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Abstract

We consider the task of theorem proving in Lambek calculi and their generalisation to “multimodal
residuation calculi”. These form an integral part of categorial logic, a logic of signs stemming from
categorial grammar, on the basis of which language processing is essentially theorem proving. The
demand of this application is not just for efficient processing of some or other specific calculus,
but for methods that will be generally applicable to categorial logics.

It is proposed that multimodal cases be treated by dealing with the highest common factor of
all the connectives as linear (propositional) validity. The prosodic (sublinear) aspects are encoded
in labels, in effect the term-structure of quantified linear logic. The correctness condition on proof
nets (“long trip condition”) can be implemented by SLD resolution in linear logic with unification
on labels/terms limited to one-way matching. A suitable unification strategy is obtained for calculi
of discontinuity by normalisation of the ground goal term followed by recursive decent and redex
pattern-matching on the head term.



D(A) of L by residuation as follows.

(1) D(AOB) = {81—{—82'81 c D(A) A 59 € D(B)}
D(A\B) {s|Vs’ € D(A),s'+s € D(B)}
D(B/A) {s|Vs' € D(A),s+s € D(B)}

[

A sequent, I' B A, comprises a succedent formula A and one or more formula occurrences in the
antecedent configuration I' which is organised as a binary bracketed sequence for NL, and as
a sequence for L. A sequent is valid if and only if in all interpretations, applying the prosodic
construction indicated by the antecedent configuration to objects inhabiting its formulas always
yields an object inhabiting the succedent formula. The Gentzen-style sequent presentations for
NL in (2) and for L in (3) are sound and complete for this interpretation (Buszkowski 1986, Dogen
1992); furthermore they enjoy Cut-elimination: every theorem can be generated without the use
of Cut. In the following the parenthetical notation T'(A) represents a configuration containing a
distinguished subconfiguration A.

(2) a. AFA 1d I'cA A(AFB.
Cut
A+ B

b THA ABFC - [ATIFB N
A([T, A\B))  C T+ A\B

c. TFHA A(B)I—CL [I'A] F B

A([B/AT) F C T+ B/A
d. T(AB)FC ~ THA AFB
T(AeB) F C [[,AlF AeB
(3) a. AFA  id IFA  A(A)FB_
ADYFB
b. TFA A(B)FC ATFB
: L ———\R
A(T, A\B) - C T+ A\B
« Tha a@rc I"..tl[—b‘/l_
/R
A(BJA,T) F C [+ B/A

d. I‘(A,B)I—CL IT'A A+B
*
T(AsB) F C [T, Al AeB

L

By way of example, “lifting” A F B/{A\B) is generated as follows in NL; it is similarly derivable
m L.

(1) AbA BFB
[A, A\B] B \R
A+ B/(A\B)

On the other hand “composition” A\B, B\C + A\C, while derivable as follows in L, is NL-
underivable in its non-associative form: [A\B, B\C] + A\C.



(5) BFB C+C
AFA  B,B\CFC
A, A\B,B\CF C
A\B, B\C F A\C

\L

1.2 Multimodal Lambek Calculi

In a slightly different formulation of the sequent calculus for L we may configure antecedents
with binary bracketing, and then use the NL rules together with an explicit structural rule of
associativity (the double bar indicates bidirectionality):

(6) P([A1[As, A3 - A
L([[A1, Ax], As]) - A

From here it is a small step to give sequent calculus for “multimodal” Lambek calculi in which we
have several families of connectives {/;,\;, o }ieq1, .n}. each defined by residuation with respect
to their adjunction in a “multigroupoid” (L, {+i}ie{1, n}) (Moortgat and Morrill 1991):

(7) D(Ae;B) = {si+is2|s1 € D(A) As2 € D(B)}

D(A\;B) {slVs’ € D(A),s'+is € D(B)}
D(B/; A) {s|V¥s' € D(A), s+:s' € D(B)}

Sequent calculus can be given by indexing the brackets of NL-presentations to indicate mode of
adjunction (and adding structural rules as appropriate):

(8) id 'crA AMA)FB
AF A Cut,
A()+ B
9 a TFA ABFC . (AT B 5
A(LT, A\B)FC " CEA\B
b. THFA AMB)FC L [(T.A]F B ;
i =l
A([,B/,A,F]) FC "+ H/,_"-l /
e. DA B)FEC e AFRB
==———_ *: R
I'(Ae;B) +F C [(I,A]F Ae; B

