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1 Introduction

Several well-known optimization problems on graphs can be formulated as Linear Arrange-
ment Problems. Their goal is to find a layout (ordering) of the nodes of an input graph such
that a certain function is minimized. Linear arrangement problems are an important class of
problems with many different applications in Computer Science, Biology, Archaeology, Linear
Algebra, etc. Finding an optimal layout is NP-hard in general, and therefore it is natural to
develop and analyze heuristics that give good approximations in practice.

In this paper we are concerned with the minimum linear arrangement problem (MINLA).
Given an undirected graph G = (V, E) with n = |V| nodes, a layout is a bijection ¢ between
V and the set {1,...,n}. The goal of the MINLA problem is to find a layout that minimizes

Cle) = lp(u) — ¢(v)|-

wekE

Graphs encoding circuits, grids, finite element discretizations (FEM) or computer net-
works are typical instances of linear arrangement problems. We consider these instances as
sparse graphs that have clustering and geometric properties (see Figure 7). For these inter-
esting classes of graphs, no particular tight approximation results are known. Moreover, it
is an open problem to show if MINLA is still NP-complete on sparse graphs. The second
author has presented several sequential heuristics to approximate MINLA and has measured
their behavior on a set of benchmarking graphs [22]. The main conclusion was that for the
type of graphs we are interested in, the best results were obtained with Spectral Sequencing
(SS) and Simulated Annealing (SA). It was found, however, that the time required by SA to
attain the same quality than SS was inordinate.

Contribution. In this paper, we address the issue of improving these heuristics. To do so,
we first present a new heuristic called SS+SA based on the combination of SS and SA. The
SS+SA heuristic can be efficiently parallelized on distributed memory machines (DMM). The
basic idea of this new heuristic consists in building first a globally good layout by using SS and
afterwards improving it locally through SA. The SA process is started at a low temperature
and uses a special neighborhood. We analyze two methods to parallelize this phase.

In order to analyze SS+SA empirically, we present computational experiments on a
set of benchmarking graphs made of large sparse clustered graphs. The results obtained
show that the new heuristic clearly improves the quality and efficiency of previous proposed
heuristics. Moreover, one of its parallel versions has an excellent behavior both in terms of
running time and solution quality compared to the sequential counterpart. Therefore, for
our benchmarking set, we show that the global strength of Spectral Methods combined with
Local Search leads to an heuristic significantly better than either alone, and that parallelism
can speedup this intensive computation on real machines without loosing too much efficacy.

On the theoretical side, we present two results. First, we present two new classes of
random graphs that are useful to generate MINLA instances for which a good estimate of the
optimum is known by construction. These classes of graphs are of particular interest to test
and benchmark heuristics. Then, and as a negative result, we prove that Hill Climbing (HC)
is not able to find in polynomial time the optimal layouts of a simple line graph even though
it is guaranteed it will always hit these optima. Recall that Hill Climbing corresponds to SA
at a zero temperature.



Relation to previous work. Even though the MINLA problem is NP-complete [8], there
exist exact solutions for hypercubes, meshes and trees in polynomial time [9, 18, 1, 25, 3].
The lack of efficient exact algorithms for general graphs has given rise to the possibility of
finding approximation algorithms. A polynomial approximation scheme for MINLA on dense
graphs is presented in [7] and a O(lognloglogn) approximation using spreading metrics
for general graphs is given in [6). This last result was recently improved to a O(logn)
approximation factor for general graphs and a O(loglogn) factor for planar graphs [23].
These algorithms [6, 23] have the disadvantage of having to solve a linear program with an
exponential number of constraints using the Ellipsoid method, and thus are unsuitable for
large graphs.

The approximation properties of sparse random graphs for different linear arrangement
problems (including MINLA) are considered in [4], where it is proven that sparse instances
drawn from the standard G,, , distribution can be, with high probability, easily approximated.
In this paper, we consider a different class of instances, so these results do not apply.

The SS heuristic for MINLA was originally proposed in [14]. Techniques to find lower
bounds are reported in [14, 16]. The performance of these lower bounding techniques to-
gether with the analysis of many different heuristics (Greedy, Local Search —including HC,
Metropolis and SA— and SS) on a set of benchmarking graphs is empirically studied in [22].
The design of the SS+SA heuristic was heavily based on this previous work.

