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Abstract

In this paper, a review of models and algorithms that are conceived to solve the collision queries
problem is presented. Here, the type of query in proximity and collision computations is stated. The
phases to solve the collision detection, prediction and proximity queries are exposed and classified.
A collection of methods that are found in the literature are explained.

1 Introduction

Several classifications refered to collision and proximity queries are presented in this paper. Many clas-
sifications can be done from different application contexts. Hundreds of papers have been published
on several aspects of these queries, bringing many data structures and reporting distinct information
depending on the interested query.

2 Problem Classification

The collision detection problem can be formulated in several forms depending on the type of output sought
and on the constraints imposed on the inputs. Constraining the inputs is a usual way of simplifying the
complexity of problems. Thereby, in many approaches objects are assumed to be polyhedra, with planar
faces, and convex, as we will see in the following sections.
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2.1 Collision Handling

The two main issues involved in the so called collision handling are those detecting that a collision has
ocurred (collision detection) and then describing a response as an effect of collision (collision response).
This document is focused on collision detection properly and not on collision response that is a dynamic
problem which involves phisical laws to predict the behaviour of the objects that would penetrate. For a
discussion of response algorithms, see [Kam93, Bar90, MW88, Can86, FHA90]. Collision detection is a
geometric interference problem that depends on the space relationship of objects.

2.2 Mesure

There are at least [LMO03] three forms of the distance queries, exact, approximate and boolean. The
exact form asks for the exact distance between objects. The approximate form yields an answer which
is within some given error tolerance of the mesure. The boolean form reports whether the exact mesure
is greater or less than a given value. Although the Euclidean norm is the most common norm by which
distance is computed, distance can be defined in terms of other norms. For example, the [, or maz—norm
distance [VKKT03]. Under this last norm, the distance between two points x and y (in d dimensions) is
represented as D, and is defined as:

Do (z,y) = maz | ; — y; | i=1,2,..,d
2.3 Environments and Hybrid Collision Detection

When more than two objects are moving on the space the most obvious problem which arises is the
O(n?) collision detection between all the n objects. This is the so called allpairs problem. It is obvious
that this is an undesirable property of any collision detection algorithm and several techniques have
been proposed to deal with it. Hybrid collision detection, a term introduced in [KTAK94], refers to any
collision detection method which first performs one or more iterations of approximate tests to interfering
objects in the entire workspace and then performs more accurate test to identify the objects parts causing
the interference. [Hub95] and [CLMP95] also propose hybrid algorithms for collision queries.

Hubbard [Hub95] refers to two collision tests as two phases, the broad phase, where approximate interfer-
ences are detected, and the narrow phase where exact collision is performed. In [OD99, 0’S99] these two
phases are defined and classified as: The narrow phase itself may also consist of several levels of inter-
section testing between two objects at increasing levels of accuracy, the last of it may be fully accurate.
The most accurate level is refered as narrow phase: exact level and the phase of testing for collision using
increasing levels of accurancy is refered as narrow phase: progressive refinement levels.

In large environments (or, also called, complez systems), where the environment is composed by thousands
of objects, the broad phase itself may consist of two phases too. At the first one, collision detection tests
are performed to find subspaces (or subsets of objects) of the entire workspace where collisions can occur,
rejecting, at the same time, all the space regions where interference clearly can not be possible. At the



second phase, the collision test refers to determine the candidate interfering objects (objects identifiers
that can cause collision). We shall refer to these phases as broad phase: progressive delimitation levels
and broad phase: accurate broad level.

As we will see on the remainding of this paper the phases of the global collision detection problem can
be summarized as:

e Broad phase: progressive delimitation levels: This phase restricts the subspaces where a collision
can be found by using, commonly, hierarchies of space subdivisions (subsection 3.3).

e Broad phase: accurate broad level: In this phase the approximate test is performed to identify
interfering objects in the entire workspace (in small environments with low number of objects) or
in the subspaces found in the previous phase (in large environments) using a coarse representation
of object shapes (simplified forms of objects such as bounding volumes, subsection 3.2).

e Narrow phase: progressive refinement levels: objects are usually modeled by hierarchies of simple
shapes (subsections: 3.3 and 3.4). Hierarchical approximations allow to determine which object—
parts are susceptible of interfering.

e Narrow phase: exact level: The interference tests need only to be applied within the relevant object—
parts selected in the previous phase. In this phase a tightly representation of object shapes is used
to accurately identify any object parts that cause interference (subsection 3.1).

The entire broad phase and the narrow phase at progressive refinement levels help to reduce the botleneck
of O(N?). Figure 1 summarizes the main features of each phase. In the figure, N indicates a very high
number of objects, while n indicates a subset of the IV original objects.

INPUT: N-BODIES
DELIMITATION LEVELS USE OF HIERARCHY CAL STRUCTURES

OUPUT: n-BODIES (SUBSET OF N-BODIES)
BROAD PHASE

INPUT: n-BODIES
ACCURATE BROAD LEVEL< USE OF SIMPLE BOUNDING REPRESENTATIONS
OUPUT: 2-CANDIDATE BODIES LIST

INPUT: 2-BODIES

REFINEMENT LEVELS USE OF HIERARCHY CAL STRUCTURES

OUPUT: CANDIDATE PARTS OF THE 2-BODIES
NARROW PHASE

INPUT: 2-BODIES OR CANDIDATE PARTS OF 2-BODIES
EXACT LEVEL USE THE GEOMETRY OF OBJECTS
OUPUT: COLLIDING FEATURES

Figure 1: Phases of the global collision detection problem



2.4 Temporality

The collision detection problem can be solved from two different point of views, static collision and dy-
namic collision (where objects are moving). One way to treat the dynamic collision detection is sampling
time and reducing the problem to multiple calls to static inteference test. This approach is called multiple
interference detection. Dynamic collision can be achieved in other ways: swept volume interference, ex-
trusion in 4D space [Cam90] and trajectory parameterization [KR03]. For more information about other
dynamic collision approaches see [JTT98, JTTO01].

2.5 Type of Query

As pointed out in [LMO3], there are two forms of collision detection or proximity query, boolean or
enumerative. The boolean distance query computes whether the two point sets, belonging to diferent
objects, have at least one point in common. The enumerative form yields some representation of the
intersection set.

Algorithms can be classified in different classes depending on the type of query. Four kind of algorithms
can be distinguished:

e E(CA: Exact Collision Algorithms: Algorithms that are focused on finding the exact interference
regions computing the object parts that are involved in the collision if it exist.

e ST: Separability Test: Algorithms that the main goal is centered on reject collision making use of
a minimum-tolerance distance ¢.

e NCIT: Non Clear Interpenetration Test: Algorithms that the main goal is pointed on finding a non
clear interpenetration between objects, making use of a minimum—tolerance of interpenetration.

e (GBA: General Broad Algorithms: Algorithms that are based on bounding volumes and either reject
collisions or detect possible collisions without using a pre-determined tolerances.

