Extension Orderings

Albert Rubio

Report LSI-95-5-R
Extension Orderings

Albert Rubio*
Universitat Politècnica de Catalunya
Pau Gargallo 5
08028 Barcelona, Spain
E-mail: rubio@lsi.upc.es.

November 22, 1994

Abstract

In this paper we study how to extend a collection of term orderings on disjoint signatures to a single one, called an extension ordering, which preserves (part of) their properties. Apart of its own interest, e.g. in automated deduction, extension orderings turn out to be a new method to obtain simple and constructive proofs for modularity of termination of TRS.

Three different schemes to define extension orderings are given. The first one to deal with reduction orderings, the second one to extend simplification orderings and the last one for total reduction orderings. This provides simpler and more constructive proofs for some known modularity results for (simple and total) termination of rewriting as well as the first —to our knowledge— results for rewriting modulo equational theories.

Finally, our technique is applied to extend an ordering on a given signature to a new one on the signature enlarged with some new symbols. Apart its own interest this extension ordering can be used to prove termination of hierarchical unions of TRS.

1 Introduction

General methods for proving termination are crucial for decision procedures and for using rewriting-like methods in theorem proving and programming. A well-known related problem in rewrite theory is to prove the modularity of termination of term rewrite systems (TRS's), that is, given two terminating rewrite systems R_1 and R_2, to show that their union $R_1 \cup R_2$ is also terminating. This property was shown to be false in general, even when the two rewrite systems do not share any function symbols [Toy87]. Therefore many efforts have been devoted to finding sufficient conditions under which termination is modular. Most existing results impose syntactic (or abstract) conditions on (one of) the two TRS's (e.g. [Rus87, Dro89, Mid89, Gra93, Ohl94, FJ93]), and some other ones

*The author wishes to thank Hubert Comon, Jean-Pierre Jouannaud, Robert Nieuwenhuis and Aart Middeldorp for many helpful comments about this work. Partially supported by the Esprit Working Group CCL, ref. 6028.
impose restrictions on the method used to show the termination of the involved TRS's ([KO90, FZ93]).

In this context it is quite surprising that, although usually termination of TRS's is proved by actually building a reduction ordering in which the rewrite relation is contained (cf. [DJ90]), in most modularity proofs for termination such an ordering is not explicitly built, that is, in this sense these proofs are not constructive. Hence, for simplicity and to improve the understanding of the problem, it is worth to look at it from a more constructive point of view. This can give information about the weakest conditions ensuring modularity and why they are needed. As a good example for this viewpoint, total termination (i.e. the rewrite relation is included in some total reduction ordering) was proved modular provided that one of the TRS's is conservative in [FZ93]. The reason for this requirement seems to be rather technical, and the proof does provide no intuition of its need. Here we prove the same result in a simple way, actually building a total ordering containing the combined system. This gives some intuition about the restriction.

Our main idea is to generalize the combination of TRS's to the combination of orderings. Instead of proving that the ordering induced by the combined rewrite system is well-founded, we build a well-founded ordering and prove that it includes the combined TRS. This is done by means of extension orderings. By an extension ordering of a collection of orderings \(\succ_1, \ldots, \succ_n \) on disjoint signatures, we mean another ordering \(\succ \) s.t. \(\succ_i \subseteq \succ \) for all \(i \). Actually, an extension ordering is interesting when it preserves (part of) the properties satisfied by the initial orderings.

In section 3 we define an extension ordering \(\succ_e \) on ground terms, which preserves well-foundedness of the \(\succ_i \). Moreover, if every \(\succ_i \) is monotonic, then \(\succ_e \) fulfils a property called quasi-monotonicity which suffices for termination of rewriting. As expected, due to the non-modularity of termination of disjoint union of TRS's, \(\succ_e \) cannot be lifted, in general, to terms with variables. However, lifting is possible for right-linear systems. This gives us a simple constructive proof for modularity of right-linear TRS's.

Section 4 is on simple termination (i.e. the rewrite relation is included in some simplification ordering). We define an extension ordering \(\succ_e \) preserving monotonicity and the subterm property to prove the modularity of simple termination (this was first proved in a non-constructive way by [KO90]).

In section 5 we give an extension ordering preserving well-foundedness, monotonicity and totality on ground terms, which allows us to prove the results of [FZ93].

In section 6 these extension orderings are proved to preserve also \(E \)-compatibility for certain classes of equational theories \(E \). Therefore we can obtain the first—as far as we know—modularity results for rewriting modulo equational theories. This is a first example of new results that can be derived from our extension orderings approach.

In section 7 we extend any ordering, to allow new function symbols. These results can sometimes be used to prove termination of hierarchical unions of TRS's [Der93, Rao94].

In section 8 some possible improvements to the present results are commented and the general application of the method in termination proofs is discussed.
2 Preliminaries

We adopt the standard notations and definitions for term rewriting given in [DJ90]. Here we recall some of them.

The set of terms is denoted by $T(\mathcal{F}, \mathcal{X})$ for a given set of fixed-arity function symbols \mathcal{F} and set of variables \mathcal{X}. Variable-free terms, denoted $T(\mathcal{F})$, are called ground. By $|t|_f$ we mean the number of occurrences of the function symbol f in the term t, and the size of a term t, denoted by $|t|$, is the number of function symbols occurring in t. By $\text{Vars}(t)$ and $\text{Mvars}(t)$ we denote respectively the set and the multiset of variables occurring in t. The subterm of t at position p is denoted by $t|_p$, and the replacement of $t|_p$ by a term s is denoted by $t[s]_p$. By $\text{Head}(t)$ we mean the top-most function symbol in t. Since we denote ambiguously some operations on sets and multisets by the same symbols, it should be clear from the context whether we operate on sets or on multisets.

We denote by $=_E$ the congruence generated on $T(\mathcal{F})$ by the equational theory E. Let s, t, s' and t' be arbitrary terms in $T(\mathcal{F})$, and let f be a function symbol in \mathcal{F}. Then a (strict partial) ordering on $T(\mathcal{F})$ (a transitive irreflexive relation) \succ fulfills the subterm property if $f(\ldots t \ldots) \succ t$. Furthermore, it is monotonic if $s \succ t$ implies $f(\ldots s \ldots) \succ f(\ldots t \ldots)$. A monotonic ordering that fulfills the subterm property is called a simplification ordering and for finite signatures is well-founded: there are no infinite sequences $t_1 \succ t_2 \succ \ldots$. An ordering \succ is E-compatible if $s' =_E s \succ t =_E t'$ implies $s' \succ t'$. Finally we say that an ordering is total on (the E-congruence classes of) $T(\mathcal{F})$ if $s \neq t$ implies $s \succ t$ or $t \succ s$ for all terms $s, t \in T(\mathcal{F})$. Any well-founded monotonic ordering \succ total on $T(\mathcal{F})$ is a simplification ordering.

An ordering on $T(\mathcal{F}, \mathcal{X})$ can also be required to be stable under substitutions, i.e. if $s \succ t$ implies $s \sigma \succ t \sigma$ for all terms s and t and substitutions σ. A well-founded monotonic ordering stable under substitutions is called a reduction ordering.

An ordering \succ on $T(\mathcal{F})$ can always be lifted to an ordering \succ_v (or simply \succ) on $T(\mathcal{F}, \mathcal{X})$, which is stable under substitutions in the following way:

Definition 2.1 Let s and t be terms in $T(\mathcal{F}, \mathcal{X})$. Then $s \succ t$ if $s \sigma \succ t \sigma$ for all substitutions σ with range in $T(\mathcal{F})$.

Let \succ be a relation on terms. Then $\text{max}_{\succ}(S)$ is the set of all maximal terms in the set of terms S, i.e. the set S' s.t. $t \in S'$ iff there is no s in S such that $s \succ t$. When working modulo an equational theory E, $\text{max}_{\succ}(S)$ is any set obtained from S' as defined above by choosing one element in each E-congruence class.

Given an ordering \succ on terms and a congruence relation $=\equiv$, the lexicographic extension \succ^{\equiv} of \succ wrt. for n-tuples is defined as:

$$
(s_1, \ldots, s_n) \succ^{\equiv} (t_1, \ldots, t_n) \quad \text{iff} \quad s_1 = t_1, \ldots, s_{k-1} = t_{k-1} \text{ and } s_k \succ t_k
$$

for some k in $1 \ldots n$.

The extension to finite multisets of a congruence $=\equiv$ is defined as: $\{s_1, \ldots, s_m\} = \{t_1, \ldots, t_n\}$ if $m = n$ and there exists some permutation π of $1 \ldots m$, s.t. $s_{\pi(i)} = t_i$ for all $i : 1 \ldots n$.

The extension, wrt. a congruence \equiv, of an ordering \succ to finite multisets, denoted by $M \succ N$, is defined by:

- $M \neq \emptyset$ and $N = \emptyset$ or
- $s_i = t_j$ and $M \setminus \{s_i\} \succ N \setminus \{t_j\}$, for some $i = 1 \ldots m$ and $j = 1 \ldots n$ or
- $s_i \succ t_{j_1} \land \ldots \land s_i \succ t_{j_k}$ and

 $(M \setminus \{s_i\}) \succ (N \setminus \{t_{j_1}, \ldots, t_{j_k}\})$ for some $i = 1 \ldots m$ and $1 \leq j_1 < \ldots < j_k \leq n$

where $M \succ N$ means $M \succ N$ or $M = N$.

If \succ is a well-founded ordering on terms then \succ_{lex} and \succ are well-founded orderings on n-tuples of terms and on finite multisets of terms respectively, more precisely \succ_{lex} and \succ preserve irreflexivity, transitivity and well-foundedness.

A term rewrite system (TRS) is a set of rules $l \rightarrow r$ where l and r are terms in $T(\mathcal{F}, \mathcal{A})$ with $\text{Vars}(l) \supseteq \text{Vars}(r)$. For a given TRS R and terms s and t in $T(\mathcal{F}, \mathcal{A})$, we say that s rewrites into t, written $s \rightarrow_R t$ if $s|_p = l\sigma$ and $t = s[r\sigma]_p$ for some rule $l \rightarrow r \in R$, position p in s and substitution σ. Moreover, s rewrites modulo E into t, denoted by $s \rightarrow_{R/E} t$ if $s =_E s'$, $s'|_p = l\sigma$ and $t = s'[r\sigma]_p$, for some rule $l \rightarrow r \in R$, term s', position p in s' and substitution σ.

A rewrite system R is terminating over $T(\mathcal{F})$ if there exists no infinite sequence $t_1 \rightarrow_R t_2 \rightarrow_R \ldots$ of terms in $T(\mathcal{F})$. We speak about E-termination when we are considering rewriting modulo an equational theory E.

Proposition 2.2 Let R be a TRS with left and right hand sides in $T(\mathcal{F}, \mathcal{A})$. Then R is (E-)terminating over $T(\mathcal{F})$ if there is an (E-compatible) well-founded monotonic ordering \succ s.t. $l\sigma \succ r\sigma$ for all $l \rightarrow r \in R$ and ground substitution σ with range in $T(\mathcal{F})$.

Therefore if \succ is an (E-compatible) reduction ordering it suffices to prove $l \succ r$ for all rule $l \rightarrow r$ in R. In fact, if R is (E-)terminating then \rightarrow_R^* is itself an (E-comparable) reduction ordering.

Proposition 2.3 Let R be a TRS with left and right hand sides in $T(\mathcal{F}, \mathcal{A})$. If R is (E-)terminating over $T(\mathcal{F})$ (and \mathcal{F} contains at least one constant symbol) then R is (E-)terminating over $T(\mathcal{F} \cup \mathcal{F}')$ for any set of function symbols \mathcal{F}'.

This means that we can, in general, speak about termination without mentioning over which signature.

If \rightarrow_R is (E-)terminating then \rightarrow_R^* is an (E-compatible) reduction ordering.

The embedding relation \succ_{emb} is the ordering generated by the rewrite system $\{f(x_1, \ldots, x_n) \rightarrow x_i \mid \forall f \in \mathcal{F} \land i : 1 \ldots n\}$.

The union of two rewrite systems R_1 and R_2 is called a disjoint union (or direct sum), and denoted by $R_1 \cup R_2$, if R_1 and R_2 do not share any symbol.

From now on we suppose that we have n relations \succ_1, \ldots, \succ_n on $T(\mathcal{F}_1), \ldots, T(\mathcal{F}_n)$ respectively, where all \mathcal{F}_i are disjoint and contain at least one constant symbol.
3 Modularity of termination of TRS's

This section is devoted to extend general orderings on terms and hence to study modularity of termination of TRS's. First the ground case is considered. Then the applicability of the defined ordering to terms with variables and its utility for termination proofs of TRS's is analyzed.

3.1 A transformation on terms

Here we define a transformation from terms to multisets of terms that will be used in the following to define an extension ordering. The mapping \(N_i \) below eliminates from terms in \(T(\mathcal{F}) \) those function symbols that are not in \(\mathcal{F}_i \):

Definition 3.1 Let \(N_i \) be a mapping from terms in \(T(\mathcal{F}) \) to multisets of terms in \(T(\mathcal{F}_i) \) recursively defined as:

\[
N_i(f(t_1, \ldots, t_m)) = \begin{cases}
\{f(t'_1, \ldots, t'_m) \mid t'_j \in N_i(t_j) \cup Z_i(t_j)\} & \text{if } f \in \mathcal{F}_i \\
N_i(t_1) \cup \ldots \cup N_i(t_m) & \text{otherwise}
\end{cases}
\]

where 0, is some (fixed) constant symbol in \(\mathcal{F}_i \) and \(Z_i(t) = \{0_i\} \) if \(t \notin T(\mathcal{F}_i) \) and \(Z_i(t) = \emptyset \) otherwise.