A few works have succeed in proving the benefits of SA for particular classes of random
instances (see e.g. [11, 20]). The limitations of SA have also been studied (see e.g. [24]).
Our proof on the slow convergence of HC for MINLA on a simple input gives a new insight
on these limitations: The fitness landscape of the search space can have large plateaus from
which HC can hardly escape.

Finally, let us recall that the only know families of graphs for which their optimal
solution is known is quite small and restricted to non random graphs. In this paper we
enlarge this family of graphs with two different random classes whose minima are far from
the average.

Organization. The rest of this paper is organized as follows. Section 2 presents the se-
quential SS+SA heuristic, after reviewing the SS and SA heuristics for MINLA.. In section 3,
we show two methods to parallelize SS+SA. Section 4 presents experimental results that
evaluate the proposed heuristics on sequential and parallel environments. Theoretical results
related with benchmarking are presented in Section 5, where we introduce two classes of
random graphs. Finally, in Section 6, we present some theoretical considerations on HC. An
Appendix with figures and tables completes the paper.

2 The Sequential SS+SA Heuristic

In this section we first introduce the ideas that yield to the sequential SS+SA, which consists
in building first a globally good layout by using SS and afterwards improving it locally through
SA started at a low temperature.

Spectral Sequencing. Spectral Sequencing (SS) is a particularly appropriated heuristic
for some cases of MINLA [14]. Let G = ({1, ...,n}, E) denote a connected graph and let Lg
stand for its Laplacian matrix with entries Lg[u, v} equal to deg(u) if u=v, to 1 if u and
v are adjacent, and to 0 otherwise. As Lg is positive semidefinite, its smallest eigenvalue



is zero. Let Ay be the second smallest eigenvalue of Lg and () its eigenvector (known as
Fiedler vector). SS computes 2(2) and after ranks each position of z(2). Thus, the heuristic
returns an arrangement ¢ satisfying ¢(u) < ¢(v) whenever a:g) < 2.

It is expected that SS produces good results because the ordering of vertices produced
by their values in the Fiedler vector has some nice properties. In particular, vertices connected
by an edge will tend to be assigned numbers that are close to each other. This property has
already been used in other problems such as graph partitioning, chromosome mapping or
matrix reordering (see e.g. [26]). The computational intensive part of SS is the computation
of the Fiedler vector, which is usually implemented using the Lanczos algorithm [21, 10].

The SS+SA heuristic uses SS in order to obtain a globally good first initial solution.

Local Search. Local Search algorithms improve iteratively an initial solution by perform-
ing local changes on its combinatorial structure. Usually, the initial solution is generated at
random, but SS+SA will use the solution generated by SS. The basic idea of Hill Climbing
(HC) is to improve iteratively the initial solution by performing local changes on its combina-
torial structure. Only the changes that improve or keep the objective function are accepted.
One way to avoid being stuck in poor quality local optima is to accept with small probability
downhill moves. Metropolis [17] proposed an heuristic parameterized by a temperature ¢
where a move that produces a gain of § is accepted with probability min{1, e%/t}. A refined
heuristic is Simulated Annealing (SA), which consists of a sequence of runs of Metropolis
with a progressive decrement of the ¢ parameter [15]. A key point to apply SA to a given
problem is the selection of its parameters such as the neighborhood relation and the cooling
schedule [12, 13].

A new neighborhood distribution for SS+SA: FlipN. In [22] it was observed that for
sparse graphs the best results with Local Search were obtained using the Flip2 neighbor-
hood: Two layouts are neighbors if one can go from one to the other by flipping the labels
of any pair of nodes in the graph. In this neighborhood it is easy to perform movements and
to compute their gain.

Since the SA phase of SS+SA will start from a quite good solution at a low temperature,
it can be expected that the number of rejected moves in the Flip2 neighborhood will be high.
Therefore, finding acceptable moves will be difficult. In order to reduce the time of this
search, we can observe that on a good solution, changes that are worth to be tried must be
close in the current layout. Figure 1 supports this affirmation*: for each one of the n(n—1)/2
possible moves in the Flip2 neighborhood, we have computed their gain § and have accepted
or rejected the move according to the SA criteria for different temperatures. The figure shows
how many moves have been accepted in function of the distance |¢(u)—¢(v)| between nodes
u and v in the layout ¢ obtained by SS. Clearly, the distributions follow a Gaussian bell and
show that moves involving close nodes will have more possibilities of being accepted.

