In comparing our methods with previous
studies (table 1) we have used an approach
untried in the literature of apnea diagnosis,
which has tended to focus on multiple linear
regression and logistic regression models.

As future developments, we think that the
should be

questionnaires  themselves



improved by wusing repeat questions at
different points to detect unreliable responses,
and better subgroups of questions to detect
diseases other than apnea, simple snoring, and
other conditions. Also, we propose a detailed
evaluation of different membership function
construction techniques, and search for a
minimal discriminant set, using datamining
techniques such as rule induction, neural
network and RBF algorithms. Other future
areas will be to tune and calibrate the
individual membership functions for each
question, and find the best weights for the p
and o vectors, thus defining the correct
reliability and relevance for each variable.
This work opens a promising area for
questionnaire data capture and processing
where linguistic labels and subjective /

uncertain inputs play an important role.
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