Design Quality Metrics for
Object-Oriented Software Development

Alonso Peralta
Joan Serras
Olga Slavkova

Report LSI-954-R

£
A= Sy
ormbdtica

S
wrceloc Bibliotec

Design Quality Metrics for
Object-Oriented Software Development

Alonso Peralta Joan Serras Olga Slavkova

peralta@lsi.upc.es serras@lsi.upc.es slavkova@lsi.upc.es

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Pau Gargallo, 5
Barcelona (Spain)

Abstract

The availability of metrics for measuring software design
quality and complexity are a great help in the development of
such systems.

Application of such metrics in the initial stage of the
software development process (specification, analysis and
design) allows us to detect those software designs which are
excessively complex or intricate at a time when correction
costs are still low. In this way, we are able to avoid all the
negative consequences that badly-designed systems may involve,
such as, high maintenance cost, poor re-use, proneness to
error, low portability to different environments, ...

Whereas there is a large number of studies and reviews on
the measurement of systems which have been developed by means
of procedural methods, the reverse is the case for systems
designed through the object-oriented paradigm. In this paper we
present a collection of measures which can be useful for
measuring object-oriented systems and which may also help to

extend the research so far carried out in this field.

1. Introduction

In this paper we shall make a description of a set of 31
measures which can be significant in order to measure the
design quality of systems which have been developed by means of
object-oriented tecnologies. It 1is our aim not only to make
these measures directly applicable to the programme code
but also that they should be applied in the analysis and design
stages in object-oriented methodologies.

It is during these initial stages of the process that the
application of design quality metrics is really effective, thus
allowing the detection of excessively complex or intricate
systems at a time when correction costs are still low. These
metrics are applicable to the code itself as well, but at such
stage of application the measures act as mere sources of
information about design quality and complexity. Design
correction during such advanced stages of the process would
entail, in order to obtain satisfactory results, a great effort
both in terms of time and human resources, and therefore great
economic expense.

We shall approach this matter in three consecutive steps.
The first one, wich is described in this paper, consists in
defining a set of candidate measures. We shall do so by drawing
upon three sources:

- the existing literature dealing with metrics for systems

which have been developed by means of structured methods.

- the literature dealing with metrics for systems which

have been developed by means of object-oriented methods.

- our own proposals, based on the experience gained in

developing object-oriented software during the last years.

The second step consists in evaluating the candidate
measures. In order to do so, we shall apply the proposed
measures to a set of systems which have been developed through
object-oriented technology. The results will be compared with
the qualitative evaluation of the systems we have measured. The
collection of systems we shall be using is a set created by the
students of Object-Oriented Software Engineering postgraduate
courses, which are run by the Computer Languages and Systems

Department of the Polytechnic University of Catalonia |Peralta,

1994b|. The systems'Qualitative evaluation is the one given by
the different lecturers at the postgraduate courses. Although
we are aware that this is a subjective evaluation, as it.is
'owed to the lecturers, we believe that the measures' evaluation
is valid, since it is supported by a relatively large number of
projects and by five different lecturers. It is, .,at least, a
valid evaluation for those metrics which are not affected by
the programmes' life cycles.

As far as project development and evaluation are
concerned, time is a key factor in order to determine the
validity of the proposed measures. This is, in particular, the
matter we shall be discussing in the third part of this object-
oriented metrics project. For this third step we shall apply
the given set of measures all through the process of creation
(analysis, design and programming) and evolution (maintenance)
of a number of industrials projects. In this way, a final and
conclusive evaluation of the proposed measures will Dbe

obtained.

2. What is system quality and how it is measured

Before defining each particular measure, it is advisable
to explain what we understand by system or programme quality
and how it can be measured.

As it is stated in |Peralta, 1994al, *the notion of
software quality is, at least implicitly, present in all the
people who are involved in software engineering tasks. We would
all be able to express a long list of qualities which a
programme should have: that it should be ‘“correct® !'!, it
should be "efficient", it should be "reliable", it should be
well *documented", it should be *intelligible* and
"modifiable", etc. There may be other more remote qualities
which, on the other hand, may be closer to management areas:
that the system should be built through the least means
possible (human, technical,...), that it should be "attractive
from a commercial point of view", that it should be correctly
"protected", etc.".

Therefore, we should aim to define clearly the factors
that may influence software quality and try to weigh them.

According to Pressman |Pressman, 1992|, there are three
basic factors to be used for capturing or expressiﬂg clearly
software qQuality:

1) The basic standard for checking or verifying software
quality 1lies in the specification of the requirements,
both functional and operating ones. Any discrepancies
between what the system does and what it is expected from
it is a negative factor.

2) It is important to check not only end-product quality but
also the building process. Any deviation from the set
standards, from the documentation, the design, etc., the
product may present is also a negative factor.

3) There are a number of guality factors which are not
usually made explicit (they are part of the the
manufacturer's or the customer's common sense or both's).
The fact that these factors are not made explicit does not

mean that they should not need to be taken into account.

We should also bear in mind that not all the factors which
have an effect on software quality are easily (or at least
objectively) measurable or detectable. Some (such as the number
of mistakes spotted, the number of lines produced per unit of
time and person) are easy to detect but some others (easy
maintenance or use) are not. On the other hand, product quality
factors are not the same from the customer's point of view, who
buys the product, as from the user's, who will have to use it
or as from the technician's, who will have to maintain and
modify it. '

In this respect, Teasley |Teasley, 1990| points out that
for the customer the economic aspects (low cost,productivity
increase, efficiency) and those aspects regarding the easiness
of adaptation (flexibility) or security (reliability) will be
the most important. In his/her turn, the user will value most
those aspects concerned with the wuse of the product
(performance, reliability, efficiency, user-friendliness,
learning and memorizing facilities). The technician who has to
maintain the programme will value most, on the other hand,
_error absence, documentation, code legibility, design

qualities.