Proposition 3.2 For all \(i, j : 1 \ldots n \) and for all terms \(t \in T(\mathcal{F}_i) \), if \(j \neq i \) then \(N_j(t) = \emptyset \) and if \(j = i \) then \(N_j(t) = \{t\} \).

Proposition 3.3 For all \(i : 1 \ldots n \), ground terms \(s, t \in T(\mathcal{F}) \) and function symbol \(f \in \mathcal{F} \), if \(t \in T(\mathcal{F}_i) \) whenever \(s \in T(\mathcal{F}_i) \) then \(N_i(s) = N_i(t) \) implies \(N_i(f(\ldots s \ldots)) \supseteq N_i(f(\ldots t \ldots)) \).

Proof If \(f \notin \mathcal{F}_i \) then \(N_i(f(\ldots s \ldots)) = X \cup N_i(s) \) and \(N_i(f(\ldots t \ldots)) = X \cup N_i(t) \) for some \(X \) obtained from the transformations of the other top level arguments, and therefore \(N_i(f(\ldots s \ldots)) \supseteq N_i(f(\ldots t \ldots)) \).

If \(f \in \mathcal{F}_i \) then \(N_i(f(\ldots s \ldots)) = \{f(\ldots s' \ldots) \mid s' \in N_i(s) \cup Z_i(s)\} \) and \(N_i(f(\ldots t \ldots)) = \{f(\ldots t' \ldots) \mid t' \in N_i(t) \cup Z_i(t)\} \). Since \(t \in T(\mathcal{F}_i) \) whenever \(s \in T(\mathcal{F}_i) \), either \(Z_i(s) = Z_i(t) = \emptyset \) or \(Z_i(s) \neq \emptyset \). Therefore \(N_i(f(\ldots s \ldots)) \supseteq N_i(f(\ldots t \ldots)) \). \(\Box \)

3.2 Well-founded extension orderings

Here a method for extending a collection of orderings on ground terms built over disjoint signatures is given. This method produces an extension ordering preserving well-foundedness, i.e., we have a well-founded extension ordering.

Definition 3.4 The relation \(>_e \) on \(T(\mathcal{F}) \) extending \(>_i \) for all \(i : 1 \ldots n \) is defined as:

\(s >_e t \) iff \(N_1(s) = N_1(t) \wedge \ldots \wedge N_{i-1}(s) = N_{i-1}(t) \wedge N_i(s) >_i N_i(t) \) for some \(i : 1 \ldots n \)
In other words, given relations \(\succ_i \) on \(\mathcal{F}_i \) and a linear ordering among them (in this case the ordering on the subindexes), we build the relation \(\succ_e \).

Of course, the roles of all \(\succ_i \) (and \(N_i \)) are symmetric here, and can be exchanged, obtaining in fact different orderings \(\succ_e \).

Lemma 3.5 \(\succ_e \) extends \(\succ_i \) for all \(i : 1 \ldots n \).

Proof By proposition 3.2, for all \(i, j : 1 \ldots n \) and for all \(s, t \in T(\mathcal{F}_i) \) we have \(N_j(s) = N_j(t) = \emptyset \) if \(j < i \), and \(N_j(s) = \{s\} \) and \(N_j(t) = \{t\} \) otherwise. Then \(s \succ_i t \) implies \(s \succ_e t \).

\(\square \)

Lemma 3.6 If \(\succ_i \) is an ordering for all \(i : 1 \ldots n \) then \(\succ_e \) is an ordering.

Proof Irreflexivity: since \(N_i(s) = N_i(s) \), by irreflexivity of \(\succ_i \) (and hence of \(\succ_i \)) for all \(i : 1 \ldots n \), we have \(N_i(s) \not\succ_i N_i(s) \) and therefore \(s \not\succ_e s \).

Transitivity: suppose \(s \succ_e t \) and \(t \succ_e u \) with \(N_i(s) = N_i(t), \ldots, N_{j-1}(s) = N_{j-1}(t), N_j(s) \succ_j N_j(t) \) and \(N_j(t) = N_j(u), \ldots, N_{k-1}(t) = N_{k-1}(u), N_k(t) \succ_k N_k(u) \), for some \(j, k : 1 \ldots n \). Then, by transitivity of \(\succ_j \) and \(\succ_k \) (and hence of \(\succ_j \) and \(\succ_k \)), we have \(N_i(s) = N_i(u), \ldots, N_{m-1}(s) = N_{m-1}(u), N_m(s) \succ_k N_m(u) \), for \(m = \min(j, k) \).

\(\square \)

Lemma 3.7 If \(\succ_i \) is well-founded for all \(i : 1 \ldots n \) then \(\succ_e \) is well-founded.

Proof Suppose that there exists an infinite sequence \(t_1 \succ_i t_2 \succ_i \ldots \). By well-foundedness of \(\succ_i \) and hence of \(\succ_i \), there must be some \(t_j \) in the sequence s.t. \(N_i(t_j) = N_i(t_k) \) for all \(k > j \). Let \(t_1^i \succ_i t_2^i \succ_i \ldots \) the infinite subsequence starting from \(t_j \). Repeating this reasoning \(n \) times it follows that there must be an infinite subsequence \(t_1^i \succ_i t_2^i \succ_i \ldots \) s.t. \(N_i(t_1^n) = N_i(t_2^n) = \ldots \) for all \(i : 1 \ldots n \), which contradicts the existence of such an infinite decreasing sequence.

\(\square \)

Although \(\succ_e \) is not monotonic in general it fulfills the following property which we call quasi-monotonicity and which, as we will see, is enough to ensure termination of TRS’s.

Lemma 3.8 Let \(s \) and \(t \) be terms in \(T(\mathcal{F}) \). If \(\succ_i \) is monotonic and \(t \in T(\mathcal{F}_i) \) whenever \(s \in T(\mathcal{F}_i) \) for all \(i : 1 \ldots n \) then \(s \succ_e t \) implies \(f(\ldots s \ldots) \succ_e f(\ldots t \ldots) \), i.e. \(\succ_e \) is quasi-monotonic.

Proof Assume \(N_1(s) = N_1(t) \land \ldots \land N_{j-1}(s) = N_{j-1}(t) \land N_j(s) \succ_j N_j(t) \), for some \(j : 1 \ldots n \). We have to show \(f(\ldots s \ldots) \succ_e f(\ldots t \ldots) \). By proposition 3.3, since \(t \in T(\mathcal{F}_i) \) whenever \(s \in T(\mathcal{F}_i) \) for all \(i : 1 \ldots n \), we have \(N_1(f(\ldots s \ldots)) \succ_j N_1(f(\ldots t \ldots)) \land \ldots \land N_{j-1}(f(\ldots s \ldots)) \succ_{j-1} N_{j-1}(f(\ldots t \ldots)) \). Then assume \(N_1(f(\ldots s \ldots)) = N_1(f(\ldots t \ldots)) \land \ldots \land N_{j-1}(f(\ldots s \ldots)) = N_{j-1}(f(\ldots t \ldots)) \) (otherwise the lemma already holds):

- If \(f \notin \mathcal{F}_j \) then \(N_j(f(\ldots s \ldots)) = N_j(s) \cup X \) and \(N_j(f(\ldots t \ldots)) = N_j(t) \cup X \) for some \(X \) obtained from the transformations of the other top level arguments, and therefore \(N_j(f(\ldots s \ldots)) \succ_j N_j(f(\ldots t \ldots)) \).

6
• If \(f \in \mathcal{F}_j \) then \(N_j(f(\ldots s \ldots)) = \{f(\ldots s' \ldots) \mid s' \in N_j(s) \cup Z_j(s)\} \) and \(N_j(f(\ldots t \ldots)) = \{f(\ldots t' \ldots) \mid t' \in N_j(t) \cup Z_j(t)\} \). Since \(t \in T(\mathcal{F}_j) \) whenever \(s \in T(\mathcal{F}_j) \), either \(Z_j(s) = Z_j(t) = \emptyset \) or \(Z_j(s) \neq \emptyset \). Therefore, by monotonicity of \(\triangleright_j \), \(N_j(f(\ldots s \ldots)) \triangleright_j N_j(f(\ldots t \ldots)) \).

Since in both cases, \(N_j(f(\ldots s \ldots)) \triangleright_j N_j(f(\ldots t \ldots)) \), it holds that \(f(\ldots s \ldots) \triangleright_e f(\ldots t \ldots) \). \(\square \)

3.3 Terms with variables and TRS’s

Let \(R \) be \(R_1 \cup \ldots \cup R_n \) and let \(\triangleright_i \) be reduction orderings on \(T(\mathcal{F}_i, \mathcal{X}) \) containing the terminating rewrite relation \(\rightarrow^*_R \) for all \(i : 1 \ldots n \). In the following consider the ordering \(\triangleright_e \) lifted to terms with variables as in definition 2.1, which is stable under substitutions.

A possible way to prove termination of \(R \) over \(T(\mathcal{F}) \) (see e.g. [Der87]) is to show that there exists a well-founded ordering \(\triangleright \) on \(T(\mathcal{F}) \) s.t.:

1. \(l \sigma > r \sigma \) for all rules \(l \rightarrow r \in R \) and all substitutions \(\sigma \) with range in \(T(\mathcal{F}) \).

2. \(s \rightarrow_R t \) and \(s \triangleright t \) implies \(f(\ldots s \ldots) \triangleright f(\ldots t \ldots) \) for all \(s, t \in T(\mathcal{F}) \) and \(f \in \mathcal{F} \).

From these two properties we can derive that \(s \triangleright t \) whenever \(s \rightarrow_R t \) for all terms \(s, t \in T(\mathcal{F}) \), i.e. \(R \) is terminating over \(T(\mathcal{F}) \). Property (2) is fulfilled by \(\triangleright_e \).

Lemma 3.9 Let \(s \) and \(t \) be terms in \(T(\mathcal{F}) \). Then \(s \rightarrow_R t \) and \(s \triangleright_e t \) implies \(f(\ldots s \ldots) \triangleright_e f(\ldots t \ldots) \) for all \(f \in \mathcal{F} \).

Proof Since if \(s \rightarrow_R t \) then \(t \in T(\mathcal{F}_i) \) whenever \(s \in T(\mathcal{F}_i) \) for all \(i : 1 \ldots n \) and all \(\triangleright_i \) are monotonic orderings, by lemma 3.8 \(s \triangleright_e t \) implies \(f(\ldots s \ldots) \triangleright_e f(\ldots t \ldots) \) for all \(f \in \mathcal{F} \). \(\square \)

However, property (1) does not hold in general for \(\triangleright_e \). This is not surprising since this result would imply the termination of the direct sum of any two terminating rewriting systems, which is well-known to be false, as shown by Toyama’s counter example ([Toy87]). If we apply our method to this example, indeed the resulting ordering does not fulfill the property:

Example 3.10 Let \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) be \(\{f, 1, 0_1\} \) and \(\{g, 0_2\} \) respectively and let \(\triangleright_1 \) and \(\triangleright_2 \) be the orderings generated by the TRS’s \(R_1 = \{f(1, 0_1, z) \rightarrow f(z, z, x)\} \) and \(R_2 = \{g(x, y) \rightarrow x, g(x, y) \rightarrow y\} \) respectively. Then with the substitution \(\{x \mapsto g(1, 0_1)\} \) we have:

\[
N_1(f(1, 0_1, g(1, 0_1))) = \{f(1, 0_1, 1), f(1, 0_1, 0), f(1, 0_1, 0_1)\}
\]

and

\[
N_1(f(g(1, 0_1), g(1, 0_1), g(1, 0_1))) = \{f(1, 1, 1), \ldots, f(1, 0_1, 1), f(1, 0_1, 0), f(1, 0_1, 0_1), \ldots, f(0_1, 0_1, 0_1)\},
\]

which implies \(f(g(1, 0_1), g(1, 0_1), g(1, 0_1)) \triangleright_e f(1, 0_1, g(1, 0_1)) \), contradicting the rule of \(R_1 \). \(\square \)

In fact, the problem is that although \(\triangleright_e \) extends each \(\triangleright_i \) at the ground level, this becomes false at the variable level. Nevertheless, by imposing some syntactic conditions on the TRS’s, we can prove that \(\triangleright_e \) includes the rewrite relation \(\rightarrow_R \) on \(T(\mathcal{F}) \). We consider the case where all rules in \(R \) are right linear:
Definition 3.11 A term t is linear if all variables in $\mathcal{V}_\mathcal{S}(t)$ occur only once in t. A TRS R is right linear if the right hand sides of all rules in R are linear.

Proposition 3.12 Let R be a right-linear TRS over a signature \mathcal{F} and let 0 be a new constant symbol (not occurring in R). Then R is terminating iff $R'' = R \cup R'$ is terminating, where $R' = \{ f(\ldots0\ldots) \rightarrow 0 \mid f \in \mathcal{F} \}$.

