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Abstract

Dislocations are known to play a key role in the plastic behavior of materials. At the
quantum level, experimentalists working on the archetypical bosonic quantum solid 4He
have observed unusual material properties such as giant plasticity and superfluid mass
transport. Although the theoretical explanation for these observations remains elusive,
their interpretation has involved the role of dislocations unquestionably. In this thesis,
we aim to fulfill the lack of theoretical support for these experiments through atomistic
simulations of dislocations. As a first approach, we have characterized the dislocations
under classical conditions for a hcp system of Xe with an LJ interatomic potential. Our
results reveal the dissociation of the dislocation into two Shockley partial dislocations
bounding a broad region of stacking fault. Also, our findings show a very small Peierls
Stress τp which results in the absence of lattice resistance to dislocation motion at finite
temperature. This provides a key insight into a behavior thought to be exclusive to
quantum systems. To assess the features of the dislocation at the quantum regime,
we employ Path Integral Monte Carlo simulations. We have applied on-the-fly and a
posteriori methods of analysis to compute the behavior of the dislocation, but none of
them have provided conclusive results. Nevertheless, clear evidence for superfluid-like
behavior in either the dislocation cores or stacking fault region is not observed in our
simulations.
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Chapter 1

Introduction

1.1 A bit of history and motivation

In the 1970’s Alexander Andreev and Ilya Lifshitz at Moscow [1] and Geoffrey Chester at
Cornell University [2] suggested the existence of a state of matter in which crystalline
order and Bose-Einstein condensation coexist, from their investigations in solid 4He.
They called it supersolidity and it was based on the presence of a measurable number
of vacancies which at very low temperatures permit a part of a solid to flow on top
of the other. This hypothesis aroused big expectations within the experimentalists
and some of them started trying to reach this state of matter employing several mass
flow and torsional oscillator experiments [3] at temperatures of few dK. The whole
idea of the experiment is that if some of the atoms could flow on top of the others,
i.e. decouple, this would result in a shift of the oscillation period. Firsts experiments
found no evidence of this ability to flow, revealing the non-existence of the so-called
supersolidity and killing the enthusiasm of most experimentalists on the topic for over
two decades. It was not until Moses Chan and Eusong Kim [4], re-reproducing the
experiments previously proposed by Legget [5], the pioneer in the torsional oscillator,
but introducing a higher number of vacancies, observed that there was a change in the
period when cooling the solid below 0.15 K. These results were interpreted as a clear
evidence of what was likely to be the discovery of a new state of matter, however,
remained unclear. From the theory, we know vacancies have a too large formation
energy (∼15K) so as to be present in a relevant number in the ground state of solid 4He.
Meanwhile, many researchers followed the experiments conducted by Chan and Kim [4].
In 2007, James Day and John Beamish [6] studied the elastic and mechanical properties
of solid 4He, concluding they were originated by the presence of dislocations and their
interplay with impurities of 3He. They found an intriguing coincidence between the
temperature at which the shift of period occurred, i.e. 0.15K, with the temperature at
which the shear modulus increased sharply. Then, the following question arose: was the
change in the period a matter of a change in the structural properties instead of the
existence of a new state of matter? This idea gained a major weight afterward, when
other experimentalists [7,8] showed a correlation between the moment of inertia and the
structure of the solid. Finally, in 2012, a better-designed torsional oscillator was built
by Chan and Kim [9] and no more evidence of supersolidity, within the experimental
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errors, was found. These new observations made clear that the behavior observed in
the first experiments was due to the same causes underlying the mechanical and elastic
properties of 4He observed by Day and Beamish (i.e. dislocations and 3He impurities).

As a result of the frustrated searches of a new state of matter and following these
works, Haziot et al. began to study how the stiffness of the quantum solid 4He was
affected by the temperature [10], deriving the conclusions illustrated in Fig. 1.1. They
were able to show how the stiffness, i.e. the shear modulus, drops when cooling down
the temperature until it reaches a point, T ' 0.15K, where it drastically grows again.
This behavior was named as ”Giant plasticity”. Experimentalists attributed this be-
havior to the free gliding of dislocations in a particular direction. The fact that below
a critical temperature the stiffness grows, what could be counterintuitive, is thought
to be due to the pinning of the dislocations by the 3He impurities, which at such low
temperatures are more likely to condensate and mix with the pure solid 4He. However,
this hypothesis lacks either theoretical or experimental evidence to support it.

Figure 1.1: Shear modulus of a solid crys-
tal of 4He. At a temperature of T ≈ 0.2K
the shear modulus is sharply reduced to
72 bar, much less than the normal value
of 127 bar. Figure taken from [10]

Recently, Boninsegni et al. [11], via atom-
istic simulations, predicted the existence of
superfluidity in the core of a screw disloca-
tion in 4He, in fact, a 1D Luttinger-liquid
system. This prediction led to many follow-
ing hypotheses involving superfluidity phe-
nomena along dislocation cores, resulting in
the prediction of other quantum mechanical
properties such as dislocation superclimbing
or the syringe effect [12,13]. This work pre-
ceded other experiments [14–18] carried out
by Ray, Hallock et al. showing the exis-
tence of ”superfluid mass transport”. The
intepretations of these experiments infer the
existence of superfluid dislocation cores, as
predicted by Boninsegni et al.. However,
the very recent work published by Borda et
al. [19] came to show that the cores were
not superfluid, in either the edge or the
screw dislocations, invalidating Boninsegni’s
prediction. Far from a clear conclusion, fur-
ther tests on this topic are required.

These experiments and theoretical predic-
tions show how very unexpected phenomena can be observed at the quantum crystals
and explains why there exists a growing interest in the quantum field from materials’
scientists.

From this perspective, we conclude that a theoretical explanation must be done, since
many yet-to-be-understood results emerging from the experiments exist and a lack of
knowledge in the quantum dislocation field has to be fulfilled. Thus, the aim of our
work is to be able to give a proper theoretical explanation of this phenomena by means
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of atomistic simulations at a quantum level. A first approach from the classical point of
view is strictly necessary to set the foundations of the work and to have a reference on
what to expect in the quantum regime, although, as we know, everything can happen
within it.

1.2 Objectives and outline of the thesis

The primary purpose of this thesis is to give a theoretical explanation of the phenomena
observed in the experiments mentioned previously, through the simulation and analysis
of atomistic models of 4He at the quantum regime. In these simulations, we would
like to see the existence, or in its defect, the nonexistence, of superfluidity and the
appearance of free gliding of dislocations under the application of a minuscule shear
stress, what would lead to the so-called giant plasticity. Moreover, an ambitious study
of the behavior of the dislocations in the presence of 3He impurities, to show the role
these impurities play in the quantum regime would be liked to carry it out if possible.
Several experimentalists claim they have a pinning effect on the dislocations, disabling
the free gliding.

In order to accomplish this specific purpose, we have to make a first approach to
dislocations from the classical regime to make the path smoother into the quantum
dislocations. Furthermore, these first classical simulations could provide us with valuable
data to compare with the quantum one. In this sense, we study the properties, both
dynamic and static, of an edge dislocation at the classical regime, i.e. using classical
potential interactions and at a classical finite temperature.

The outline of the thesis is the following:

1. In chapter 2, we describe from a theoretical point of view the basic players of our
game, the hcp crystal and the dislocations. We deeply explain the properties of
each of them, doing a brief review in crystallography and showing step by step
the features that characterize the dislocations.

2. In chapter 3 we present the different techniques used for the study of the disloca-
tions at the classical and quantum regimes. We mainly introduce the technique of
Molecular Dynamics and give rather a simple explanation of how the Feynman’s
formalism of path integral is implemented into a Monte Carlo method to perform
a quantum simulation. Also, we expose the tools used -or tried- to characterize
and monitor the dislocation during or after the simulation.

3. Chapter 4 is devoted to showing the results obtained in each of the stages of the
project. Consequently, we can distinguish two main parts: the classical regime
and the quantum regime. Also, some interconnections and interrelations are done
among both methods analyzing differences and similarities between them. By
doing this, we can have an idea if whether we can rely on the results obtained
at the quantum regime, since not much literature is available, or not. This is
the most relevant part of the thesis since we reveal the results of the simulations
performed under different conditions. Moreover, we study the relevance of size
errors in our system, which can be found to be considerably high and incur wrong
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interpretations. This fact enhances the importance of a good classical background,
in which we can reach significant systems in our simulations, in order to estimate
the effect of the size and bear it in mind for the quantum simulations. In the
classical regime, we have used atoms of Xe and a LJ potential, since it is not
possible to simulate solid 4He at such high temperatures without applying very
high pressure to give cohesion to the system.

4. In chapter 5, we expose the achieved conclusions from our work and discuss the
validity of our experiments due to countless simulation problems, such as system
sizes or erroneous interpretations. Also, we will validate some of the hypothesis
done by the experimentalists and mentioned in the first chapter in section 1.1.

5. Finally, in chapter 6, we propose a path to follow to improve our work and develop
further investigations on this intriguing field, such as the simulation of a crystal
of solid 4He containing dislocations and 3He impurities.

7



Chapter 2

Hcp crystals and theory of
dislocations

Dislocations are an important kind of defect in crystals, particularly, they are funda-
mental in materials science since they play a pivotal role in the mechanical property
of plasticity. Basic knowledge in crystallography is required to be able to deal with
them. Furthermore, we briefly introduce what a crystal is and its basic properties.
A crystal is a collection of atoms arranged in a periodic and determined way in the
space. Indeed, a crystal can be divided into a finite number of identical replicas that
are placed periodically in space. Each of these replicas is called basis and the position
they occupy in space and the way they are arranged is called lattice. To sum up, what
we have said so far is:

crystal = basis+ lattice

A basis can consist of one or more atoms; in our case and here on it will be composed
by a two-atom basis, either formed by Xe in the classical simulations or 4He for the
quantum simulations. On the other hand, the lattice can be one among the 14 lattices
postulated by Auguste Bravais, called after him as the Bravais lattices. Due to their
periodicity, a Bravais lattice is sufficiently and consistently defined only by their smallest
repeated vectors, which constitute the primitive cell. All the sites of a lattice can be
reproduced by a linear combination of its primitive vectors, this is:

R = n1e1 + n2e2 + n3e3 (2.1)

However, to simplify it, certain types of Bravais lattices are specified by non-primitive
lattice vectors a, b and c. The parallelepiped formed by them is known as unit cell.
Similarly to the primitive vectors, these lattice vectors can reproduce all the Bravais
lattices by the previous analog expression:

R = ia + jb + kc (2.2)

The use of these vectors is going to be much more common in our study of the
dislocations, due to the particular kind of Bravais lattice we face, the hexagonal close-
packed. In the following section, we will explain thoroughly all the properties and
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features of this type of spatial arrangements, and why they are so important and
frequently found in nature.

Finally, we introduce the Miller indices. This kind of notation is very convenient and
commonly used among researchers since it is a very compact way to show line directions
and plane orientations in crystals. For the study of dislocations, the Miller indices will
be recurrently used to indicate the dislocation’s line direction, its glide plane and the
Burgers vector, main aspects of this type of defects, as we will introduce in section 2.2
and see all throughout the work.

Therefore, the Miller indices are used to indicate a line direction or the orientation of a
determined plane. A vector l pointing from one point to another, both in the Bravais
lattice, can be expressed as a linear combination of the lattice vectors:

l = ia + jb + kc (2.3)

which its corresponding Miller indices are [ijk]. By convention, to specify a line direc-
tion parallel to l we use the integers corresponding to the smallest length. To indicate
a plane orientation, its normal vector is used and so are the Miller indices. In this case,
the Miller indices are defined as (ijk).
In the next chapter, we will make a slight remark on these points since the hcp structure
makes a particular use of the Miller indices that is worth mentioning, the Miller-Bravais
indices. This modification is done to simplify the notation for this lattice.

Figure 2.1: Crystal structure of all the elements of the periodic table. Some of them may
change their crystal structure under some circumstances of pressure and temperature.
In this image are shown the most common found. Notice the importance of the hcp
structure, representing almost a 25% of the total

2.1 Hexagonal Close-Packed crystals

The hexagonal crystal family is one of the six crystal families we can find in crystal-
lography. Among all the hexagonal types, it out-stands the close-packed. These type

9
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of arrangements are very common in nature and can be found in many elements, as
observed in Fig. 2.1.

Close-packing of equal spheres has represented a recurrent topic of study in history
since it has a high importance in what has to do with packing and transportation. The
well-known mathematician, Friederich Karl Gauss, demonstrated the biggest fraction of
space occupied by spheres, or the highest density, achievable by a lattice is:

ρ =
π

3
√

2
= 0.74048 (2.4)

The two close-packed structures that accomplish this statement are the face-centered
cubic and the hexagonal close-packed. They mainly differ in the stacking of their
vertical planes, although both are created the same way through. The stacking of the
hcp is ABAB... whereas the stacking in the fcc is ABCABC... so the third layer, and
so on, are different in each case.

It is worth paying some attention to the Miller indices of the hcp structure and how
these are conventionally treated since we use a new notation with four indexes called
the Miller-Bravais indices.

Figure 2.2: Hcp unit cell and the Miller-Bravais indices representation. We can match
the x axis with the [1210] direction and the y axis with the [1010]

The notation currently used to express line directions and plane orientations is the
following:

l = ia1 + ja2 + ka3 +ma4 (2.5)

where a1, a2, a3, a4 are no more orthogonal vectors. a1, a2, a3 are the vectors describing
the basal plane and form 120o with each other, while a4 is parallel to the z axis. The
three components of the base, i.e. i, j and k, must be zero when added together.
Therefore, the Miller-Bravais notation to describe a line direction in the hcp lattice
would be [ijkm] with the constraint i+j+k = 0. The way to define a plane orientation
is analogous to the canonic case explained before, and to do so, we refer to the normal
vector to the plane and write it as (ijkm). In Fig. 2.2, we provide more details on how
to describe this structure.

10
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2.2 Crystalline Defects

All real crystals found in nature show imperfections, either point, line, plane, surface
or volume defects. These defects can severely modify the structure and arrangement
of the atoms in the crystal and so its properties. By introducing these defects the
periodicity of the lattice can be broken, affecting many properties of the crystal such
as, for instance, its energy, melting point and density. We can mainly distinguish four
types of defects in a crystal. Although this work is predominantly concerned about line
defects, called dislocations, let’s make a brief introduction to each of them, since they
will occasionally appear throughout the thesis.