3. Software quality factors
McCall |McCall, 19xx|, as quoted by Pressman, classifies
software quality factors into three large groups according to:
1. the product's performance
2. its capability to be modified

3. its portability to other environments

The first factor would correspond to the static part of
software and the other two to its dynamic part. Let us now see

how we can define the qualities of these three aspects.

3.1. Quality factors connected with the product's
performance '
.Correction: Degree of satisfactoriness of the functional
requirements.
.Reliability: Degree of reliance on the correct functioning
(for instance: probability of non-failure in a given

environment during a certain period of time).

.Efficiency: Number of resources (time, computational
resources, etc.) required by the system to perform its
function.

.Integrity: Level of control on data access or functions on
the part of non-authorized people.

.Usability: Effort that the user has to make in order to
learn to use, handle, prepare the inputs or interpret the
outputs of the programme.

3.2. Quality factors connected with the ©product's
capability to be modified

.Maintenance: Effort that is necessary in order to detect

and eliminate a mistake.

.Flexibility: Effort that is necessary to modify the

programmume.

.Testability: Effort that is needed to test the programme.

3.3. Quality factors connected with the product's
portability
.Portability: Effort that is needed in order to carry the
program to a plattform (soft/hard) different from that for
which it was created.
.Reusability: Capability of reusing the programme (or some
parts of the programme) in other applications or for use
in other programmes.
.Interoperation: Effort that is necessary to join one

system to another.

4. Software design quality measures

Once we have gone through the factors that have an effect
on software quality, let us proceed to see which properties can
be measured.

.Inheritance: Inheritance hierarchies can be measured so
that we shall be able to determine the system's complexity
and reusability, due to one of the innovative
characteristics introduced by object-oriented development.

.Coupling: We can also measure couplings or connections
between objects. The more closely the objects of an
application are connected, the worse and the more
difficult its maintenance will be.

.Cohesion: Lack of internal cohesion is the result of a
poor design. Generally speaking, it implies a lack of
granularity in the decomposition of objects.

.Polymorphism: Polymorphism introduces a new degree of
complexity in object-oriented applications. Polymorphism
makes applications more difficult to be followed up and
tested.

.Encapsulation.

.Information Hiding.

.Volume: The greater the volume, the greater the degree of
complexity is. The greater the size of a thing is, the

more difficult it is to control that thing.

Of course, not every measure is indicative of a quality

factor. A factor may be determined by different measures and

one single measure can be used for quantifying more than one
factor. As a matter of fact, other authors call these measures
middle qualities or means and refer to what we have called
quality factors as end or final qualities.

The most important aspect is that, by evaluating these
measures and combining the results, we can obtain more

objective evaluations of software quality factors.

5. Software quality aspects epecially connected with object-
oriented development

One of the main objectives of the object-oriented paradigm

is class reuse. Any quality measure, as far as domain modelling
or analysis, design and programming are concerned, must have
this basic objective as a starting-point.

With regard to the defined classes, we must take into

account:

.The number of classes. A model which has a great number of
classes can make the system's global comprehension more
difficult, even though it facilitates, on the otherhand,
the reuse of its components.

.The nomenclature being used. If we bear in mind that the
library of objects can contain thousands of components, it
is ~clear from this the fundamental part a good
nomenclature plays in relation to: reusability aspects.
.The number of abstract classes and their relationships and
connections. In general terms, a deep structure, rather
than a flat structure, is to be preferred, together with
many middle classes which will facilitate reuse. Vertical
relationships allow us to capture and express the
differences and the common aspects between objects,
whereas flat structures provide very few attributes and
services which can be reused and, besides, they tend to be
redundant.

-The information contained in the classes. We should avoid
an excess in the number of attributes. In any case, this
criterium is of a relative nature; it is not the same to
deal with a basic domain class as with a view or with a

controller object. The number of services will also have

to be restricted. Coad/Yourdon |Coad 1991|, recommend a
maximum number of seven visible services for the object to
have. The couplings between objects will also have to be
limited. As a general rule, we should favour simplicity of

objects and their relationships.

In regard to services, a number of criteria can be defined:

.Coherent, small and consistent services. In general,we
should try to make each service fulfil one single
function. The volume of services should be small.
Coad/Yourdon obtain, for their ObjectTool, an average
volume of 5.5 lines of code per service. The services must
be consistent between the different objects, as far as
performance, nomenclature and signature aspects are
concerned.

.The formalities or protocol observed for communication
between objects must be as simple as possible.
Code/Yourdon, for example, recommend to limit the number

of parameters to three.

As regards the model's general organization, a number of

criteria can also be suggested:

' .We should favour the use of a consistent nomenclature
between classes, as well as the definition of general
services which are common to all classes. The use of
naming standards for class attributes and services is an
effective technique.

.The number of subsystems which can be detected among
classes is also important. A system which has many
subsystems and few isolated classes tends to be better for
encapsuling the functionalities of an application.

.We should as well favour framework creation. A framework
is a group of «classes which provide skeletons for
applications' families, either connected to a specific

domain or to similar functionalities.

6. Notation
On defining metrics, the main worry has always been that
of choosing a notation which should enable us to define the
measures in an accurate way, thus preventing wrong
interpretations from happening. The conditions this notation
should observe are as follows:
.to represent univocally the systems of objects.
.to be independent of any of the many design methodologies
which support the object-oriented paradigm.
.to be based on the basic principles of the paradigm: class
encapsulation, information hiding, inheritance,
polymorphism, opbject composition, message communication
between objects, ...

The fulfilment of these three requirements ensures that
metrics' definition according to this notation will be correct

and free of ambiguity.

, We shall represent the system of objects named S as the
group or set of classes named C;,...,Cx, which describe S:

s:{CII-.-'Ck)

where each of the system's classes is defined by giving its

group of attributes and methods:
Ci = (A,y reeodAn o My '---an}

In a system of objects, classes have basically three kinds
of relations:
-Inheritance
-Aggregation
-Use

In order to represent the connections between objects we
have opted for a matrix representation, which will allow us to
state in a clear and unambiguous way which object is connected
with which other object.