This fact gives rise to the use of a new neighborhood relation, or more specifically, a
new distribution for the Flip2 neighborhood: Just after obtaining the solution found by SS,
we perform a sampling of the Flip2 neighborhood and compute the mean (u) and deviation
(0) of the distances between acceptable moves (the size of this sampling has been fixed to
be n./n). Then, during the SA process, moves will be generated producing pairs of vertices
whose distance follow a normal distribution A (g, o). We call this new neighborhood FlipN.

*All the figures can be found in the Appendix. Many of them look better when seen in colors. They also
can be found at http://www.lsi.upc.es/~jpetit/MinLA/SS+SA on the WWW.



Cooling schedule. The design of the cooling schedule for SS+SA is similar to the classical
ones [12, 13, 22]. We use a geometric cooling schedule that decrements the temperature at
each round multiplying it by a (usually 0.9 < a < 1). At each temperature, a round of r
moves will be proposed. If these moves reduce the objective function more than a ratio p,
we assume that this temperature has not yet reached equilibrium and so we perform another
round at the same temperature. The SA ends when less than n moves in a round had a
strictly positive gain.

The sequential algorithm. The concrete values of the free parameters we have used are
a = 0.95 for the cooling schedule, » = fny moves per run with § = 10 as size magnifier,
to = 10 as starting temperature and p = 0.9999 for the equilibrium ratio.

function SS+SA(G) is (Alg. 1)
Generate an initial layout ¢ using Spectral Sequencing
Sample the neighborhood at ¢ to obtain p and o
ti=to; r:=8B-pu'n
repeat
c:=C(p); b:=0
repeat r times
Select u, v with |p(u) — ¢(v)| drawn from N (u, o)
o' = p; ¢'[ul = pv); ¢'[v] := plu]; §:=C(p) — C(¢')
with probability min {1,e-%/¢} do
p:=¢'3if 6§ >0thenb:=b+1
end with
end repeat
if C(p)/c>pthent:=a-t
until b < n
return (¢, C(y))
end

3 The Parallel SS+SA Heuristics

A general framework to parallelize SA on DMMs is presented in [5]. Some other papers have
presented data level parallelizations for SA for other placement problems on shared memory
machines (e.g. [2]). In these approaches, the problem is split into subsets that are distributed
among the available processors. Each processor performs sequential SA on its own subset of
data. As there can be dependencies between moves performed in different processors, two
methods have been proposed in order to reduce the need of frequent synchronizations: ezact
methods block some movements in order that different processors evolve on the basis of a
coherent state; chaotic methods admit that the gain computation involves some errors (that
are expected to be small). In this section, we adapt these techniques to SS+SA for a DMM.

Exact parallel SS4+SA. Given an integer p representing the number of available pro-
cessors, a layout ¢ on a graph G = ({1,...,n}, F) and an increasing sequence of indices
Jo,J1y- .., Jp such that jo = 0 and j, = n; define a p-partition V1,Vs,...,V, of V by V; =
{u € V| jic1 <p(u) <ji}. Let Vo be the p-partition induced by j; =in/p (Vi€ 1,...,n—1),
let V1 be the p-partition induced by 7; = in/p+n/2p and let V_; be the p-partition induced
by ji = in/2 — n/2p. Given a p-partition, an edge is said to be a cut if it has its vertices
in different partitions. Vertices that have an adjacent edge in the cut are said to be in the
frontier, otherwise they are said to be free.