Figure 2.3: Point defects. We can distinguish three principal point defects illustrated
in the figure: a vacancy, an impurity and a self interstitial atom.

• Point defects: Three point defects can exist in a perfect crystal, a vacancy, a
self-interstitial atom and impurities. The first two types of defects are called
intrinsic defects since they do not involve another type of atoms than the crystal
ones. The first type, the vacancy, consists of removing one atom from its place,
so a site in the lattice is empty. The interstitial is formed by placing an atom
in between some sites of the perfect lattice. In the illustration Fig. 2.3 we can
visualize both types of defects. These type of point defects are very common,
for instance, a vacancy represents the key aspect in the theory of semiconductors.
Also, we can find what is called extrinsic defects, or impurities. Impurities also
can substantially modify the properties of the crystal. Indeed, we will see in
our work how an impurity of 3He can be crucial when introduced in a crystal of
solid 4He containing a dislocation since their behavior is very conditioned by the
presence of each other.

• Planar defect: Better known as Stacking faults, this kind of defects can be de-
scribed as an alteration of the stack in the crystal. In other words, the region
where is the defect cannot be built by placing layers of atoms in a regular way
anymore. There exist two types of stacking faults: the intrinsic and the extrinsic
stacking faults. These types are widely explained in section 2.2.3. The presence
of a stacking fault can play a major role in the plasticity of the material. Once
again, this topic will be discussed in more detail in further sections. The presence
of a defect and the destruction of the periodicity of the crystals have associated
an energy, which is called the stacking-fault energy. From the study of the energy
surface, one can predict metastable states of low stacking fault energies. For in-

11
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stance, observe Fig. 4.2 in section 4.1.1 where a stacking-fault energy surface is
depicted. One can observe the displacements for which there is a minimum in the
energy surface γ, that represent the metastable configurations.

• Surface defects

– Grain boundaries: Crystalline solids are usually formed by a set of grains
separated by grain boundaries. Each of the grains can contain the defects
already mentioned. In the junction of these grains, the atomic arrangement
may not be aligned, resulting in a misorientation between the grains. This
misorientation causes a very narrow disordered area that can cause a change
in the solid crystalline properties.

– Twin boundaries: When a region of the crystal undergoes a certain homoge-
neous shear stress that produces a change in the orientation of the crystal,
we call it deformation twinning. Fig. 2.4 shows the result of applying a
deformation twinning. A very typical case, the illustrated in Fig.2.4, is the
one in which the two grains are related by a mirror symmetry. In certain
cases, these defects are associated with the presence of a dislocation, then
are known as twinning dislocations. For instance, see A. Serra et al. [20]
devoted to the crystallography and core structure of twinning dislocations in
hcp metals.

Figure 2.4: Twin boundary defect. The twin boundary shows the plane of the mirror
symmetry.

• Volume defects: These defects consist on precipitates, voids and bubbles. They
can have a certain importance on the properties of the solid.

• Line defects: Dislocations. These type of defects involve rows (or columns) of
atoms which are removed or misplaced from the perfect lattice. Even though
nowadays there exist several techniques for the direct observation of dislocations
in crystals, it was not until the late 1930’s when scientists noticed the existence of
these dislocations by inference. Strong evidence of this behavior was found when
attempting to relate the theoretical and experimental values for the critical shear
modulus applied to deform a crystal plastically. In a perfect crystal, the shear
stress required to do so, calculated first by Frenkel in 1926, is:

τcr,th =
Gb

2πa
(2.6)

12
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being τcr,th the critical applied shear stress to deform the crystal plastically, G the
shear modulus, b the spacing between atoms in the same direction as the applied
shear stress and a the spacing between atoms in the direction perpendicular to
the applied shear stress. Assuming a≈b, from this expression the theoretical
critical shear stress results to be at least τcr,th≈G/10, which is many orders of
magnitude greater than the experimental values of τcr,exp≈10−4G to τcr,exp≈10−8G.
This striking difference between theory and reality manifested the presence of an
unknown defect responsible of easing the plastic deformation in a crystal. Later
on, when technology developed and it became possible to produce crystals with
a very pure structure and almost free of dislocations, the experimental value
approached the theoretical one.

Since then, the scientific community has attributed to the dislocation a key role in
the mechanical properties of materials, especially in their plasticity. The plasticity
is the property of materials that allow them to deform in an irreversible way,
contrary to an elastic deformation, where the material returns to its original
shape. To give a first flavor on how this mechanism works, as it will be explained
afterward, the solid is thought to deform because some of the atomic planes slide
over the others.

In conclusion, by the atomistic study of the behavior of a dislocation we are
capable of understanding the mechanism of plasticity from a microscopical point
of view. We will go back to this topic when we concern the qualitative mechanism
of dislocation motion.

2.2.1 Burgers circuit and Burgers vector

Two main features are sufficient to define a dislocation, the dislocation line and the
Burgers vector. Briefly, the dislocation line is the line that runs parallel to the disloca-
tion core and it is commonly indicated by the symbol ⊥ and represented by the vector
ξ.

The Burgers vector is the mathematical tool used to deal with dislocation-like defects
in crystals since it offers an unequivocal way to define them and gives a measure of
the distortion introduced by the defect. It can be constructed by building a Burgers
circuit, which consists of a series of jumps from atom to atom in the crystal describing
a closed circuit, in the perfect case, or an opened circuit in the defect case. Hence,
the Burgers vector is the vector pointing from the start point of the circuit towards
the end point of the circuit. In this manner, if the crystal is perfect, the loop will be
completed at the same point where it began; thus the Burgers vector, from here on b,
will be null. On the other hand, if the crystal has a defect, we will have a non-zero
Burgers vector which will mean there is a dislocation in the crystal. Several details
must be taken into account when doing the Burgers circuit since we have to follow a
convention to obtain the same sign for b. Commonly, the first step is to define a sense,
ξ, for the line direction. Then, the flow direction of the circuit is defined with respect
to the chosen line accordingly to the right-hand rule. Must be remarked that the jumps
between atoms must be a lattice vector, thus in a 2D SC lattice we would have four

13
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possible jumps v: up v1 = [01], down v2 = [01], right v3 = [10] and left v4 = [10]. Fig.
2.5 shows how to perform this analysis in a 2D system. The technique can be easily
extended to a more complex three-dimensional system.
Furthermore, accordingly to what has been said, the resulting Burgers vector b is:

b = rN − r0 =
N∑
i=1

∆ui (2.7)

where,

∆ui := ri − (ri−1 + vi) (2.8)

is the difference between where the atom is in the actual, distorted, system and where it
should be with respect to the perfect lattice. This value is computed at every step and
summed up at the end. This way of computing the Burgers vector will be especially
useful when handling with dissociated partial dislocations. Next on, we will explain
how we dealt with the issues related to the partial dislocations. Section 3.3.1 is devoted
to the implementation of an algorithm to find the Burgers vector and its position.

Figure 2.5: Three Burgers circuit depicted in an atomic plane perpendicular to the
edge dislocation line in a simple cubic lattice. Notice how circuit 1 and circuit 2 are
non-closed since they enclose the dislocation, whereas circuit 3 is a closed loop. Ei
and Si are the corresponding starting and finishing atoms of the corresponding Burgers
circuit. The sense of the vector ξ is defined to point out from the paper so that all the
circuits flow in the counterclockwise direction. Figure taken from [21]

14
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2.2.2 Types of dislocations

There exist two type of dislocations: screw and edge dislocations. To better understand
the geometry and creation of a dislocation let’s introduce them through a SC lattice.
In Fig. 2.6 we can visualize the concept of both dislocations. Fig. 2.6a is an edge
dislocation that has been created by the insertion of a half of a plane in the solid. On
the other hand, Fig. 2.6b shows an screw dislocation that has been created by ’cut-
and-slip’ operation. The plane defined by the Burgers vector b and the dislocation line
ξ(section 2.2.1) is called the glide plane. For the edge dislocation, where the Burgers
vector is perpendicular to the dislocation line, the glide plane is well-defined, whereas
there is not a well-defined glide plane for the screw dislocation because its Burgers
vector and dislocation line are parallel to each other.

(a) Edge Dislocation
(b) Screw Dislocation

Figure 2.6: Types of dislocations. Figure taken from [21]

2.2.3 Partial dislocations. Shockley partial dislocations

As introduced before, a partial dislocation is a dislocation whose Burgers vector b has
a modulus smaller than a lattice vector, for instance, bp = [1

2
0]. Then, to compute its

value, a small correction is made to Eq. (2.6) as follows:

b =
N∑
i=1

∆uiH(ε− |∆ui|) (2.9)

with H(x) being the Heavyside function (Step function). ε is a parameter that chooses
when the distortion is too big to be accepted in the sum or not, it is calibrated by
trial-and-error. Computing the difference between the end and the beginning positions
would lead us to an incorrect result, either a whole lattice Burgers vector or a null one.
Partial dislocations are found in the presence of a stacking fault. In fact, each of the
partial dislocations places at the end of the stacking fault, where the stacking fault
merges with the perfect lattice structure. The formation of a low energetic stacking
fault in an hcp with a dislocation is very common; therefore, the dislocation tends to
split up into two Shockley partial dislocations.

15



Author: Santiago Sempere Simulation of dislocations in crystals

A Shockley partial dislocation is a kind of partial dislocation. These are the ones
associated with a slip, and its formation can be compared to the one of an edge
dislocation in an elastic model. The creation of these partial dislocations is due to
a low energetic stacking fault that is more energetically favorable than a single edge
dislocation. If we depict the stacking fault energy surface (γ), we would appreciate that
the energy of the system after a certain displacement f shows a minimum, corresponding
to a metastable state. In Fig. 4.2 in section 4.1.1 is represented the stacking fault energy
surface (γ) for α-Zr and we can observe the minima that explains the dissociation into
two Shockley partial dislocations.

2.2.4 Dislocation motion

We can distinguish between two main types of dislocation movement.

• Glide or conservative motion: the dislocation moves in the plane formed by the
dislocation line and the Burgers vector. This kind of movement is the most typical
one and it is even more predominant at low temperatures. This kind of mobility
is very anisotropic with respect to the glide plane in the non-screw dislocations.

• Climb or nonconservative motion: the dislocation moves out of the glide surface,
and, therefore, normal to the Burgers vector. Climbing only occurs at high
temperatures when the insertion or emission of atoms is possible. It is called
non-conservative motion due to the change in the number of atoms contained in
the crystal.

In the screw dislocations the glide plane is not defined; therefore, the only possible
movement is gliding.
As mentioned before, the motion of a dislocation is highly related to the mechanical
properties of the crystal, in other words, the motion of a dislocation is the mechanism
for a crystal to deform plastically. In most cases, to do so we are required by an
external force, the driving force, that pushes the dislocation until it moves. This force
is applied as a shear stress τ = F/A. The dislocation mobility, which can be expressed
as a function of the applied forces on the dislocation M(f), is mainly influenced by two
types of forces: extrinsic and intrinsic forces. The extrinsic forces are those provoked
by obstacles or impurities found in the crystal or externally. On the other hand, the
intrinsic forces are those that arise from the interatomic interactions and due to the
lattice resistance. Next section explains the latter type of forces in more detail.

2.2.4.1 Intrinsic resistance to dislocation motion

Within a crystal there exists an energy barrier, when no external forces or energy are
added, that oppose the dislocation movement, due to the periodicity of the lattice. In
this case, it is called the Peierls energy barrier, named after the theoretical physicist
Rudolph Peierls, and is the energy needed to break and create the bonds between the
atoms in the dislocation core. Hence, this energy depends sensitively on the form of
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the force-distance relation between individual atoms, i.e. on the interatomic potential.
Fig. 2.7 illustrates the process of breaking and creation of bonds.

Figure 2.7: Dislocation gliding. A shear stress has been applied and the dislocation
moves from left to right, resulting on a plastic deformation in the end. Figure taken
from [21].

Another vital concept in dislocation motion is the Peierls stress. This is the minimum
shear stress required to move the dislocation one lattice vector at T = 0. The calculation
of this value is essential in all the studies about dislocations since it gives a measure
of the lattice resistance of the crystal, which is directly linked to its plasticity. The
value of the Peierls stress is related to the disregistry of the atoms across the slip
plane. In Fig. 2.8 we can appreciate how the atoms are displaced to accommodate the
dislocation in the crystal. The disregistry is characterized by the displacement difference
∆u = u(B)−u(A) between two atoms on adjacent sites above(A) and below(B) the slip
plane. The width w of the dislocation is defined as the region where the disregistry is
greater than a half of its maximum. In the 1940’s Peierls and Nabarro calculated the
dislocation energy per unit of length and found it to oscillate with period of b/2 and a
maximum fluctuation, the Peierls energy, given by [22]

Ep =
Gb2

π(1− ν)
e
−2πw
b (2.10)

where G is the shear modulus and ν is the Poisson’s ratio. The maximum slope of the
energy function is the critical shear stress to move the dislocation through the crystal.
Dividing by b we get the Peierls stress

τp =
2π

b
Ep =

G

(1− ν)
e
−2πw
b (2.11)

This simple model agrees much better with the experimental results than Eq. 2.6 , that
describes the theoretical shear strength in a crystal. From the expression, notice that
the τp of a dislocation scales as the negative exponential of the width of the dislocation.
Hence, a very wide dislocation core will be very mobile. In general, edge dislocations
have smaller Peierls stresses than screw dislocations.
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Figure 2.8: Scheme of the disregistry suffered by the atoms when we introduce the
dislocation. The colored atoms indicate the positions after the insertion of the dis-
location, whereas the empty circles indicate the positions in the perfect, undistorted
configuration. Figure obtained from [22].

2.3 Dislocations in hcp structures

As shortly introduced previously, dislocations in crystals with an hcp lattice structure
undergo specific processes that make the dislocation behavior more complex than in
other lattices. Making use of the Thompson tetrahedron, Fig. 2.9 for hcp structures (it
is normally used for the fcc lattice), we can describe the most important and common
dislocations found in hcp structures.

• Perfect dislocation with the Burgers vector being one of the vectors in the basal
plane. Regarding the thetraedron this would be either AB, BC, CA, BA, CB
or AC.

• Perfect dislocation with the Burgers vector perpendicular to the basal plane, rep-
resented by ST and TS. In this case the glide plane is non-basal, is the prism
plane (1010).

• Perfect dislocation with one of twelve Burgers vector of the type SA/TB

• Imperfect basal dislocation of the Shockley kind, regard 2.2.3, with Burgers vector
Aσ,Bσ,Cσ in either one or the other senses.