Inheritance

We shall define the inheritance matrix H = (h;;) in such a
way that if hy; = 1, then class Cj will inherit from class C;.
1f h;y = 0, then Cj; does not inherit from C;. Due to the
inherent characteristics of the inheritance relationship,
matrix H = (h;;) has the following properties:
Vi h;y; = 0, a class cannot inherit from itself.

Vi< hy;y = 0, a class cannot inherit from one of its
descendents. There can be no cyclic inheritance (ie.: the

father cannot inherit from the son).

Aggregation

We shall define the aggregation matrix A = (aiy) in such a
way that if a;; = 1, then class C; aggregates to C;. Since an
object can aggregate objects of the same class to which it
belongs, then a;; can be other than zero (ie, 1). Moreover, in
this case a;; can have value 1 even though i<j, because the
aggregation allows cycles in its structure (a part can contain
the whole).

Coupling and use

In order to represent the use that an object can make of
another object, we shall define the coupling matrix C = (c;;) in
such a way that if c;5 = 1, then class C; uses class Cj. If cyy =
0, then C; does not use class C;. Now let us consider that class
A uses class B if A uses at least one method of B. We could
also consider that two classes are coupled when they use each
other reciprocally. Classes A and B are coupled if A uses B and

B uses A. Therefore, C; and Cy are coupled if c¢;; = ¢4y = 1.

7. Measures
The measures proposed in this paper fall wunder the
following categories:
.measures related to inheritance hierarchy,
.measures for evaluating couplings between objects,
.measures for couplings between classes due to their

inheritance relationship,

.measures regarding the flow complexity,
.measures for class internal coherence and

.measures related to the application's size or volume.

For each proposed measure we provide a detailed
description, a definition (the mathematical expression of the
description), a justification (the reason why we consider that
it is worth evaluating this measure), observations (diverse
comments) and finally the references from where we can draw

complementary information about this measure.

7.1. Inheritance hierarchy

NOC Number Of Children

Description: It is the number of children a class has.

Definition: Assuming S = {Cy,...,C} is the system made up of
classes Cy,...,C¢ , and C; = {A;,....,An , M, ...,M} is the class
C; whose responsibilities are the attributes A;,..., A, and the
methods M;,...,M,. Being H = (h;y) the inheritance matrix

between classes, then:

Noc(C) =2k,

1,

Justification: It reflects in terms of number how many classes

are directly affected via inheritance. It is a measure of the
level of internal reuse. It also provides a Quantitative value
about the system's complexity.

Observations: The greater the Number Of Children (NOC) is, the

more the parent's properties have been reused. On the other
hand, if this index is very high, it could be indicative of a
bad use of the generalization/especialization relation, that is
to say, that there has been an inefficient especialization,
instead of having used more suitable responsibilities from the

parent or the subclasses.

Figure:

Ci | NOoC(Cp)=2

h;, =1
/ N__l

C! NOC(C:) = 2 C3 NOC(C;) = 0

hia=1 hz.s =1

Cis| NOC(C) =1 Cs | NOC(Cs)=0

hes = 1/

Cs | NOC(Ce)=0

References: |Chidamber, 1991

NOD Number Of Descendents

Description: It is the number of descendent classes a class

has.

Definition: Assuming S = { C;,...,Cx } is the class system
earlier described, then:

NoD(C,) = Noc(C,) + X b, NOD(C,)

Justification: It reflects in terms of number how many classes

are affected via inheritance. It is another measure of the
level of internal reuse and of the system's complexity.

Observations: Any modification carried out on a class affects

both its children and any of its other descendents. Therefore,
if a class has a high NOC index, then it is implied that any
modification being carried out on the class affects a great
number of classes and that the maintenance will be more

delicate and complex.

Figure:

G| NOD(Cy) =5

h|.2y' ‘\1.3:1

C:| NOD(Cy) =3 C; | NOD(C3) =0

hys= 1 hZ.S =1

Cs | NOD(Co) =1 Cs | NOD(Cs) =0

h4,5 = l/

Ce | NOD(Ce)=0

NOA Number Of Ascendents

Description: It is the number of ascendents a class has.

Definition: Let us assume that § = { C;,...,Cx } is the system

earlier described.

If we define the NOP Number Of Parents as the number of
parents a class has

NOP(C,)= . h,

Ji
/

Then:

NOA(C,) = NoP(C,)+ D, h, NOA(C,)

Justification: It reflects numerically the number of classes

which affect this «class via inheritance. 'Any modification
carried out on any of its ascendents will affect the class
itself.

Observations: NOA and DIT coincide in the case of single

inheritance,

Figure:

Cy | NOAC)=0

h1.2y \,.3:1

C:| NOA(Cy =1 C3; | NOA(Cy =1

h2.4 =] hz‘s -]

Cs | NOA(C) =2 Cs | NOA(Cs) =2

h4,6 =]/

Cs | NOA(Ce)=3

References: NOA is equivalent to DIT as it is defined in

IChidamber, 19911. In the case of single inheritance, NOA is
equivalent to DIT as it is defined in ILi, 1993].

DIT Depth Inheritance Tree

Description: It 1is the «class's average depth within the

inheritance hierarchy.

Definition: Let us assume that S = { C;,...,Cx)} is the system

earlier described. We shall define PLC Path Length between
Classes as the length of the inheritance path which links two
classes (notice that, in the case of multiple inheritance,
there can be more than one inheritance path between two

classes):

prcroteetn o (nyw w4y) (b ey, hy)

= (25' hu)'(IT .h”)

Then:

D LPC

poth

DIT(C,) = LPC™ = 5y
]

poth

Justification: It reflects numerically the number of classes

which affect this class via inheritance. A deep level reflects
a high index of reuse.