Proof The right to left implication is trivial. For the the left to right implication, let s and t be terms in $T(\mathcal{F} \cup \{0\})$ and let \succ be a well-founded ordering defined as: $s \succ t$ iff $|s|_0 > |t|_0$ or $|s|_0 = |t|_0$ and $s \rightarrow^+ t$ (note that if R is terminating then in particular R is terminating over $T(\mathcal{F} \cup \{0\})$). We will prove that R'' is terminating over $T(\mathcal{F} \cup \{0\})$, and hence terminating. Assume that t_1 is a minimal (wrt \succ) term s.t. there is an infinite rewriting sequence with \rightarrow_R^* starting from t_1. Then since R' is obviously terminating the sequence must be of the form $t_1 \rightarrow_{R'}^* t_2 \rightarrow_R^* t_3 \rightarrow_R^* \ldots$ Now we have $|t_1|_0 \geq |t_2|_0$ and by right linearity of R also $|t_2|_0 \geq |t_3|_0$. Assume $|t_1|_0 = |t_2|_0 = |t_3|_0$, otherwise it contradicts the minimality (wrt \succ) of t_1. Let $l \rightarrow r$ be the rewrite rule in R applied to t_2, i.e. $t_2|_l = l\sigma$ and $t_3 = t_2[r\sigma]|_l$ for some substitution σ. Then, as r is linear, for all $x \in \mathcal{V}_\mathcal{S}(l)$ if 0 occurs in $x\sigma$ then x occurs only once in l and x occurs in r. Therefore there exists some substitution σ' s.t. $t_1|_l = l\sigma'$ and $t_1[r\sigma'] = t_2 \rightarrow_{R'}^* t_3$, which since $t_1 \succ t_2$ contradicts the minimality (wrt \succ) of t_1. \hfill \Box

Note that this property do not hold for non right linear TRS:

Example 3.13 The rewrite system $R = \{ f(z, z) \rightarrow f(g(z), h(x)) \}$ is terminating. But $R'' = R \cup \{ f(0, z) \rightarrow 0, f(x, 0) \rightarrow 0, g(0) \rightarrow 0, h(0) \rightarrow 0 \}$ is not, since we have the following infinite sequence: $f(0, 0) \rightarrow_{R''} f(g(0), h(0)) \rightarrow_{R''} f(0, h(0)) \rightarrow_{R''} f(0, 0) \rightarrow_{R''} \ldots$ \hfill \Box

By this proposition we can consider that if R_i is right linear and terminating then there is a reduction ordering \succ_i on $T(\mathcal{F}_i)$ including \rightarrow^*_i, where \mathcal{F}_i contains a constant symbol, which is taken as 0_i, s.t. $f(\ldots0_i\ldots) \succ_i 0_i$.

Proposition 3.14 Let s be a term in $T(\mathcal{F}_i, \mathcal{X})$ for some $i : 1 \ldots n$. $N_j(s\sigma) = \bigcup_{x \in \mathcal{M}_\mathcal{S}(s)} N_j(x\sigma)$ for all $j : 1 \ldots n$ with $i \neq j$ and all ground substitutions σ with range in $T(\mathcal{F})$ (remind that $\mathcal{M}_\mathcal{S}(s)$ denotes the multiset of variables occurring in s).

Proof By induction on the size of s. If s is a variable then the property trivially holds. Otherwise, let s be $f(s_1, \ldots, s_p)$. Then, as $f \notin \mathcal{F}_j$, we have $N_j(f(s_1, \ldots, s_p)) = N_j(s_1) \cup \ldots \cup N_j(s_p)$. Now by induction hypothesis $N_j(s_k) = \bigcup_{x \in \mathcal{M}_\mathcal{S}(s_k)} N_j(x\sigma)$ for all $k : 1 \ldots p$, which, since $\mathcal{M}_\mathcal{S}(s) = \bigcup_{k=1}^p \mathcal{M}_\mathcal{S}(s_k)$, implies $N_j(s\sigma) = \bigcup_{x \in \mathcal{M}_\mathcal{S}(s)} N_j(x\sigma)$. \hfill \Box

Proposition 3.15 Let t be a term in $T(\mathcal{F}_i, \mathcal{X})$ for some $i : 1 \ldots n$. If t is not a variable then $N_i(t\sigma) \supseteq \{ t' \sigma' \mid t' \sigma' \in N_i(x\sigma) \cup Z_i(x\sigma) \land x \in \mathcal{V}_\mathcal{S}(t) \}$ for all ground substitutions σ with range in $T(\mathcal{F})$. Moreover if t is linear then $\max_{\succ_i}(N_i(t\sigma)) \subseteq \{ t' \sigma' \mid t' \sigma' \in N_i(x\sigma) \cup Z_i(x\sigma) \land x \in \mathcal{V}_\mathcal{S}(t) \}$ for all ground substitutions σ with range in $T(\mathcal{F})$.

8
Proof The first part is obvious. For the second part we proceed by induction on the size of t. If t is a variable it holds trivially. Otherwise let t be $f(t_1, \ldots , t_n)$. Then $N_i(f(t_1, \ldots , t_n)) = \{ f(t'_1, \ldots , t'_n) | t'_j \in N_i(t_j) \cup Z_i(t_j) \}$.

If t_j is not a variable then if $t_j \sigma \in T(F_i)$ then $Z_i(t_j \sigma) = \{ 0_j \}$ but then, since t_j is not a variable $Head(t_j \sigma) \in F_i$, and as $t_j \sigma \not\in T(F_i)$, there must be an immediate subterm of $t_j \sigma$ which is not in $T(F_i)$. Therefore, there is a term t' in $N_i(t_j \sigma)$ s.t. 0_j is a proper subterm of t', i.e. $t' \succ_i 0_j$. Therefore, since by induction hypothesis $\max_{\succ_i}(N_i(t_j \sigma)) \subseteq \{ t_j \sigma' | x \sigma' \in N_i(x \sigma) \cup Z_i(x \sigma) \land x \in \text{Vars}(t) \}$, we have $\max_{\succ_i}(N_i(t_j \sigma) \cup Z_i(t_j \sigma)) \subseteq \{ t_j \sigma' \cup z \sigma' \in N_i(z \sigma) \cup Z_i(z \sigma) \land x \in \text{Vars}(t) \}$ (note that if t_j is a variable this trivially holds).

Since t is linear, variables occurring in some t_j do not occur elsewhere, therefore, by monotonicity of \succ_i, $\max_{\succ_i}(N_i(f(t_1, \ldots , t_n))) \subseteq \{ t \sigma' | x \sigma' \in N_i(x \sigma) \cup Z_i(x \sigma) \land x \in \text{Vars}(t) \}$.

Lemma 3.16 Let s and t be terms in $T(F_i, X)$ for some $i : 1 \ldots n$. If \succ_i is stable under substitutions and t is linear then $s \succ_i t$ implies $s \sigma \succ \sigma t$ for all substitutions σ with range in $T(F)$, i.e. $s \succ \sigma t$.

Proof Since t is linear and $\text{Vars}(s) \supseteq \text{Vars}(t)$, by proposition 3.14 we have $N_j(s \sigma) \supseteq N_j(t \sigma)$ for all $j : 1 \ldots i - 1$. Therefore either $N_j(s \sigma) \succ_j N_j(t \sigma)$ for some $j : 1 \ldots i - 1$ which implies $s \sigma \succ \sigma t$, or $N_j(s \sigma) = N_j(t \sigma)$ for all $j : 1 \ldots i - 1$. But then by proposition 3.15 we have $N_i(s \sigma) \supseteq \{ s \sigma' | x \sigma' \in N_i(x \sigma) \cup Z_i(x \sigma) \land x \in \text{Vars}(s) \}$ and $\max_{\succ_i}(N_i(s \sigma)) \subseteq \{ t \sigma' | x \sigma' \in N_i(x \sigma) \cup Z_i(x \sigma) \land x \in \text{Vars}(t) \}$. Therefore, by stability under substitutions of \succ_i we have that for each t' in $\max_{\succ_i}(N_i(t \sigma))$ there is a term s' in $N_i(s \sigma)$ s.t. $s' \succ_i t'$. Therefore $N_i(s \sigma) \succ_i N_i(t \sigma)$, and hence $s \sigma \succ \sigma t$.

This lemma leads to a constructive proof of modularity of termination for direct sums of right linear TRS's:

Theorem 3.17 Let R_1, \ldots , R_n be right linear terminating TRS's over $T(F_1), \ldots , T(F_n)$ respectively. Then $R = R_1 \cup \ldots \cup R_n$ is terminating.

Proof If R_1, \ldots , R_n are terminating then $\rightarrow R_1 \ldots \rightarrow R_n$ are respectively included in some reduction orderings $\succ_1 \ldots \succ_n$. Then, by lemmas 3.7, 3.6, 3.9 and 3.16 the extension ordering \succ_e of $\succ_1 \ldots \succ_2$ is a well-founded ordering s.t. $s \succ_e t$ for all ground terms $s, t \in T(F)$ with $s \rightarrow R t$, i.e. $R_1 \cup \ldots \cup R_n$ is terminating.

4 Modularity of Simple termination of TRS's

In this section simple termination (which for finite signatures implies termination) is considered:

Definition 4.1 A TRS R (with left and right hand sides in $T(F)$) is simply terminating over $T(F)$ iff there exists some simplification ordering \succ s.t. $l \sigma \succ r \sigma$ for all $l \rightarrow r$ in R and substitutions σ with range in $T(F)$. We say that R is simply terminating (in general) if R is simply terminating over $T(F \cup F')$ for any set of new function symbols F'.
At the end of this section we will see that if a TRS (with left and right hand sides in \(T(\mathcal{F}) \)) is simply terminating over \(T(\mathcal{F}) \) then it is simply terminating.

Although the ordering \(\succ_c \) can be shown to preserve the subterm property, due to its restrictions on the applicability to terms with variables it is not to be powerful enough to prove modularity of simple termination. Here we present a new extension ordering which extends any collection of simplification orderings at the ground level and at the variable level. Therefore, the modularity of simple termination follows.

4.1 A transformation on terms

Definition 4.2 Let \(S_i \) be a mapping from terms in \(T(\mathcal{F}) \) to terms in \(T(\mathcal{F}_i) \) recursively defined as:

\[
S_i(t_1, \ldots, t_m) = \begin{cases}
0_i & \text{if } f \notin \mathcal{F}_i \\
S_i(t_1), \ldots, S_i(t_m) & \text{otherwise}
\end{cases}
\]

where \(0_i \) is some (fixed) constant symbol in \(\mathcal{F}_i \).

Let \(S \) be a mapping from terms in \(T(\mathcal{F}) \) to terms in \(\bigcup_{i=1}^n T(\mathcal{F}_i) \) defined as:

\[
S(t) = S_i(t) \quad \text{if } \text{Head}(t) \in \mathcal{F}_i
\]

Let \(S_E \) be a mapping from terms in \(T(\mathcal{F}) \) to multisets of terms in \(\bigcup_{i=1}^n T(\mathcal{F}_i) \) defined as:

\[
S_E(t) = \{ S(t') \mid t \trianglerighteq_{\text{ems}} t' \}
\]

Proposition 4.3 For all \(i : 1 \ldots n \) and for all ground terms \(t \) in \(T(\mathcal{F}_i) \), \(S(t) = \{ t \} \) and \(S_E(t) = \{ t' \mid t \trianglerighteq_{\text{ems}} t' \} \).

Proposition 4.4 Let \(t_1, \ldots, t_p \) be ground terms in \(T(\mathcal{F}) \) and let \(f \) be a function symbol in \(\mathcal{F} \). Then \(S_E(f(t_1, \ldots, t_p)) = S_E(t_1) \cup \ldots \cup S_E(t_p) \cup \{ S(f(t'_1, \ldots, t'_p)) \mid t_j \trianglerighteq_{\text{ems}} t'_j \} \).

4.2 Simplification extension orderings

Here a method for extending simplification orderings on ground terms built over disjoint signatures is given. This method produces an extension ordering which preserves monotonicity and subterm property, i.e. we have a simplification extension ordering.

Definition 4.5 Let \(s, t \) be terms in \(T(\mathcal{F}) \). Then \(s = f(s_1, \ldots, s_p) \triangleright s, g(t_1, \ldots, t_q) = t \) iff

- \(\max_{\succ_u} (S_E(s)) \gg_u \max_{\succ_u} (S_E(t)) \) or
- \(\max_{\succ_u} (S_E(s)) = \max_{\succ_u} (S_E(t)) \) and \(f = g \) and \(\{ s_1, \ldots, s_p \} \gg_s \{ t_1, \ldots, t_q \} \)

where the relation \(\succ_u \) is defined as \(\bigcup_{i=1}^n \succ_i \).

10
Note that, since all \(\triangleright_i \) are orderings on \(T(F_i) \), if \(s \triangleright_u t \) then \(s, t \in T(F_i) \) and \(s \triangleright_i t \) for some \(i : 1 \ldots n \), which implies that \(\triangleright_u \) is an ordering whenever all \(\triangleright_i \) also are.

Proposition 4.6 If \(\triangleright_i \) is a monotonic ordering on \(T(F_i) \) fulfilling the subterm property for some \(i : 1 \ldots n \) then \(\triangleright_u \) extends \(\triangleright_i \).

Proof Assume \(s \triangleright_i t \) for some \(s, t \in T(F_i) \) By proposition 4.3, \(S_E(s) = \{s' \mid s \equiv_{emb} s'\} \) and \(S_E(t) = \{t' \mid t \equiv_{emb} t'\} \). Then since \(\triangleright_i \) is a monotonic ordering fulfilling the subterm property we have \(\text{max}_{\triangleright_u}(S_E(s)) = \{s\} \) and \(\text{max}_{\triangleright_u}(S_E(t)) = \{t\} \) and therefore \(\text{max}_{\triangleright_u}(S_E(s)) \triangleright_u \text{max}_{\triangleright_u}(S_E(t)) \), which implies \(s \triangleright_u t \).