• Imperfect dislocations with the Burgers vector perpendicular to the basal plane,
represented by σS, σT and the counter-sense vectors.

• Imperfect dislocations which are a combination of the two latter cases, namely,
AS, BS, etc. Although these vectors go from one atomic site to another one, are
still considered imperfect dislocations since their surroundings at each atomic site
are not identical and they are not a lattice vector.

The crystallographic representation of these dislocations via the Miller-Bravais indices
is found in Table 2.1

Many of the imperfect dislocations are a result of the existence of a low energetic
stacking fault. We can distinguish three primary basal- plane stacking faults that do
not affect the nearest neighbor arrangements of the perfect stacking ABABAB... , [23]
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Two of them are intrinsic and called I1 and I2, and the third one is extrinsic and called
E. The change in the stacking is as follows:

ABABABAB...→ABABBABA...→ABABCBCBCB...(I1) (2.12)

where the middle stage is produced after the removal of a basal layer, what produces
a high energy stacking fault. The system goes to the next stage by a slip of 1

3
〈1010〉,

arriving at a low energy stacking fault.

ABABABA...→ABABCACA...(I2) (2.13)

Fault I2 is a result of a slip of 1
3
〈1010〉 in a perfect crystal

ABABABA...→ABABCABAB...(E) (2.14)

The extrinsic fault (E) is a consequence of the insertion of an extra plane.
These faults introduce a region in the space where the stacking is different than in the
rest of the crystal, thus, in this region a face-centered cubic stacking (ABC) can be
found and so have a characteristic stacking-fault energy γ.
The way to explore the stacking-fault energy surface γ(f) is to displace a half of a
crystal a vector f while the other half remains in the same position and letting the
system go to the equilibrium position. Repeating this procedure all over the space and
mapping for x∈[0, a) and z∈[0, 1.6a) we can draw the energy surface. From the data of
the energy surface, we can predict and understand why the system goes to one state or
the other since it always will try to go to the minima. In chapter 4, where the results
are displayed, we will take a look to the stacking energy surface of α-Zr [24] and relate
it to the stacking fault and the dissociation of the dislocation observed.

Figure 2.9: Burgers vector in the HCP structure. Taken from [25]

Dissociation of a perfect dislocation into two Shockley partial dislocations
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Type AB TS SA/TB Aσ σS AS
b 1

3
〈1120〉 [0001] 1

3
〈1123〉 1

3
〈1100〉 1

2
[0001] 1

6
〈2203〉

b a c (c2 + a2)1/2 a/
√

3 c/2 (a
2

3
+ c2

4
)1/2

b2 a2 c2 = 8
3
a2 11

3
a2 1

3
a2 2

3
a2 a2

Table 2.1: Dislocations in Hexagonal Close-Packed lattices

The shortest lattice vector of the HCP is 1
3
〈1120〉 and the most common slip planes

are (0001) and {1100}, which correspond to the basal and the first order prism planes,
respectively. The preference of the glide plane is determined by the energy and stability
of the stacking fault. If the stacking fault I2 with vector 1

3
〈1120〉 exists, then the perfect

dislocation AB dissociates into two Shockley partial dislocations bounding a ribbon of
stacking fault, which has a fcc-like stacking. The reaction of this process is as follows:

AB→Aσ + σB (2.15)

which in crystallographic notation is:

1

3
[1120]→ 1

3
[1010] +

1

3
[0110] (2.16)

The geometry of the dissociation is two partial dislocations lying on the basal plane
at ±30◦ to the perfect vector (in some texts it refers to the dislocation line, then it
would be ±60◦) and the reduction in energy given by b2 is 1/3, as shown in table 2.1.
Notice how after the dissociation the partial dislocations are not a pure edge dislocation
anymore, since they have a screw component, although the average screw component for
the complete dislocation remains to be null. The method of the Differential displacement
introduced afterward in section 3.3 is especially useful to differentiate between the edge
and the screw components of the Burgers vector in a dislocation. The schematic
representation of this dissociation is illustrated in 2.10

Figure 2.10: Schematic representation of the I2 stacking fault bounded by two Shockley
partial dislocations (Aσ and σB). The arrows indicate the two errors in the stacking.
Notice how it varies to ABC, corresponding to a face-centered cubic structure. Figure
taken from [22].
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Despite the existence of other low-energetic stacking faults that led to other dislocation
dissociations, we are not going to go into the detail of these, since the principal and
most commonly observed one, actually, the only observed in our work, is the previous
one.
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Chapter 3

Simulation methods

This chapter is devoted to the description of the simulation methods used during the
project to understand and simulate the behavior of the dislocations in a crystal under
multiple conditions. Firstly, we will introduce the classical methods, in particular, the
Molecular Dynamics. It will allow us to analyze the energy and the structural and
dynamical properties of the dislocations in classical crystals. We will use this piece of
information as a reference set to which compare the results obtained in quantum crys-
tals. Secondly, we introduce the Quantum methods and, especially, the one employed
in our simulations, the Path Integral Monte Carlo.

Why do we use atomistic simulations? The interatomic interactions are the fundamental
basis underlying the mechanical properties of materials. Therefore, to understand the
behavior of dislocations, and, hence, the plastic deformation of a material, it is necessary
and sufficient to study the collective behavior of the atoms in a crystal containing a
dislocation. Indeed, other researchers have used continuum models, as Pessoa et al. [26],
to perform a simulation of the mobility of a dislocation in a quantum crystal. In these
cases, the assumption of many classical values for the parameters ruling the model
makes the simulation less rigorous and reliable from the physical point of view.

3.1 Classical methods

Quantum mechanical motion and the interaction between the electrons can be important
and relevant in the interatomic forces. This fact makes, sometimes, very complicated to
describe the interaction among atoms, since a solution of the Schroedinger’s equation
to describe the electronic interaction is needed to be strictly rigorous. The methods
that use this solution are known as first principles methods or ab initio methods. The
intrinsic difficulty of the Schroedinger’s equation makes these methods very costly from
the computational point of view, until the point it is unfeasible to simulate a system
of more than a few thousands of atoms. Commonly, to describe well the behavior
of a dislocation we need much bigger systems that can only be approached by a less
sophisticated model. In the following chapters, we explain how this model is.
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3.1.1 Static simulations

3.1.1.1 Relaxation

The probability to find a system in an state µ characterized by {ri,pi} in the phase
space and in thermal equilibrium at a temperature T is defined by the Boltzmann’s
law, as follows:

p(µ) =
1

Z
e
−H({ri,pi})

kbT (3.1)

where

H({ri,pi}) =
N∑
i=1

|pi|2

2m
+ V ({ri}) (3.2)

is the Hamiltonian of the system, Z is the partition function, which ensures the proper
normalization of the probability density, defined as:

Z =

∫ N∏
i=1

dri dpi e
−H({ri,pi})

kbT (3.3)

and kb is the Boltzmann’s constant. According to this probability distribution, the odds
to find the system in a determined state, for instance µ, decreases exponentially with
increasing energy H({ri,pi}). Eventually, at the low-temperature limit, the most likely
state of the system is at the global minimum of the energy surface H({ri,pi}). The
global minimum of the energy, from Eq.3.2, is found when pi = 0,∀i. Furthermore, the
minimum of the potential energy V ({ri}) gives a good description of the system at low
temperatures. Then, a relaxation of a system consists on searching for the minimum
of the potential energy V ({ri}) in order to find the most stable state of the system at
T = 0K.

Searching for minima is a widely studied field, and still an active area of research in
computational sciences. There exist several algorithms to seek for the minima of a
function, such as the steepest descent algorithm, the Hessian-free truncated Newton
algorithm and the conjugate gradient algorithm. In the present work, we have used
the Polak-Ribiere version of the more general conjugate gradient relaxation (CGR)
algorithm [27].

The CGR algorithm relies on the computation of the atomic forces to displace the
atoms in such directions. The algorithm works iteratively until the condition |F| < ε
is reached. It is worth mentioning the CGR algorithm does not guarantee to arrive at
a global minimum of the energy, only a local one. Fig. 3.1 illustrates why this can
happen. V (x) has three relative minima, two local ones, and the global one. If we
use the CGR method for the relaxation, we may end up at a local minimum, since the
forces (F = −∂V (x)/∂x) will be zero. To ensure we arrive at the global minimum, we
can use brute-force and run the simulation starting from many randomly selected initial
configurations. Clearly, though, it is a very inefficient way to proceed.
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Figure 3.1: An energy function with three local minima E0, E1 and E2. The relaxation
method can end at either one of the three, not necessarily at the global one E0. Figure
taken from [21].

3.1.2 Dynamic simulations

3.1.2.1 Molecular Dynamics

Molecular Dynamics constitutes a unique computational method that provides a chance
to examine systems from an atomistic point of view [28]. Molecular dynamics is the
direct application of the dynamical and mechanical theory developed by Newton and
Hamilton. It can be considered as a method of ’particle tracking,’ this means we
generate the trajectories of the N atoms forming our system. The most relevant factor
in this simulations is the pick of the potential and the initial and boundary conditions
since the trajectory will come as a result of the numerical integration of the Newton
equations. This choice will determine how meaningful the results are. The potential is
the way the particles interact, in other words, what forces make to each other and what
forces they perceive. Basically, computing a MD simulation means knowing at each time
step the positions r3N(t) = {r1(t), ..., rN(t)} and the velocities ṙ3N(t) = {ṙ1(t), ..., ṙN(t)}
of the set of atoms. The length of the simulation is determined by the timestep ∆t
and the number of timesteps L, being T = L∆t the total simulation time. The typical
time scale of the MD simulations is between ps and ns. As said before, to find the
trajectories of the particles in a MD simulation we must solve the Newton equations,
which are the following:

m
d2rj
dt2

= −∇rjU(r3N) (3.4)

where U(r3N) is a prescribed interatomic interaction potential and j = 1, ..., N . Nev-
ertheless, this equation can not be solved analytically in most cases of interest due to
the large number of variables involved. Therefore, we face the need for an integration
algorithm to be able to depict the time evolution of the system. Many different types
of integrators can be used to solve Eq.3.4; one of the most widely used is the Verlet
algorithm, which is formally simple and computationally efficient. This method makes
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a basic use of the Taylor expansion and it is computed as follows

rj(t0 + ∆t) = rj(t0 −∆t) + 2rj(t0) + aj(t0)(∆t)2 +O(∆t3) (3.5)

where aj(t0) is substituted by the computed forces Fj(r
3N(t0))/m. Thus, the time

evolution is constructed by repeating this calculation at each timestep. The key aspect
of Eq.3.5 is the calculation of the forces Fj(r

3N(t0)), which are computed from the
prescribed interatomic potential and determine the movement of the atoms in the
system. Other integrators can be more accurate (O(∆t5)), however, they need more
computer memory and its implementation can be usually much trickier.

As a summary, an MD simulation consists of the integration of the Newton’s equations
in discrete time and its efficiency depends on the performance of the force calculations,
which must be calculated as simply as possible without compromising the physical
description. Hence, the choice of the interatomic potential is a crucial aspect and
presents a trade-off between physical fidelity and computational efficiency. Bearing
in mind its importance, let’s make a deeper regard to the interatomic potential that
describes the interaction between particles in an MD simulation. This represents an
open-ended topic with a huge amount of literature and still nowadays more and more
types of interaction are being developed and implemented.

For the atomic motion, we consider the terms of the one-body, two-bodies,..., N-body
interactions

U(r3N) =
N∑
j=1

V1(rj) +
N∑
i<j

V2(ri, rj) +
N∑

i<j<k

V3(ri, rj, rk) + · · · (3.6)

The first term is usually neglected except we are in the presence of an external field.
The second term is the contribution of two-body interactions and is the most relevant
and common term. For many problems this term is sufficient to describe effectively the
interaction between the particles.

A widely used interatomic potential in statistical mechanics is the Lennard-Jones po-
tential. It is considered to be a reasonable description of van der Waals interactions
between atoms. Also, it can be used for the description of the interaction in some
metals [29]. This potential is defined by the following expression

V (r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (3.7)

where σ and ε are the potential parameters that set scales for energy and separation
distances, respectively. Fig. 3.2 shows how this potential makes the particles to repel
each other if found to be closer than Rmin and, otherwise, attract them to the equi-
librium value of r0 = Rmin. This repulsion and attraction interactions are necessary to
give volume and cohesion to the system. If the atoms are not neutral, a Coulombic-type
interaction is usually introduced. In some cases, two-body interactions are not enough
to describe the system of interest accurately, hence higher-order many-body contribu-
tions to the atomic interactions are introduced. This is the case, for instance, of the
Embedded-atom model (EAM) [30] that is used in the description of most metals.
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Figure 3.2: The LJ potential V (r). The potential vanishes at σ and has a depth of −ε.
The absolute force is minimum at r0 = 21/6σ, separations greater or smaller than this
value result in attractive or repulsive forces, respectively.

3.2 Quantum methods

We devote this chapter to the Path Integral Monte Carlo method [31, 32] since is the
one used to study the dynamics of the dislocation at very low temperature in this work.
Previously to the PIMC algorithm, we introduce the Monte Carlo techniques in general
and, in particular, the Metropolis algorithm.