The parallel SS4+SA begins by computing an initial solution ¢ using SS. This step is
done sequentially, because it can be done very fast. Afterwards, we sample in parallel the
Flip2 neighborhood of ¢ to obtain the values of y and o. At this moment, the SA algorithm
begins. The schedule is the same than in the sequential algorithm, but now the Metropolis
process is different. The data level parallelization of Metropolis computes p-partitions of V'
using the current layout ¢ and concurrently applies moves within the FlipN neighborhood
on these partitions, one partition per processor. The main procedure of the parallel SS+SA
using p processors is:

function Parallel SS+SA(G) is (Alg. 2)
Sequentially, generate an initial layout ¢ using Spectral Sequencing
In parallel, sample the neighborhood at ¢y to obtain x and o
ti=to; r:=F-pu-n/dp
repeat
c:=Cp); b:=0
Metropolis(0); Metropolis(+1); Metropolis(0); Metropolis(—1)
if C(p)fc>p thent:=a-t
until b < n
return {p,c,)
end

The Metropolis(z) function (see Alg. 3) takes full advantage of parallelism. At the
beginning, each processors gets its own copy of the input layout. Each processor takes care of
one of the p partitions. In this partition, moves are generated on its own copy of the layout.
If these moves are not forbidden (i.e., none of the vertices that it flips are in the frontier),
they are accepted or rejected according to the Metropolis criterion. Notice that during this
phase the information owned by each processor is maintained coherent with respect to the
information stored in the other processors. A processor does not need to communicate its
moves to the other processors, since they will never use this information. As a consequence,
forbidding moves removes the need for an expensive communication process, without affecting
the correctness of the algorithm. After r iterations, the algorithm perform a a synchronization
between all the processors. During this synchronization, the global layout is easily rebuilt
through the combination of each processor own copy of the layout and the p-partition. The
high level algorithm is as follows:

function Metropolis(z) is (Alg. 3)
for each processor i € {1,...,p} do in parallel
Get a private copy of layout ¢
From V, compute V; and compute the frontier nodes
(* Perform Metropolis in V, *)
b,‘ =0
repeat r times
Select u,v in V; with |p(u) — ¢(v)| drawn from N (g, o)
if v and v are free wrt V; then
¢ 1= ; @'[u] i= p[v]; ¢'[v] := u]; §:= Clp) — C(¢")
with probabilitymin {1,e%/t} do
p:=¢'; if § >0 then b; :=b; + 1
end with
end if
end repeat
end for
(* Synchronize and Gather data )



Rebuild a global layout ¢ from the ones distributed among procs according to V;
b:=b + Z?:l bi
end

The basic reason for this parallel heuristic to work is that on sparse clustered graphs,
partitions induced by a good layout have a few cutting edges. As a consequence, it is ex-
pected that only a few moves inside a partition will be forbidden. So, in each call to the
Metropolis process there will be many opportunities to optimize the individual partitions.
The trick of using three different partitions intercalated in four phases is used in order to
avoid forbidding always the same moves. Otherwise we would obtain layouts which would be
well arranged inside each partition, but locally bad near the frontiers. With respect to the
efficiency of the algorithm on real DMM machines, for an enough large r, the time spent in
the synchronization, broadcasting and gathering phases is low with respect to the computing
phases. Thus, large speedups and high processor use can be expected, as far as many nodes
remain free.

Chaotic parallel SS+SA. Whereas forbidding moves enables the processors to have al-
ways an up-to-date information, it restricts the possibilities of optimizing. If we remove this
restriction (i.e. we allow processors to freely move frontierer nodes), as moves are applied
into a concrete partition, the global state of the system still would be coherent, since it rep-
resents a feasible layout. However, after the move, other processors would compute § with an
out-of-date information, committing an error. Intuitively, this error should not be very high,
and would decrease as the temperature is lowered. A way to reduce the error is to perform
frequent synchronizations in which all the processors perform an all-to-all communication in
order to gossip the more recent up-to-date layout.

4 Experimental Evaluation

In this section we analyze and compare some empiric results aiming to evaluate and tune
the performance of SS+SA. In order to help the reader to reproduce and verify the mea-
surements mentioned in this research, its code, instances and raw data are available at
http://www lsi.upc.es/~jpetit/MinLA/SS+SA on the WWW. The experimental conditions are
described in the appendix.

The benchmark graphs. The main characteristics of our benchmark graphs are shown
in Table 1. Since our aim is to measure the heuristics in sparse and geometric graphs, we
have selected some graphs from the following families:

e A graph with known optimum: mesh33 is a 33 x 33 mesh.

e Geometric random graphs G, ,_r,: Graphs with n nodes located randomly in a unit
square. Two nodes will be connected by an edge if the (Euclidean) distance between
them is between r_ and r,. For geometric, n = 5000, r_ = 0.027 and r4. = 0.04.

e Thin geometric random graphs G s, .+ The vertices are points of a v/n X \/n square
grid. Each point is selected as a vertex with probability p. There is an edge between
all vertices whose distance is at most r. For thingeo, v/n = 125, p = 0.33 and r = 4.

e Random linear graphs (see Section 5): rlg belongs to £,, with n = 5000.

e Graphs from finite element discretizations: airfoill, whitaker3 and 4elt.