The behaviour of each algorithm class is showed in figure 2. As it can be seen, the ECA algorithms solve
the collision detection problem in the narrow phase: ezxact level, while others (ST, NCIT and GBA) solve
the problem in the previous phases. In figure 2 we have to consider two kind of LISTS. In the ECA
algorithms the returning LIST is a list that contains the object features (object parts) involved on the
detected interference, while in the ST and NCIT cases the LIST contains the object identifiers involved
on the collision.

2.6 Type of Objects

To understand how objects can collide we have to consider which kind of objects may be present in
the workspace. Below we consider the collision detection problem depending on types of objects are



ECA sT NCIT GBA
o NO COLLISION TRUE TRUE TRUE or FALSE
o NO COLLISION FALSE + LIST TRUE TRUE or FALSE
o | g COLLISION +LIST FALSE +LIST TRUE TRUE
oi [ o COLLISION +LIST FALSE + LIST TRUE TRUE
Oi
] o | COLLISION +LIST FALSE +LIST FALSE + LIST TRUE

Figure 2: Kind of the algorithm results. ECA: Exact Collision Algorithms, ST: Separability Test, NCIT:
Non Clear Interpenetration Test. GBA: General Broad Algorithms. Where LIST means the list of objects
involved in the collision

involved in. General and detailed information about interference between object types can be found in
[Mou97, Kam93, JTT01, LMO03].

In what follows there is a possible classification of collision detection problem according to the type of
elements involved in:

e Plane collide with a point mass
It is only needed to evaluate the sign of the expression (p — x) * N. Where p is the point location,
z is any point on the plane, and N is the normal to the plane. See figure 3.

e Point to point collision
Two points are considered to collide if the distance between the points is less than a pre—determined
tolerance.

e Polygons collision in 3D

The collision detection with two polygons is performed by testing for penetration of each vertex
point of one polygon through the plane of the other, and checking that no two edges intersect. This
technique can be applied to plane surfaces defined as two polygons of three points each.

e Convex polyhedra collision

A common technique used for collision detection of convex polyhedra is performed by checking the
face of each polyhedron against the faces of the other one and doing the same process in the other



way round. This method can be accomplished in O(N?) time, where N is the number of estimated
faces of each polyhedron [PS85].
e Non convex polyhedra collision

When objects are not convex it is possible to process the interference detection in a two different
approaches:

— Objects can be subdivided in a collection of convex objects and apply the same process ex-
plained above as well, or

— Applying an algorithm developped ad-hoc

o Surfaces collision

In most cases surfaces are aproximated as a collection of triangulated polygons. In this case, the
3D polygons collision detection method presented above can be applied.

(P-X)N>0 (p-X)N=0 P4 (pxN<o

Figure 3: Collision detection with plane and point mass

2.7 First Algorithms Classification

As mentioned above, the collision detection problem can be formulated in several forms depending on
the type of output sought and on the constraints imposed on the inputs. Taking into account the output
sought we can classify the methods in five different classes:

e Algorithms that are interested to find the first contact point between objects.

e Algorithms that are focused on finding the exact interference regions computing the object parts
that are involved in the collision if it exist.

e Algorithms that are centered on reject collision making use of a minimum-tolerance distance.

e Algorithms that are focused on finding a non clear interpenetration between objects making use of
a minimum-—tolerance of interpenetration.

e Algorithms that are based on bounding volumes and either reject collisions or detect possible
collisions without using a pre—determined tolerance.



3 Model Representations

In this section several data structures found in the literature that are used to solve collision queries
are described. From a general point of view, we can classify the data structures in different classes
depending on the criterion followed to model the workspace and objects. As it has been exposed in
subsection 2.3, before a pair of objects are tested for interference a previous test by using a coarse
representation of objects is usually done. This is a conservative process of no—interference of both sets
of polygons (one set for each object). Furthermore, applying recursively the conservative test to more
approximative representations of objects point out to represent objects as representation hierarchies. The
criterion followed to build hierarchical representations, as we will see, can be based on space partitioning
or bounding volume hierarchies.

e Geometric Models: Collision, proximity and interference queries are computed by using the geom-
etry of the two possible candidate objects. In the narrow phase at the exact level the queries are
formulated by using the geometry of objects.

e Bounding Volumes: The scene objects are bounding by volumes of simply geometry. Those volumes
permit to ask for collision more easly than the original object representations. Bounding volumes
are used in the accurate broad level phase.

e Space Partitioning Trees: In this class, space decomposition techniques in a hierarchical way are
considered. Examples of space partitioning hierarchies include BSPtrees [TN87, NAT90], Octrees,
Bintrees, Kdtrees and their extensions [Sam90, SW98, PG93]. Space partitioning tress are often
used in the progressive delimitation levels of the broad phase.

e Bounding Volume Trees: In this class hierarchical volume representations that bound set of ge-
ometric object primitives are included. Examples of bounding volumes hierarchies are: Sphere—
trees [Hub93, Hub96, PG95, OD99, BO03], axis—aligned—bounding-box—trees [Ber97, AdBG*01,
LAMO1, KZ03], oriented—bounding—boxe—trees [GLM96, BCG*96, Got00] , kDOPtrees [KHM 98,
MKEO02] and ConvexHullTree [EL01, OL03]. Bounding volumes trees are used in the narrow phase:
progressive refinement levels.

3.1 Geometric Models

The methods to solve collision detection at the exact level of the narrow phase will be more and less
conditioned by the geometric model selected. Then, in this subsection a brief description of geometric
models to represent rigid objects is presented.

Constructive models represent a point—set as a combination of primitive point—sets. Each primitive is
represented as an intance of a primitive type and combination operations are set boolean operations
(union, intersection, difference and complement).

Boundary representations (B-rep) describe an object in terms of its surface boundaries: vertices, edges
and faces. Some B-reps are restricted to planar, polygonal boundaries, and may even require faces to be



convex polygons or triangles. Determining what constitutes a face can be particularly difficult if curved
surfaces are allowed. Curved faces are often approximated with polygons. Alternatively, curved surfaces
can also be represented as surface patches if the algorithms that process the representation can treat the
resulting intersection curves, which will, in general, be of higher order than the original surfaces. Many
B-rep systems support only solids whose boundaries are 2-manifolds [FDF193].

Space decomposition representations represent an object as a union of disjoint regions of the space called
cells. Cells can be cubes or spheres for instance. Cells that contain part of the object are usually labeled
as black and the rest are labeled as white. The most used representations for space decomposition are
vozels and octrees. In the voxels case the space is partitioned in a uniform way while in the second case,
octrees, the subdivision is hierarchical.

There exists several algorithms to compute collision detection in the narrow phase at the exact level
(making use of the geometry of objects). In this subsection we include the most commonly known
algorithms to solve the narrow phase at the exact level.