Lemma 4.7 If \(\triangleright_i \) are orderings on \(T(F_i) \) for all \(i : 1 \ldots n \) then \(\triangleright_u \) is an ordering on \(T(F) \).

Proof Irreflexivity: \(s \not\triangleright_u s \). By induction on the size of \(s \). By irreflexivity of \(\triangleright_i \) for all \(i : 1 \ldots n \), we have that \(\triangleright_u \) is irreflexive and hence \(\not\triangleright_u \). Therefore, since \(S_E(s) = S_E(s) \) and hence \(\text{max}_{\triangleright_u}(S_E(s)) = \text{max}_{\triangleright_u}(S_E(s)) \), it holds \(\text{max}_{\triangleright_u}(S_E(s)) \not\triangleright_u \text{max}_{\triangleright_u}(S_E(s)) \). If \(s \) is of the form \(f(s_1, \ldots, s_p) \), by induction hypothesis, we have \(\{s_1, \ldots, s_p\} \not\triangleright_u \{s_1, \ldots, s_p\} \). Therefore \(s \not\triangleright_u s \).

Transitivity: \(s \triangleright_u t \) and \(t \triangleright_u u \) implies \(s \triangleright_u u \). By induction on the size of \(s, t \) and \(u \). Since all \(\triangleright_i \) are transitive, \(\triangleright_u \) is also transitive and hence \(\triangleright_u \). Therefore if \(\text{max}_{\triangleright_u}(S_E(s)) \triangleright_u \text{max}_{\triangleright_u}(S_E(t)) \) or \(\text{max}_{\triangleright_u}(S_E(t)) \triangleright_u \text{max}_{\triangleright_u}(S_E(u)) \) then \(\text{max}_{\triangleright_u}(S_E(s)) \triangleright_u \text{max}_{\triangleright_u}(S_E(u)) \). Otherwise, \(\text{max}_{\triangleright_u}(S_E(s)) = \text{max}_{\triangleright_u}(S_E(t)) \) and \(\text{max}_{\triangleright_u}(S_E(t)) = \text{max}_{\triangleright_u}(S_E(u)) \). Then \(s, t \) and \(u \) are of the form \(s = f(s_1, \ldots, s_p), t = f(t_1, \ldots, t_p) \) and \(u = f(u_1, \ldots, u_p) \), with \(\{s_1, \ldots, s_p\} \triangleright_u \{t_1, \ldots, t_p\} \) and \(\{t_1, \ldots, t_p\} \triangleright_u \{u_1, \ldots, u_p\} \). Therefore, by induction hypothesis \(\{s_1, \ldots, s_p\} \triangleright_u \{u_1, \ldots, u_p\} \) and hence \(s \triangleright_u u \).

Lemma 4.8 If \(\triangleright_i \) are orderings on \(T(F_i) \) fulfilling the subterm property for all \(i : 1 \ldots n \) then \(\triangleright_u \) fulfills the subterm property on \(T(F) \), i.e. \(f(\ldots s \ldots) \triangleright_u s \) for all \(s \in T(F) \) and \(f \in F \).

Proof Assume \(f \in F_i \). Since obviously \(S_E(f(\ldots s \ldots)) \supseteq S_E(s) \) (note that all terms embedded in \(s \) are also embedded in \(f(\ldots s \ldots) \)), we have that \(\text{max}_{\triangleright_u}(S_E(f(\ldots s \ldots))) \supseteq \text{max}_{\triangleright_u}(S_E(s)) \), which implies \(\text{max}_{\triangleright_u}(S_E(f(\ldots s \ldots))) \triangleright_u \text{max}_{\triangleright_u}(S_E(s)) \). Now we will show that \(\text{max}_{\triangleright_u}(S_E(f(\ldots s \ldots))) = \text{max}_{\triangleright_u}(S_E(s)) \) is not possible. Suppose it is. Then, since there are terms headed by \(f \) in \(S_E(f(\ldots s \ldots)) \) (and hence there are terms in \(\text{max}_{\triangleright_u}(S_E(f(\ldots s \ldots))) \) headed by symbols in \(F_i \)), there should be a term \(s_1 \) headed by a symbol \(g \) in \(F_i \), s.t. \(s \equiv_{emb} s_1 \) and \(S_i(s_1) \in \text{max}_{\triangleright_u}(S_E(s)) \). Therefore we have \(f(\ldots s \ldots) \equiv_{emb} f(\ldots s_1 \ldots) \) and \(S(f(\ldots s_1 \ldots)) = S_i(f(\ldots s_1 \ldots)) = f(\ldots S_i(s_1) \ldots) \triangleright_i S_i(s_1) \) (as \(f, g \) in \(F_i \) and \(\triangleright_i \) fulfills the subterm property). This, by transitivity of all \(\triangleright_i \), leads to a contradiction since there is a term in \(S_E(f(\ldots s \ldots)) \) which is greater (wrt. \(\triangleright_i \) and hence wrt. \(\triangleright_u \)) than a term in \(\text{max}_{\triangleright_u}(S_E(s)) \), i.e. \(\text{max}_{\triangleright_u}(S_E(f(\ldots s \ldots))) \neq \text{max}_{\triangleright_u}(S_E(s)) \).
Proposition 4.9 If \(\text{max}_{\succ_u}(S_E(s)) \supseteq_u \text{max}_{\succ_u}(S_E(t)) \) then for all \(t' \) with \(t \preceq_{emb} t' \) there is some \(s \) with \(s \preceq_{emb} s' \) s.t. \(S_i(s') \succeq_i S_i(t') \) for all \(i : 1 \ldots n \).

Proof If \(\text{max}_{\succ_u}(S_E(s)) \supseteq_u \text{max}_{\succ_u}(S_E(t)) \) then for all \(t'' \in S_E(t) \) there exists a \(s'' \in S_E(s) \) s.t. \(s'' \succeq_u t'' \). Therefore, since \(S_E(s) = \{ S(s') | s \preceq_{emb} s' \} \) and \(S_E(t) = \{ S(t') | t \preceq_{emb} t' \} \), for all \(t' \) with \(t \preceq_{emb} t' \) there is some \(s \) with \(s \preceq_{emb} s' \) s.t. \(S(s') \succeq_u S(t') \).

Now, since \(\succ_u \) is the union of all \(\succ_i \) for \(i : 1 \ldots n \) and each \(\succ_i \) can only compare terms in \(T(\mathcal{F}_i) \) if \(S(s') \succeq_u S(t') \) then \(\text{Head}(s) \) and \(\text{Head}(t) \) must be in \(\mathcal{F}_j \) for some \(j : 1 \ldots n \) and \(S_j(s') \succeq_j S_j(t') \). Moreover \(S_k(s') = S_k(t') = 0_k \) for all \(k : 1 \ldots n \) and \(k \neq j \). Therefore, \(S_i(s') \succeq_i S_i(t') \) for all \(i : 1 \ldots n \).

Proposition 4.10 If \(\succ_i \) are monotonic orderings on \(T(\mathcal{F}_i) \) for all \(i : 1 \ldots n \) then \(\text{max}_{\succ_u}(S_E(s)) \succeq_u \text{max}_{\succ_u}(S_E(t)) \) implies \(\text{max}_{\succ_u}(S_E(f(s \ldots s))) \supseteq_u \text{max}_{\succ_u}(S_E(f(t \ldots t))) \) for all \(s, t \in T(\mathcal{F}) \) and \(f \in \mathcal{F} \).

Proof We will prove instead that for all \(t'' \in S_E(f(u_1 \ldots u_p, t, v_1 \ldots v_q)) \) there exists some \(s'' \in S_E(f(u_1 \ldots u_p, s, v_1 \ldots v_q)) \) s.t. \(s'' \succeq_u t'' \), since by transitivity of \(\succ_u \) (as all \(\succ_i \) are transitive), we have that \(\text{max}_{\succ_u}(X) \supseteq_u \text{max}_{\succ_u}(Y) \) iff for all \(y \) \(Y \) there exists some \(x \in X \) s.t. \(x \succeq_u y \) for all multisets \(X \) and \(Y \) with terms in \(T(\mathcal{F}) \). By proposition 4.4 we have:

\[
\begin{align*}
S_E(f(u_1 \ldots u_p, s, v_1 \ldots v_q)) & = S_E(u_1) \cup \ldots \cup S_E(u_p) \cup S_E(s) \cup S_E(v_1) \cup \ldots \cup S_E(v_q) \\
& \subseteq \{ S(f(u_1 \ldots u_p, s', v_1 \ldots v_q)) | u_j \preceq_{emb} u_j' \land s \preceq_{emb} s' \land v_k \preceq_{emb} v_k' \} \text{ and} \\
S_E(f(u_1 \ldots u_p, t, v_1 \ldots v_q)) & = S_E(u_1) \cup \ldots \cup S_E(u_p) \cup S_E(t) \cup S_E(v_1) \cup \ldots \cup S_E(v_q) \\
& \subseteq \{ S(f(u_1 \ldots u_p, t', v_1 \ldots v_q)) | u_j \preceq_{emb} u_j' \land t \preceq_{emb} t' \land v_k \preceq_{emb} v_k' \}.
\end{align*}
\]

Then on one hand, since \(\text{max}_{\succ_u}(S_E(s)) \supseteq_u \text{max}_{\succ_u}(S_E(t)) \), we have that for all \(t'' \in S_E(t) \) there is some \(s'' \in S_E(s) \) s.t. \(s'' \succeq_u t'' \). On the other hand, by proposition 4.9, we have for all \(t' \) with \(t \preceq_{emb} t' \) there is some \(s \) with \(s \preceq_{emb} s' \) s.t. \(S_i(s') \succeq_i S_i(t') \) for all \(i : 1 \ldots n \), which by monotonicity of each \(\succ_i \) implies that for all \(t'' \in \{ S(f(u_1 \ldots u_p, t', v_1 \ldots v_q)) | u_j \preceq_{emb} u_j' \land t \preceq_{emb} t' \land v_k \preceq_{emb} v_k' \} \) there is some \(s'' \in \{ S(f(u_1 \ldots u_p, s', v_1 \ldots v_q)) | u_j \preceq_{emb} u_j' \land s \preceq_{emb} s' \land v_k \preceq_{emb} v_k' \} \) s.t. \(s'' \succeq_u t'' \): note that if \(f \in \mathcal{F}_i \) then

\[
S(f(u_1 \ldots u_p, s', v_1 \ldots v_q)) \succeq_u S(f(u_1 \ldots u_p, t', v_1 \ldots v_q)) \text{ is equivalent to} \\
S_i(f(u_1 \ldots u_p, s', v_1 \ldots v_q)) = S_i(f(u_1 \ldots u_p, s', v_1 \ldots v_q) | S_i(u_1), S_i(u_2), \ldots | S_i(v_1), S_i(v_2), \ldots) \succeq_i \\
f(S_i(u_1), \ldots, S_i(u_p), S_i(v_1), \ldots, S_i(v_q)) = S_i(f(u_1 \ldots u_p, t', v_1 \ldots v_q)).
\]

All together ensures that for all \(t'' \in S_E(f(u_1 \ldots u_p, t, v_1 \ldots v_q)) \) there exists some \(s'' \in S_E(f(u_1 \ldots u_p, s, v_1 \ldots v_q)) \) s.t. \(s'' \succeq_u t'' \).

Lemma 4.11 If \(\succ_i \) are monotonic orderings on \(T(\mathcal{F}_i) \) for all \(i : 1 \ldots n \) then \(\succ_u \) is monotonic on \(T(\mathcal{F}) \).

Proof We have to prove that \(s \succ_t t \) implies \(f(s \ldots s) \succ_t f(t \ldots t) \) for all \(s, t \in T(\mathcal{F}) \) and \(f \in \mathcal{F} \). If \(s \succ_t t \) then \(\text{max}_{\succ_u}(S_E(s)) \supseteq_u \text{max}_{\succ_u}(S_E(t)) \), which by proposition 4.10 implies \(\text{max}_{\succ_u}(S_E(f(s \ldots s))) \supseteq_u \text{max}_{\succ_u}(S_E(f(t \ldots t))) \). Assume \(\text{max}_{\succ_u}(S_E(f(s \ldots s))) = \text{max}_{\succ_u}(S_E(f(t \ldots t))) \) (otherwise the property already holds). But then, since \(\{s \ldots s\} \succ_u \{t \ldots t\} \), we have \(f(s \ldots s) \succ_u f(t \ldots t) \).
From the previous lemmas, the following theorem holds:

Theorem 4.12 If \(\succ_i \) are simplification orderings on \(T(F_i) \) for all \(i : 1 \ldots n \). Then \(\succ_s \) is a simplification ordering on \(T(F) \) extending \(\succ_i \) for all \(i : 1 \ldots n \).

4.3 Terms with variables and TRS's

Let \(R_i \) be simply terminating TRS's over \(T(F_i) \) for all \(i : 1 \ldots n \), and let \(R \) be \(R_1 \cup \ldots \cup R_n \). In the following consider the ordering \(\succ_s \), lifted to terms with variables as in definition 2.1, which is stable under substitutions.

Proposition 4.13 Let \(s \) be a term in \(T(F_i, X) \) for some \(i : 1 \ldots n \). If \(\succ_i \) is a simplification ordering and \(s \) is not a variable then \(\max_{\succ_u}(S_E(s\sigma)) = \max_{\succ_u}(\cup_{\sigma \in \text{Vars}(s)} S_E(x\sigma) \cup \{s\sigma' | (x\sigma' \in \{S_i(s'_i) | x\sigma \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\}) \) for all substitutions \(\sigma \) with range in \(T(F) \).