3.2.1 Path Integral Monte Carlo (PIMC)

The Monte Carlo procedures and the Metropolis algorithm

Before making a thorough explanation on how the PIMC algorithm works, let us recall
the basics of Monte Carlo methods and how the Metropolis algorithm works. This is
an important fact since here lay the roots of the PIMC algorithm.
A Monte Carlo method is a computational way that uses a stochastic sampling to
simulate the behavior of a system under certain circumstances. Its applications embrace
many different fields, from the computation of an integral to the study of the trends of
some financial stocks.
These methods are widely used in condensed matter physics since they enable to study
systems characterized by a high number of degrees of freedom and systems in which we
are satisfied with a statistical result. In this context, we define a weight wµ for every
possible state of the system µ that defines the probability of the system to be in that

state, satisfying
∑
µ

wµ = 1. Therefore, the expected value for an observable O is given

by:

〈O〉 =
∑
µ

Oµwµ (3.8)

This sum is computed over all the possible states µ of the system, which in most
cases is a huge number. Introducing a method called importance sampling allows us to
simplify the problem by only choosing the terms of those states in which the system is
more likely to be found.
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An important Monte Carlo method which is the basis of more complex and used
algorithms, in particular, the PIMC, is the so-called Metropolis algorithm [33]. This
method is based on the theory of the Markov chains and makes use of a probability
distribution p(x). The mentioned probability distribution satisfies with the stochastic
process we want to perform Π(x|y), which is the probability to go from state y to state
x, the following expression:

Π(x|y)p(y) = Π(y|x)p(x) (3.9)

This only constraint allows us to decompose the stochastic process Π(x|y) in two terms:

Π(x|y) = T (x|y)A(x|y) (3.10)

where T (x|y) is again a stochastic process we can sample and A(x|y) indicates the
acceptance probability to go from y to x. The choice of T is arbitrary, whereas A is
defined from T , satisfying Eq. 3.9. Moreover, T is commonly chosen so T (x|y) = T (y|x),
thus

A(x|y) = min(1,
p(x)

p(y)
) (3.11)

This is the main feature of the Metropolis algorithm, and the choice of the probability
distribution p(x) will determine the success or the failure of the method. Practically,
the implementation of the Metropolis algorithm follows the next procedure, where for
simplicity we assume the probability distribution to be the Boltzmann probability dis-
tribution p(x) = 1

Z
e−βE(x)

• given an state µ, characterized by a variable xi, we generate a new variable x′

from the stochastic process T (x′|xi), creating a new state µ′

• we evaluate ∆E = E(x′)−E(x), then compute A(x|x′) = min(1, e−β∆E(x)) = α≤1

• accept the movement x→x′ with probability α. Computationally this is done
through the generation of a random number r between 0 and 1. Hence, if r < α
we accept the movement and xi+1 = x′, otherwise xi+1 = xi, not altering the state
of the system.

• perform the same procedure to generate the rest of the variables.

The Metropolis algorithm is a very powerful tool to handle determined systems; nev-
ertheless, it represents two weak points that can not be neglected: the asymptotic
correctness of the sampling and the strong correlation between two consecutive vari-
ables. The first of the problems can be solved by an equilibration of the system, in
other words, discarding the transient regime. The second weakness can be blocked with
a technique called data blocking. The general idea is to gather M variables in n blocks,
with K = M/n variables per block. The average of the estimation of the observable Ô
for each block will give a set of values Oj, which if averaged will provide an estimation
of 〈O〉 that is independent of n. Therefore, if K is sufficiently large, the values for Oj

can be considered statistically independent and the statistical error can be computed.
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Feynman’s Path Integral formalism and implementation

The Path Integral Monte Carlo is a simulation method based on the Feynman’s Path
Integral formalism which has been proven to be very effective for the simulation of
quantum systems of condensed bosons, such as solid or liquid 4He.
The thermal density matrix ρ̂ is the key element from which we can obtain the physical
properties of the quantum system. This operator is defined as follows:

ρ̂ =
e−βĤ

Z
= Z−1

∑
i

|αi〉e−βEi〈αi| (3.12)

where Ĥ is the Hamiltonian operator of the system, being β = 1
kBT

, kB the Boltzmann

constant, and Z = Tr(e−βĤ) =
∑
i

e−βEi is the partition function. As shown in the last

equation, the thermal density can be also defined in terms of the exact eigenvalues and
eigenfunctions of the system, αi and Ei. Once known the thermal density matrix, the
expectation value of a general observable Ô is:

〈Ô〉 = Tr(ρ̂Ô) =
∑
i

e−βEi〈αi|Ô|αi〉 (3.13)

However, we need to work in the position basis, where the thermal density matrix is
written ρ(R,R′; β) = 〈R|ρ̂|R′〉 and, in general, is a function of 6N + 1 variables, being
Ri = {r1,i, r2,i, ..., rN,i} a set of coordinates. Consequently, in such a basis the equation
3.13 becomes:

〈Ô〉 = Tr(ρ̂Ô) =

∫
dR ρ(R,R; β)O(R) (3.14)

The key aspect of the Path Integral formalism is the convolution property of the thermal
density matrix. The following equation is the basis of this method:

ρ(β1 + β2) = e−(β1+β2)Ĥ = e−β1Ĥe−β2Ĥ (3.15)

what in position representation is:

〈R1|ρ(R1,R3, β1 + β2)|R3〉 =

∫
dR2 〈R1|ρ(R1,R2, β1 + β2)|R2〉〈R2|ρ(R2,R3, β1 + β2)|R3〉

(3.16)
where the identity I =

∫
dR2 |R2〉〈R2| is introduced. By repeating these procedure M

times we have the following expressions:

e−βĤ = (e−εĤ)M (3.17)

ρ(R1,RM+1; β) = 〈R1|ρ(R1,RM+1, β)|RM+1〉 =

∫
dR2dR3...dRM ρ(R1,R2; ε)

ρ(R2,R3; ε)...ρ(RM ,RM+1; ε)

(3.18)

where ε = β/M is known as the time step. Then, the succession of points (R1, ...,RM+1)
define a ”path” in the configuration space. We can notice that the ρ̂ operator is formally
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equivalent to an evolution operator in imaginary time t = iβ. Eq. 3.18 is exact for any
value of M > 0 and in the limit M → ∞, or equivalently ε → 0, the path becomes
continuous.
In order to go further and show an explicit example of this procedure, we make use
of the Hamiltonian explicitly, in this case we assume the Hamiltonian for a quantum
system made up of N particles of mass m interacting with a pair potential v(r). These
kind of Hamiltonians are splitable in two parts Ĥ = T̂ + V̂ being

K̂ =
−~
2m

N∑
i=1

∇i
2 (3.19)

the Kinetic operator and

V̂ =
∑
i<j

v(ri − rj) (3.20)

the Potential term

If our purpose is to give an analitycal expression, we must determine all the commu-
tators between K̂ and V̂ . However, from the Baker-Campbell-Hausdorff formula 1, for
small imaginary time ε we can neglect most terms and e−εĤ≈e−εK̂e−εV̂ with an error of
the order of O(ε2). In fact, the Trotter formula [34]

e−βK̂+V̂ = lim
M→∞

[e−
β
M
K̂e−

β
M
K̂ ]M (3.21)

ensures a good convergence for the process to the exact value of the thermal density
matrix. Then we recover an approximation of the thermal density matrix known as
primitive approximation, which in the positions representation is:

ρPA(R1,R;ε) ≈ Z−1

∫
dR2 〈R1|e−εK̂ |R2〉〈R2|e−εV̂ |R3〉 (3.22)

The matrix elements e−εK̂ and e−εV̂ can be simply solved in the positions representation.
Usually the potential is diagonal in this basis, thus:

〈Rj+1|e−εV̂ |Rj〉 = e−εV (Rj)δ(Rj+1 −Rj) (3.23)

And the kinetic part becomes diagonal as well if we represent it in the reciprocal space.
Therefore, its evaluation is:

〈Rj+1|e−εK̂ |Rj〉 = (4πλε)−dN/2e−
(Rj+1−Rj)

2

4λε (3.24)

where d is the dimensionality of the system, λ = ~/(2m) and we use the definition

(Rj+1 −Rj)
2 =

N∑
i=1

(ri,j+1 − ri,j)
2.

Inserting these expressions (Eqs. 3.23-3.24 in the primitive approximation Eq. 3.22)
and using it in Eq. 3.18 gives:

ρ(R1,RM+1; β) =

∫
dR2dR3...dRM

1

(4πλε)3NM/2
e−

∑M
m=1[

(Rm−1−Rm)2

4λε
+εV (Rm)] (3.25)

1e−ε(K̂+V̂ ) = e−εK̂e−εK̂e−
ε2

2 [K̂,V̂ ]e−
ε3

6 (2[V̂ [K̂,V̂ ]+[K̂[K̂,V̂ ])
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and, hence, the expectation value is:

〈Ô〉 =

∫
dR ρ(R,R; β)O(R) ≈

∫ M∏
j=1

dRj ρPA(Rj+1,Rj; ε)O(Rj) (3.26)

applying the boundary condition RM+1 = RM . The main feature we must notice in
this equation is the fact that the product p(R1, ...,RM+1) =

∏M
j=1 ρPA(Rj+1,Rj; ε) is

positive definite and its integral over the whole space is equal to 1. Therefore, can
be interpreted as a probability function and is suitable to work as the probability
distribution that rules the sampling of the degrees of freedom in, for instance, the
Metropolis algorithm. Thus, many observables that give important physical properties
can be computed at any temperature in a rather simple way [31]. Moreover, in virtue
of the Trotter formula, as we get closer to the limit M →∞ the integral becomes exact
and we obtain the exact value of the expectation value Ô. This is the reason why this
method is often referred as an exact method.

The Classical Isomorphism

The Path Integral Monte Carlo (PIMC) method describes a system of N particles by
means of M different configurations RM that constitute what we have called the ”path”
in the imaginary time in the space of configurations. However, this can be interpreted
as a classical system made of N×M particles, each of these called bead. Somehow, each
of the N initial particles becomes a polymer formed by M beads. From the identity

M∑
m=1

(Rm−1 −Rm)2 =
M∑
m=1

N∑
i=1

(ri,m−1 − ri,m)2 =
N∑
i=1

M∑
m=1

(ri,m−1 − ri,m)2 (3.27)

we can see the kinetic interaction (Eq. 3.19) of each of the beads and interpret it as
if each of the beads is connected to the next one by a spring-like bond. The condi-
tion rM+1 = rM introduced in Eq. 3.26 guarantees that the first bead is connected
to the last bead, forming a closed polymer. Now, adding the potential interaction, i.e
the interaction between beads of different polymers, does not change this picture. In
the primitive approximation, the potential contribution is given by Eq. 3.20 and the
interaction between classical beads is identical to the two-body potential of quantum
atoms. Nevertheless, these classical polymers interact in a very particular way, since
only the beads at the same ”time”, i.e. imaginary time, in the path interact with
each other. This makes the computation so much simpler. Regard Fig.3.3 for a visual
understanding of the presented case. In summary, the PIMC method consists of con-
sidering the quantum particles as classical ring polymers interacting between them in a
particular way. Each polymer consists of a chain of beads connected by ideal springs.
This representation enables us to introduce the delocalisation of the particles due to its
zero-point motion.

The action is defined as minus the logarithm of the density matrix. For a given j, this
is:

S(Rj+1,Rj; ε) = −ln[ρ(Rj+1,Rj; ε)] (3.28)
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Figure 3.3: Scheme of two classical ring polymers representing the quantum atoms in
the PIMC formalism. Each of the numbered circles is a bead and its index is an instant
in the imaginary time. The springs connecting each of the beads in each chain shows
the kinetic action and the red dashed line represents the potential action acting on
beads in the same imaginary time, i.e. same index

so specifies the interaction between the beads in the classical analogy of the quantum
system. It strongly depends on the choice of the thermal density, see the review [35]
for how to get a ”good” action. Particularly, the kinetic action derived from Eq. 3.19
is

Sk =
MkBT

4λ
((Rj+1 −Rj)

2 (3.29)

Such expression gives an intuitive idea of how the spring-like interaction behaves in the
polymers. At high temperatures, the quadratic term is big and, hence, the harmonic
potential between beads is strong. Hence, the beads are close to each other and does not
allow the polymer to spread in the space, reducing the delocalization of the particle.
As the temperature decreases the polymer becomes bigger and the particle is more
delocalized in the space, increasing its zero-point motion.
The number of chosen beads M to represent each polymer is essential to get a reliable
and well-behaved system and it strongly depends on the temperature. For high T,
where no delocalization is found at all, we are able to represent the quantum system
by a small number of beads per polymer, being M=1 for the classical limit where
the polymer shrinks into a single particle. In the other hand, for low temperatures,
we need to increase the number of beads M to make a proper representation of the
system. Summarizing, the number of beads scales with the inverse of the temperature,
i.e. M∝1/T .
This fact represents one of the weaknesses of this method, since when we approach
the most interesting part from the quantum level, this is, at very low temperatures,
the computation becomes more and more costly due to the very low efficiency of the
sampling of the long chains involved. The way to improve its efficiency is to make
a better approximation for the thermal density matrix, in order to work with greater
values of ε.
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The Takahashi-Imada approximation [36,37] and the Chin approximation [38] are among
the approximations that make the algorithm more efficient and capable of performing
simulations of systems at lower temperatures. We will not get into the detail of these
approximations in this work, see each of the mentioned references for a very detailed
explanation or [31] for a general overview of these approximations.

The permutation sampling

The previous sections highlight the most important features of the PIMC algorithm, but
it is not entirely complete. Indeed, the previous algorithm only holds for systems made
up of distinguishable particles. When attempting to deal with quantum many-body
systems, we have to take into account the quantum statistics of particles. To recover
the right expression for the thermal density matrix ρ, when dealing with the Bose or
Fermi statistics, we have to sum over all the possible permutations of the particle labels
in one of the two arguments, deriving the following expression:

ρBF =
1

N !

∑
P

(±1)Pρ(R1,PR2; β) (3.30)

where P is one of the N ! permutations of the particle labels, P is the number of
transpositions of the permutation P and the term (±1) is either + or − if we are dealing
with bosons or fermions, respectively. Analogously to the distinguishable particles
case, we can recognize a probability distribution and perform a Monte Carlo procedure
to calculate the sum over the permutations. A remarkable detail that changes from
the previous sections is the symmetrization of the thermal matrix density, where the
boundary condition RM+1 = R1 becomes RM+1 = PR1. PR = {rp(1), rp(2), ..., rp(N)},
p(i) being the label of the particle permutated with the i-th atom. This new condition
indicates that the last bead of the i-th polymer is no longer compulsory connected to
the first bead of the same chain, but it is connected to the first bead of the p(i)-th
polymer. This makes a substantial difference in the mapping onto the classical system,
since now exists the possibility that the system is not composed of N identical closed
polymers made up of M beads, but it is possible to find out polymers formed by L×M
beads, which represents the permutation cycle between L bosons. To sum up, the
explained so far, taking into account the indistinguishability of the particles can lead
some of the polymers to open their chains and join other opened polymers to form a
longer chain. Concerning the physics of the problem, the formation of longer polymers
increases the delocalization of the particles, decreasing the kinetic energy of the particle.
If we decrease the temperature enough, the polymers are very spread out and the beads
of different polymers are close together making it very plausible that they ”collapse”
and form a longer chain. In this latter case, we can arrive at a limit for which a
macroscopic size polymer is formed and, consequently, a phase transition occurs and
we have a fraction of the atoms in a superfluid phase. In a periodic system, the order
parameter is measured by the winding number: the number of times a polymer wraps
around the periodic boundary conditions.