Dobkin and Kirkpatrick [DK83, DK90] describe a former algorithm that detects the collision of two
polyhedra in O(log?v), where v is the total number of vertices in the polyhedra. Despite the method
reports only one collision point even if multiple parts of the objects collide and requires convexity, it
is an early algorithm of theoretical importance that we have to consider. It precomputes the Dobkin—
Kirkpatrick hierarchy for each polyhedron and uses it to perform the runtime query. The method may
be useful when only detection is required.

e Linear Programing Algorithms: Detecting interference between two convex polytope can be formulated
as: two convex polytopes do not overlap, if and only if there exists a separation plane between them.
The linear constraints are formulated by imposing that all the vertices of the first polytope lie on one
half-space of this plane and those of the other polytope lie on the other half-space [Sei90, CW96].

e Feature based Algorithms: In this class are included the Lin—Canny LC [LC91] algorithm and its
improvements. These algorithms are focused on the relationships between vertices, edges and faces of
the two polytope, that constitute the set of features. The emphasis is pointed out in detect whether
two polytopes are touching or not. The algorithm constructs the Voronoi Region of the features of each
polytope. The voronoi regions constitute the set of points closer to a feature than any other. Figure 4
shows the voronoi regions associated to a vertex, edge and face. LC algorithm computes the distance
between the closest feactures of two polytopes to achieve if they collide. The method takes two features
of the two polytopes, then by using the voronoi regions, it calculates if one feature is inside or outside
of the voronoi region of the feature belonging to the other object. If it is not, the algorithm takes the
adjacent feature and continue the exploration. The algorithm takes O(f) time computing, being f the
number of features. The method exploits coherence because closest features will not change significatively
between frame to frame. The algorithm have been implemented into the I-COLLIDE [CLMP95, PML97]
collision detection software which is available on the world wide web. The LC algorithm can not compute
penetration between polytopes. Mirtich et al. [Mir98] present the V-CLIP algorithm to overcome the
limitations of the I-COLLIDE.

e Simplex based Algorithms: In this case the polytopes are treated as the convex—hull of a point set.
Gilbert et al. [GJK88] presented the former algorithm belonging to this class, called the GJK algorithm.
The GJK detects collision and gives a mesure of interpenetration. After Cameron [Cam97] developed an



Voronoi Region Voronoi Region Voronoi Region

'/ Vertex
Obj ect A

Figure 4: Voronoi regions of a vertex, an edge and a face

Face

Object A

improved version of the GJK to produce the so called Enhanced GJK algorithm.

3.2 Bounding Volumes

Many bounding volumes and hierarchies of them have been studied. Thus, in this section a collection
of the most used bounding volume to solve collision detection for polyhedral rigid bodies is presented.
Other types of shapes for bounding volume for other class of geometric objects have been proposed and
published but we will point on the most used types. The bounding volumes are used in the broad phase
at the accurate broad level.

3.2.1 Sphere

To define an sphere it is only necessary to store the center coordinate (z,y,2) and the radii (r). Thus,
two spheres intersect if the distance of their midpoints is equal or less than the sum of their radius
(fig. 5). Then, the interference test between two objects bounded by spheres is fast and efficient. The
most disadvantage when using this representation is that an sphere does not limit accurately the shape
of the objects. When object shapes are more spherichal the representation is better than when object
shapes are less spherical. As Ritter [Rit90] pointed out, the cost of building one sphere is of order O(n),
where n is the number of object vertices. The advantage of this bounding volume is its invariance with
respect the axes, thus the rotation transformation does not affect the bounding volume.

3.2.2 AABB

Axis—Aligned—-Bounding-Box (AABB) is a bounding box where its facets are aligned with the global scene
axis. This bounding volume is easy to build, it is only needed to compute the minimum and maximum
coordinates of the object that bounds. The building cost is of order O(n), where n is the number of
object vertices. It is only necessary six floats to store it, Zmin,Ymin,2min a0d Tmaez,Ymaz, Zmaz- Lhe
collision test is performed by projecting each edge of the box to the coordinate axes and then compute the
onedimensional overlap test with the onedimensional resulting interval projected, the boxes can overlap
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Figure 5: Sphere A and sphere B collide iff d < R4 + Rp, where d &| Cg — C4 |, in this example do not
collide

if and only if their intervals overlap in all three dimensions. Thus, the test is very fast, it is reduced to
simple arithmetic comparisons (overlap test between axis coordinates) (see fig. 6). AABB is inefficient
for long thin objects at arbitrary orientations and needs to keep recomputing bounding boxes for rotating
objects, O(n) again.

Figure 6: AABB collision: Boxes intersect if and only if projections to coordinate axes intersect.

3.2.3 OBB

Oriented-Bounding-Box is an object bounding box that is not necessarily aligned to global coordinate
axes, thus an OBB is a rectangular bounding box at an arbitrary orientation. In an ideal case, the OBB
would be oriented such that it encloses an object as tightly as possible. Thus, the OBB is the smallest
possible bounding rectangular box of arbitrary orientation that can enclose objects geometry. To store an
OBB it is needed 8 coordinates (one for each vertex) or a center point and 3 vectors. When rotating the
object enclosed it is only needed to apply the transformation matrix to the 8 coordinates or to the vectors,
depending on the stored information selected. The cost of building an OBB of an object with n vertices
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is of order O(nlgn). Overlaps between two OBB are computed by 15 simple axis projections test, about
200 arithmetic operations, by making use of the separating azis theorem [GLM96]. This theorem tells us
that we have only 15 potential separating axes (see fig. 7). If overlap occurs on every single separating
axis, the boxes intersect. Thus, to determine whether two boxes intersect or not is very simple and fast.

Figure 7: OBB interference test using the separating axis theorem: objects A and B do not intersect
because their OBBs do not intersect: | T - L |> P4 + Pg

3.2.4 k-DOP

A k-Discrete—Oriented—Polytope (k-DOP) is a convex polytope whose facets are determined by halfs-
paces whose outward normals come from a fixed set of k orientations [KHM™98]. There exists several
possibilities for determining the k/2 fixed direction to use. There are four possible choices [KHM198]
6-DOPs (which are AABBs), 14-DOP, 18-DOP and 26-DOP. To build a 14-DOP we have to find the
minimum and maximum coordinate values of the vertices of the primitive along seven directions, defined
by vectors: (1,0,0), (0,1,0), (0,0,1), (1,1,1), (1,-1,1), (1,1,-1) and (1,-1,-1). Thus, this particular k-DOP
uses the 6 halfspaces that define the facets of an AABB, together with eight additional diagonal halfspaces
that serve to cut off as much of the eight corners of an AABB as possible. 18-DOP also derives 6 of its
halfspaces from those of an AABB, but augments them with 12 additional edges of an AABB, these 12
halfspaces are determined by six axes, defined by the direction vectors (1,1,0), (1,0,1), (0,1,1), (1,-1,0),
(1,0,-1) and (0,1,-1). Finally 26-DOP is simply determined by the union of the defining halfspaces for the
14-DOPs and 18-DOPs, utilizing the 6 halfspaces of an AABB, plus the eight diagonal halfspaces that
cut off corners, plus 12 halfspace that cut off edges of an AABB. To build one k-DOP we have to find
the output object positions for every of the k selected directions, then its generation is linear O(n). The
k-DOPs are good fitting in many cases because they do not leave empty corners as it can be in the AABB
case. The collision test between two k-DOPs is rapidly performed doing k/2 1D overlap test (analogous
to AABB/AABB test, but taking into account each outward normal). Needs to keep recomputing k-DOP
when moving objects, usually this is recomputed from the transformed original k-DOP and not from the
object O(k), the result increases the bounding volume, but the solution is much better that reconstruct
the k-DOP from the object. Figure 8 shows an example of the bounding volumes introduced up to now.
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Figure 8: Approximation of an object by four bounding volumes: A) Sphere, B) AABB, C) OBB and D)
k-DOP (where k = 8) [KHM 98]