Observations: The DIT, as calculated in terms of the class's

depth within the inheritance hierarchy, is valid when the
hierarchy is a tree, in other words, when there is single
inheritance. In the case of multiple inheritance, we are faced
with ambiguity as regards to those classes which inherit from
more than one branch of the inheritance hierarchy graph. 1In
such cases, we must calculate the class's DIT interms of the

average number of DIT's of each of the tree's branches.

Figure:

DIT(C)=0
hy, 2/. \”_ 1
DIT(Cy)) =1 C; | DIT(Cy) =1
by ;/////ﬂ R\\\\J::-]
DIT(C.) =2 C« | DIT(C)=2
hag=1
Cs | DIT(Ce)=3
References: |Chidamber, 19911, JLi, 1993|, DIT is HNL Hierarchy

Nesting Level in |Lorenz, 199%4|

7.2. Coupling
CBOl Coupling Between Objects

Description: It is the number of classes a class is coupled
with,

Definition: Assuming S = { C;,...,Cx } is the system made up of

Ci,....Ckand C = (c;5) is the class coupling matrix, then:

cBol(C) = Z ¢

| ol

Justification: Coupling between classes is a direct consequence

of the degree of dependence between classes. A system made up-
of classes which have a high index of couplings has components
which restrict the system's reusability. High coupling index
values indicate a high degree of dependence between classes and
restrict the reusability of the system's classes and
components.

Moreover, a high degree of dependence implies greater
resistance to change, in detriment of modifiability and
maintenance.

Observations: See Section 6. Notation for a detailed definition

of use and coupling between classes. Taking this measure as a
starting-point, then when we refer to coupling we mean both the
fact that a class uses another class and the fact that the two

classes use each other reciprocally.

Figure:
C BON(C,) =
Cs | CBONCs)=0 2| CBOI(Cy) =0
c=1
C.| CBOI(CH =0 CBOI(C3) =0
References: |Li, 1993|, IChidamber, 1991|, CCP Class Coupling

in |Lorenz, 1994/}

CBO1lbis Coupling Between Objects

Description: It is the rate per one of the number of classes a

class is coupled with, in relation to the total number of
classes a class could be coupled with within the system.

Definition: Assuming S = { C;,...,Ck } is the system earlier

described, then:

Zcﬁ

bis _
CBOI"™(C,) = .

where k is the total number of classes in the system.

Justification: For one single class, CBOl tells us how many

classes the class is coupled with. However, it does not say
whether the coupling is small or large, as far as the total
volume or size of the system is concérned. For this reason, we
consider it necessary to normalize CBOl in relation to the
total number of classes.

Observations: CBOl is an absolute measure. CBOlbis is CBOl's

standardized version by the total number of classes. CBOlbis

€]10,1]. Assuming that a class is not coupled with it self (Vi,
c;; = 0), we must bear this fact in mind when normalizing in
relation to the total number of classes a class can be couﬁled
with. Thus, it is necessary to normalize in relation to the
total number of classes contained in the system, with the

exception of one class (ie, the class itself in question).

Figure:

C: | cBO1(C) =0

Cs | CBOI™(Cs) =0

C = 1

CBOI™(C) =1

C4y = 1

Cyy = 1

Cs | CBO1*® (Cy) =0

Ci| CBOI™(Cy)=0

CBOltris Coupling Between Objects

Description: It is the static complexity of the coupling graph.

Definition: The coupling graph is calculated from the class

diagram, by associating one vertice of the graph to each class
and by drawing, for each coupling between classes, an edge
between the two corresponding vertices. Thus, the § system
described in CBOl1 can be represented by means of a graph
consisting of n= K vertices and e=22cv edges, where ci; are
i

the coeficients of the coupling matrix C = (cyy).

Thus, the static complexity of the connected graph can be
determined by the cyclomatic number:

CROItris = w(G)=e-n+2

which, being a closely connected graph, is equal to the
maximum number of independent lineal paths.

Justification: Since it is possible to associate a graph, the

coupling graph, to the design of an object-oriented system in
order to represent couplings between objects, then this is a
valid option for evaluating coupling complexity through the
traditional complexity measures of a graph, just in the same
way as McCabe did with the flow graph for a module.

Observations: The higher the value of v(G) is, the more complex

the system is. Assuming a fixed number of classes (vertices),
then the highest v{(G) is the coupling between classes.

Let us notice that the coupling graph is directed. 1If
class A uses class B, we shall have an edge from A directed to
B. If B uses A, we shall have another edge from B towards A,
that is to say, A and B are coupled. Schematically it would be
as follows:

A @« @ B ’

Notice also that all the system's classes take part in the
coupling graph, since there can be no class that is not being
used by some other.

Figure:

Cs G,

® @ e=4
n=3%5

C
viG)=4 -5+2 =1

\Ca CBO™ = v(G) = 1

| N

References: |McCabe, 19761, |Berge, 1973|

CBO2 Coupling Between Objects

Description: It is the number of methods used from the class

couplings.
Definition: Assuming S = { C;,...,Cx } is the system made up of
classes C;,...,Cx, in such a way that C; = {A;, ..., Ax, M, ..., M}

is the class named C; which is responsible for attributes
Ai,...,A, and for methods M;,...,M,, then we shall define M =
(M,.) as the use matrix for the methods belonging to class C;
which are used by C; . If MJ,. = 1, then method M, belonging to
class C; is used by method M. belonging to class C; . Therefore:

'csoz(c,) =3 Y mi

i rs

Justification: Class coupling is a direct consequence of the

system's complexity.

This index is a sophisticated version of the CBOl index.
Through CBOl, we are able to know how many classes a class
interacts with but we are not able to tell how strong this
interaction is. It is not the same having a class coupled with
another one which only uses one method from this class as
having one which uses all the methods the class makes available
to it.