From a practical point of view, the implementation of these movements are difficult
and, thus, makes the computation of the superfluidity unfeasible for systems greater
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than N ∼ 100 atoms. However, the worm algorithm, first implemented by Prokof’ev
et al. and extended to the continuous case by Boninsegni et al. (see Ref. [39–41] for
further details), provides a tool that allows us to give an efficient description of the
thermodynamic properties connected to the bosonic statistics of the quantum systems,
such as superfluidity.

3.3 Analysis methods

In this section, we describe the techniques used to estimate the structural and dynam-
ical properties of dislocations in the simulations. Different estimators were tested to
determine which one describes more accurately the location and features of the dis-
location during the simulation. We performed extensive classical molecular dynamics
tests since the computational expense associated with this type of simulations is low
in comparison to that of quantum simulations. In view of our MD test outcomes, we
decided which estimator was more suitable to be implemented in the PIMC code, both
in terms of accuracy and computational affordability.

3.3.1 Burgers vector

As explained in section 2.2.1, the Burgers vector is the property that fully characterizes
the dislocation, therefore, it is logic to begin with it in the search of a suitable estimator
that allows us to monitor the dislocation.
The implementation of the algorithm to compute the Burgers vector and its position is
the following:

1. The first step contains three simultaneous steps

(a) Set the dimension of the Burgers circuit. It is important to bear in mind
that there is a trade-off in the choice of the dimension of the Burgers circuit
since the choice of a large circuit will correspond in a much less costly
computation, but the precision in the position of the Burgers vector will be
very low. Notice that this method only gives us an intuitive idea of where
is the dislocation and it is strongly conditioned by the dimension of the
Burger’s circuit. In our case, we decided to make a circuit of 2× 2.

(b) Choose a determined plane perpendicular to the dislocation line. The Burger’s
circuit will run over this plane.

(c) Choose the initial atom. It is important to recall that we have to explore
the whole plane, these means we will have to sample the plane and do many
Burgers circuit on it. Fig. 3.4 illustrates the exposed idea.

2. From the initial atom r0 move to the nearest atom (ri) to the desired position,
ri + vi.
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Figure 3.4: Schematic representation of the implementation of the algorithm to compute
the position and value of the Burgers vector. We have sampled the chosen plane in
6 different circuits each of them starting from the atom with the big dot in it. The
circuit is 2× 2 and we observe that the circuit number 5 is not closed, since it encloses
the dislocation and we can find the burgers vector.

3. Compute the difference between the actual position of the atom and the place it
should have been, as explained in section 2.2.1, ∆ui = ri − (ri + vi)

4. Repeat the same procedure for all the circuit, this is for i = 2, 3, 4.

5. Compute the Burgers vector from the relative displacements of each step ∆ui, as

b =
N∑
i=1

∆uiH(ε− |∆ui|)

6. Repeat the same procedure spanning all over the plane to find the dislocation
core

This method of analysis relies on the fundamentals of the dislocation theory, which
makes the results very descriptive and complete. The method lacks robustness since
it is very sensitive to small fluctuations of the atoms that can lead the algorithm to
construct wrong Burgers circuits. Also, the position of the dislocation is not very
accurate, since we have a certain range in which the dislocation core must be, delimited
by the size of the circuit. Concerning the computational cost, the algorithm computes
the nearest neighbors of all the atoms, which is quite costly.

3.3.2 Angular distribution

The introduction of a dislocation in a crystal changes its periodicity and, therefore, there
is a structural variation from the perfect crystal. One of the properties that changes
is the angular distribution of each atom in comparison with its neighbors. In this
context, we have created a parameter per atom that measures the structural variation
using the computation of the difference between the angle formed by the atom and its
four closest neighbors, considering just one plane perpendicular to the dislocation line,
and the angle they would form in the perfect crystal. The parameter is calculated as
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follows:

φi =
4∑
j=1

(θji − θ
0,j
i )2 (3.31)

where θji is each of the four angles formed by the atom and its four neighbors and θ0,j
i

are the angles formed by the atoms in the perfect lattice, i.e. 0o, 90o, 180o, 270o.

The strength of this method lies in the fact of its simple implementation and inter-
pretation; however, it is very sensitive to the atoms fluctuating from their equilibrium
positions due to thermal energy. Moreover, it does not provide much information about
the dislocation or the stacking fault such as its width or the orientation of the Burgers
vector. Once again, the most costly part of the analysis is the computation of the
nearest neighbors.

In Fig. 3.5 we can appreciate the result given from this analysis. As observed, the
biggest dispersion in the angle is shown in the dislocation cores, allowing us to identify
its position. It is a very visual way of localizing the dislocations, however, unfortunately,
it does not give us a clear idea about the width of the stacking fault or the Burgers
vector.

Figure 3.5: Example of the calculation of the angular distribution in a arbitrary y plane
of a system containing 2240 atoms (Lx = 12a).

3.3.3 Differential displacement analysis

As introduced previously in section 2.2.4, in order to accommodate the dislocation,
the atoms across the slip plane are displaced. We can compute the spread of the
disregistry associated with a planar edge dislocation by means of the distribution of
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the components [bx, by] of the Burgers vector in the glide plane. These components are
given by the following expressions:

ρbi =
d(∆ui)

dx
(3.32)

where i = x, y and ∆ui is described by:

∆ui = uabove,i − ubelow,i (3.33)

and uabove,i and ubelow,i are defined:

uabove,i = rdislocabove,i − r
perf
above,i (3.34)

where rdislocabove,i are the positions of the atoms above the glide plane in the system with

the dislocation and rperfabove,i are the positions of the atoms in the non-distorted lattice.
The definition of the displacement for the atoms below the glide plane is analogous.
Therefore, ∆ui is the difference between the displacement of the atoms above the glide
plane and the atoms below the glide plane with respect to the perfect lattice positions.
The x component of the Burgers vector corresponds to the edge component of the
dislocation, whereas the y component refers to the screw component. The total value
of the Burger vector can be computed by integrating over all the values of x along the
glide plane. This is:

bi =

∫ Li

0

ρbi dx (3.35)

The computation of the differential displacement gives us much information about the
dislocation since from its analysis we can derive, for instance, the presence of a stacking
fault ribbon bounded by two partial dislocations, what is the width of the dislocation
core and what is the separation between the partial dislocations. In chapter 4, we show
many examples of this method of analysis, which has shown up to be extremely useful.

Concerning the computational cost of the method, it does not require the information
about the atom-atom distances, which in most cases is the most costly part of the
algorithms. For small systems and at finite temperature, it is very imprecise.

3.3.4 Nearest neighbors analysis

An analysis of the nearest neighbors can be very useful to locate the core of the
dislocation and, thus, monitor the position of the dislocation during the evolution of
the simulation. Basically, we count how many atoms are within a distance rcutoff of
each atom. The rcutoff is prescribed to be a value between the distance of the first and
second neighbors. A possible cutoff for an hcp system is [42]:

rhcpcutoff =
1

2
(1 +

√
4 + 2x2

3
)a (3.36)

where x = (c/a)/1.633 and a is the lattice parameter.
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Therefore, if some of the atoms have a value of nearest neighbors different than 12,
which is the coordination number for an hcp lattice, this would mean they are in a
region of the crystal where the distortion is high and they can be identified as a part
of the dislocation core.

The algorithm calculates the distances between atoms, which is computationally costly.
The major strength of this method lies on its simplicity, both of implementation and
interpretation. In the other hand, it gives limited information about the features of the
dislocation such as, dislocation core width, stacking fault width (although, it is given
implicitly) and Burgers vector components.

3.3.5 Common Neighbor Analysis (CNA)

The CNA method was firstly introduced by Honeycutt and Andersen [43] to study the
local structure environment. The method consists of creating a diagram for a pair of
atoms, α and β, formed by a set of four indexes (1,2,3 and 4). The criterion of the
indexes is the following

1. indicates if α and β are nearest neighbors or not. It is 1 if they are and 2 if they
are not. Two atoms are nearest neighbors if they are closer than a prescribed
rcutoff , which is, in general, the first minimum of the pair distribution function
g(r).

2. is the number of common nearest neighbors shared by α and β. In a perfect fcc
or hcp lattice is 4.

3. indicates the number of bonds among the common neighbors

4. differentiates between diagrams with same indexes 1, 2 and 3 and different bonding
among the neighbors.

Table 3.1 shows the distribution of diagrams in each of the perfect lattices. From this
analysis, we can determine the local structure in a crystal and distinguish and recognize
the different existing defects.

CNA diagram fcc bcc hcp
1421 1 0 0.5
1422 0 0 0.5
1441 0 3/7 0
1661 0 4/7 0

Table 3.1: Relative presence of each diagram in the fcc, bcc and hcp crystal structures.
Table taken from [44]

In our case, this method has shown up to be very useful, so it is a very effective way
to localize the dislocations cores and the stacking fault. In section 4.1.1, we show an
image where this method of analysis has been used to depict where the stacking fault
is since it is a region of fcc structure, and which atoms form the dislocation core. Also,
during the simulations at a certain finite temperature, we have used this parameter to
monitor the motion of the dislocation.
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The salient advantage of utilizing this method is that it is already implemented in
the LAMMPS code we employ in the classical simulations. On the other hand, its
implementation is not as easy as other estimators, what makes it less suitable to use it
for the analysis of the quantum simulations.

3.3.6 Neighbor-Common Parameter (NCP or CNP) analysis

This method of analysis was introduced by Tsuzuki et al. [44] and it combines the
strengths of two well-known methods, the common neighbor analysis (CNA), presented
previously, and the centrosymmetry parameter. The three of them are used to character-
ize the structure of a crystal and to differentiate structural defects such as dislocations,
stacking faults, grain boundaries, cracks and surfaces. However, this new method of
analysis was chosen as the most appropriate for our case since, on one hand, the CNA
has a complex way of implementation and it may be intricate to interpret, and, on the
other hand, the CSP is only fully defined for centrosymmetric crystals, i.e. fcc and bcc.
Although this does not prevent us from using them, we would incur a loss of accuracy
compared to the CNP. Also, another advantage of this method over the CNA is that
it does not require an explicit knowledge about what are the opposite neighbors, what
for the hcp structure can be a tedious and a not well-behaved numerical task.
The CNP consists on the computation of a single parameter Qi per atom. Depending
on the value given by this parameter, that atom will be arranged in a determined
structur. The definition of Qi follows:

Qi =
1

ni

ni∑
i=1

|
nij∑
k=1

Rik + Rjk|
2

(3.37)

where the index j sums over the ni nearest neighbors of atom i and index k goes
over the nij common neighbors between atom i and it’s nearest neighbor j. Rik is the
vector pointing from atom i to atom k. Respectively, Rjk is the vector pointing from
atom j to atom k. For the bcc and fcc lattices this parameter is null and for the hcp
lattice, its value depends on the lattice parameter. In the Path-Integral Monte Carlo
algorithm, we must make use of the beads formalism to compute this parameter, thus
the definition of the parameter Qi results to be:

Qi,j =
1

ni

ni∑
i=1

|
nil∑
k=1

(rk,j − ri,j) + (rk,j − rl,j)|
2

(3.38)

where Qi,j is the NCP parameter for the bead j of atom i. The vector (rk,j − ri,j) is
analogous to the vector Rik of the classical expression and indicates the vector pointing
from bead j of atom k to the bead j of atom i. Now, to obtain the NCP parameter
per atom we have to sum over all the beads of each atom,

Qi =
1

nb

nb∑
j=1

Qi,j (3.39)

This would give us the value of the parameter Qi that allows us to identify the local
lattice structure within a crystal.
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The main strengths of this method are its simpleness of implementation and interpreta-
tion. Computationally, it is costly since it requires the computation of the atom-atom
distances.
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Chapter 4

Results

This chapter is devoted to the presentation of the results obtained from our simulations.
It is divided into two major parts: the results of the simulations within the classical
regime and the ones for the quantum regime. In each of them, we will mention the
path we have followed to achieve the ultimate goal if achieved.

4.1 Classical regime

Before going into the detail, we make an overview of what we have done in this part,
how we have done it, what we expected and what we have actually obtained. This
is important to understand why we have proceeded as we did since many unexpected
issues have appeared during the simulations.
The aim of the simulations under classical conditions was to make an approach into
how dislocations behaved and to create an estimator that allowed us to characterize
and monitor the dislocation during the quantum simulation. The pursuit of a robust,
accurate and fully descriptive estimator is one of the key aspects of this work. Although
some MD codes as LAMMPS do include a package for treating with dislocations, we
had the need to create our own one that enabled us to implement it in the PIMC code.

We have used an already built code to perform the MD simulations. This is the Large-
scale Atomic/Molecular Massively Parallel Simulator, mostly known as LAMMPS [45].
The use of an already developed code to perform a simulation has its weaknesses and
strengths. The strengths being obvious, a significant weakness is the fact that is much
harder to understand and solve a problem occurring in the simulation since one has no
access to the code and is trickier to follow the path to the source of the problem.

In the classical simulations, we have used a system formed by Xe atoms arranged in a
hexagonal close-packed configuration interacting through a Lennard-Jones interatomic
potential. The motive why a system of Xe is considered instead of 4He, which was our
objective, is that under classical conditions 4He is not a solid unless a huge pressure
is applied. The application of a high pressure could lead the simulation to unexpected
behavior; therefore, we rather use Xe, which is also a rare gas and its melting point
Tm = 161, 4K makes it a solid for a broad range of temperatures under pressure-free
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(a) View of the dislocation before the min-
imization from (1010)

(b) View of the dislocation before the min-
imization from (0001). Notice how a semi-
plane is missing in the middle of the crys-
tal

Figure 4.1: Illustration of the way the dislocation has been introduced into the crystal
and the resulting system. We have used VESTA [46] to visualize the atomic structures.

conditions.
As introduced in section 3.1, the choice of the potential is a key aspect in the classical
simulations. In the present work, we use a Lennard-Jones (6-12) potential with ε =
1.77 kJ/mol and σ = 4.10 Å which makes an efficient representation of the interaction
of atoms in a crystal of Xe. In some cases, this potential is shifted to be zero for a
determined rcutoff to avoid discontinuities in the energy due to the jump at the cutoff.
This alteration of the potential may affect the energy, but it does not influence the
forces on the atoms or their trajectories. We shift it to avoid the CGR stopping due to
a discontinuity in the energy.