Proof By induction on the size of \(s \), assuming \(s = f(s_1, \ldots, s_p) \). By proposition 4.4, we have \(S_E(f(s_1, \ldots, s_p)) = S_E(s_1) \cup \ldots \cup S_E(s_p) \cup \{f(S_i(s'_1), \ldots, S_i(s'_p)) | s_j \sigma \succeq_{\text{emb}} s'_j\} \) (note that \(S(f(\ldots)) = S(f(\ldots)) \), as \(f \in F_i \)).

First, as \(\succ_i \) is a simplification ordering, \(\max_{\succ_u}(\{f(S_i(s'_1), \ldots, S_i(s'_p)) | s_j \sigma \succeq_{\text{emb}} s'_j\}) = \max_{\succ_u}(\{so' | (xso' \in \{S_i(s'_i) | xso \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\}) \) (note that every term in the first set is embedded by or equal to someone in the second set).

Second, if \(s_j \) is not a variable then by induction hypothesis we have \(\max_{\succ_u}(S_E(s_j\sigma)) = \max_{\succ_u}(\cup_{\sigma \in \text{Vars}(s_j)} S_E(x\sigma) \cup \{s_j \sigma' | (x\sigma' \in \{S_i(s'_i) | x\sigma \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\}) \), but by subterm property of \(\succ_i \) for all \(s'_j \in \{s_j \sigma' | (x\sigma' \in \{S_i(s'_i) | x\sigma \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\} \), there is some \(s'' \in \{so' | (xso' \in \{S_i(s'_i) | xso \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\} \), s.t. \(s'' \succ_i s'_j \).

Therefore the part which has to be considered in \(\max_{\succ_u}(S_E(s_j\sigma)) \) for all \(s_j \) (even if it is a variable) is \(\max_{\succ_u}(\cup_{\sigma \in \text{Vars}(s_j)} S_E(x\sigma) \cup \{so' | (xso' \in \{S_i(s'_i) | xso \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\}) \), which, since the result of \(\max_{\succ_u} \) do not change if we remove some repetitions, implies \(\max_{\succ_u}(S_E(s_i\sigma)) = \max_{\succ_u}(\cup_{\sigma \in \text{Vars}(s_i)} S_E(x\sigma) \cup \{so' | (xso' \in \{S_i(s'_i) | xso \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\}) \).

Lemma 4.14 Let \(s \) and \(t \) be terms in \(T(F_i, X) \) for some \(i : 1 \ldots n \). If \(\succ_i \) is a simplification ordering and \(so' \succ_i to' \) for all substitutions \(so' \) with range in \(T(F_i) \), then \(so \succ_t to \) for all ground substitutions with range in \(T(F) \), i.e. \(s \succ_t t \).

Proof If \(t \) is a variable then, by subterm property of \(\succ_s \), the lemma holds. Otherwise by proposition 4.13, we have

\[
\max_{\succ_u}(S_E(s\sigma)) = \max_{\ succ_u}(\cup_{\sigma \in \text{Vars}(s)} S_E(x\sigma) \cup \{so' | (xso' \in \{S_i(s'_i) | xso \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(s)\})
\]

and

\[
\max_{\succ_u}(S_E(t\sigma)) = \max_{\ succ_u}(\cup_{\sigma \in \text{Vars}(t)} S_E(x\sigma) \cup \{to' | (xt' \in \{S_i(t'_i) | x\sigma \succeq_{\text{emb}} s'_i\}) \land x \in \text{Vars}(t)\})
\]

Since \(\text{Vars}(s) \supseteq \text{Vars}(t) \) and \(so' \succ_i to' \) for all substitutions \(so' \) with range in \(T(F_i) \), it holds that \(\max_{\succ_u}(S_E(s\sigma)) \succ_u \max_{\succ_u}(S_E(t\sigma)) \) and hence \(so \succ_t to \).

□
Theorem 4.15 Let \(R_1, \ldots, R_n \) be simply terminating TRS’s over \(T(F_1), \ldots, T(F_n) \) respectively. Then \(R = R_1 \uplus \ldots \uplus R_n \) is simply terminating over \(T(F) \).

Proof If \(R_i \) is simply terminating over \(T(F_i) \) for all \(i: 1 \ldots n \) then, by definitonon, for each \(R_i \), there exists some simplification ordering \(\succ_i \) on \(T(F_i) \), s.t. \(l \sigma \succ_i r \sigma \) for all rules \(l \rightarrow r \in R_i \) and all substitution \(\sigma \) with range in \(T(F_i) \). Therefore, by theorem 4.12 and lemma 4.14 it follows that \(\succ \) is a simplification ordering on \(T(F) \), s.t. \(l \sigma \succ r \sigma \) for all rule \(l \rightarrow r \in R \) and substitutions \(\sigma \) with range in \(T(F) \), i.e. \(R \) is simply terminating over \(T(F) \).

Corollary 4.16 Let \(R \) be a TRS with left and right hand sides in \(T(F, X) \). If \(R \) is simply terminating over \(T(F) \) then \(R \) is simply terminating over \(T(F \cup F') \) for any set of new function symbols \(F' \), i.e. \(R \) is simply terminating.

Proof Consider \(R' = \{ f(\ldots, x, \ldots) \rightarrow z \mid f \in F' \} \). Then obviously \(R' \) is simply terminating over \(T(F') \). Therefore by previous theorem \(R \uplus R' \) is simply terminating over \(T(F \cup F') \), and hence, in particular, \(R \) is simply terminating over \(T(F \cup F') \).

From the theorem and the corollary it follows that simple termination is modular (note that, obviously, if \(R_i \) is simply terminating then \(R_i \) is simply terminating over \(T(F_i) \)).

5 Modularity of Total termination of TRS’s

In this section total termination (which implies simple termination) is considered:

Definition 5.1 A TRS \(R \) (with left and right hand sides in \(T(F, X) \)) is totally terminating iff there exists some well-founded monotonic ordering \(\succ \) total on \(T(F) \) s.t. \(l \sigma \succ r \sigma \) for all \(l \rightarrow r \in R \) and substitutions \(\sigma \) with range in \(T(F) \).

Therefore the orderings \(\succ_e \) and \(\succ \) (defined in section 3.2 and 4.2) can not be used since they do not preserve totality of the initial orderings \(\succ_i \), i.e. the orderings \(\succ_e \) and \(\succ \) are not necessarily total on \(T(F) \) even if all \(\succ_i \) are total on \(T(F_i) \). However, it is quite easy to adapt \(\succ_e \) to obtain an extension ordering \(\succ_e \), which also preserves totality (and monotonicity). Moreover, the resulting extension ordering \(\succ_e \) is proved to need weaker sufficient conditions to extend orderings on terms with variables. Therefore, we obtain better results on modularity of total termination.

5.1 A transformation on terms

First we need to slightly modify the transformation defined in section 3.1 in order to to obtain an ordering preserving monotonicity:

Definition 5.2 Let \(T_i \) be a mapping from terms in \(T(F) \) to multisets of terms in \(T(F_i) \) recursively defined as:

\[
T_i(f(t_1, \ldots, t_m)) = \begin{cases}
\{ f(t'_1, \ldots, t'_m) \mid t'_j \in \{0,1\} \cup T_i(t_j) \} & \text{if } f \in F_i \\
T_i(t_1) \cup \ldots \cup T_i(t_m) & \text{otherwise}
\end{cases}
\]
where \(\alpha \) is some (fixed) minimal wrt. \(\succ_i \) constant symbol in \(\mathcal{F}_i \). Note that if \(\succ_i \) is a total ordering then there is only one minimal constant, and if \(\succ_i \) is also monotonic then \(\alpha \) is the minimal term wrt. \(\succ_i \) in \(T(\mathcal{F}_i) \).

Proposition 5.3 Let \(s \) and \(t \) be terms in \(T(\mathcal{F}) \). Then \(T_i(s) = T_i(t) \) implies \(T_i(f(...s...)) = T_i(f(...t...)) \) for all \(i : 1 \ldots n \) and \(f \in \mathcal{F} \).

5.2 Total extension orderings

Now we describe a method for extending a collection of total orderings on ground terms built over disjoint signatures. This method allows us to obtain an extension ordering which preserves totality (in addition to monotonicity and well-foundedness), i.e. we have a total extension ordering.

Definition 5.4 Let \(\succ_r \) be an arbitrary relation on \(T(\mathcal{F}) \) and let \(s \) and \(t \) be terms in \(T(\mathcal{F}) \). Then \(s \succ_i t \) iff

- \(T_i(s) = T_i(t) \land \ldots \land T_{i-1}(s) = T_{i-1}(t) \land T_i(s) \succ_j T_i(t) \) for some \(i : 1 \ldots n \) or
- \(T_i(s) = T_i(t) \) for all \(i : 1 \ldots n \) and \(s \succ_r t \)

Proposition 5.5 If \(\succ_i \) is a monotonic ordering total on \(T(\mathcal{F}_i) \) for some \(i : 1 \ldots n \) then \(t \succeq_i t' \) for all \(t', t \in T_i(t) \) and \(t \in T_i(t) \).

Proof By induction on the size of \(t \). Assume \(t = f(t_1, \ldots, t_p) \). Then \(T_i(t) = \{ f(t'_1, \ldots, t'_p) \mid t'_j \in \{0,1\} \cup T_i(t_j) \} \). By induction hypothesis \(t_j \succeq_i t'_j \) for all \(t'_j \in T_i(t_j) \) and since \(\succ_j \) is a monotonic total ordering \(0_j \) is the minimal term wrt. \(\succ_j \), i.e. \(t_j \succeq_i 0_j \). Therefore by monotonicity \(t = f(t_1, \ldots, t_p) \succeq_i t' = f(t'_1, \ldots, t'_p) \) for all \(f(t'_1, \ldots, t'_p) \in T_i(t) \).

Proposition 5.6 If \(\succ_i \) is a monotonic ordering total on \(T(\mathcal{F}_i) \) for some \(i : 1 \ldots n \) then \(\succ_i \) extends \(\succ_i \).

Proof Since for all \(i, j : 1 \ldots n \) and for all ground terms \(u \in T(\mathcal{F}_i) \), \(T_j(u) = \emptyset \) if \(j \neq i \), we have \(T_j(s) = T_j(t) = \emptyset \) for all \(j : 1 \ldots i - 1 \). By proposition 5.5 we have \(s \succeq_i s' \) for all \(s' \in T_i(s) \) and \(t \succeq_i t' \) for all \(t' \in T_i(t) \). Therefore, by transitivity, \(s \succ_i t \) implies \(T_i(s) \succ_i T_i(t) \), and hence \(s \succ_i t \).

Note that if all \(\succ_i \) are not monotonic total orderings then the relation \(\succ_i \) do not extend each \(\succ_i \). That is the reason why the interpretations are different in the definition of \(\succ \). On the other hand with this new interpretations, as we will see, \(\succ_i \) also preserves monotonicity (which is not the case with \(\succ \)).

Lemma 5.7 If \(\succ_i \) for all \(i : 1 \ldots n \) and \(\succ_r \) are orderings then \(\succ_i \) is an ordering.
Proof: Irreflexivity: since $T_i(s)$ is unique for all $s \in T(F)$ and all $i: 1 \ldots n$, by irreflexivity of all \succ_i (and hence of $\succ\succ_i$), we have $T_i(s) \not\succ_i T_i(s)$ and by irreflexivity of \succ, we have $s \not\succ_i s$. Therefore $s \not\succ_i s$.

Transitivity: let s, t and u be terms in $T(F)$ s.t. $s \succ t$ and $t \succ u$. Let j and k be the minimal indexes in $1 \ldots n$ s.t. $T_j(s) = T_j(t) \land \ldots \land T_{j-1}(s) = T_{j-1}(t)$ and $T_k(t) = T_k(u) \land \ldots \land T_{k-1}(t) = T_{k-1}(u)$. And let $m = \min(j, k)$. If $m \leq n$ then, by transitivity of all \succ_i (and hence of $\succ\succ_i$), we have $T_i(s) = T_i(u) \land \ldots \land T_{m-1}(s) = T_{m-1}(u) \land T_m(s) \succ_m T_m(u)$, and therefore $s \succ u$. Otherwise, $T_i(s) = T_i(t) = T_i(u)$ for all $i: 1 \ldots n$ and $s \succ t$ and $t \succ u$, which by transitivity of \succ, implies $s \succ u$ and hence $s \succ u$.

Lemma 5.8 If \succ_i for all $i: 1 \ldots n$ and \succ_i are monotonic then \succ_i is monotonic.

Proof: We have to prove that $s \succ_i t$ implies $f(\ldots s \ldots) \succ_i f(\ldots t \ldots)$ for all $s, t \in T(F)$ and $f \in F$. Let j be the minimal index in $1 \ldots n$ s.t. $T_k(s) = T_k(t)$ for all $k = 1 \ldots j - 1$.

By proposition 5.3 we have $T_k(f(\ldots s \ldots)) = T_k(f(\ldots t \ldots))$ for all $k = 1 \ldots j - 1$.

If $j \leq n$ then $T_j(s) \succ_i T_j(t)$. There are two cases two be distinguished:

1. $f \not\in F_j$. Then $T_j(f(\ldots s \ldots)) = X \cup T_j(s) \succ_i X \cup T_j(t) = T_j(f(\ldots t \ldots))$, where X is the union of the transformations of the all other immediate subterms.