Most of the experimental results are only shown for the airfoill graph. Unless otherwise
stated, the same behaviors were observed on the rest of the benchmark graphs.

Analysis of the SS heuristic. In order to verify the good behavior of the SS heuristic,
we applied it to our benchmarking graphs. Figure 2 compares SS with some other heuristics
described in [22]). For all the graphs, the results show that SS is clearly the heuristic that
provides better results. Moreover, it is considerably faster than the other candidates.

Comparing FlipN with Flip2. The next two experiments were designed to evaluate the
effect of using the FlipN neighborhood instead of the more traditional Flip2, i.e. to favor
moves among nodes that are close in the current layout with respect to flip the labels of
any pair of nodes. For the particular case of the airfoill graph, Figure 4 shows a trace
of the approximation in function of the time when using the two different neighborhood
distributions. The measuring of the proportion of accepted movements at each temperature
is shown in Figure 5. It is clear that the new neighborhood distribution increases the ratio
of accepted movements; while at temperatures greater than 1 Flip2 is only able to propose
less than 0.1% of accepted moves, the number of accepted moves produced by FlipN range
from 2 to 10%. However, the figures do not reflect that when using FlipN, a big part of the
moves have a null gain (6 = 0).

Improving SS solutions by SA. Is SA able to improve solutions generated by SA? Let
C.s be the cost of a solution computed by SS and let Cs, be the cost of a solution computed
by SA starting with the SS solution. Then, the improvement of SA over SS is measured as
r__;,(;c_‘ﬂ Table 3 shows the average improvements obtained for the sequential and parallel
heuristics. For sequential SS+SA, one can observe that SA is always able to improve the SS
solutions (usually more than a.16%). For exact parallel SS4+-SA, the improvement decreases
as the number of processors increases. For chaotic parallel SS4SA, the improvement remains

almost the same independently of the number of processors.

Quality and time of the parallel SS4+SA heuristics. We have measured the quality
of the solution obtained by our heuristics as well as the time required to compute them. The
absolute measurements for sequential SS+SA are shown in Table 2. This table also reports
that the standard deviation of measures is very low. In order to enable a comparison of the
parallel heuristics with respect to the sequential one, we define the time efficiency (also called
processor utilization) and solution ratio terms. Denote by T the time needed to execute the
sequential SS+SA heuristic and by C the cost obtained, let T}, be the time of the parallel
SS+SA heuristic ran on p processors and Cp, the cost obtained; then the time efficiency is
T/(pT,) and the solution ratio is C'/Cyp. Table 4 shows for each graph the time efficiency and
solution ratio obtained (in average). Figure 6 shows a trace of the annealing curves for the
airfoill and thingeo graph. From these results, it can be observed that:

e Time efficiency is always close to the 100% (except for rlg). This fact shows that
we achieve an efficient use of the parallel system, because the speedup is close to the
number of processors used. (Notice that time efficiencies greater than 100% are due to
the random nature of the algorithms.)

e Solution ratio is always close to the 100% (except for rlg). This fact shows that the
parallel heuristics deliver solutions of comparable quality to the sequential one.



o In general, chaotic parallel SS+SA gives slightly better solutions than its exact version.

e The solution ratio of exact parallel SS+SA decreases as the number of processors in-
creases. On the contrary, the chaotic parallel SS+SA offers solutions of similar quality
independently of the number of processors. Thus, chaotic parallelization offers better
scalability than exact parallelization in terms of solution quality. It also worth to re-
mark that rlg shows the limitations on the scalability of exact parallel SA; as shown in
Section 5, this graph is a 2-expander and therefore almost all nodes are blocked when
using more than 6 processors.

Visualization of the solutions. In order to have a “visualization” of the solutions deliv-
ered by SS+SA, Figure 8 shows airfoill colored according to the cost of its nodes.