Introduction of the dislocation into the system

The procedure to introduce the dislocation into the system is very simple, we just
remove one semi-plane of a perfect lattice, getting the system shown in Fig. 4.1

This could seem a very careless way of introducing the dislocation, but we proved
that the system resulting after the minimization of the potential energy and the box
dimensions is analogous to the one obtained by inserting the dislocation in a more
formal way, such as Osetsky and Bacon suggest in [47]. They propose to create two
perfect crystals, one with N layers and the other with (N − 1) and strain them to have
the same area to be able to join them into one single crystal with a dislocation.

4.1.1 Zero temperature properties

In this section, we consider the part of the simulations where the minimization of the
potential energy and forces is performed. This section contains two differentiated parts,
firstly we treat the minimization itself and we analyze the resulting state and, secondly,
we perform the analysis of a crucial feature in dislocation theory, the Peierls stress. In
the second part, we present the techniques used to compute this property, since one of
them substantially differs from what the literature commonly suggests.
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4.1.1.1 Relaxation

The minimization of the potential energy for the system, also referred as relaxation, is
done via conjugate gradients method until the energy can not be reduced anymore and
the forces are lower than |Fij| < 10−10eV/Å. We concluded that the most consistent
way to relax the system was considering a fully periodic system with PBC in all three
axes. All the boxes used for the performance of the simulations in this section have a
lattice parameter a ≈ 4.26 Å(it might change due to the enlargement of the box during
the box relaxation to minimize the stresses). The value of the Burgers vector is a whole
lattice vector, so b = (a, 0, 0).

A key aspect in the dissociation of the dislocation is the presence of a metastable
stacking fault. This state is found where there is a minimum in the stacking fault
energy γ. The study of the stacking fault energy surface can give a hint on what to
expect and how the stacking is going to change. In the present work, the γ has not
been depicted due to a lack of time, but a similar energy surface to the one that would
have been obtained can be seen in Fig. 4.2, taken from the work published by Khater
and Bacon [24]. There is a metastable fault that indicates the kind of dissociation that
will lead the system when we introduce the dislocation.

Figure 4.2: γ energy surface for a system of
α-Zr. The global minimum are at the four
corners, where the system is in its perfect
configuration. A metastable fault is located
at the local minimum and indicated by the
arrows. The lengths units are a0.

We use the mentioned system and mini-
mize its potential energy employing a con-
jugate gradient algorithm. We also allow
the box to relax, so we reduce the forces
and stresses as much as possible. At this
point, we analyze the resulting configura-
tion to determine whether there is still a
dislocation or it has dissociated into two
partial dislocations, or if it has already
moved during the minimization or not.
To do so, we use the estimators we have
developed previously, and the results ob-
tained are the following. The system has
reached the configuration shown in Fig.
4.3 where the atoms colored in blue are
the ones belonging to the stacking fault
(fcc stacking), the ones colored in red be-
long to the dislocation core and the pas-
tel colored are the ones belonging to the
nondistorted hcp lattice. To perform this
differentiation, we have used the CNA pa-
rameter to distinguish between the differ-
ent arrangements that are found in the
crystal.

Moreover, it is very informative the com-
putation of the differential displacement
of the atoms in the glide plane to assess the disregistry of the atoms and depict where
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(a) View of the dislocation after the mini-
mization from (1010). Notice the arrange-
ment of the principal dislocation and the
dislocation at the boundary in an oblique
pattern to reduce the stresses at the dis-
location cores.

(b) View of the dislocation after the min-
imization from (0001). The arrows show
the partial Burgers vector for each of the
partial dislocations. Notice the sum of
both vectors give the total Burgers vector
introduced at the beginning.

Figure 4.3: Illustration of the resulting system after the minimization of the potential
energy through a conjugate gradient algorithm. In the figure, we can distinguish three
arrangement of the atoms according to their coordination number. The green ones
belong to the dislocation core, the blue ones are the stacking fault and are arranged in
a fcc lattice and the pastel ones have the common hcp coordination number

is the dislocation and what are the features of the partial dislocations. In Fig. 4.4 one
can observe the distribution of the Burgers vector for a system of 18424 atoms. In this
picture, we show four different plots with three different curves in each of them. The
upper plots refer to the displacement of the atoms with respect to the perfect lattice,
while the lower graphs depict the derivative of the above plots; thus they show the
components of each of the Burgers vector (bx, by). Each of the different curves shows
a way in which the relaxation has been performed. The blue line reproduces the data
obtained from a relaxation where the box is relaxed and the potential is shifted, the
green line does the same but without relaxing the box and the red line neither relaxes
the box nor shifts the potential. Independently of the case, we see how the screw com-
ponent is zero in modulus and the edge component is equal to a0, when integrating over
the axis containing the initial Burgers vector, x. As observed, the most relevant feature
of the relaxation is whether we relax the box or not, since the shift in the potential
does not trigger a great difference. The separation between the partial dislocations is
∼ 10a0 for the green line,∼ 9a0 for the red line and ∼ 12a0 for the blue line. Therefore,
the relaxation of the box makes the partial dislocations move away from each other as
most as possible. This is consistent with the fact that the original box is enlarged in
the x direction to minimize the stresses during the box relaxation. Also, we observe
how the partial dislocations in the similar cases are ordered +30◦ and −30◦, whereas
in the latter case are ordered the other way round,−30◦ and +30◦ with respect to the
initial Burgers vector. In Fig. 4.3a we have indicated the partial Burgers vectors with
a red arrow. The magnitude of the partial Burgers vectors is bp = b/

√
3.
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Figure 4.4: Plot of the relative displacement and the differential displacement of the
atoms above and below the glide plane in the x and y directions. The curves of
the plots represent a way in which the relaxation has been performed. The blue one
represents the resulting system after a relaxation where the box has also evidence and
the potential shifted, the red one when the box remains still and the potential shifted
and the red one when the box is not relaxedbroadand the potential is not shifted.

For the dynamic simulations, our initial configuration will be the resulting system after
the relaxation with the shifted potential of both the system and the box. This is the
case for which the energy and the forces are minimum

We have also performed a study of the effect of the system size on the relaxation of it.
In Fig. 4.5 we can compare the resulting relaxed system for two different sizes. In Fig.
4.5a we represent the Differential displacement analysis for a system with Lx = 10b,
whereas in Fig. 4.5b we plot the same analysis but for a much bigger system, with
Lx = 130a. As shown in Fig. 4.5b, the partial dislocations tend to separate from each
other as most as possible until they reach an equilibrium value of ∼ 210 Å (∼ 50b).
The width of the peak in the equilibrium is ∼ 25a, so the distortion introduced by the
dislocation is significant. From the same plot, we can infer the width of the dislocation
core, since it is defined as the region in which the disregistry is greater than the half
of its maximum. Therefore, d ≈ 12.5a. This constitutes a very wide dislocation core,
consistently with the observation of a very mobile dislocation, as defined by Eq. 2.11

However, the value of the width of the stacking fault is far from the theoretical value
predicted by the expression [22]

d =
Gb2

4πγSF
(4.1)

where b = 4.26 is the partial dislocation Burgers vector, G is the shear modulus and
γSF is the stacking fault energy. Unfortunately, we have not been able to find these
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(a) Atomic disregistry due to a dislocation in a system of
1368 atoms.

(b) Atomic disregistry due to a dislocation in a system of
344544 atoms.

Figure 4.5: Illustration of the disregistry of two system with different sizes. In both of
them we have computed the displacement difference and the differential displacement to
asses the positions and configurations of the partial dislocation cores and the stacking
fault.

values in the literature. Nonetheless, we can take as a reference the predicted value of
Borda et al. [19] of d = 434 Å for the case of quantum 4He, which is a rare gas as well
and the type of interaction is not extremely different from the one of Xe.
The alignment of the dislocation in the boundary (half at the top and half at the
bottom) and the principal dislocation in an oblique pattern is a direct consequence
of the different image stresses that occur due to the periodic boundary conditions.
This arrangement is in good agreement with the predicted by the anisotropic elasticity
theory, for instance, see the Supplemental material of [19] for an analysis using this
theory.
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Figure 4.6: Schematic representation of the system employed to retrieve the Peierls
stress in Method 1. We can differentiate three parts: U the upper part, L the lower
part and A the region of mobile atoms. The letter P indicates the periodic images.

4.1.1.2 Peierls stress

The Peierls stress is a key quantification of the lattice resistance to dislocation motion
in a crystal. This value is commonly referred as the critical shear stress (CRSS) for
glide at T = 0K. In the present work, we have used two methods to compute this
value, which should retrieve similar results.

1st Method

This procedure is the most reported one in the literature and it is the most used among
researchers to compute the Peierls stress τp [24,47]. This method consists of dividing the
solid into three different regions, U -the upper part-, A -the region of mobile atoms- and
L -the lower part- along the z axis and displacing U a certain increment while relaxing
the region of mobile atoms. Fig.4.6 shows an scheme of the division of the system.
In our case, since the dislocation line is parallel to the y axis, we displace the upper
slab of the crystal an increment ∆u in the x axis. Hence, we can depict the εxz − σxz
graph, where the strain εxz is εxz = ∆u/Lz and the shear stress is σxz = Fx/LxLz,
where Fx is the sum of the forces exerted on the atoms of the upper part. After each
displacement, we minimize the potential energy until the A region of the system reaches
the equilibrium. The atoms in the L and the U regions are freeze and fixed to their
positions after the displacement.

The results obtained are found to be very sensitive to the size of the system and to
the thickness of the upper region we pick. Also, it is important to choose a proper
strain increment. In Fig. 4.7 we can appreciate the effects of the size of the upper
region in the computation of the Peierls stress. For the narrower slab, we obtain much
more inaccurate results and they are not consistent since for a slight increment of the
strain we obtain substantial differences than for the others. The results correspond to
a system of 18424 atoms, contained in a box of Lx = 26b and Lz = 12c.

The stress profiles obtained from this simulations are not very satisfying. We would
have expected to get a first part of the plot showing a linear profile, exhibiting the
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(a) Evolution of the stress as a function of the strain in a crystal
of 18424 atoms and where the upper slab is formed by a region
of vertical size of ∼ 1c

(b) Evolution of the stress as a function of the strain in a crystal
of 18424 atoms and where the upper slab is formed by a region
of vertical size of ∼ 2.5c

Figure 4.7: The lower plots of both figures are a zoom in of the upper plot, in order to
be able to observe the elastic behavior of the crystal.

elastic behavior of the crystal, until the dislocation is strained enough to move to the
next valley of the energy surface, indicated by a sharp drop in the shear stress; and
this repeated periodically. A hint of this behavior is shown in our simulations; however,
it is not as regular as others have reported, for instance, see [47] or [24]. Although,
we have made an estimation of the Peierls stress from Fig. 4.8. We have averaged the
stress value since the point of the strain at which the dislocation starts to move, which
consistently coincides with the maximum of the stress value obtained, until the end of
the simulation. This estimation gives us a reference value of τp = 1.759± .17116MPa

To prove the accuracy of the method, the Orowan formula gives a theoretical relation-
ship between the plastic shear strain ε, the mean distance of the dislocation motion x
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Figure 4.8: Evolution of the stress as a function of the strain in a crystal of 18424
atoms and the dislocation position as a function of the same strain.

and the dislocation density ρD [22]

ε = xbρb = x
b

LxLz
(4.2)

which substituting the values obtained in our simulations, x = 6b, we get

ε = 0.01001 (4.3)

In our simulation we have that at the point the dislocation starts to move εini = 0.0031
and the strain for which the dislocation has moved over 6 Burgers vector is ε6b = 0.0143.
Therefore, the difference in the strain is ∆ε = ε6b − εini = 0.0112, which is in good
agreement with the obtained value.

Osetsky and Bacon [47] report that accurate results for this analysis are only obtained
when simulating a box with Lx ≥ 130b and Lz ≥ 80c (These are the lengths of the sides
of the plane perpendicular to the dislocation line). Therefore, we have constructed a
system of 354455 atoms and the mentioned box sizes to perform the same simulation.
The results obtained are shown in Fig. 4.9. Notice the regular pattern obtained for
the stress in Fig. 4.9. The Peierls stress obtained in this case is σp = 0.6415MPa.
This value is far from the obtained with the system of 18424 at, meaning that the size
effects are very significant, but it allows us to estimate the order of magnitude of the
Peierls stress to be around ∼ 1MPa. In the latter case, the displacement every step is
larger, ∆u = b/10.

It is important to stand out the boundary conditions used in this attempt to obtain
the Peierls stres. In this case, we have used PBC in the glide plane directions, but
non PBC in the +z direction, since it will make another dislocation appear above and
under the system. This is not a problem for the classical case, since the simulation of a
system without PBC is within the range of our possibilities, however, for the quantum
computations we strictly need the use of PBC to be able to get reliable results, since
we are very limited on the size of the system. Moreover, in this method a part of the
system, U and L, does not take part in the relaxation of the system since they are forced
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Figure 4.9: Evolution of the stress as a function of the strain in a crystal of 354455
atoms and the dislocation position as a function of the same strain.

to stand still. Once again, this procedure is unfeasible for the quantum simulations.
This is the reason why we need to seek for an alternative way of computing the Peierls
stress.

A possible way to solve the boundary problem is to introduce a system with a dipole
of dislocations on it, or even better, with a quadrupole of dislocations, which allow us
to apply boundary conditions and it reduces the effect of the image dislocations.

2nd Method

This second method attempts to reproduce the same results achieved by the other
method by studying the energy of the system at every step. In other words, in this
approach, we simply modify the box by adding a tilt (xz, xy, yz), remapping the atoms
according to this tilt and relaxing the system to reach its minimum in the potential
energy surface. After the tilt, the box is not anymore orthogonal but triclinic. The
lattice vectors that describe it are: A = (a, 0, 0), B = (xy, b, 0) and C = (xz, yz, c).
This deformation will introduce a shear stress into the system that can be computed
by means of the derivative of the energy with respect to the strain. In the present case,
we will only introduce a xz tilt. The exact expression is as follows:

σxz =
1

V

∂E

∂nxz
(4.4)

where σxz is the shear stress (MPa) applied to the system by the deformation, E is
the potential energy of the system, i.e. the potential energy since we are at T = 0K,
and nxz = xz/Lz is the displacement strain defined from the tilt factor xz. In this
method we use PBC in all three directions, to make a more realistic approach, despite
the creation of other dislocations at the boundaries.