3.2.5 Convex—Hull

The convex—hull of a set of points can be defined as the smallest convex set containing the points or,
more precisely, as the intersection of all convex sets containing the points. One can show that the
convex—hull of a set of points is exactly the set of all possible convex combinations of the points. With
convex—hulls intersection test are more complicated than for other BVs (as spheres, for instance) but
they can approximate most objects a lot better. The convex—hull of an object can be built in O(nlgn)
expected time [BKOS00]. Ehmann and Lin [ELO1] use a minimum distance computation algorithm
based on voronoi marching as a subroutine to test proximity of a pair of convex polyhedra. Otaduy and
Lin [OLO03] create a bounding volume hierarchy of convex—hulls. In the last paper, a new representation
of the objects to be used in multiresolution collision detection is defined.

Ponamgi, Manocha and Lin [PML95, PML97] present an algorithm for collision detection between general
B-rep solid models in dynamic environments. For each non—convex polyhedral object, they compute its
convex—hull and the AABB (axis—aligned-bounding—box) enclosing the convex hull. Then, for each pair
of objects, they determine if the bounding boxes are overlapping using a Sweep—and—Prune technique pre-
sented in [CLMP95]. For each intersecting bounding box pair, check if the convex—hulls of the objects are
colliding using a penetration detection algorithm. For each intersecting convex—hull pair, they compute
the areas of intersection on the convex—hulls. The faces comprising these areas are actual features on the
original object or are faces (introduced by the convex—hull) covering features of the object. The features
on the areas of intersection are represented as a pre—computed hierarchies. These areas are traversed
using a hierarchical version of the Sweep and Prune technique to find exact collision.

3.2.6 Summary of Bounding Volumes

This section summarizes the features of the most common bounding volumes which have been exposed.

When we are looking for a selection of the bounding volumes we have to take into account the advantages
and disadvantages of each one.

Advantages of BV:

e sphere: Fast and easy to compute, bounding volume is invariant with respect to rotation, collision
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detection test is very fast ( requires 3adds, 3subs, 3squares, 1 root), reject test result is absolutelly
reliable.

e AABB: Fast and easy to build, simple arithmetic test for interference testing and very fast. Easy
to compute the overlap region

e OBB: Tight fit with underlying object. Relatively easy to test for intersection.

e k-DOP: Good fit in many cases. Overlap test between two bounding volumes analogous to AABB/AABB

test.

e Convexr—Hull: Good fit.
Disadvantages of BV:

e sphere: Approximation to underlying object may be poor, collision test has low specificity

e AABB: The bounding volume is not invariant with regard to rotation. Bad objects fit in many
cases

e OBB: Overlap test based on the separating axes theorem still rather expensive (200 operations).
Not invariant to rotation transformation.

e k—DOP: Not so easy to compute. Is not invariant with respect rotation.

e Convex—Hull: Not so easy to compute. Is not invariant with respect rotation.

Table 1 shows a comparison between the BVs. The criteria selected are: the building cost of the bounding
volume of a polyhedra with n vertices, the tightness that mesures in a orientative way the degree of
approximation between the underlying object and the BV, the memory occupancy to store the BV, the
Num. ops Inter that indicates the number of operations needed to perform the interference test between
two BV and finally, rotation dependency and transform the operations needed to perform tranformations
when the object is moving.

3.3 Space Partitioning Methods

The space subdivisions or space partitioning methods are currently used to achieve collision detection
between N-bodies in the space (broad phase: progressive delimitation levels, see sect. 2.3). Althought,
they have been used, also, to perform collision between two objects (narrow phase:progressive refinement
levels, see sect. 2.3). Different methods have been proposed to overcome the bottleneck of O(N?) pairwise
tests in an environment composed of N objects. In this subsection the most commonly used space
partitioning methods are exposed.
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Bounding Volumes

Criteria

Sphere AABB OBB k-DOP Convex—Hull
Building cost O(n) O(n) O(nlgn) O(n) O(nlgn)
Tightness poor maybe poor midle good the best
Memory (bytes) 14 24 96 12 %k O(n)
Num. ops Inter 8 6 200 k 0O(n?)
Rotation invariant recompute tranform BV | transform BV recompute
Transformation 1 O(n) 8 2%k O(nlgn)

Table 1: Comparison between bounding volume features

3.3.1 Regular Grids of Boxes

This representation model is based on a grid of equal sized boxes over the space, which is assumed to
be a unit cube (also called vozel) [HKM95b, MPT99] or a parallelipipeds [GASF94]. Thus, objects are
represented by a 3D matrix of voxels vozelization (Fig. 9 shows an example). In this kind of representation
is easy to find which voxel contains a point, this operation is done in constant expected time O(1). Lawlor
and Kal [LK02] present an algorithm to compute collisions between many moving objects making use of
this technique. Borro [Bor03] use the voxelization representation to compute interference between static
n-bodies. As pointed out in [Bor03] the selected number of voxels to permit to subdivide the space is
not a trivial problem. Another problem is the memory occupancy when the number of voxels increase to
represent an object and, in many cases most of voxels are empty of solid. In his work, Borro presents a
solution to this problem based on hierarchical methods and using, also, hashing techniques.

Figure 9: Image of a voxelization of an object (courtesy: The University of Hull)

Garcia—Alonso, Serrano and Flaquer [GASF94] design a method to check if two objects interfere. The
two objects are bounded by containers. One container of one object is the smallest box that contains it,
whose faces are parallel to the object’s local reference frame (OBB oriented-bounding—box). When two
objects can collide, the method computes the interference between their containers. Then, If the minimaz
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test between them does not report a noninterference status, the program applies the interference among
voxels test. If the test of voxels can not reject the collision between the objects, the program move on
to the last test, the test between pairs of facets. They solve the three last phases of the global collision
detection problem (see sect. 2.3).