2. $f \in F_j$. Then, by monotonicity of \succ_i, $T_j(f(\ldots s \ldots)) = \{f(\ldots s' \ldots) \mid s' \in \{0_j \cup T_j(s)\} \succ_i \{f(\ldots t' \ldots) \mid t' \in \{0_j \cup T_j(t)\} = T_j(f(\ldots t \ldots))$.

Otherwise (i.e. $j = n + 1$), we have $T_k(s) = T_k(t)$ and $T_k(f(\ldots s \ldots)) = T_k(f(\ldots t \ldots))$ for all $k = 1 \ldots n$. Then, by monotonicity of \succ, we have that $s \succ_t t$ implies $f(\ldots s \ldots) \succ_r f(\ldots t \ldots)$.

Lemma 5.9 If \succ_i for all $i: 1 \ldots n$ and \succ_i are well-founded then \succ_i is well-founded.

Proof: Suppose that there exists an infinite sequence $t_1 \succ t_2 \succ \ldots$. By well-foundedness of \succ_i and hence of $\succ\succ_i$, there must be some t_j in the sequence s.t. $T_i(t_j) = T_i(t_k)$ for all $k > j$. Let $t_1 \succ t_2 \succ \ldots$ the infinite subsequence starting from t_j. Repeating this reasoning n times it follows that there must be an infinite subsequence $t_1 \succ t_2 \succ \ldots$ s.t. $T_i(t_1) = T_i(t_2) = \ldots$ for all $i: 1 \ldots n$, which implies that there is an infinite sequence $t_1 \succ t_2 \succ \ldots$, contradicting the well-foundedness of \succ.

Lemma 5.10 If \succ_i for all $i: 1 \ldots n$ and \succ_i are total orderings on $T(F_i)$ and $T(F)$ respectively then \succ_i is a total ordering on $T(F)$.

Proof: By totality of \succ_i (and hence of $\succ\succ_i$) we have either $T_i(s) \succ_i T_i(t)$ or $T_i(t) \succ_i T_i(s)$ or $T_i(s) = T_i(t)$ for all $i: 1 \ldots n$ and $s, t \in T(F)$. Then either $s \succ_i t$ or $t \succ_i s$ or $T_i(s) = T_i(t)$ for all $i: 1 \ldots n$, and in the latter, since \succ is total, either $s \succ t$ or $t \succ s$ or $s = t$. Therefore, by definition of \succ, it holds that either $s \succ t$ or $t \succ s$ or $s = t$, i.e. \succ_i is total on $T(F)$.

From the previous lemmas, the following theorem holds:
Theorem 5.11 If \(\succ_i \) are monotonic well-founded orderings total on \(T(\mathcal{F}_i) \) for all \(i : 1 \ldots n \). Then \(\succ_i \) is a monotonic well-founded ordering total on \(T(\mathcal{F}) \) extending \(\succ_i \) for all \(i : 1 \ldots n \).

5.3 Terms with variables and TRS’s

Let \(R_i \) be totally terminating TRS’s for all \(i : 1 \ldots n \), and let \(R \) be \(R_1 \uplus \ldots \uplus R_n \). As before, in the following we consider the ordering \(\succ_i \) lifted to terms with variables as in definition 2.1.

Definition 5.12 A term \(t \) is said to be conservative wrt. a term \(s \) if for all variable \(x \in \text{Vars}(t) \) the number of occurrences of \(x \) in \(t \) is smaller or equal to the number of occurrences of \(x \) in \(s \). A TRS \(R \) is conservative \(r \) is conservative wrt. \(l \) for all rule \(l \rightarrow r \in R \).

Proposition 5.13 Let \(s \) be a term in \(T(\mathcal{F}_i, X) \) for some \(i : 1 \ldots n \). \(T_j(s_\sigma) = U_{x \in \text{Mvars}(s)} T_j(x_\sigma) \) for all \(j : 1 \ldots n \) with \(i \neq j \) and all ground substitutions \(\sigma \) with range in \(T(\mathcal{F}) \).

Proof By induction on the size of \(s \). If \(s \) is a variable then the property trivially holds. Otherwise, let \(s \) be \(f(s_1, \ldots, s_n) \). Then, as \(f \notin \mathcal{F}_j \), we have \(T_j(f(s_1, \ldots, s_n)) = T_j(s_1) \cup \ldots \cup T_j(s_n) \). Now by induction hypothesis \(T_j(s_k) = U_{x \in \text{Mvars}(s_k)} T_j(x_\sigma) \) for all \(k : 1 \ldots p \), which, since \(\text{Mvars}(s) = U_{k=1}^p \text{Mvars}(s_k) \), implies \(T_j(s_\sigma) = U_{x \in \text{Mvars}(s)} T_j(x_\sigma) \).

Proposition 5.14 Let \(\succ_i \) be a monotonic ordering total on \(T(\mathcal{F}_i) \) and let \(t \) be a term in \(T(\mathcal{F}_i, X) \). If \(t \) is not a variable then for all ground substitutions \(\sigma \) with range in \(T(\mathcal{F}) \), the maximal (wrt. \(\succ_i \)) term in \(T_i(t_\sigma) \) is \(t_\sigma' \), where \(x_\sigma' \) is the maximal (wrt. \(\succ_i \)) term in \(\{0\} \cup T_i(x_\sigma) \) for all variable \(x \in \text{Vars}(t) \).

Proof By induction on the size of \(t \). Let \(t = f(t_1, \ldots, t_p) \). Then \(T_i(f(t_1, \ldots, t_p)) = \{ f(t_1', \ldots, t_p') \mid t_j' \in \{0\} \cup T_i(t_j_\sigma) \} \). Now, by induction hypothesis (if \(t_j \) is not a variable) and by minimality wrt. \(\succ_i \) of \(0 \), we have that the maximal (wrt. \(\succ_i \)) term in \(\{0\} \cup T_i(t_j_\sigma) \) is \(t_j_\sigma' \), where \(x_\sigma' \) is the maximal (wrt. \(\succ_i \)) term in \(\{0\} \cup T_i(x_\sigma) \) for all variable \(x \in \text{Vars}(t_j) \). Since \(\succ_i \) is total the maximal is unique and hence \(x_\sigma' \) is always the same term for all \(j : 1 \ldots p \) s.t. \(x \in \text{Vars}(t_j) \). Therefore taking \(\sigma' \) as the union of all \(\sigma'_j \), by monotonicity we have that the maximal (wrt. \(\succ_i \)) term in \(T_i(f(t_1, \ldots, t_p)) \) is \(t_\sigma' = f(t_1, \ldots, t_p_\sigma') \), where \(x_\sigma' \) is the maximal (wrt. \(\succ_i \)) term in \(\{0\} \cup T_i(x_\sigma) \) for all variable \(x \in \text{Vars}(t) \).

Lemma 5.15 Let \(s \) and \(t \) be terms in \(T(\mathcal{F}_i, X) \) for some \(i : 1 \ldots n \) and let \(\succ_i \) be a monotonic ordering total on \(T(\mathcal{F}_i) \). If \(i = 1 \) or \(t \) is conservative wrt. \(s \) then \(\sigma_\sigma \succ_i \sigma \), \(t \sigma' \) for all substitutions \(\sigma' \) with range in \(T(\mathcal{F}_i) \) implies \(s \sigma \succ_i \sigma \), \(t \sigma' \) for all substitutions \(\sigma \) with range in \(T(\mathcal{F}) \), i.e. \(s \succ_i t \).

Proof If \(t \) is conservative wrt. \(s \) then, by proposition 5.13, \(T_j(s_\sigma) \geq T_j(t_\sigma) \) for all \(j : 1 \ldots i - 1 \). Therefore either \(T_j(s_\sigma) \succ_j T_j(t_\sigma) \) for some \(j : 1 \ldots i - 1 \) which implies \(s \succ_i t, \sigma_\sigma, \) or \(T_j(s_\sigma) = T_j(t_\sigma) \) for all \(j : 1 \ldots i - 1 \). Consider the later case (otherwise the lemma already holds). If \(t \) is a variable, since any total well-founded monotonic ordering
fulfils the subterm property, we have $s\sigma \Rightarrow_i t\sigma$ (note that s cannot be a variable and that $\text{Vars}(s) \supseteq \text{Vars}(t)$). Otherwise, by proposition 5.14 we have that the maximal (wrt. \Rightarrow_i) terms in $T_i(s\sigma)$ and $T_i(t\sigma)$ are $s\sigma'$ and $t\sigma'$ respectively, where $x\sigma'$ is the maximal (wrt. \Rightarrow_i) term in $T_i(x\sigma)$ for all variable $x \in \text{Vars}(s) \supseteq \text{Vars}(t)$. Then, since $s\sigma' \Rightarrow_i t\sigma'$ for all substitutions σ' with range in $T_i(F_i)$, $T_i(s\sigma) \Rightarrow_i T_i(t\sigma)$. Finally, obviously if $i = 1$ then the conservative condition is not needed.

Again, by theorem 5.11 and lemma 5.15, it leads to a result on modularity of termination:

Theorem 5.16 Let R_1, \ldots, R_n be totally terminating TRS's. If R_2, \ldots, R_n are conservative then $R = R_1 \cup \ldots \cup R_n$ is totally terminating.

6 E-compatible extension orderings and modularity of E-termination

Here we will study how to deal with the extension orderings when we have E-compatible orderings. We will apply the same techniques as in previous sections to obtain easily some results for certain equational theories E, more precisely for permutative theories:

Definition 6.1 An equation $s = t$, with $s = f(s_1, \ldots, s_m)$ and $t = f(t_1, \ldots, t_m)$, is *permutative* if $\{s_1, \ldots, s_m\} = \{t_1, \ldots, t_m\}$.

An equational theory E is permutative if it has a presentation in which all the axioms are permutative.

Example 6.2 The axiom $f(g(a), x, x) = f(x, g(a), x)$ is permutative since $\{g(a), x, x\} = \{x, g(a), x\}$. The commutativity axiom is also permutative. □

Proposition 6.3 Let E be a permutative theory. If $f(s_1, \ldots, s_m) = E g(t_1, \ldots, t_r)$ then $f = g$ (and hence $m = r$) and $\{s_1, \ldots, s_m\} = E \{t_1, \ldots, t_m\}$.

In the following the same extension orderings \Rightarrow_e, \Rightarrow_s and \Rightarrow_t defined in sections 3.4 and 5 respectively allow us to prove (i) modularity of E-termination of right linear TRS’s, (ii) modularity of simple E-termination and (iii) modularity of total E-termination if one TRS is conservative, for any permutative theory E.

Note that in fact we have each TRS R_i being E_i-terminating for some equational theory E_i on $T_i(F_i)$, but since we consider only disjoint signatures it is equivalent to speak about E-termination for all \Rightarrow_i where $E = E_1 \cup \ldots \cup E_n$.

6.1 Modularity of E-termination

Now we will prove that \Rightarrow_e defined as in section 3.2, but replacing $=$ by \equiv, is E-compatible for any permutative theory E if \Rightarrow_i are E-compatible for all $i : 1 \ldots n$, i.e. \Rightarrow_e preserves E-compatibility.

First we will see that the transformations N_i are compatible wrt. any permutative theory E for all $i : 1 \ldots n$.

18
Lemma 6.4 Let \(s \) and \(t \) be terms in \(\mathcal{T}(\mathcal{F}) \) and let \(E \) be a permutative theory. If \(s =_E t \) then \(N_i(s) =_E N_i(t) \) for all \(i : 1 \ldots n \).

Proof We will proceed by induction on the size of \(s \) and \(t \). Since \(s =_E t \), assume \(s = f(s_1, \ldots, s_m) \) and \(t = f(t_1, \ldots, t_m) \) we have \(\text{Head}(s) = \text{Head}(t) = f \) with \(\{s_1, \ldots, s_m\} =_E \{t_1, \ldots, t_m\} \). Therefore by induction hypothesis \(\{N_i(s_1), \ldots, N_i(s_m)\} =_E \{N_i(t_1), \ldots, N_i(t_m)\} \).

We consider two cases:

1. \(f \notin \mathcal{F}_i \). Then by definition of \(N_i \), we have \(N_i(s) = N_i(s_1) \cup \ldots \cup N_i(s_m) \) and \(N_i(t) = N_i(t_1) \cup \ldots \cup N_i(t_m) \), therefore by induction hypothesis it holds.

2. \(f \in \mathcal{F}_i \). Then by definition of \(N_i \), we have \(N_i(s) = \{f(s'_1, \ldots, s'_m) \mid s'_j \in N_i(s_j) \cup Z_i(s_j)\} \) and \(N_i(t) = \{f(t'_1, \ldots, t'_m) \mid t'_k \in N_i(t_k) \cup Z_i(t_k)\} \), then by induction hypothesis \(N_i(s) =_E N_i(t) \) (note that if \(s_j =_E t_k \) then \(Z_i(s_j) = Z_i(t_j) \)).

From this lemma the \(E \)-compatibility of \(\succ_e \) follows:

Lemma 6.5 If \(\succ_i \) for all \(i : 1 \ldots n \) are resp. \(E \)-compatible orderings then \(\succ_e \) is an \(E \)-compatible ordering for any permutative theory \(E \).