For the previous system of 18424 at. and 2240 at. we compute this analysis. In Fig.
4.10 we plot the energy of the system, the stress of the system and the position of
the dislocation as a function of the strain for the system of 18424 atoms. For the
smaller system, we obtain roughly a similar profile. The energy profile is consistent
with the expectations since it shows a certain periodicity distorted by the presence of
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a dislocation. From section 2.2.4 we know that the Peierls stress, τp, is defined as the
maximum slope of the energy profile. Therefore, for these cases we obtain:

τ 18242at.
p = 3.3756694MPa; τ 2240at.

p = 5.2336159MPa (4.5)

These values are rather small and agree with the observed in method 1 and in the finite
temperature simulations, where almost no lattice resistance opposes to the movement
of the dislocations. However, an intriguing fact arising from the dislocation position
plot makes us doubt on these results. Fundamentally, the Peierls stress is defined as
the shear stress at which the dislocation starts to move at T = 0K. In the observed
plots, the dislocation moves for values of the shear stress ∼ 1.1MPa. This value is
much smaller than the global maximum, but it ”coincides” with the local maximum.
Moreover, it is in better agreement with method 1, so we take this value as the Peierls
stress obtained from method 2.

In Wang’s et al. work [48], they fit the profile of the energy to a mathematical function
related with the elasticity theory. In our case, although the profile of the energy exhibits
a periodic curve, we have not been able to fit the data to a suitable function. Choicely,
as explained, we have relied the observations on the fundamentals of the Peierls stress
relating the shear stress values to the motion of the dislocation.

Figure 4.10: Representation of the Energy (eV), the shear stress σxz (MPa) and the
position of the dislocation (Å) as a function of the strain for a system of 18424 atoms.

Analoguely to Method 1, we calculate, via the Orowan formula, if the theoretical
expectations match the experimental results. In this case the mean dislocation motion
x = and the box sizes are the same as before, Lx = 26b and Lz = 14c = 14 · 1.633b.
Therefore,

ε = xbρb = x
b

LxLz
(4.6)
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where substituting the values obtained in our simulations we get

ε = 0.02523 (4.7)

In our plot, we obtain a strain of 0.0629 to move the mentioned distance, which is far
from the theoretical value. The strain for which the dislocation starts to move does
coincide with the strain observed in Method 1.

A possible inaccuracy that led us to wrong results might be the forces of the periodic
images and the fact of having a dislocation at the boundary.

In this sense, to compute the size and the image force effects we have performed the
same analysis for three different systems, the first one consisting of a system of 1368
atoms with a single dislocation, the second one is a quadrupole of dislocations, as
shown in Fig. 4.11a, with 5472 atoms and a third much bigger one with 247680 atoms
containing a quadrupole too. The introduction of a quadrupole is the unique way to
vanish the periodic image forces in the dislocation cores. Nonetheless, after the first tilt

(a) View of the initial system contain-
ing the quadropole from the (1010) plane.
The introduction of the quadropole is due
to the minimization of the image effects
[49]. Notice the arrangement of the four
dislocations, which can not be reproduced
by means of a single dipole.

(b) View of the relaxed system contain-
ing the quadrupole from the (1010) plane.
The dislocations have recombined and
formed a wide stacking fault where atoms
are arranged in a FCC lattice. The initial
separation between the dislocations is very
small and when we apply a small stress the
dislocations tend to recombine.

Figure 4.11: Quadrupole of dislocations in a box containing 5472 atoms and with
Lx = 20a.

of the box, the dislocations seem to merge into one big stacking fault, recombining and
disappearing, as shown in Fig. 4.11b. Obviously, this deceiving behavior disables us to
compute the value of the Peierls stress. If we wanted to perform the computation this
way, we would need a huge system, where the partial dislocations are too far from each
other to interact.

In Fig. 4.12, we plot the Differential displacement analysis for the quadrupole case.
We would have expected four peaks in the differential displacement in the x direction,
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Figure 4.12: Plot of the relative displacement and differential displacement in the planes
where the dislocations were introduced. The green curve depicts the DD and relative
displacements of the planes of the dislocations of the upper part of the box, whereas
the blue one describes the distortion of the atoms in the lower dislocation

since there are four partial dislocations, but only two appear. We assume this is due to
the interaction between the dislocations, that somehow balance the displacement of the
atoms. In the y direction we obtain the expected results, with four peaks and a value
of zero for the screw component of the Burgers vectors (the integration is null).

To get an estimation of the size error it would have been interesting to perform the
same simulations but introducing a dipole rather than a quadrupole. We know this
scheme will be more sensitive to the image forces than the quadrupole, but less than a
single dislocation. Once again, this has been imposible due to time constraints.

4.1.2 Finite temperature properties

In this section, we show the results obtained from the simulations of a system with a
single dislocation at a finite temperature. The system is relaxed from the initial config-
uration, as introduced previously. The boundary conditions applied to the simulations
are PBC in the glide plane axes, i.e x and y, and in the z direction. However, the
simulation box is enlarged in the +z and −z edges to create a vacuum gap between the
vertical images. This procedure is done to avoid the creation of a second dislocation in
the upper and lower edges that would interact with the principal dislocation.

We have performed different simulations using different ensembles and different box
sizes, Lx = 12a (2240 atoms) and Lx = 26a (18424 atoms). The temperatures at which
we have carried out the simulations are rather low, 25K and 50K. For the NVT and
NPT ensembles, the temperature is fixed through the simulation and, in the case of the
NPT, the pressure is set and fixed to zero as well. Also, the shear stresses are forced
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to be zero in the latter case. In the NVE simulation, we set the initial velocities to be
the corresponding ones to a kinetic energy of 25K, by the equipartition theorem. Then,
at the beginning of the simulation, half of this kinetic energy transforms in potential
energy, since the total energy (E) of the system must be conserved in this ensemble.
Therefore, the decrease in the kinetic energy provokes the temperature to drop to a
half of its initial value, 12.5K and 25K, respectively. The simulations are performed
with a timestep of ∆t = 1 fs and 800000 steps long, resulting in simulations of 800ps.

The results obtained for each simulation are exhibited in Figs.4.13, 4.14, 4.15 and 4.16.

Figure 4.13: Representation of the position of the dislocation versus the time expressed
in simulation time steps. The system is formed by 2240 atoms and the temperature
of the system is fixed to 25 K through all the simulation. The simulation has been
performed using three different ensembles, NVT, NPT and NVE. In the case of the
NVE ensemble, the system reaches the equilibrium at a temperature of 12.5 K

Figure 4.14: Representation of the position of the dislocation versus the time expressed
in simulation time steps. The system is formed by 2240 atoms and the temperature
of the system is fixed to 50 K through all the simulation. The simulation has been
performed using three different ensembles, NVT, NPT and NVE. In the case of the
NVE ensemble, the system reaches the equilibrium at a temperature of 25 K
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Figure 4.15: Representation of the position of the dislocation versus the time expressed
in simulation time steps. The system is formed by 18424 atoms and the temperature
of the system is fixed to 25 K through all the simulation. The simulation has been
performed using three different ensembles, NVT, NPT and NVE. In the case of the
NVE ensemble, the system reaches the equilibrium at a temperature of 12.5 K

Figure 4.16: Representation of the position of the dislocation versus the time expressed
in simulation time steps. The system is formed by 18424 atomsaverageand the temper-
ature of the system is fixed to 50 K through all the simulation. The simulation has
been performed using three different ensembles, NVT, NPT and NVE. In the case of
the NVE ensemble, the system reaches the equilibrium at a temperature of 25 K

The position of the dislocation has been monitored with three different estimators
to give consistency and robustness to the analysis. For the case of the differential
displacement (3.3.3), due to its sensitiveness to the thermal fluctuations, we average
the positions of the atoms over five timesteps, achieving very decent results. The
other two methods of analysis are the study of the nearest neighbors (3.3.4) and the
computation of the common neighbor analysis (3.3.5). The analysis of the nearest
neighbors gives the blue curve in the plots, which is in the middle of the position of
the partial dislocation cores. The reason for this is that, for the sake of simplicity, we
have averaged the position of all the atoms that exhibited a different number of nearest
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neighbors than twelve, obtaining the center of the stacking fault as a result. Due to
the variation of the volume in the NPT simulation, the computation of the nearest
neighbors gives erronous results, so in these cases is better to look at the other two
estimators.

Notice the movement of the dislocation when applying no shear stress at all. Cautiously,
we regard the residual stresses that might affect the dislocation. In Fig. 4.17 we
represent the temporal evolution of the σxz which is the candidate to be responsible
for the movement of the dislocation. As observed, for the NVT and NVE ensembles it
reaches values of 1.5MPa in Fig.4.17a and of almost 4MPa in Fig. 4.17b. Comparing
these maximum values to the approximations of the Peierls stress obtained in section
3.1.1 it is consistent that there is movement under these residual stresses. Moreover, we
want to emphasize the case of the NPT ensemble, where the stresses are very close to
being null but we still observe some motion. This manifests the very low resistance of
the lattice to dislocation movement since only with the energy coming from the thermal
influence is sufficient to make the dislocation move.

(a) System of 18424 atoms

(b) System of 2240 atoms

Figure 4.17: Temporal evolution of the σxz component of the shear stress matrix at
T = 25K

In addition, the stress values for the small (Fig. 4.17b) system are greater than in the
big system (Fig. 4.17a). This is in good agreement with the fact that the periodic
image forces are greater in the small box than for the bigger system.

The stacking fault bounded by the dislocations appear to attain an equilibrium width
after a transient period. The mean values for each of the ensembles, box sizes and
temperatures are shown in tables 4.1 and 4.2
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25 K
Ensemble/Size 2240 atoms 18424 atoms

Mean (Å (a)) Stand. Dev. (Å (a)) Mean (Å (a)) Stand. Dev. (Å (a))
NVT 26.5192 (6.0134) 1.792 (0.4064) 52.9240 (12.0009) 1.4029 (0.3181)
NVE 26.1663 (5.9334) 1.0816 (0.2452) 53.5605 (12.1452) 2.5636 (0.5813)
NPT 25.9512 (5.532) 2.0846 (0.4726) 53.2529 (12.0755) 2.5479 (0.5777)

Table 4.1: Widths of the stacking fault for the different sizes of the systems and
ensembles at T = 25K. Notice that the value in parenthesis is expressed in lattice
parameter units

50 K
Ensemble/Size 2240 atoms 18424 atoms

Mean (Å (a)) Stand. Dev. (Å (a)) Mean (Å (a)) Stand. Dev. (Å (a))
NVT 26.2852 (5.9603) 2.1225 (0.4812) 52.6132 (11.9304) 14.7192 (3.3377)
NVE 26.6292 (6.0383) 1.7208 (0.3902) 52.5226 (11.9098) 14.6723 (3.3270)
NPT 26.0362 (5.9039) 2.4744 (0.5611) 52.5689 (11.9203) 14.7481 (3.3442)

Table 4.2: Widths of the stacking fault for the different sizes of the systems and
ensembles at T = 50K. Notice that the value in parenthesis is expressed in lattice
parameter units

The average distance between the two partial dislocations, or analogously, the width of
the stacking fault region, does not vary with the temperature or the ensemble. Indeed,
it is the same as the one observed after the relaxation. The standard deviation, although
small, seems to be slightly bigger in the NPT case than for the other cases. Due to the
thermal fluctuations being bigger at T = 50K than at T = 25K, the standard deviation
of both systems grows with the temperature as well. Once again, as indicated in the
Relaxation part of section 4.1.1, the width of the stacking fault is as big as the box
allows it to be. Eventually, this width would arrive at an equilibrium, but that point
is far from our scope due to size restrictions in our simulations.

4.1.3 About the boundary conditions

To emphasize the importance of the boundary conditions in atomistic simulations,
consider the Avogadro’s number, NA = 6.022 × 1023, which is the number of atoms in
one mole. Roughly, the order of magnitude of atoms contained in a cubic centimeter
is of this order. In a simulation, although the fast development in computational
sciences, we can handle from 103 to 106 atoms. Therefore, the atoms of a simulation
are influenced by a large number of interacting atoms (∼ 1023) that can not be taken
into account explicitly, unless we want a simulation to take several years.

The search of suitable boundary conditions that allow simulating a more realistic envi-
ronment more efficiently is still present today. Periodical boundary conditions permit
us to avoid all the surface effect since there are no surfaces explicitly. The choice of
the boundary conditions can alter the nature of the problem substantially since it will
affect what determined atoms perceive.

In our work, we have faced many challenges when dealing with the boundary conditions.
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At the very beginning, we used periodic boundary conditions in all three axes to
perform all the simulations, since this type of boundaries are the most realistic ones
when simulating a crystal. However, we encountered a big problem: the appearance
of a second dislocation with Burgers vector opposite to the already known one. For
instance, observe Fig. 4.3a to visualize it. The atoms colored in green at the upper
and lower boundary are a part of each of the dislocations in the boundary. To avoid
this effect, we have two possibilities; firstly, we can introduce a dipole of dislocations
instead of a single dislocation or, secondly, we can apply other boundary conditions
rather than PBC.

Introducing a dipole instead of a single dislocation is within our reach for the classical
case; however, for the quantum case we are very restricted by the size of the box to fit
two dislocations. We would have to employ a much bigger system than the one used
for the quantum simulations to do so. Consequently, the computational costs would be
much greater.

The fact of having PBC also means we have a dislocation (or a dislocation dipole or
quadrupole) in every periodic image cell. These dislocations interact with each other,
exerting forces on each other, which can ”pollute” our final results substantially.

The advantage of the introduction of a quadrupole arrangement is that the superposition
of the elastic stress fields produces zero stress at the dislocation centers. These means,
the dislocation does not notice any other shear stresses that the one introduced by us.

Consistently, these image-image interactions are reduced when enlarging the system,
since the distance between dislocations is bigger. This procedure allows us to quantify
the errors introduced by the images and validate whether the system is too small or
not.

4.2 Quantum regime

The quantum simulations are based on a fully periodic cell containing a single dislo-
cation. The initial configuration was created by the same method explained in the
classical simulation, the extraction of a semiplane. It was relaxed to its minimum po-
tential energy state by means of a conjugate gradient algorithm as done in the classical
simulations.
As happened before, we face a problem when introducing a single dislocation and
using PBC, since other two dislocations appear at the upper and lower boundaries.
In this case, we are no longer capable of avoiding this problem due to the size
restrictions we encounter. We have to conform ourselves with bearing it in mind
when analyzing the results. Our system contains 1368 atoms, distributed in a box of
Lx = 13.7417σ (10b), Ly = 14.2808σ (6b) and Lz = 13.4640σ (6c), where σ = 2.556 Å.
Hence, the Burgers vector magnitude is ∼ 3.74 Å and the density is ρ = 0.5177σ−3.
Fig. 4.18 show the 2D and 3D representations of the initial configuration of the system.
The different colors show the structural arrangement of each atom. A color equivalent
to zero means the atom is arranged in a fcc lattice, whereas a value between 2 and
3 means it is in a hcp region. Higher values of this parameter indicate an unknown

57



Author: Santiago Sempere Simulation of dislocations in crystals

arrangement, so these are the atoms forming the dislocation core. Fig. 4.19 show the
initial disregistry analysis of the relative displacement between the atoms above and be-
low the slip plane. The figure displays a very narrow stacking fault region with almost
no dissociation of the dislocation. The reason why this occurs is due to the small size
of the simulation box; that does not allow the dislocation to dissociate due to periodic
image forces.