McNeely et al. [MPT99] present a method where dynamic objects are represented by a set of surface
point samples, plus associated inward pointing surface normals, collectively called a Point Shell. The
environment of the static objects is collectively represented by a single space occupancy map, called
Voxmap, which is a regular grid of voxels (see fig. 10). In order to explain how the data structure is
computed consider a solid object such as the teapot of fig. 11(a). It partitions the space into regions of
free space, object surface and object interior. Now tile this space into a volume occupancy map vormap,
fig. 11(b). The collection of center points of all surface voxels constitutes the point shell needed by the
depth of interpenetration calculation. How the original object representation (polygonal model) is not
used after voxelization, this representation has an error of ¢ < v/3s/2. Renz et al. presented an improved
method to minimize the approximation error [RPPT01].

Original
Objects

Foint Shel
and Mormals

:}N‘l

k_/, "J Voxmap

Figure 10: Voxmap representation of an scene object colliding with a Point Shell representation of a
moving object [MPT99]

Figure 11: Teapot: (a) Polygonal model. (b) voxel model. (c) point shell model. [MPT99]

Varadhan et al. [VKK*03] present techniques to compute the distance under max-norm (see equation of
section 1) between a point and a wide class of geometric primitives. They use the max-norm distance
computation algorithm to design a reliable voxel-intersection test to determine whether the surface of
a primitive intersects a voxel and They use this test to perform voxelization of solids and generate
adaptive distance fields that provides a Hausdorff distance guarantee between the boundary of the original
primitives and the reconstructed surface. Figure 12 shows an example of performing voxelization using
their voxel-intersection test. They introduce a method called vozel-intersection—test. This method uses
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an exact test based on computing the max—norm distance between the center of a voxel and the primitive.
The test is based on the fact that a voxel is intersected by the surface if the max—norm distance at the
center of the voxel is less than half the voxel size. They demonstrated that the above statement is valid
even when the voxels are not regular-sized cubes.

%
'y

Model Voxelization Close-up

Figure 12: Voxelization algorithm applied to the Dragon and Happy Buddha models. The two models
consists of 871,414 and 1,087,716 triangles respectively. The middle and right column of figures shows an
entire view and a close-up view of the voxelization superimposed on the model. The voxels occupied by
the model have been rendered in wireframe [VKK 03]

3.3.2 Octree

An octree [Sam90] is a tree of degree eight which represents the space occcupied by objects contained
in the world space defined by a universe cube (AABB). If this cube is empty or completely filled by
objects, then a single (root) node marked white (empty) or black (full), respectively, constitutes the octree
representation. Otherwise, the universe cube is decomposed into eight octants, which are represented by
eight children of the root node. The root node is marked grey to indicate the partial occupancy of the
workspace. Each octant is tested to see whether it is completely occupied by objects, is partially occupied
by objects, or is completely contained in free space. The octree node corresponding to the octant is given
a color black, grey, or white, respectively. This decomposition is carried out recursively for grey nodes.
The decomposition halts either when all leaf nodes are found to be black or white, or when a prespecified
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level of resolution is reached. The model obtained by this way is known as classical octree. In a [BIN92]
can be found a detailed description and operations involving Octrees.

Even though the most used shape of octree—octant is a cube, there exists also models where spheres
are used [Hub93, PG95] (see fig. 15). In fact, an algorithm that builds an octree representation of an
object can also build a sphere—tree by circunscribing each occupied octant with a sphere. Liu, Noborio and
Arimoto [LAN91] not only use spheres to node-representing volumes but also the non—disjoint subdivision
of the space is performed by following a different technique where the branching is 13 instead of 8. The
change between cubes for spheres is due to that spheres are invariant in rotation operations.

Pointing out in the information associated to leaf nodes, we find variants of octree model too. Among
them we can quote: Foct (Face Octrees) [PG93] and Extended Octrees [BN90, FNB90, FB97]. The
principal feature of them consist in the kind of leaf nodes that are allowed in the model. In the Face-
octree model leaves information about the faces of the objects is included, those nodes are marked as face
nodes. In the Ertended—octree, vertices, edges, and faces nodes are allowed leaves, too. Figura 13 shows
an example of the extended octree of an object.

Figure 13: Extended octree of an object. Courtesy of Marc Vigo

Using octree representation [HH96, Hay86], collision among objects is evaluated by traversing theirs
octrees in parallel and comparing homologous nodes. When black nodes overlap it means that a collision
is detected. At the lowest level, the grey nodes are usually consider that interfere for save security. The
time complexity to evaluate if octrees collide is proportional to the number of nodes visited. The average
time for detecting interferences among n objects is of order O(n * N'), where N is the average number of
nodes in the tree [FB97].

Kitamura, Takemura, Ahuja and Kishino present in [KTAK94] an hybrid collision detection method that
performs an approximate test to identify interfering objects in the entire workspace and then perfoms more
accurate test to identify the objects parts causing collisions by using octree and polyhedral representations,
respectively. Interference in the entire workspace is detected by traversing the object octrees in parallel.
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If black nodes exists whose corresponding node in another tree is also black, these nodes are considered to
be interfering (as explained above). The traversal is performed down to a pre—determined lowest level. At
this lowest level any pair of corresponding grey nodes is considered to be interfering. After the traversal is
finished, all interfering nodes and corresponding objects are identified. The faces of objects that intersect
with their octree nodes are extracted. For each such interfering node in an objects octree, the coordinates
of the eight vertices of the corresponding cube C are substituted in the equation of the plane T of each
face F of the interfering object. If all the vertices do not lead to the same sign for the value obtained
after substitution, then a face F'is assumed to be possibly causing the interference detected by octree
representation. To determine if the face actually cause interference, the polygon S of the intersection
between C and T is found. A two—dimensional interference detection is then done for S and F. If an
intersection is found, F is labeled as interfering, otherwise, it is labeled as noninterfering.

Ganovelli et al. [GDOO00] introduce the BucketTree to represent objects as a soup of freely moving prim-
itives. The method uses un octree to partition the space and place buckets as leaves where geometrical
primitives can be placed. At every time step of a simulation, the models primitives are assigned to an
appropriate bucket. Then the intersection tests between any two models are done recursively by testing
the nodes AABBs as their trees are traversed.

3.3.3 Bintrees

A bintree is a recursive space subdivision. The bintree is a dimension-independent variant of the quadtree
and octree representations. The bintree determines explicitly which parts of space are solid and which
empty. A bintree represents discrete solid objects of arbitrary dimensionality by a binary tree defining a
recursive subdivision of space and recording which parts are empty (white) and which are solid (black).
In [ST85] is presented an algorithm to construct the bintree model from the constructive solid geometry
(CSG) one, which a cost of order O(N), where N is the number of bintree nodes. Even though this
representation seems useful to solve the collision problem, as far as we know, no other papers have been
published in this sense.