Observations: As certain authors have stated, we believe it is

necessary to go deeply into the evaluation of class couplings.
For this reason, we have considered it necessary to examine
class coupling at a more microscopical level, separating the
class into methods in order to obtain more accurate coupling

measures.

Figure:

07}

e
|

C| CBO2(CH=2+1+14+2=6

Cq C3

CBO3 Coupling Between Objects

Description: It is the average number of methods used in

relation to the number of class couplings.
Definition: Assuming S = { C;,...,Cx } is the system defined in

CBO2, then:

PRI _ CcB02(C))

Iors

CBO3Y(C,) = =

Justification: It is the average number of methods used in each

class coupling. Thus, the justification and implications of
this index are the same as those in CBOZ.

Observations: This index 1is CBO2's normalized version in

relation to the number of class couplings. Notice that its
value can be higher than 1. If its value is], that means that

the class in question uses an average number of methods from

each class it is coupled with. Therefore, in this case the
coupling could be regarded as low. We shall normalize by k-1

for the same reasons as in CBOlbis.

Figure:

Cs G
= e
= =
CBO2(C,) 6
Ci| CBO3(C)) = --eeemeerereee = =eee = 1.5
k-1 4
C4 C;
V] L
N—

CBO4 Coupling Between Objects

Description: It is the rate per one of methods used in relation

to the total number of methods there is access to.
Definition: Assuming S = { C;,...,Cx } is the system defined in
CBO2, then:

22 M
cao4(c,)=—'ﬁl—

' r

Justification: It is CBO2 having been normalized in relation to

the number of methods from class couplings C; has access to.
Therefore, the justification and implications of this index are

the same as those in CBO2.

Observations: This index is between 0 and 1, that is, CBO4 €

10,11. If its value is 1, then it is implied that class Cj is
using all the methods from the classes it is coupled with.

Figure:

Cs . Cz
=N o
= or—
CBO2(C)) 6
Ci| CBO4(C)) = -w-ecmmermmemnens = eee- =05
12 12

C4 CJ

— ¥ —

Note: C, is using all methods it can access.

CBO5 Coupling Between Objects

Description: It is the normalized number of methods used from

one class in relation to the total number of public methods
from this class and averaged out by all the classes it is
coupled with.

Definition: Assuming S = { C;,...,Cx } is the system defined in
CBO2, then:

22 M

ior.s

MU

CcBOS(C,) = —57T

Justification: CBO5 is the same as CB02, differing in the fact

that CBO5 has been normalized by the number of methods per
class and averaged ©out by each class. Therefore, the

justification provided for CBO2 is also valid for this measure.

Observations: This index is between 0 and 1, that is,CBOS5 €

10,11. Even though this index has been normalized by the number
of methods and classes, just in the same manner as CBO4 has,

the quantitative values of measure are different for each of

the two indexes.

Figure:

Cs C,

= —

N ——
2 2 1 1
IR ek s
5 3 3 1

Ci | CBOS(C)) = w=eeseeemmmmoennmemeen- = 06
4
Cs C,
i .

CBO6.1 Coupling Between Objects

Description: It is the number of classes which used at least

one method from one given class.

Definition: Assuming S = { Cy,...,Ck } is the system made up of
classes Cy,...,C¢ , and C = (cjj) 1is the class coupling matrix,
then:

cBo6I(C,) =2, ¢,

)

Justification: If a ciass has this index high, this means that

this class is being used by many other classes, thus being a
class which is highly 1liable to modification or whose
modification will affect many classes. A high index may also
indicate a high degree of reusability.

Observations: So far we have been examining class coupling in

relation to the classes used by a given class. Now we are
shifting towards the use the system makes of the class under
consideration. When we refer to the classes that use a class
method, we are talking about either the classes that use this

class or the classes that are coupled with it.

Figure:

C; | CBO6.2(Cy) =0.25

Cs | CBO6.2(Cs) =0.25

C

CB06.2(C)) = 0.5

Csqa=1

gi=1,c,=0

Cs | CBO6.2(Cy) =0.25

Cs

CB06.2(C4) =0

7.3. Coupling and inheritance
ICBO1 Inheritance Coupling Between Object

Description: It is the number of added attributes.

Definition: Assuming 8 = { C;,...,Ck } is the system made up by

classes Ci,...,Cx, in such a way that C; = (A5, ... ,An, Mi, ..., M)
is the C; class whose responsibilities are the attributes
A,,...,A, and the methods M;,...,M,, whereby A,,...,A, are all
the attributes belonging to C; , including both the class's own
attributes and the ones inherited from any of its ascendents.
Thus:

1cB01(C)= X1
ﬂa’:.{’i:udlt’l

Justification: It gives an idea of the level of reuse within an

inheritance hierarchy and also of the 1level of class
specialization.

Observations: If within a class few attributes are declared,

then the ICBOl1 index will be low, which means that basically

all inherited attributes are being reused, and therefore, there

is a high degree of reuse. On the other hand, this also
indicates that the class is very little specialized in relation
to its parents and so the class will have a high degree of
reuse, whereas if the class has a high ICBOl index, it will be
a highly specialized class and probably very specific for the
application being developed and so, hardly reusable.

ICBO2 Inheritance Coupling Between Objects

Description: It is the number of added methods.

Definition: Let us assume S = { C;,...,Cx } is the system
earlier described and class C; = { Ay, ...,An , Mi,..., My } is
responsible for attributes A,,...,A, and methods M;,...,M, ,
whereby M,,...,M, are all the methods belonging to C;. All the

methods are both all the methods inherited from any of the
ascendents and also the methods which have been redefined or
extended, plus the own new methods which have been declared and

defined within class C; itself. Then:

ICBO2(C)= X1
s

Justification: As the class is responsible for the methods, as

well as for the attributes, the justification for using this
measure is supported by the justification provided in the
previous section ICBOl.