(a) CNP analysis of an arbitrary x − z
plane.

(b) CNP analysis in 3D

Figure 4.18: CNP analysis of the initial configuration of the quantum simulation.

Figure 4.19: DD analysis of the initial configuration of the quantum simulations

The choice of making the system bigger in the x − z plane, as done for the very big
systems in the classical simulations, to reduce the periodic image forces was discarded
since the reliability of the calculation of the superfluidity lies on the width of the box
in the y direction. A very narrow box in the y direction could lead the system to show
superfluidity wrongly [50,51].

Several simulations at different temperatures, i.e 3K and 1.5K, were carried out. For
each of these temperatures, we performed a simulation of 100 Monte Carlo steps and
100 steps per each block. The Chin approximation [38] is used to compute the thermal
density matrix and the Worm algorithm [39–41] is used for the permutation sampling.
The atoms interact through a pair action based on the Aziz potential [52].

We have been able to compute other properties for the system with the dislocation
during the simulation. Fig. 4.20 shows the evolution of the energy and its fluctuations
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T σkin (%) σpot (%) σtot (%)
1.5 K 0.06707 0.00907 0.36434
3 K 0.901133 0.10054 4.61865

Table 4.3: Mean standard deviations (σ) of each of the components of the energy for a
system of solid 4He at T = 1.5K and T = 3K.

around an equilibrium value for each of the two simulations performed. The mean
standard deviation averaged over the last 25 steps are summoned in table 4.3. As
observed, the standard deviations prove that the simulations have not yet converged to
the equilibrium value. Conventionally, an admitted value for σ to consider the system
has reached its equilibrium is of the order of 0.1% − 0.01%. The results obtained
indicate the simulations done are too short, particularly for the case of T = 3K, where
the standard deviation is much greater than the admitted values. For the case of lower
temperature, T = 1.5K, the system is very close to the equilibrium, but not there yet.
This might be a reason why we have not been able to obtain meaningful results in the
study of the dislocation movement, as explained afterward.

Figure 4.20: Energy of the system of solid 4He at T = 1.5K (a) and T = 1.5K (b).
The fluctuation of the total energy is for each system are exhibited in table 4.3

Some doubts about the solidity of the system arose from the structural configuration of
the system at the temperature of T = 3K which is very close to the melting point. Fig.
4.21 and Fig. 4.22 exhibit the radial distribution function (a) and the static structure
factor S(k) (b). The radial distribution function gives an idea of the distance between
atoms. In the perfect static case the plot are Dirac deltas. On the other hand, the
static structure factor shows the periodicity of the system. A high peak in the S(k)
means the system is very periodic and, therefore, the crystal structure is maintained.
Although the peak for the S(k) is not extremely high, for both temperatures we obtain
a very similar structural configuration, ensuring that for T = 3K it is still solid. The
reason why the peak is not very well defined might be due to the distortion introduced
by the dislocation, which breaks the periodicity of the lattice.

To analyze the outcome results we have tried both on-the-fly and a posteriori methods.
In the first case, we computed the DD, Nearest neighbors and NCP analysis every 5
Monte Carlo timesteps. This way we avoided the need for storing an immense data
file with the position of all the beads at certain timesteps. However, the inaccuracy of
the results given by this method suggested to try a posteriori analysis. Also, the on-
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Figure 4.21: Radial distribution function (a) and static structure factor S(k) (b) result-
ing from the simulation of 4He at T = 1.5K.

Figure 4.22: Radial distribution function (a) and static structure factor S(k) (b) result-
ing from the simulation of 4He at T = 3K.

the-fly method of analysis does not allow us to compute a calculation over an averaged
value of the positions easily. Then, to perform a posteriori analysis, we computed the
simulation saving the beads positions averaged over five timesteps. We found the zero-
point motion of the atoms to be greater than expected and, therefore, we had to average
their positions to get accurate values for the structural estimators implemented. We
handled with an equivalent classical system of 1368×beads which in the case of 1.5K,
where we use polymers of 192 beads, goes up to 262656 atoms. However, even in this
case, we have not been able to extract much information about the core structure and
mobility of the dislocation. The structural distortion introduced by the great zero-point
motion summed with the restrictions on the size of the box do not let us perform an
accurate analysis of the dislocation. In addition, the length of the simulation prevented
us of having enough statistical data to analyze.

Due to lack of time, we have not been able to perform a longer simulation that en-
abled us to make a detailed study of the system in the equilibrium. Hence, we have
neither been able to make an exhaustive study on the existence of superfluidity in the
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dislocation cores. As a first approach, though, the system does not show any sign of
superfluidity response. This follows what Borda et al. concluded in [19], not observing
superfluid cores in the dislocations. However, the non-appearance of superfluidity in the
dislocation cores in the work of Borda et al. could possibly be a result of a technical
misinterpretation. The calculation of the superfluidity without the use of the worm
algorithm, as is the case, is very restricted to systems of a few particles (∼100 atoms).
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Chapter 5

Conclusions

In this thesis, we have performed atomistic simulations in the same system by using
both classical and quantum approaches. We have dealt with an hcp lattice structure
containing a dislocation -or in specific cases more than one-, which is a line defect that
mediates the plastic behavior of materials. Firstly, we have studied the behavior of
the dislocation at the classical regime, both at zero and at finite temperatures. To do
so, we have made used of an already built code (LAMMPS) that has permitted us to
focus more on the results rather than in the Molecular Dynamics code implementation.
Applying several methods of relaxation, we have achieved the most stable, and thus
the most likely, configuration of the system at zero temperature. From this state, we
have applied and developed some techniques to study the plastic features of the solid
containing the dislocation employing the study of the Peierls stress. Secondly, we have
performed numerical simulations of a similar configuration in the quantum regime by
means of a Path Integral Monte Carlo method (PIMC). We have been able to reproduce
some of the results obtained by other researchers in very recent reports such as Borda et
al. [19]. Due to time constraints, we have not been able to fully extend our simulation
study to the regime of low temperatures, in which interesting phenomena involving
dislocations are expected to occur. We leave this piece of research as future work (see
Chapter 6).

Next on, we report the main conclusions obtained at each of the parts of the thesis

5.1 Classical regime

5.1.1 Relaxation

As a first contact with the dislocations, we have relaxed the system utilizing several
techniques in order to obtain the most stable state, i.e. the state of minimum energy
and forces, after the extraction of a semiplane to create the dislocation in the lattice.
We have tested how the final system can be quite sensitive to some details in the
relaxation procedure such as the shifting of the potential or the relaxation of the box
to minimize the forces and stresses. At the relaxed state, we have recovered a well-
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known structure for hcp lattices with a dislocation, the dissociation of the dislocation
into two Shockley partial dislocations bounding a stacking fault. Consequently, the
atoms in the stacking fault region show up to be arranged in a fcc lattice. These
results have been possible by the development of an algorithm to study the disregistry
of the atoms, what it is often known as the relative displacement. As explained, the
derivative of this function gives the corresponding edge and screw components of the
Burgers vector, in the present case, (bx, by). Therefore, we observe how the initial
dislocation splits up into two partial dislocations as follows:

1

3
[1120]→ 1

3
[1010] +

1

3
[0110] (5.1)

where 1
3
[1120] is the initial Burgers vector of an edge dislocation with no screw compo-

nent, and it splits up into two dislocations with individual non-zero screw component.
The width of the stacking fault, which depends on the elastic properties of the crystal,
has shown up to be very broad. Its theoretical width is out of our scope and, thus,
we have observed that every time we enlarged the size of the box that contained the
Burgers vector (in our case, Lx) we achieved a different, greater, width for the stacking
fault region.

5.1.2 Peierls stress

We have implemented two different techniques to retrieve the value of the Peierls stress
for the classical system of Xe. We have observed that comparing both methods we have
not been able to achieve a final estimation of the Peierls stress, but we are capable of
giving a guess in the order of magnitude of it, which seems to be enough to explain
some of the results obtained at finite temperature. A consistent order of magnitude
with the simulations would be τp ∼ 1MPa. This value is rather low and it is the
cause of the motion of dislocations at finite temperature in the absence of external
forces, only due to the thermal fluctuations. The computation of the shear stress by
means of the first method developed is very sensitive to the box size and the upper
slab size. In our simulations, it has shown up to give a very irregular pattern for the
small boxes, when we expected a regular periodical profile as reported in many cases,
for instance, see [24]. This is not a problem for classical simulations, since we have
computational resources to overcome these difficulties, and, therefore, this method can
provide a good estimation for the Peierls stress, as shown in Fig. 4.9 for the system of
300000 atoms. Nonetheless, for the quantum simulations, due to its intrinsic complexity,
it seems unfeasible to perform simulations of more than a few thousand of atoms.
On the other hand, we have developed a method to compute the Peierls stress that,
from a qualitative point of view, offers better results than the former one. In this
approach, we recover a very smooth profile for the energy when tilting the box more
and more. We certainly believe this method, when studied the errors induced by the
size effects, is the most suitable to study the Peierls stress at zero temperature in the
quantum regime.
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5.1.3 Finite temperature

In chapter 4.1.2, we have simulated the previously relaxed system of Xe at certain finite
temperatures, T = 25K and T = 50K, with no stresses or external forces applied. We
had the purpose of simply confirming our expectations of observing no motion at all.
However, we observe movement of the dislocation under no stresses, other than the
residual ones, manifesting the absence of almost any intrinsic lattice resistance for the
system. We have distinguished two sources for this motion, depending on the ensemble
used for the simulation. In the NVT and NVE ensembles, we have observed that a
large residual stress, of the same order of magnitude of the Peierls stress τp, fluctuates
in time, causing the dislocation to fluctuate as well. In the other hand, in the NPT
ensemble, where we force the stresses to be as close to zero as possible, we conclude
the motion is due to thermal fluctuations, which led the dislocation to move to one
side or the other alternatively. This is an important conclusion since gives an evidence
that the absence of lattice resistance to dislocation motion is not an exclusive feature of
quantum systems, but it has more to do with the kind of interaction, i.e. the strength
of the interatomic potential, between particles. Moreover, we observe the width of the
dislocation remains constant throughout the simulation and its value coincides with the
initial width, obtained from the relaxation.

5.2 Quantum regime

Motivated by recent experiments done in the field, we have computed the behavior of
a single dislocation in a 4He solid at very low temperatures, i.e T = 1.5K and T = 3K.
Although not being able to study thoroughly the dislocation itself, we have been able
to compute the properties of the system with a dislocation. We have observed no
sign of superfluidity, either in the cores of the dislocation, as reported by Boninsegni
et al. [11], or the stacking fault region. Although, a possible cause why we have not
observed either of those might be the high temperature at which we performed the
simulations or their small length. In Boninsegni’s et al. work, they span a temperature
range from 0.2 to 1K, whereas, in Borda’s et al., they simulate the system at a
temperature of T = 0.267K. These values are far from ours, 1.5K and 3K. Due to
many doubts regarding the structural analysis of the system at T = 3K, we questioned
if the solid had melted into a crystal or not. From the analysis of the radial distribution
functions and the static structure factor, we concluded that it was still a solid for that
temperature. These issues prevented us from doing a much longer simulation that could
give us reliable and meaningful results.
The results provided by the on-the-fly estimators have shown up to be non-sense.
Therefore, we have concluded that to develope a proper analysis of the dislocation
motion and to be able to track the dislocation throughout the simulation, we have
to average the positions of the beads over several time steps to reduce the zero-point
motion effect.
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Chapter 6

Further work

Throughout the thesis we have been able to cover most of the objectives proposed
related to the classical regime, however, due to the appearance of unexpected results in
this first part, we have not been able to perform an exhaustive analysis in the quantum
regime. Therefore, in this section, we present the aspects that require further work and
a path to follow in order to achieve the objectives we proposed at the beginning.

Concerning the quantum simulations, we have been able to make an approach to the
simulation of a single dislocation in a solid of 4He at low temperatures. Our first
objective was to make a study of the behavior of the dislocation under quantum effects
and to clarify the controversy of the supersolidity; however, many improvements must
be done to extract conclusions from our simulations. Firstly, we should be able to
reimplement the estimators in the PIMC code in order to make them work every some
iterations after we have averaged the beads positions. The zero-point motion of the
particles distorts the structure of the crystal, disabling us to compute the properties
of the dislocation. Secondly, we should review the simulation of a single dislocation
with PBC. It would be logical, if possible, to better simulate a dipole of dislocations to
avoid problems at the boundaries. With these improvements and performing a larger
simulation, we would be able, in principle, to achieve the same results as Borda et al.
concerning the dislocation behavior, but better results upon the superfluidity of the
stacking fault and the dislocation cores. In our PIMC code, it has been implemented
the Worm algorithm that allows us to properly calculate the superfluidity for systems
greater than a few hundreds of atoms. In Borda et al., they do not make use of this
algorithm (at least they do not mention it), so that is why we doubt in some of the
technical aspects of their procedure and we think we could make a better study, at least
concerning the quantum aspects of the simulation. Moreover, it would be interesting
to span a greater range of temperatures, trying to go under a few dK. Bear in mind
as a useful reference that the giant plasticity phenomenon has been reported to appear
at T ' 0.15K, so it would be interesting to be able to achieve this temperature to
contrast the experiments with the simulations.
Moreover, it would be important to perform a quantum static analysis of the system
with a dislocation. This is, to calculate the properties at T = 0K. The Path Integral
Ground State method allows us to perform such analysis, that would be very useful to
assess the Peierls stress for the quantum system and to depict the stacking fault energy
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surface γ as well. The study of both properties would give us an idea of the lattice
resistance to motion of dislocation, and, therefore, the resistance to plastic deformation
and the stability of the dissociation of the edge dislocation into two Shockley partial
dislocations. In the end, we would be able to give a proper theoretical explanation to
the facts observed in the experiments, such as Giant Plasticity, from a fundamental
point of view.
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