5 Random graphs with good estimations of their optima

In this section we present two classes of random graphs that are useful to generate MINLA
instances for which a good estimate of the optimum is known by construction but is hidden
from the heuristics (whp). Previously, the only known families of graphs that satisfied this
property were deterministic [9, 18, 1, 25, 3, 19].

Let L, be the class of random linear graphs on vertex set V' = {1,...,n} where each
possible edge {1, j} appears with probability 1/|j — i + 1|. It is easy to see that the expected
number of edges in a L, graph is concentrated around ©(nlogn). The canonical layout
of a £, is defined by () =1 (Vi € {1,...,n}). For almost all graphs in £,,, we have that
C(¢) = n?/2 + O(nlogn), whereas the expected cost of a random layout is ©(n?logn).

Let H, be the class of hidden line graphs on vertex set V. = {1,...,n} where each
possible edge {7,j} appears in the graph with probability 1 if |[¢ — j| = 1 and probability
1/2|i“jI otherwise. Essentially, hidden line graphs are line graphs with a few additional
edges. For almost all graphs in £,, we have that C(¢)) = 3n — 13 4 627" + 217"n, whereas
the expected cost of a random layout is ©(n?). :

Theorem 1 For almost all random linear graphs and for almost all hidden lines graphs, the
canonical layout is a constant approximation to its MINLA value.

Sketch of the proof. We say that a graph G = (V, E) is c-expander if for all U C V with
|U| < n/2, it holds that B(U) = |{uv € E : u € UAv ¢ U} > c|[U|. One can prove
that, almost all graphs in £,, are 2-expanders. Consider any layout ¢ of a 2-expander. Then,
taking the family of subsets U; = {1,...,i} for 7+ € {1,...,n/2} and U; = {i,...,n} for
i € {n/2+1,...,n}, we have that C(p) > >, B(U;) =4(1+ 2+ ---+ n/2) = O(n?).
On the other hand, applying the “degree bound” of [22] on G € H,,, one obtains that,
for almost all hidden line graphs, C(¢) > 2n 4 427" — %4‘" + 217" — 1—31- for any layout ¢.
0

6 Hill Climbing can fail on line graphs

Let I, be the line graph with vertex set V = {1,...,n} and edge set {{i,i+1}}"'. This
graph has only two layouts with minimal cost: ¢}(¢) = ¢ and ¢}(i) = n—i+1 with C(¢]) =
C(p3) = n—1. Moreover, the maximum cost value for a layout in I, is (n?+n)/2 and the

expected value of the cost of a randomly generated layout is ©(n?). In the following, we



consider the application of Hill Climbing with the Flip2 neighborhood on a line graph. This
algorithm on this class of graphs has a nice property:

Lemma 1 From any starting layout ¢, after a sufficiently long number of steps, the HC
algorithm on a line graph always hits a minimal layout.

The question is how much time will HC spend in finding an optimum layout:

Theorem 2 There is a layout 7, of I,, such that HC needs at least ©(n3) steps to hit an
optimum. However, starting from 7, the ezpected number of steps needed to hit an optimal
solution is exponential.

Sketch of the Proof. Consider as m,:

———
e e
s s Tl T =
— —— —_— \ ——
; ///-—”/// _‘_ﬂ_—:-_?m\\ \\ 5 e
—eo—8—o —o—o—9 Te—e—o—0 o —2—90
1 2 3 4 9 10 11 12 n-7n-6n-5n-4 n n-ln2n3 16 15 14 13 8 7 6 5 [}
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A Appendix: Summary of the Experimental Results

| Name H Nodes | Edges | Degree | LB [ Best
4elt 15606 | 45878 | 3/5.9/10 300675 | 2241776
airfoill 4253 | 12289 | 3/5.78/10 24220 | 278253
crack 10240 | 30380 | 3/5.93/9 64938 | 1502544
geometric || 5000 | 32983 | 2/13.2/28 | 135092 | 2194430
mesh33 1089 | 2112 | 2/3.87/4 *31680 | *31680
rlg 2000 | 12448 | 3/12.44/27 | 1031249 | 1953731
thingeo 5167 | 39924 | 3/15.4/27 | 182589 | 1699145
whitaker3 || 9800 | 28989 | 3/5.91/8 57824 | 1169065