Proof We have to prove that \(s' =_E s \succ_e t =_E t' \) implies \(s' \succ_e t' \) for all \(s, s', t, t' \in \mathcal{T}(\mathcal{F}) \). If \(s \succ_e t \) then there is some \(i : 1 \ldots n \) s.t. \(N_j(s) =_E N_j(t) \) for all \(j : 1 \ldots i - 1 \) and \(N_i(s) \succ_i N_i(t) \). Then by lemma 6.4 \(N_j(s') =_E N_j(s) =_E N_j(t) =_E N_j(t') \) for all \(j : 1 \ldots i - 1 \) and \(N_i(s') =_E N_i(s) \) and \(N_i(t) =_E N_i(t') \). Therefore by \(E \)-compatibility of \(\succ_i \), \(N_i(s') =_E N_i(s) \succ_i N_i(t) =_E N_i(t') \) implies \(N_i(s') \succ_i N_i(t') \), and hence \(s' \succ_e t' \).

From the \(E \)-compatibility of all \(\succ_i \) it is straightforward to adapt all results of section 3.2 when considering equality modulo \(E \). Therefore we have that if \(\succ_i \) are \(E \)-compatible monotonic well-founded orderings for all \(i : 1 \ldots n \) then \(\succ_e \) is an \(E \)-compatible quasi-monotonic well-founded ordering.

Similarly, the results of section 3.3 also hold. Note that proposition 3.12 is still true for rewriting modulo permutative theories, i.e. we can consider that in all signatures there is a constant symbol, which is taken as 0, s.t. \(f(\ldots, 0, \ldots) \succ_i 0 \) for all \(E \)-compatible reduction ordering \(\succ_i \). Therefore this leads to the following result on modularity of termination of rewriting modulo an equational theory:

Theorem 6.6 Let \(R_1, \ldots, R_n \) be right linear \(E \)-terminating TRS's over \(\mathcal{T}(\mathcal{F}_1), \ldots, \mathcal{T}(\mathcal{F}_n) \) respectively and let \(E \) be a permutative theory. Then \(R = R_1 \cup \ldots \cup R_n \) is \(E \)-terminating.

6.2 Modularity of Simple \(E \)-termination

Here we show that the ordering \(\succ_s \) defined as in section 4, but considering \(=_E \) instead of \(\sim \), is \(E \)-compatible for any permutative theory \(E \) if \(\succ_i \) are \(E \)-compatible for all \(i : 1 \ldots n \), i.e. \(\succ_s \) preserves \(E \)-compatibility.

Now we will prove that the transformation \(S_E \) is compatible wrt. any permutative theory \(E \):
Proposition 6.7 Let E be a permutative theory E. If $s =_E t$, then $\{s' \mid s \preceq_{emb} s'\} =_E \{t' \mid t \preceq_{emb} t'\}$.

Proposition 6.8 Let E be a permutative theory E. If $s =_E t$, then $S_i(s) =_E S_i(t)$ for all $i : 1 \ldots n$ and $S(s) =_E S(t)$.

Proof If $s =_E t$ then $\text{Head}(s) = \text{Head}(t) = f$. Assume $f \in \mathcal{F}_j$ for some $j : 1 \ldots n$ and $s = f(s_1, \ldots, s_m)$ and $t = f(t_1, \ldots, t_m)$ with $\{s_i \mid i \leq m\} =_E \{t_i \mid i \leq m\}$.

If $i \neq j$, then $S_i(s) =_E S_i(t) = 0$. Otherwise, $S_i(s) = f(S_i(s_1), \ldots, S_i(s_m))$ and $S_i(t) = f(S_i(t_1), \ldots, S_i(t_m))$, which by induction hypothesis implies $S_i(s) =_E S_i(t)$. Finally, since $S_i(s) =_E S_i(t)$, we have $S(s) =_E S(t)$.

Proposition 6.9 Let E be a permutative theory E. If $s =_E t$, then $S_E(s) =_E S_E(t)$.

Proof If $s =_E t$, by proposition 6.7 we have $\{s' \mid s \preceq_{emb} s'\} =_E \{t' \mid t \preceq_{emb} t'\}$. Therefore, since $S_E(s) = \{S(s') \mid s \preceq_{emb} s'\}$ and $S_E(s) = \{S(t') \mid t \preceq_{emb} t'\}$, by proposition 6.8 it follows that $S_E(s) =_E S_E(t)$.

This lemma allows us to prove the E-compatibility of \rightarrow:

Lemma 6.10 If \Rightarrow_i for all $i : 1 \ldots n$ are resp. E-compatible orderings then \Rightarrow_e is an E-compatible ordering for any permutative theory E.

Proof We have to show that $s' =_E s \Rightarrow_e t =_E t'$ implies $s' \Rightarrow_e t'$ for all terms $s, s', t, t' \in T(\mathcal{F})$. We proceed by induction on the size of s. By proposition 6.8, if $s' =_E s$ and $t' =_E t$ then $S_E(s) =_E S_E(s')$ and $S_E(t) =_E S_E(t')$. Therefore, by E-compatibility of \Rightarrow_i (and hence of \Rightarrow_u), we have $\max_{\Rightarrow_u}(S_E(s)) =_E \max_{\Rightarrow_u}(S_E(s'))$ and $\max_{\Rightarrow_u}(S_E(t)) =_E \max_{\Rightarrow_u}(S_E(t'))$.

If $\max_{\Rightarrow_u}(S_E(s)) \Rightarrow_u \max_{\Rightarrow_u}(S_E(t))$, then, by E-compatibility of \Rightarrow_i (and hence of \Rightarrow_u), we have that $\max_{\Rightarrow_u}(S_E(s')) =_E \max_{\Rightarrow_u}(S_E(s)) \Rightarrow_u \max_{\Rightarrow_u}(S_E(t'))$. Hence $s' \Rightarrow_e t'$.

If $\max_{\Rightarrow_u}(S_E(s)) =_E \max_{\Rightarrow_u}(S_E(t))$ then $\max_{\Rightarrow_u}(S_E(s)) =_E \max_{\Rightarrow_u}(S_E(t))$. Suppose $s = f(s_1, \ldots, s_m)$, $s' = f(s_1', \ldots, s_m')$, $t = g(t_1, \ldots, t_r)$ and $t' = g(t_1', \ldots, t'_r)$. Then $f = g$ (and hence $m = r$) and $\{s_1, \ldots, s_m\} \Rightarrow_e \{t_1, \ldots, t_m\}$. Moreover $\{s_1', \ldots, s_m'\} =_E \{s_1', \ldots, s_m'\}$ and $\{t_1', \ldots, t_m'\} =_E \{t_1', \ldots, t_m'\}$. Therefore, by induction hypothesis, $\{s_1', \ldots, s_m'\} \Rightarrow_e \{t_1', \ldots, t_m'\}$ implies $s' \Rightarrow_e t'$.

From the E-compatibility of all \Rightarrow_i and \Rightarrow_e it is straightforward to adapt all results of section 4 when considering equality modulo E, Therefore we have that if \Rightarrow_i are E-compatible monotonic well-founded orderings for all $i : 1 \ldots n$ then \Rightarrow_e is an E-compatible quasi-monotonic well-founded ordering, s.t. if $s \Rightarrow_e t$ then $\sigma s \Rightarrow_e \sigma t$ for all substitution σ with range in $T(\mathcal{F})$. This leads to the following result on modularity of simple termination of rewriting modulo an equational theory:

Theorem 6.11 Let R_1, \ldots, R_n be simply terminating TRS's over $T(\mathcal{F}_1), \ldots, T(\mathcal{F}_n)$ respectively and let E be a permutative theory. Then $R = R_1 \cup \ldots \cup R_n$ is simply terminating over $T(\mathcal{F})$.

20
6.3 Modularity of Total E-termination

Finally we consider total E-compatible orderings. We will show that the ordering \(\succ_i \) defined as in section 5, but replacing \(=_E \) by \(= \), preserves E-compatibility for any permutative theory \(E \).

The following lemma (which is proved very similarly to lemma 6.4) shows that the transformations \(T_i \) are compatible wrt. any permutative theory \(E \) for all \(i : 1 \ldots n \).

Lemma 6.12 Let \(s \) and \(t \) be terms in \(T(F) \) and let \(E \) be a permutative theory. If \(s =_E t \) then \(T_i(s) =_E T_i(t) \) for all \(i : 1 \ldots n \).

From this lemma it follows the E-compatibility of \(\succ_i \):

Lemma 6.13 If \(\succ_i \) for all \(i : 1 \ldots n \) and \(\succ_r \) are resp. E-compatible orderings then \(\succ_i \) is an E-compatible ordering for any permutative theory \(E \).

Proof We have to prove that \(s' =_E s \succ_i t =_E t' \) implies \(s' \succ_i t' \) for all \(s, s', t, t' \in T(F) \).

If \(s \succ_i t \) then there are two possible cases:

- If there is some \(i : 1 \ldots n \) s.t. \(T_j(s) =_E T_j(t) \) for all \(j : 1 \ldots i - 1 \) and \(T_i(s) \succ_r T_i(t) \). Then by lemma 6.12 \(T_j(s') =_E T_j(t') \) for all \(j : 1 \ldots i - 1 \) and \(T_i(s') =_E T_i(t') \). Therefore, by E-compatibility of \(\succ_i \), \(T_i(s') =_E T_i(s) \succ_i \) \(T_i(t) =_E T_i(t') \) implies \(T_i(s') \succ_r T_i(t') \) and hence \(s' \succ_i t' \).

- If there is some \(T_i(s) =_E T_i(t) \) for all \(i : 1 \ldots n \) then by lemma 6.12 \(T_i(s') =_E T_i(s) =_E T_i(t') =_E T_i(t) \) for all \(i : 1 \ldots n \) and by E-compatibility of \(\succ_r \) we have that \(s' =_E s \succ_r \) \(t =_E t' \) implies \(s' \succ_r t' \), and hence \(s \succ_i t \). \(\square \)

The following lemma states the totality up to \(=_E \) of \(\succ_i \) (which is proved as lemma 5.10).

Lemma 6.14 If \(\succ_i \) for all \(i : 1 \ldots n \) and \(\succ_r \) are total on the E-congruence classes of terms in \(T(F_1) \) and \(T(F_1 \cup F_2) \) respectively, then \(\succ_i \) is total on the E-congruence classes of terms in \(T(F_1 \cup F_2) \).

Again adapting the results of section 5 (using the E-compatibility of all \(\succ_i \) and \(\succ_r \)) we obtain the following modularity result:

Theorem 6.15 Let \(R_1, \ldots, R_n \) be totally E-terminating TRS's and let \(E \) be a permutative theory. If \(R_2, \ldots, R_n \) are conservative then \(R = R_1 \cup \ldots \cup R_n \) is totally E-terminating.

7 Enlarging the signature

Here we present a new extension ordering, which allow us to extend an ordering to deal with new function symbols. This extension ordering is base on a precedence on the set of function symbols. Although when dealing with terms with variables this extension ordering impose strong syntactic condition on the compared terms, in the case of total extensions it has a better behaviour.
This results can be applied (in a similar way to the previous sections) to prove the termination of hierarchical unions [Der93, Rao94]: $R_1 \cup R_2$ where the defined symbols of R_2, denoted D_2 do not occur in R_1; We can consider simply that we are enlarging the signature F_1 with the new symbols of F_2 which are at least D_2. Then $R_1 \cup R_2$ is terminating if it is included in one of the extension ordering we will define below.

7.1 Recursive Path Extension Orderings

We first show how to extend an ordering \succ on $T(F)$, with F finite, to an ordering \succ_p on $T(F')$, where $F' = F \cup F_0$ and F_0 is a set of new function symbols.

Definition 7.1 Let P be a mapping from terms in $T(F')$ to multisets of terms in $T(F)$ recursively defined as:

$$P(f(t_1, \ldots, t_m)) = \begin{cases}
\{0\} & \text{if } m = 0 \text{ and } f \notin F \\
\{f(t'_1, \ldots, t'_m) \mid t'_i \in P(t_i)\} & \text{if } f \in F \\
P(t_1) \cup \ldots \cup P(t_m) & \text{otherwise}
\end{cases}$$

where 0 is some (fixed) minimal (wrt \succ) representative constant symbol in $T(F)$.

Definition 7.2 Let s and t be terms in $T(F')$. Then $s = f(s_1, \ldots, s_m) \succ_p g(t_1, \ldots, t_n) = t$ iff

- $s_1 \succ_p t_1$, for some $i : 1 \ldots m$
- $f \succ_F g$ and $s \succ_p t_j$, for all $j : 1 \ldots n$
- $f = g$ and $\{s_1, \ldots, s_m\} \succ_p \{t_1, \ldots, t_n\}$

where \succ_F is a precedence on F' (although, in fact, relations in \succ_F between symbols in any F are not needed, since if $P(s) = P(t)$ and $f \neq g$ then $f \in F' \setminus F$ or $g \in F' \setminus F$).

Proposition 7.3 \succ_p extends \succ on $T(F)$.

Lemma 7.4 If \succ is an ordering on $T(F')$ and \succ_F is an ordering on F' then \succ_p is an ordering on $T(F')$.