Observations: The observations made in the previous case are

also applicable to this section.
ICBO3 Inheritance Coupling Between Objects

Description: It is the number of redefined methods.

Definition: Let us assume that S = { C;,...,Ck } is the system
earlier described and class C; = {A;,...,An , M, ...,M) 1is
responsible for attributes A,,...,A, and methods M;, ..., My, . We

understand by redefined methods those methods which have been
inherited and whose contents have either been modified or

extended. Then:

ICBO3C)= D1
etioies

Justification: This measure is a direct consequence, depending

on the case, of the use that is made of polymorphism. All those
methods which have been inherited and which are modified all
through the inheritance hierarchy are capable of being used
polymorphically. This condition is necessary but not
sufficient. In order to be so, we should provide a detailed
declaration about the methods so that a dynamic 1link is
obtained.

Observations: The higher this index is, the more available

polymorphism will be to the application, and thus, the better
the design is bound to be, although the system's complexity and
debugging will be at the same time increased. Despite this,
maintenance will prove easier and simpler, in the sense that it
will be easier to add new classes without any need to modify

other components.

ICBO4 Inheritance Coupling Between Objects

Description: It 1is the rate per one of added attributes in

relation to the total number of class attributes.

Definition: Assuming S = { C;,...,Cx } is the system made up of
classes Cy,...,Cx , in such a way that C; = { A;,...,An
M,,...,M,)} is the C; class which is responsible for attributes
Ay, ...,A, and methods M;,...,M, , and whereby A,;,...,A, are all

the attributes belonging to Ci, including both the class's own

attributes and also those inherited from its ascendents, then:

>

st 1CBON(C,)

ICBO4(C,) =

il

>

j=!

m

Justification: Since we are simply normalizing CBO1l, then the

justification provided in that section is also valid for this
case.

Observations: ICBO4 is the same as ICBOl having been normalized

in relation to the total number of attributes. Thus, ICBO4 €
10,11,

ICBOS5 Inheritance Coupling Between Objects

Description: It is the rate per one of added methods in

relation to the total number of class methods.

Definition: Let us assume S = { C4,...,Ck } is the system made

up of classes C;,....Cx, in such a way that C; = { Ay ,...,Ax ,
M;,...,M, } is the C; class which is responsible for attributes
Ai,...,A, and for methods M,,...,M,, whereby M;,...,M, are all
the methods belonging to C;. Now all the methods are both all
those which have been inherited from any of the ascendents and
also the redefined or extended methods, plus the own new
methods which have been declared and defined within class C;
itself. Thus:

>
it 1cB02(C,)

n

ICBOY(C,) = -

j=!

Justification: Since we have simply normalized CBO2, the

justification provided in that section is also valid for this
case.

Observations: ICBOS is ICBO2 having been normalized in relation

to the total number of methods. ICBO5 € 10,11.

ICBO6 Inheritance Coupling Between Objects

Description: It is the rate per one of redefined methods in

relation to the total number of class methods.

Definition: Assuming S = {C;,...,Cx} is the system made up of
classes C,,...,Cy, as it was described in previous sections,
then:

1

redrfined _ ICBO 3(Cl')

methods

> "

=l

IcBOG(C,) =

Justification: Since we have simply normalized CBO3, the

justification provided in that section is also valid for this
case.

Observations: ICBO6 is ICBO3 having been normalized in relation

to the total number of methods. Therefore, ICB6 € |0,1].

7.4. Complexity
WMC Weighted Methods per Class

Description: It is the average sum of McCabe's static

complexity indexes for all the class methods.

Definition: Let us assume that S = {(C;,...,Cx} is the system

made up of classes C;,...,Cy, in such a way that C; = { Ay, ...,An
, Mj,...,M,} is the C; class which its responsibilities are the
attributes A;,...,A, and the methods M;,...,M,. Let us also
assume C;,...,Cn are the static complexity for methods M;,...,M,

respectivily. Then:

wmc(c,) = ic,-

j=)

Justification: WMC is directly related to class complexity,

since McCabe's static complexity indexes are a measure of the
complexity of each class method.

Observations: The higher this index is, the more complex the

class will be, and so the more difficult it will be to develop,
maintain and test.

References: |Chidamber, 19911, [McCabe, 19761, |Berge, 1973|

WMC1 wWeighted Methods per Class

Description: It is the average sum of McCabe's static

complexity indexes for all the class methods in relation to the
total number of methods.

Definition: Let us assume that S = { C;,...,Ckx } is the system

described in WMC. Therefore c¢;,...,c, are the static complexity
of methods M,,...,M, , thus:

Justification: Since we are dealing with an average sum, the

most suitable justification is the one provided in the previous
section for WMC.

Observations: This index is WMC having been divided by the

number of methods belonging to the class.
References: |Chidamber, 1991}, |McCabe, 19761, |Berge, 19731

WMC2 Weighted Methods per Class

Description: It is the sum of McCabe's static complexity

indexes for all the class methods, plus the methods which have
been called by the class methods.

Definition: Assuming S8 = {C:,...,Cx} is the system describe in
WMC, then:

r

wme2(c,)=wmc(c,)+ 2 2 MY, |

Justification: The criteria used for justifying WMC are also

applicable to this case.
References: |McCabe, 19761, |Berge, 1973|

WMC3 Weighted Methods per Class

Description: It 1is the sum of McCabe’'s static complexity

indexes for all the class methods, plus the methods called by
the class methods, and then being divided by the number of
class methods.

Definition: Assuming S = { C;,...,Cc} 1is the system describe in
WMC, then:

wmc2(c,)

wmcyc,)= —

Justification: The criteria used for justifying WMC are as well

applicable in this section.

Observations: WMC3 is WMC2 having been divided by the number of

class methods.
References: |McCabe, 19761, |Berge, 1973}

RFC Response For a Class

Description: It is the number of class methods plus the set or

group of methods which have been called by the class methods.