3.3.4 BSPtree

A Binary—Space—Partitioning tree (BSPtree) is a representation model that recursively divides space
into pairs of subspaces, each separated by a plane of arbitrary orientation and position. Thibault and
Naylor [TN87] introduced the use of BSPtrees to represent arbitrary polyhedra. Each non-leaf node
of the BSPtree is associated with a plane and has two child pointers, one for each side of the plane.
Assuming that normals point out of an object, the left child is behind or inside the plane and, the right
child is in front of or outside the plane. If the half-space on a side of the plane is not homogeneous then
it is subdivided and its child is the root of a subtree. If the half-space is homogeneous, then its child
is a leaf, representing a region either enterely inside or enterely outside the polyhedron. The BSPtree
is not restricted to be axis—aligned and geometric transformations can be computed by applying the
transformation to each hyperplane, without rebuilding the whole representation. In [NAT90] algorithms
required to perform boolean set operations between two objects represented by BSPtrees are presented.
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The main disadvantage of BSPtrees is to find the planes to well cut the scence objects keeping on a
minimum depth O(n?) (where n is the objects number in the scene). Sigal et al. [SGA(02] defined and
implemented a deferred self-organizing BSP that is a BSPtree built throughout the walk in walkthrought
applications (see fig. 14).
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(a) The walkthrough scene (b) The deferred self-orzanizing BSP tree

Figure 14: The deferred self-organizing BSP as built throughout the walk [SGA02]

Collision detection between two objects using BSPtrees is basically reduced to tree traversal, or search.
This approach rejects a lot of geometry early, so in the end, we only have to test the collison detection
against a small number of planes. As we have seen in the previous section, finding a separating plane
between two objects is sufficient for determining that those objects do not intersect. So, we can recursively
traverse a world’s tree and check whether separating planes intersect the bounding volume (see previous
section). The easy way to perform this check is to test whether all parts of the object are on the same side
of the plane. This computation is simple and fast using a plane equation ax+by+cz+d = 0 and determine
the side of the plane upon which the point set lie. In [NAT90] it is presented an algorithm to perform
boolean operations between two BSPtrees. As a previous step to compute the boolean operations, they
explain how to merge the BSPtrees. It is accomplished by subdividing one of the tree depending of the
other one. The boolean operation is performed when the cell level is reached by classifying the regions
(cells). This method is a improved version of one found in [TN87] where it is presented an algorithm
for set operations problem. In this second paper, the approach takes a BSPtree as a one operand and a
B-rep as a second and produces a new BSPtree determined by the set operation via modification of the
original tree. Despite the paper [NAT90] focus on the set boolean operations between BSPtrees properly,
the approach can be used for collision as well, since collision is equivalent to a non—empty intersection.
From the collision point of view, their algorithm can be improved in the sense to reject interference as
soon as this situation is detected.

3.3.5 KdTree

A KdTree, firstly described by Bentley [Ben75], is a binary space partition tree (a kind of BSPtree) whose
cuts are chosen orthogonal to the coordinate axes. Thus, KdTree data structure is a multidimensional
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search tree in K dimensional space. Levels of the tree are split along successive dimensions. The KdTree
method, is one of the methods used by Held et al. in [HKM95a]. The root node is associated with the
workspace (box). Each node of the tree is associated with a box and implicitly with the set of objects
that intersect that box. Each non—leaf node is also associated with a cut plane. To define the children of
a node, we must to take two decisions: 1) Will the cut be orthogonal to the z, y or z axis? 2) At what
value of the chosen coordinate axis will the partition take place? If the number of objects intersecting a
box is less than a pre—specified threshold, then the box is not partitioned and the corresponding node is
a leaf. With each leaf is explicitly stored the list of objects that intersect its box. In [Zac97], uses this
method, with the name of Boztree, making use of OBB as bounding volumes to regions associated to
each node. After, in [Zac02] presents a minimal hierarchical collision detection method using restricted
boxtree. The restricted boxtree is a tree of boxes that enclose the previous OBB to speed the collision
test between boxes with AABB. His boxes are axis—aligned in object space. Unlike AABB trees, in the
restricted boxtree the two children of a box cannot be positioned arbitrarily.

Held et al. [HKM95a] consider the problem of preprocessing a scene of polyhedral models to perform
collision detection for an object that moves amongst obstacles. They presented a comparative analysis
between several scene objects representations with KdTree, Rtrees and Grid of boxes (voxels). They
implemented each method and give results from comparison.

To compute collision detection using KdTrees, we start by comparing the moving object M with the
cut plane of the root. If M lies entirely on one side of the cut plane, then we visit recursively that
corresponding child, otherwise, we visit both children. When we visit a leaf node we check each object
belonging to the leaf with M.

3.4 Bounding Volume Hierarchies Methods

A Bounding—Volume-tree, BV-tree, is a tree where each node is associated with a subset of the input
primitive objects, together with a bounding volume that approximates this subset with a smallest con-
taining instance of some specified class of shapes, such as boxes, spheres, polytopes of a given class, etc.
This class of tree is commonly used in the narrow phase at the progressive refinement levels. The tree
construction can be in a top—down or in a botton—up fashion.

In this section we introduce several BVtrees that are the most commonly used. Before, we expose the
R-tree, firstly introduced by Guttman [Gut84], because it provide the theoretical basics for bounding
volume hierarchies which are mostly used to generate hierarchical representations of complex meshes,
where the BV entity is some kind of box.

Using the R-tree representation the collision detection can be performed by checking for interference
between boxes. R—tree is an organization of a set of geometric objects into a tree with each node
associated with a subset of the objects, for which a minimal amount of geometric information is stored
at the node (e.g. the axis—aligned bounding box of the subset of objects). The tree is generated in a
top—down fashion. A leaf node contains some small constant number of primitive objects (e.g. triangular
facets). The root node corresponds to the full set of objects. The children of an internal node represent a
partitioning of the objects associated with that node. Variants of R—trees are: RT—tree [SRF87], R*tree,
Cone-tree, Prism-tree [PF87]. In the RT—tree representation, introduced by Sellis, Roussopoulos and
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Faloutsos in [SRF87], the main apportation with respect the R—tree, is that in the R*—tree not overlap
boxes are allowed. It means that if an object is inside two boxes in R-tree model, in the RT—tree the
object is truncated in two parts and then it is represented by two boxes containing one fragment each.

3.4.1 SphereTree

The model is based on representation of the objects by sets of spheres. It produces multiple levels of
detail arranged in a hierarchy. To place the spheres the process can use the medial-axis surface which
represents an object in skeletal form. The medial-azxis surface guides a process that matches the spheres
to the object shape [Qui94, Hub95, Hub96, OD99, BO03]. Another way to construct the model can
be done by fitting spheres to a polyhedron by anchoring big spheres to points on the polyhedron and
shrinking them until they just fit inside the polyhedron [RB79]. Spheres are rotationally invariant, so for
a rigid object, the hierarchy is built once by a preprocess, a running application applies to this hierarchy
the same linear transformations it applies to the object (fig. 16 shows an example of Sphere—tree).