Proof Irreflexivity: We will prove instead $s \not\succ_p s'$ for all subterms s' of s. In particular, since s is a subterm of s irreflexivity holds. By induction on (the sum of) the sizes of s and s'. Since $P(s') \subseteq P(s)$, by irreflexivity of \succ, we have $P(s') \not\succ_p P(s)$. Consider $P(s') = P(s)$, $s' = f(s'_1, \ldots, s'_m)$ and $s = g(s_1, \ldots, s_m)$: By induction hypothesis $s'_i \not\succ_p s$ for all $i : 1 \ldots n$ and obviously $s'_i \neq s$. If $f \succ_F g$ then s' is a proper subterm of s ad therefore $s' \not\succ_p s_i$ for some $i : 1 \ldots m$ (not that s' is a subterm of some s_i). If $f = g$ then $m = n$ and then if $s' = s$ then by induction hypothesis (remind that irreflexivity is a particular case of the property we are proving) $\{s_1, \ldots, s_n\} \not\succ_p \{s_1, \ldots, s_n\}$ Otherwise
s' is a proper subterm of s and there is some $j : 1 \ldots n$, s.t. s'_i is a subterm of s_j for all $i : 1 \ldots n$. Therefore by induction hypothesis $s'_i \not\succeq_p s_j$ for all $i : 1 \ldots n$ and hence
\[\{s'_1, \ldots, s'_n\} \nsubseteq_p \{s_1, \ldots, s_n\}. \]

Transitivity: suppose $s \succ_p t$ and $t \succ_p u$, we proceed by induction on the size of s, t and u.

By transitivity of \succ if $s \succ t$ and $t \succ u$ then $s \succ u$. Also if $P(s) = P(t)$ (or $s \succ t$ and $P(t) = P(u)$) we have $s \succ u$. Otherwise if $P(s) = P(t) = P(u)$, assuming $s = f(s_1 \ldots s_m)$, $t = g(t_1 \ldots t_q)$ and $u = h(u_1 \ldots u_r)$, we can distinguish the following cases:

1. If $s_i \succeq_p t$ for some $i : 1 \ldots m$ (i.e. $s \succ_p t$ applying the first branch) then, since $t \succ_p u$, by induction hypothesis $s_i \succ_p u$ and hence $s \succ_p u$.

2. If $f \succ f$ and $t_j \succeq_p u$ for some $j : 1 \ldots q$ then, by definition we have $s \succ_p t_j$ for every $j : 1 \ldots q$, and therefore, by induction hypothesis, it holds that $s \succ_p u$.

3. If $f = g$ and $t_j \succeq_p u$ for some $j : 1 \ldots q$ then, by definition we have $s_k \succeq_p t_j$ for some $k : 1 \ldots m$ (note that we are comparing the multisets of the arguments of s and t), and therefore, by induction hypothesis, it holds that $s \succ_p u$.

4. If $f \succ f$ or $f = g$ and $g \succ f$ then we have $s \succ_p t$ and $t \succ_p u$ for every $k : 1 \ldots r$. Since (by transitivity of \succ) $f \succ f$, $s \succ_p u$ holds.

5. If $f = g = h$ then $(s_1, \ldots, s_m) \succeq_p (t_1, \ldots, t_n)$ and $(t_1, \ldots, t_n) \succeq_p (u_1, \ldots, u_r)$. Therefore, by induction hypothesis, we have $(s_1, \ldots, s_m) \succ_p (u_1, \ldots, u_r)$, which implies $s \succ u$.

\[\square \]

Lemma 7.5 If \succ is monotonic then \succ_p also is.

Proof Assume $s \succ_p t$. We have to show that $f(s_\ldots) \succ f(t_\ldots)$. By monotonicity of \succ and definition of P we have that if $P(s) \succ P(t)$ then $P(f(s_\ldots)) \succ P(f(t_\ldots))$ and hence $f(s_\ldots) \succ_p f(t_\ldots)$. Otherwise if $P(s) = P(t)$ then, by proposition 3.3, $P(f(s_\ldots)) = P(f(t_\ldots))$ and, since $(s_\ldots) \succ_p (t_\ldots)$, it follows $f(s_\ldots) \succ_p f(t_\ldots)$.

\[\square \]

Proposition 7.6 Let s and t be terms in $T(F')$. If $s \succeq_{emb} t$ then $P(s) \succeq_{emb} P(t)$.

Lemma 7.7 Let s and t be terms in $T(F')$. If $P(s) = P(t)$ and t is embedded in s (i.e. $s \succ_{emb} t$) then $s \succ_p t$.

Proof We proceed by induction on the size of s and t. Assume $s = f(s_1, \ldots, s_m)$ and $t = g(t_1, \ldots, t_n)$.

If $s_i \succeq_{emb} t$ for some $i : 1 \ldots m$ then $P(s_i) \succeq_{emb} P(t)$ and, since $P(s) = P(t)$, we have $P(s_i) = P(t)$ and then by induction $s_i \succ_p t$ and hence $s \succ_p t$.

Otherwise $f = g$ and $s_i \succeq_{emb} t_i$ for all $i : 1 \ldots m$ and $s_j \succeq_{emb} t_j$ for some $j : 1 \ldots m$. Then $P(s_i) \succeq_{emb} P(t_i)$ and, since $P(s) = P(t)$, we have $P(s_i) = P(t_i)$ and by induction hypothesis $s_i \succ_p t_i$ for all $i : 1 \ldots m$ and $s_j \succ_p t_j$ for some $j : 1 \ldots m$ and hence, $(s_1, \ldots, s_m) \succeq_p (t_1, \ldots, t_n)$ implying $s \succ_p t$.

\[\square \]
Lemma 7.8 If \(\triangleright \) is well-founded then \(\triangleright_p \) also is.

Proof Since \(\triangleright \) is well-founded, any infinite decreasing sequence must contain a infinite subsequence \(t_1 \triangleright_p t_2 \triangleright_p \ldots \triangleright_p t_j \triangleright_p \ldots \) \(s.t. \) \(P(t_1) = P(t_2) = \ldots = P(t_j) = \ldots \) Then by lemma 7.7, applying Kruskal's theorem (note that we are dealing with a finite signature) we have that such a sequence cannot exist.

As in section 3.2 we can only deal with terms with variables under certain linearity conditions. So in what follows consider the transformation \(P \) enlarged with \(P(z) = \{ z \} \) for all variable \(z \):

Lemma 7.9 If \(\triangleright \) is stable under substitutions then if \(t \) is linear \(s \triangleright t \) implies \(s\sigma \triangleright_p t\sigma \) for all substitution \(\sigma \) with range in \(T(F') \).

In this case with this transformation we can ensure stability under substitutions for linear terms:

Lemma 7.10 If \(\triangleright \) is stable under substitutions then \(\triangleright_p \) is stable under substitutions when comparing linear terms.

Proof By induction on the size of the terms, taking into account that if \(P(t) = \{ t_1, \ldots, t_n \} \) then \(P(t\sigma) = P(t_1\sigma) \cup \ldots \cup P(t_n\sigma) \) and that if \(t \) is linear then \(P(t,\sigma) = \{ t,\sigma' \mid z\sigma' \in F(z\sigma) \land z \in \text{Vars}(t_i) \} \) for all substitutions \(\sigma \).

7.2 Total Path Extension Orderings

These restrictions can be overcome if we consider total reduction orderings. Then we can increase the power of the ordering \(\triangleright_p \) defined above by associating a status to each function symbol and adding the following branches to the ordering:

- \(f = g \) and \(\text{Stat}(f) = \text{mul} \) and \(\{ s_1, \ldots, s_m \} \triangleright_p \{ t_1, \ldots, t_n \} \)
- \(f = g \) and \(\text{Stat}(f) = \text{lex} \) and \(\langle s_1, \ldots, s_m \rangle \triangleright_{ \text{lex} } \langle t_1, \ldots, t_n \rangle \) and \(s \triangleright t_i \) for all \(i : 1 \ldots m. \)

Note that as a consequence of totality we have that \(\triangleright \) is a simplification ordering. Then it is easy to adapt the proofs of the previous section to obtain the following theorem:

Theorem 7.11 If \(\triangleright \) is a simplification ordering then \(\triangleright_p \) is a simplification ordering on \(T(F') \).

Proof Irreflexivity, transitivity and monotonicity are proved as in lemmas 7.4 and 7.5. And for the subterm property we have that either \(P(f(\ldots s \ldots)) \triangleright P(s) \) or \(P(f(\ldots s \ldots)) = P(s) \) and then by definition of \(\triangleright_p \) it follows that \(f(\ldots s \ldots) \triangleright_p s. \)

Lemma 7.12 If \(\triangleright \) is total on \(T(F) \) and \(\text{Stat}(f) = \text{lex} \) for all symbols \(f \in F' \) and \(\triangleright_F \) is a total precedence (in fact as said symbols in \(F \) are not need to be comparable) then \(\triangleright_p \) is total on \(T(F') \).
Proof Totality. Since \succ is total on $T(F)$, for all terms s and t in $T(F')$ either $P(s) \succ P(t)$ or $P(t) \succ P(s)$ or $P(s) = P(t)$. If $P(s) = P(t)$ (otherwise terms are already comparable) then by induction hypothesis either $s_i \succeq p t_i$ for some $i : 1 \ldots m$ (and hence $s \succ_p t$) or $t \succeq_p s_i$ for all $i : 1 \ldots m$. Similarly, either $t_j \succeq_p s$ for some $j : 1 \ldots n$ (and hence $t \succ_p s$) or $s \succeq_p t_j$ for all $j : 1 \ldots n$. Then suppose $t \succeq_p s_i$ and $s \succeq_p t_j$ (otherwise s and t are already comparable). If $P(s) = P(t)$ then either $f \neq g$ or $f \not\in F$ or $f \not\in F$. So if $f = g$ then, by induction hypothesis, either $(s_1, \ldots, s_m) \succ_p (t_1, \ldots, t_n)$ or $(t_1, \ldots, t_n) \succ_p (s_1, \ldots, s_m)$ and hence $s \succ_p t$ or $t \succ_p s$. If $f \neq g$ by totality of \succ either $f \succ g$ or $g \succ f$ and hence $s \succ_p t$ or $t \succ_p s$.

Now, if we consider total orderings we can prove that the ordering \succ_p is stable under substitutions (without any syntactic restriction):

Lemma 7.13 If \succ is stable under substitutions and \succ_p is a reduction ordering total on $T(F')$ then \succ_p is stable under substitutions and $s \succ t$ implies $s \succ_p t$ for all terms $s, t \in T(F, \mathcal{X})$.

Proof By induction on the size of the terms and using the same ideas of the proofs of lemmas 5.15 and 7.10.

This results improve the ones given in [BDP89], where only enlargements with new constants where considered. Finally, note that in section 5 we could have used this path extension instead of using the ordering \succ, as last component.

7.3 E-compatible orderings

All results in this section can be obtained for E-compatible ordering for some equational theories E. In the case of recursive path extension orderings we can deal with theories E containing associativity and commutativity axioms, provided that the new function symbols are free (or commutative) and that in the precedence the new function symbols are smaller than the old ones (in fact it is only requiered the new symbols to be smaller than the associative old ones). Then a slightly modification of the ordering defined here is E-compatible (see [Rub94] for details).

8 Improvements and conclusions

It seems possible to improve the results of this paper by defining other extension orderings. For instance, we can easily relax the conditions of section 3 by considering \succ_2 as an ordering on $T(F)$, i.e. it is an ordering on $T(F_2, \mathcal{X})$ stable under substitutions with range in $T(F)$. Then the extension ordering: $s \succ_c t$ iff $N_1(s) \succ t_1, N_1(t)$ or $N_1(s) = N_1(t)$ and $s \succ_2 t$ allows us to prove that if R_1 is right linear and R_2 is conservative and both are terminating then $R_1 \cup R_2$ is terminating. Therefore we believe that it is possible to prove most of the known results in combination of rewrite systems using extension ordering (and perhaps to improve them, e.g. to more general equational theories). But this requires a
deeper study of transformations (note that in this paper we already use four different kind of transformations) and their combination.

Also the applicability of the method to modularity of termination of constructor-sharing or composable TRS’s ([Gra93, Ohl94, FJ93, KO92]) and conditional term rewrite systems ([Mid93]) has to be further investigated.

On the other hand, extension orderings can also be used to prove the termination of the union of particular TRS’s. For instance, we can build an extension ordering for proving that $R \cup \{g(x, y) \rightarrow z\}$ is terminating for any terminating TRS R. In fact this is true for any single projection rule $g(\ldots x \ldots) \rightarrow z$. This gives a very simple proof for the fact that adding pairing to (e.g. simply) typed lambda calculus preserves strong normalization.

References

Recent Research Reports

LSI-94-46-R "Prototipatge semàntic d’un model conceptual deductiu" (written in Catalan), C. Farré and M.R. Sánchez.

LSI-94-47-R "Generació i simplificació automàtica del Model d’Esdevenits Interns corresponent a un model conceptual deductiu" (written in Catalan), C. Farré and M.R. Sancho.

LSI-94-48-R "B-Skip trees, a data structure between skip lists and B-trees", Joaquim Gabarró and Xavier Meseguer.

LSI-94-49-R "A posteriori knowledge: from ambiguous knowledge or undefined information to knowledge", Matías Alvarado.

LSI-94-50-R "An approach to the control of completeness based on metaknowledge", Jordi Alvarez and Núria Castell.

LSI-94-51-R "On finding the number of graph automorphisms", Richard Chang, William Gasarch, and Jacobo Torán.

LSI-95-1-R "Octree simplification of polyhedral solids", Dolors Ayala and Pere Brunet.

LSI-95-3-R "The complexity of searching implicit graphs", José L. Balcázar.

LSI-95-4-R "Design quality metrics for object-oriented software development", Alonso Peralta, Joan Serras, and Olga Slavkova.

LSI-95-5-R "Extension orderings", Alber Rubio.

Copies of reports can be ordered from:

Núria Sánchez
Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secretlsi@lsi.upc.es