Table 1: Benchmark graphs. For each graph, its name, number of nodes (n), number of edges
(m), degree information (minimum/average/maximum). The column labeled LB shows the
best known lower bound and Best the cost of the best known arrangement. The cost of the
canonical arrangement of rlg is 1990793.
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Figure 1: Number of accepted moves in function of their distance and the temperature (t) on
the solution found by Spectral Sequencing for the airfoill graph. (¢ < 0 means that only
strictly descendent moves are accepted.)
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Figure 2: Comparison of previous heuristics on the airfoill graph: random (random), varia-
tions of greedy successive augmentation algorithms (gre, rbs, bfs dfs), variations of HC (hillcE,
hillc2, hillc3) and SS (ss). The boxplots represent the distribution of the approximations found
in 1000 independent experiments and the average time needed.
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Figure 3: Old annealing curves on the airfoill graph when using a random solution or the
SS solution as initial solutions and the Flip2 neighborhood. Each unit of time corresponds
to 2 minutes.
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Time (s Cost

Graph #Runs Avg ‘él%ev Avg %Dev Min

4elt 1 || 5187 — || 2284690 — | 2284687
airfoill 20 710 6.33 286952 0.23 | 284727
crack 1 || 2480 — || 1502700 — | 1502696
geometric 10 || 1837 | 6.43 [ 2210800 | 0.57 | 2194430
mesh33 20 || 164 | 8.11 33985 | 1.17 33233
rlg 10 || 1220 | 5.44 || 1953990 | 0.00 | 1953756
thingeo 10 || 856 | 4.73 || 1702890 | 0.17 | 1699145
whitaker3 10 || 2123 | 5.42 || 1187840 | 0.28 | 1183196

Table 2: Experimental results obtained with sequential SS+SA. Column #Runs shows the
number of independent runs performed for each graph; column Time shows the total com-
putation time (in seconds); column Cost shows the cost of the solution returned by SS+SA.
Columns Avg show the average; columns %Dev give the percentual error in the standard
deviation, that is, 100 - Dev/Avg; column Min gives the best cost obtained on all the runs.

Exact Parallel SS+SA

| Processors H 1 | 2 | 4 ‘ 6 | 8 [ 16 |
4elt 16.87 | 16.79 | 16.69 | 16.72 | 16.17 | 13.42
airfoill 20.67 | 20.60 | 20.44 | 19.55 | 18.29 | 10.81
crack 830 | 830 | 821 817 | 8.05| 7.10
geometric || 17.74 | 17.83 | 16.94 | 14.76 | 10.49 | 1.63
mesh33 17.06 | 15.28 | 13.55 | 11.63 | 9.34 | 2.22
rlg 17.39 | 8.54 | 0.44
thingeo 19.23 | 19.18 | 18.80 | 17.53 | 15.24 | 4.77
whitaker3 526 | 549 | 5.54 | 5.38 | 5.27 | 4.87

Chaotic Parallel SS+SA

[ Processors H 1 [ 2 I 4 | 6 N 8 I 16 ]
40lt 16.87 | 16.94 | 16.87 | 17.29 | 17.32 | 16.88
airfoill 20.67 | 20.70 | 20.61 | 20.76 | 20.68 | 20.65
crack 830 824 | 831 | 829 | 8.24 | 8.22
geometric || 17.74 | 18.12 | 17.61 | 14.82 | 17.93 | 18.18
mesh33 17.06 | 16.43 | 16.70 | 16.58 | 16.65 | 16.14
rlg 17.39 | 17.39 | 17.39
thingeo 19.23 | 19.26 | 19.26 | 19.25 | 19.25 | 19.14
whitaker3 526 | 546 | 544 | 553 | 539 5.24

Table 3: Average improvement (in %) obtained by SA on the solution found by SS depending
on the number of processors and parallel strategy.