Definition: Let us assume S = { C;,...,Ck } is the system made

upof classes Cy,...,Cx , whereby C; = { Ay, ...,An , M, ..., My} is
the C; class whose responsibilities are the attributes A;,....,A
and the methods M;,...,M,. We shall define the response set,

named RS, as:
RS={AL}Y3{RJ' where {AL}:{AL.M.AQ} are all the class methods

and {RJ is the group of methods called by Mi.
Then:

RFC =| RS |

where |x| denotes the module or number of elements
contained in the response set.

Justification: The set of answers is the group of 'methods an

object has access to. Therefore, it gives an idea of the size
or volume of the object and, due to the fact that it also
includes all the methods recalled from other classes,it is a
measure of communication between objects, and, so a measyre of
coupling between objects.

Observations: The higher the value of this index is, the more

expensive it will be to test, debug and maintain the class. A
high index is also indicative of more communication between

classes and, therefore, a higher degree of complexity.

Figure:

RFC={M*, . M, M" }Y I omr)Y {Mt,}Y {m,}=17

References: |Chidamber, 1991|

7.5. Coherence
LCOM Lack of Cohesion in Methods

Description: It is the number of disjointed sets created by the

intersection of the sets of variables each class method uses.

Definition: Assuming S = { Ci,....Cx } is the system made up
ofclasses C;,...,Cx , so that C; = { Ay, ... A0 , Mi,...,Ms } is
the C, class which is responsible for attributes A;,....A, and
for methods M,,...,M,, and assuming {li,} is the set of

attributes being used by the M; method which belongs to the C;

class, then we can define:

LCOM(C,-)=l > ({I‘A-}‘{’il})

disjoint
EIMAY

Justification: This is a design quality measure. If a class is

lacking in internal cohesion (LCOM > 1), this probably means
that the class is badly designed, as it is very likely that it

undertakes independent responsibilities, which are capable of

being undertaken by as many other classes as the number of
disjointed sets of responsibilities the class may contain.

Observations: The very best case of internal coherence in a

class is that in which every method uses all of its attributes.
In this case LCOM = 1 (Internal Cohesion).

Figure:

References: |Chidamber, 1991/

7.6. Volume

NOA Number Of Attributes

Description: It s the number of class attributes.

Definition: Assuming S = { C;,...,C.)} is the system made up of
classes Cy,...,Cyx, whereby C; = { Ay, ...,A , My, ..., M} is the
C; class which its attributes are A;, ... A, then:

NOA(C;) = Sizm

Jj=

Justification: See section NOR further on,

NOM Number Of Methods

Description: It is the number of public class methods.

Definition: Assuming S = {C;,...,Cx} is the system made up of
classes C;,...,Cx, whereby C; = (A, ... ,An , Mi,...,M;} is the C;
class which its methods are M;,...,M, , then:

N0M'(C,)=§";1=n

j=1

Justification: See section NOR further on.

NOR Number of Responsibilities

Description: It is the number of responsibilities a class has,

that is to say, the number of class attributes plus the number
of class methods.

Definition: Assuming S = { Cy,...,Cy)} is the system made up of
classes Cy,...,Cx , so that Ci = { Ay, ..., An » My,..., My} 1is the
C; class which is responsible for attributes A;,...,An and for
methods M;,...,M,, . Then:

NOR(C,) = NOA(C,) + NoM(C,)

Justification: The greater the number of attributes or methods

a class has, the greater the number of responsibilities there
will be for the class in question. Therefore, the class's
volume will be larger and, if we associate size with
complexity, then the more complex the class is bound to be.
Thus, high NOA, NOM and NOR indexes imply that class
development will be more expensive, and so will be its

implementation and testing.

LCOM Lines Of Code per Method

Description: It is the number of lines of code a method has.

Definition: Let us assume S = { C;,...,Cy } is the system made
up of classes C;,...,Cx , so that C; = { Ay, ...,An Mi,oo. .My}
is the C; class which its methods are M;,...,M, . Assuming the

M; method, let us also assume that 1l; is the number of lines the
method has. Then:

LCOM(M;) = I;

Justification: It <concerns the method's volume or size;

therefore, the implications are the same as the ones described
for NOR.

Observations: Notice that this measure is per method and not

per class.

LOCC Lines Of Code per Class

Description: It is the average number of lines of code the

class methods have.

Definition: Assuming S = { C;,...,Cx } is the system made up of
classes C;,...,Ck , so that C; = { Ay,...,An , My, ..., My } is the
C; class which its methods are M;,...,M;, ,and assuming the M;

method, we shall assume l; is the number of lines a method has.
Then:

"ZLOCM(M,.) 21,.

Locc(c,) =+ - = ’1

Justification: We calculate a class's size in relation to the

number of lines of code its methods have. Then, if we follow
the criteria applied for object-oriented development which says
that, in adding a new class to the system, we must base our
action on the notion of construction by difference, it is clear
that methods' sizes have to be small.

Observations: This index must not be excessively high. If we

bear in mind the values recommended by Coad/Yourdon, this index
should be around 5.5 lines.

NPS Number of Parameters per Method

Description: It is the number of parameters per visible

methods.
Definition: Let us assume S = { C,,...,Cx } 1is the system
previously described and class Ci = { Ay, ... ,An , My,...,M;)} its

methods are M;,...,M, , whereby M(p'y,...,p's) is the M'y method

belonging to the C; class which admits the parameters named

pijll e ,pijl. Then:

Nps(m')=Si=1

re}

Justification: When an object has methods which have many

parameters, this implies that the client class needs to have
comprehensive knowledge of the server class so as to be able to
make good use of this latter class. If the method has many
parameters, the internal algorithm will be more complex and,
therefore, maintenance will be more difficult. An excess of
parameters also gdes against the criterium for reuse via black
boxes.

Observations: This is a measure per method.