Making use of Sphere—trees to represent objects, collision detection is solved by traversing the trees
in parallel. Descending from the root (objects bounding sphere) to leaves. When spheres of homolo-
gous nodes overlap, a potencial collision between objects is detected. Detecting interference between
two spheres is simply performed by comparing the distance between their centers and the sum of their
radii [PSL92, Hub95, PG95, Hub96].

Hubbard presents in [Hub95] and after improve in [Hub96] a method to detect collision between objects
using this BV tree. The algorithm assumes each object is approximated by a hierarchy of spheres which
represents the object at multiple levels of detail. Level 0 is the objects bounding sphere. Subsequent
levels are unions of successively more spheres, approximating the object at higher resolutions (see fig. 16).
The detection algorithm uses these hierarchies to implement progressive refinement. The algorithm tests
collisions between the level 0 of the hierarchies. If a collision between them is detected, then next phase
descends one level in the hierarchies. The algorithm checks the colliding spheres at the current level of
the two hierarchies to see if their children collide. If no spheres collide at the current level, then the
pair of objects need no furher processing. Otherwise, the algorithm returns the colliding spheres. If a
more detail of result is demanded, the algorithm proceed with the next refinement step. The algorithm
can continue these steps as long as the hierarchies have levels and the application can spare the time.
Quinlan [Qui94] presents an algorithm to construct an sphere—tree in a bottom—up fashion by beginning
at leaves and using a binary tree, see figure 17.

3.4.2 AABBtree

Based on boxes where their facets are axis-aligned. Van Der Bergen [Ber97] makes use of this kind of
BVtrees. He implemented a system to collision detection called SOLID. The tree can be built in a top—
down way by partitioning along longest axis or, in a bottom—up way by joining boxes up to the root in a
pre—processing step. The AABBs are refitted during simulations. The AABBtrees are suitable for most
types of deformations. Larsson et al. in [LAMO01] used AABBtrees in an hybrid refitted AABBtrees for
continously deforming bodies. The method does arbitrary vertex repositioning. They improves making
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Octree Medial Axis

Figure 15: Example of sphere tree construction. Left: from octree-based. Right: From medial-axis—

based. [Hub96]

Figure 16: A desktop lamp and three levels of its sphere—tree built from the medial axis—surface [Hub95]

B
Figure 17: Bounding sphere-tree of an object [Qui94]

fast the refit technique than [Ber97].

Held et al. [HKM95a] consider the problem of preprocessing a scene of polyhedral models to perform
collision detection for an object that moves amongst obstacles. They presented a comparative analysis
between several scene objects representations with KdTree, Rtrees (that are AABBtree) and Grid of
boxes (voxels). They implemented each method and give results from comparison.
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Klein and Zachmann [KZ03] present a framework for hierarchical collision detection that can be applied
to virtually all bounding volume (BV) hierarchies, they say. It allows an application to trade quality for
speed. Using a probabilistic analysis, the algorithm yields an estimation of the quality, so that applications
can specify the desired quality. In a time-critical system, applications can specify the maximum time
budget instead, and quantitatively assess the quality of the results returned by the collision detection
afterwards. Their framework stores various characteristics about the distribution of the set of polygons
with each node in a BV hierarchy. They have implemented their approach using AABB trees and present
performance measurements and comparisons with previous algorithms (figure 18 is an example of their
results)

=%

Figure 18: A snapshot of the Klein and Zachmann benchmarking procedure (objects are rendered trans-
parent). The two boxes show one pair of BVs that contain at least one collision cell with high probabil-
ity. [KZ03]

3.4.3 OBBtree

An Oriented Bounding Box tree [GLM96, BCGT96, Got00] is a hierarchical structure that representate
a set of objects by a binary—tree of boxes. Each object is enclosed by an oriented box (objects bounding
box). The set of object boxes constitute the leaves of the tree. Then, the OBBtree [BCG96] is obtained
by joining pairs of “neighboring” leaf nodes, and so on. The root node of the tree corresponds to the
box that encloses the full set of objects. Different bounding—box—trees can be derived depending on the
criteria for deciding pairs of neighboring nodes. The leaf nodes of the tree can represent a whole object
or parts of it. For intance, the boxes associated to the leaves may represent facets of a polyhedral object,
or may represent surface parts of object.

Gottschalk, Lin and Manocha [GLM96] describe an algorithm and implemented a system (RAPID) for
exact interference detection between polyhedra whose surfaces have been triangulated. They use an OBB-
tree to perform the collision detection test. The process computes the OBBtree getting a representation
of objects and, then perform the intersection test between OBBtrees. The algorithm traverses two such
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trees and tests for overlaps between boxes based on a separating axis theorem. The intersection test is
achieved by projecting the centers of the boxes onto the axis and computing the radii of the intervals. If
the distance between the box centers as projected onto the axis is greater than the sum of the radii then
the intervals (and the boxes as well) are disjoint, if it is less then the objects can potencially intersect.
Generating the OBBtree from an original model with n triangles can be accomplished in O(n? % log? n)
time if the convex hull is used and O(n * log n) if it is not.

Hudson, Lin, Cohen, Gottschalk and Manocha [HLC*96] developped a method and a system V-COLLIDE
for accelerate collision detection describing its interface for VRML (Virtual Reality Modeling Language).
Figura 19 shows an example of an OBBtree.

() (b) ()
Figure 19: Example of three levels of an OBBtree [GLM96)

As it is pointed out in [JTT98] when the number of objects to check for collision is high in comparison
with the workspace (i.e. when the density of objects is high), OBB representation is better than AABB
or spheres as they do fit more tighly to the objects and then less interferences between bounding volumes
are reported.

3.4.4 kDOPtree

Hierarchies of discrete oriented polytopes (kDOPtree) have been used by several authors [HKM96,
KHM™'98, Zac98, MKE(2]. Klosowski et al. [KHM*98] developped a system called QuickCD to built
a kDOPtree in a top-down fashion. Mezger et al. [MKE02] used kDOPs to collision detection between
deformable and flat shaped meshes like textiles (fig. 20 is an example of 18-DOPtree). Zachmann [Zac98]
uses a DOPtree to demonstrate that is a faster and less memory occupancy that OBBtree used in the
RAPID system [GLM96].