13



Exact Parallel SS4+SA: Cost Ratio

Processors 1 2 4 6 8 16
4elt 100 | 99.91 | 99.79 | 99.83 | 99.17 | 96.02
airfoill 100 | 99.91 | 99.71 | 98.61 | 97.09 | 88.95
crack 100 | 100.00 | 99.90 [ 99.85 | 99.72 [ 98.71
geometric || 100 | 100.11 | 99.03 [ 96.50 | 91.89 | 83.62
mesh33 100 | 97.90 | 9594 | 93.75 | 91.48 | 84.83
rlg 100 | 90.33 | 82.98

thingeo 100 | 99.93 | 99.46 | 97.94 | 95.29 | 84.81
whitaker3 || 100 | 100.25 | 100.30 | 100.13 | 100.02 | 99.59

Chaotic Parallel SS+SA: Cost Ratio

Processors 1 2 4 6 8 16
4elt 100 | 100.08 | 100.00 | 100.51 | 100.55 | 100.02
airfoill || 100 | 100.04 | 99.93 | 100.11 | 100.01 | 99.97
crack 100 | 99.93 | 100.01 | 99.98 | 99.92 | 99.91
geometric | 100 | 100.45 | 99.84 | 96.57 | 100.22 | 100.53
mesh33 100 | 99.25 | 99.56 | 99.43 | 99.50 | 98.90
rlg 100 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
thingeo 100 | 100.03 | 100.03 | 100.02 | 100.02 | 99.89
whitaker3 || 100 | 100.22 | 100.20 | 100.29 | 100.14 | 99.99

Exact Parallel SS+SA: Time Efficiency

Processors 1 2 4 6 8
4elt 100 | 102.71 99.22 | 112.10 | 110.49
airfoill || 100 [ 96.39 98.26 | 99.06 | 98.63
crack 100 | 93.73 98.37 | 97.60 | 97.55
geometric || 100 [ 101.06 | 105.76 | 113.60 | 126.79
mesh33 100 | 101.94 | 105.13 | 109.75 | 120.12
rlg 100 | 198.81 | 4523.02

thingeo 100 | 98.72 | 101.36 | 108.54 | 110.93
whitaker3 || 100 | 98.69 | 100.92 | 103.22 | 103.43

Chaotic Parallel SS+SA: Time Efficiency

Processors 1 2 4 6 8
4elt 100 | 104.83 | 107.26 | 94.87 | 103.39
airfoili 100 | 97.23 | 97.54 | 96.39 | 94.71
crack 100 | 98.96 | 93.87 | 98.11 | 100.49
geometric || 100 | 94.80 | 100.64 | 98.38 | 98.33
mesh33 100 [ 99.86 | 97.02 | 95.57 | 91.69
rlg 100 | 100.43 | 98.70 | 102.08 | 100.71
thingeo 100 | 96.34 | 97.04 | 96.89 | 94.00
whitaker3 | 100 | 98.54 | 101.19 | 97.57 | 96.95

Table 4: Average solution ratio and time efficiency (both in %) for exact and chaotic parallel
SS+SA relatives to sequential SS+SA. Time measures for 16 processors are not given because
they were not taken in exclusive mode (virtual processors were used).
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Figure 4: SS+SA on airfoill using the Flip2 or FlipN neighborhoods: Evolution of cost in
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Experimental conditions. The sequential SS+SA heuristic has been coded in the C++
programming language. The parallel heuristics use C++ augmented with MPI. All the pro-
grams have been run on an IBM SP2 computer with 8 Power2 processors under AIX. This
computer has enough main memory to run our programs without delays due to paging.
Moreover, its interconnection network provides high performance communication between
the processors and the MPI implementation for the SP2 fully profits it.

All the experiments have been executed with processors and network in exclusive mode
(expect for system daemons) and measure the total elapsed (wall-clock) time. Pre- and post-
processing times are included in our measures. The programs have been compiled using
maximum optimization compiler options and have been tested using two different random
number generators without noticing any anomaly due to them. The computation of the 2
vector has been implemented using the Chaco library [10].

(a) S8 (b) SS+SA

min max

Figure 8: Visualization of the MINLA solutions on airfoilil. (a) shows the solution found by
SS and (b) shows the solution found by SS+SA. The visualization of a solution is done by col-
oring each node of the graph according to its contribution to the total cost (see the spectrum)
together with a shadowing post-process. One can observe that SS generates a quite regular
solution (all nodes have almost the same contribution to the total cost). The figure also seems
to show that SS+SA improves SS by improving certain local zones of the graph with high cost
nodes separating them. Note: this figure is best seen printed in colors or using a Postscript
previewer as ghostview. It can also be found at http://www.Isi.upc.es/~jpetit/MinLA/SS+SA
on the WWW.
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