8. Conclusions and future research

In this paper we have introduced a collection of measures
which we consider will be useful for quantifying the design
quality of object-oriented systems. Obviously, even though
there are available measures, we shall not be able to find a
definitive answer about which is the best design for a given
system; let us not forget that "not everything that counts can
possibly be counted, and not everything that can be counted
really counts" (Albert Einstein). Despite this, we believe that
the set of measures which have been proposed in this paper is
the first step towards a gquantitative evaluation of systems'
development, which will allow us to move on to a second stage
where measures will be gathered and improved as we learn more
about them. .

Therefore, the next step is to evaluate the proposed
measures, that is to say, to validate their utility by
experimenting with them. It is in this second stage when we
shall be able to draw the first conclusions about which
measures can be actually useful for evaluating design quality.

These results will be obtained experimentally by applying
the set of measures on to the group of systems developed by the

students who have taken the postgraduate course and programme

of "Object-Oriented Software Engineering",, which is run by the
Computer Languages and Systems Department of the Polytechnic
University of Catalonia. All of these systems have been
developed through the use of object-oriented technology., and
the results must allow us to break the vicious circle which
revolves around the assertion that: we have no valid measures,
for we do not collect data, and as we do not have data, then we
do not collect measures.

Bibliography & References

|Lorenz, 1994| Lorenz, Mark and Jeff Kidd. "Object-Oriented
Software Metrics. A Practical Guide", Prentice Hall
ObjectOriented Series, 1994.

|Peralta, 1994a! Peralta, A.J., Rodriguez H. *Introduccié a
1'Enginyeria del Software: Programacié Orientada a Objectes*,
Edicions UPC 1994.

|Peralta, 1994b| Peralta, A.J. "A Comparison of the
Introduction of the Object-Oriented Paradigm in Undergraduate
and Postgraduate Software Engineering", Proceedings of the
TATTOO'95 Conference Leicester.

JLi, 1993! Li, Wei and Sallie Henry. "Maintenance Metrics For
The Object Oriented Paradigm", Proceedings of First
International Software Metrics Symposium, May 1993, pp. 52-60.

|Karunanithi, 1993| Karunanithi, Santhi and James M. Bieman.
"Candidate Reuse Metrics For Object Oriented and Ada Software",
Proceedings of First International Software Metrics Symposium,
May 1993, pp. 120-128.

|Barnes, 1993| Barnes, G. Michael and Bradley R. Swim.
"Inheriting Software Metrics", Journal of Object Oriented

Programming JOOP, Nov-Dec 1993, pp. 27-34.

ILi, 1992| Li, Wei. "Applying Software Maintenance Metrics 1In
The Object-Oriented Software Development Life Cycle®", Ph.D.
Dissertation, 1992.

|IRoberts, 1992| Roberts, Teri. "Metrics For Object-Oriented
Software Development", First OOPSLA Workshop on Metrics.
Addendum to the Proceedings OF OOPSLA'S92, -

|Pressman, 1992| Pressman, Roger S. “Software Engineering (3rd
edition)”, McGraw Hill 1992.

|chidamber, 19911 Chidamber, Shyam R. and Chris F. Kemerer.
"Towards a Metrics Suite For Object-Oriented Design",
Proceedings: OOPSLA'91, July 1991, pp. 197-211.

|Ccoad 19911 Coad, Peter and Edward Yourdon. “Object-Oriented
Analysis" (Second Edition), Yourdon Press Computing Series,
Prentice-Hall 1991.

|Teasley, 1990| Teasley Mynatt, Barbee. 'Software Engineering
with Student Project Guidance", Prentice-Hall 1990.

|Weyuker, 19881 Weyuker, E. "Evaluating Software Complexity
Measures", IEEE Transactions on Software Engineering, vol.14,
No. 9, September 1988, pp. 1357-1365.

|Kearney, 1986| Joseph K. Kearney et al. "Software Complexity
Measurement *, Communications of ACM, Nov. 1986,Vol. 29, No. 11,
pp. 1044-1050.

|Gong, 1985| Gong, H. and Schmidt, M. “A Complexity Measure
Based on Selection and Nesting", Performance Evaluation Review,
Vol. 13, No. 1, June 1985, pp. 14-19.

|[McCabe, 19761 McCabe, Thomas J. "A Complexity Measure", IEEE
Transactions on Software Engineering, Vol. SE-2, No. 4 ,December
1976, pp. 308-320.

LSI-94-45-R

LSI-94-46-R

LSI1-94-47-R

LSI-94-48-R

LSI-94-49-R

LSI-94-50-R

LSI-94-51-R

LSI-95-1-R

LSI1-95-2-R

LSI-95-3-R

LSI-95-4-R

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Recent Research Reports

“On RNC approximate counting”, Josep Diaz, Maria J. Serna, and Paul Spirakis.

“Prototipatge semantic d’un model conceptual deductiu” (written in Catalan), C. Farré and
M.R. Sancho.

“Generaci6 i simplificacié automatica del Model d’Esdenivents Interns corresponent a un model
conceptual deductiu” (written in Catalan), C. Farré and M.R. Sancho.

“B-Skip trees, a data structure between skip lists and B-trees”, Joaquim Gabarré and Xavier
Messeguer.

“A posteriori knowledge: from ambiguous knowledge or undefined information to knowledge”,
Matias Alvarado.

“An approach to the control of completeness based on metaknowledge”, Jordi Alvarez and
Nuria Castell.

“On finding the number of graph automorphisms”, Richard Chang, William Gasarch, and
Jacobo Toran.

“Octree simplification of polyhedral solids”, Dolors Ayala and Pere Brunet.
“A note on learning decision lists”, Jorge Castro.
“The complexity of searching implicit graphs”, José L. Balcazar.

“Design quality metrics for object-oriented software development”, Alonso Peralta, Joan Serras,
and Olga Slavkova.

Copies of reports can be ordered from:

Nuria Sénchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secrelsi®@lsi.upc.es