3.4.5 Convex—Hull-tree

Ehmann and Lin [ELO1] describe an algorithm for construct a convex—hull tree based on vertex insertion
which They use to decompose the surface of an object and compute convex—hulls of groups of objects.
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(a) (b) (c) ()

Figure 20: Two levels of an 18-DOP-hierarchy. (a) and (c) show the 18-DOPs, (b) and (d) the corre-
sponding regions on the surface [MKE02]

They implement an automatic partitioning and grouping algorithm to group nearby neighbors when con-
structing the convex hierarchy. In the convex—hull hierarchy, each face is given one of three classifications
original, contained, free (see fig. 21). Where original are the faces of the orginal surface, contained are
faces created when converting patches to pieces by convex—hull and, finally, free are faces created when
constructing the hierarchy. These classifications are the face relationship between a bounding volume at
an internal node and the convex pieces at its leaves.
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Figure 21: Example of convex—hull-tree [EL01]

Varadahn et al. [VKK*03] compute the maz—norm distance between a point and a wide class of geometric
primitives. When computing the distance in a complex models they use the convex—hull-tree. To compute
the distance for a non—convex polyhedron P they construct a hierarchical bounding volume of P culling
away unnecessary triangles by traversing the hierarchy. For the hierarchical representation they employ a
surface convex decomposition scheme similar to Ehmann et al. [EL01], but here, a leaf node in the BVH
is created by decomposing P into a collection of convex surface patches P; and computing its convex hull.
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Then, the entire BVH is recursively built by merging children nodes in the hierarchy and computing their
convex hull in a bottom—up fashion.

3.4.6 Swept—Sphere—Volume—trees

A Swept-Sphere—Volume-tree SSViree [LaMLM99] is a hierarchy where the BVs at the nodes of a BVH
belong to a family of three different swept sphere volumes. They correspond to a sphere (also known as
point swept sphere or PSS), and more complex volumes obtained by sweeping along either an arbitrarily
oriented line (line swept sphere or LSS) or along an arbitrarily oriented rectangle (rectangle swept sphere
or RSS). These volumes are generated by using a single primitive and the Minkowski sum with an sphere.
They provide algorithms to compute distance between any combination of these BVs based in computing
the distance between the primitives and substract the swept sphere. Figures 22, 23 show one example

of SSV.
—0-(D

Figure 22: Right: Example of SSV building [LaMLM99]

Figure 23: PSS Point swept sphere, LSS Line swept sphere, RSS Rectangle swept sphere [LaMLM99]

3.4.7 Computational Cost of Collision Query using Bounding Volume Hierarchies

Given two large input models and hierarchies built to approximate them, the time required to perform a
collision query can be quantified as [GLM96]:

T = N,Cy + N,C,

Where T is the total cost function for collision detection, IV, is the number of pairs of bounding volumes
tested for overlap, C,, is the cost of testing a pair of bounding volumes for overlap, IV, is the number of
pairs of primitives tested for contact and, finally, C,, is the cost of testing a pair of primitives for contact.

Klosowski [KHM198] add to this equation the cost of updating the hierarchy as the moving object rotates.
Thus, he proposed that for collision detection in motion simulation the total cost will be:

T = N,C, + N,C, + N,C,
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Name Type of entity Some References

OcTree 3D cube or sphere [SW98, Hub93, KTAK94]

BSPTree hiperplanes [TN87, NAT90, SGA02]
RegularGrids | voxel [GASF94, MPT99, RPP101, Bor03]
KdTree ortoghonal hiperplanes [SW98]

BucketTree Bucket of polygons [GDOO00]

Table 2: Types of hierarchy space partition representations

Where T, N, Cy, Ny, C}, have been defined above, N, is the number of nodes that must to be updated,
and C,, is the cost of updating each such node.

As pointed out by Zachmann [Zac00] the performance of any collision detection based on hierarchical
bounding volumes depends on two conflicting constraints:

1. The tightness of the BVs, which will influence the number of BV (XV,) test and,

2. The simplicity of the BVs (IV,), which determines the efficiency of an overlap test of BVs

Queries using simple AABBtrees or Spheretrees, exhibit large N, and small C,, while those using more
complex bounding volumes, as Convex—hull or OBB have smaller N, and larger C,. Also, using simple
BVs tends to increase NN, since the leaf nodes of simple BVs are less likely to bound the models apart
than those of complex BVs. Looking at this equation it is difficult to choice the best BV given the
opposite tendencies of C, and N,. Thus, no single BV is the best choice for all ocasions and applications
may perform best with different BV types. Therefore, the cost of a collision query depends not only on
the input and output size, but also on the nature and degree of the proximity of the models. Input and
output size are easily to quantified. However, proximity is not so easily quantified, since it should capture
the shape complexity of the models and how those shapes spatially interact [Got00].

3.5 Summary of the Section

Table 2 and table 3 summarize the types of space partition representations and the bounding volume
hierarchies respectivelly.

4 Summary of the Paper

In this paper the collision and proximity detection problem has been stated. A collection of approaches to
achieve the problem from several point of views has been described. Solutions that are conceived to achieve
different phases of the general problem have been presented and different approaches to solve the problem
from different environments have been exposed. Figure 24 shows an example of the phases and shows
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Name Type of Bounding Volume Some References

SphereTree sphere [PG95, Hub96, OD99, BO03]
AABBTree axis-aligned bounding box, AABB [HKM95b, Ber97, LAMO1, KZ03]
OBBTree oriented bounding box, OBB [GLM96, BCGT96, Got00]
kDOPTree discrete oriented polytope defined by k vectors [HKM196, KHM 198, Zac98, MKE02]
ConvexHullTree convex polytope [ELO1, OLO03]

ConvexPieceTree based on OBB [FWGO03]

restricted BoxTree | based on AABB [Zac02]

Table 3: Types of bounding volume representations

how different data structures are used to solve different collision detection phases. The data structures
that are appearing in the figure have been selected to illustrate the example any other combination of

them could be used.

8 @ O N-BODIES

|

@ BROAD PHASE: DELIMITATION LEVELS (Use of KdTree)
O Space region identification

O
O

.I BROAD PHASE: ACCURATE LEVEL (Use of AABB)

Objectsidentification

NARROW PHASE: REFINEMENT LEVELS (Use of SphereTree)
Object parts identification

|

NARROW PHASE: EXACT LEVEL (Use of Brep)
Coalliding primitives identification

Figure 24: Example in 2D of the collision detection test and phases.

5 Conclusions

In this paper, the problem of collision and proximity queries amongst moving objects has been described
from several point views. We have reviewed several data structures and methods that achieve the problem
that are in the literature. From that we have presented different strategies to solve the problem. The
phases to solve the global problem of collision detection have been stated. Thus, collision can be treated
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in a broad phase and in a narrow phase and their subphases.

e When a non—enumerative or exact solution for collision is sought, hierarchical representations allow
to point out on regions where interference is most likely to occur faster than using a tighly rep-
resentations. This is true specially when the density of involved objects is low (no false collision
detection between containers are reported).

e When a fine solution for collision is sought, or the density of objects on the scene is high, a
more tightly representation of objects shapes is needed to identify which object parts cause the
interference.

We can also conclude that, even, in the second case a coarse phase is always a benefit to reduce the
number of regions where collision can truly occur, speeding up the whole interference test procedure.

As far as we know, and after having reviewed the literature on collision detection techniques it seems
that no hierarchy structures that include different types of space patitioning and bounding volume shapes
have been taken into account. This kind of structure can be very useful when the object shapes in the
scene to evaluate collision are substantially different, such as ship or car design, where involved objects
are a set of many different pieces.
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