In particular cases of course we may choose non-composite notations for the connectives and brack-
ets. With two modes interpreted in a “bigroupoid” understood as distinguishing left-headed and
right-headed adjunction we have a “headed” calculus (Moortgat and Morrill 1991). With families
{/,\, ¢} and {<, >, ¢} for adjunctions + (associative) and (.,.) (not assumed to be associative) re-
spectively in a bigroupoid (L, +, (.,.)) we have a partially associative calculus (Oehrle and Zhang
1989, Morrill 1990). This forms two-thirds of the discontinuity calculus of Morrill (1993) which
we shall be considering shortly.

1.3 Labelled Sequent Presentations

“Labelling” (Gabbay 1991) is a means of presenting proof theory which will enable us to factor
out the antecedent formulas of a sequent, and its associated prosodic construction, which is made
more explicit. No essential use is made, in that the labelled presentations of calculi given here



are just notational variants of ordered presentations which can be given. However, labelling is a
step on the path to implementing residuation calculi in proof nets. We notate a sequent I' - A as
ap: Ay, ..., an: Ay F a: A where the multiset {Ay,..., A} comprises the formula occurrences
in T, ay,...,a, are distinct atomic labels, and a is a term over these labels representing explicitly
the prosodic construction that was represented implicitly by the structured configuration I'. The
labelled sequent calculus for NL is as follows:

(10) a. wAkFa A id

b. ThaA a AAF fla): B
Cut
T,AF B(a): B
c. I'Fa:A b:BAFA0):C .
[d: AAB,AF y((o +d)): C

d. T,at AbF(a+7): B
'ty A\B

e. I'Fa:aA b BAF5b): C/]
I,d: B/A,AF y((d+a)): ¢

f. I‘,a:AI—(y—i—a):BR
't~ B/A

g aAb B AFy((a+D):C L
¢ AeB,AF y(c): C

h. Thra A Al—ﬁ:BR
[,AF (a+f): AeB

To obtain L an associativity equation on terms may be added, or equivalence classes of terms
represented by flattening terms into lists.

1.4 Labelled Natural Deduction

For labelled Fitch-style categorial derivation (Morrill 1993), there are lexical assignment, sub-
derivation hypothesis, and term label equation rules thus (we include Curry-Howard semantic
annotation intermittently in what follows; full explications are available in the references):

(11) a. n. o -¢: A for any lexical entry
b. n. ap —xy: A H

n+m. |ty —2Tm: A, H

c. n. a—-d¢. A
o' - A =nifa=a & ¢=4¢'

The logical rules are:

(12) a. n. «o-¢: A
m. oy -y A\B
(a+7) - (x ¢): B E\n,m



b. n. a-z: A H
m. | (a+7) —¥: B unique @ as indicated

vy -z AAB I\ n,m

(13) a. n. a—-¢: A
m. vy -—X: B/A
(v+a) - (x ¢): B E/n,m

b, n. a-x: A H
m. | (y+a) —¥: B unique « as indicated
vy - XAzy: B/A I/ a,m

(14) a. n. 7 - x: AeB
m. a—x A H
m+1. |b-y: B H
p. “§((a+b)) - w(z,y): D unique a and b as indicated

8(7) —w(myx,max): D  Een,mm+1,p

b. n. a-¢: A
m. f-v: B
(a+73) = (¢,9): AeB Je n,m
A Fitch-style labelled calculus for the associative Lambek calculus L can be obtained from
that for the non-associative calculus by adding a prosodic label equation:

(15) ((ar+aa)+as) = (a1+(aatas))

Alternatively, the associative Lambek calculus can be given by dropping parentheses in prosodic
labels. By way of example, a simple instance of relativisation can be derived by hypothetical
deduction as follows:

(16)

which — AxdyAz[(y z) A (x z)]: (CN\CN)/(S/N)
John - j: N
talked — talk: (N\S)/PP
about — about: PP/N
a—-2: N

==

about -a - (about z): PP

talked+about+a — (talk (about z)): N\S

John+talked+about+a — ((talk (about z)) j): S
John+talked+about — Az((talk (about z)) j): S/N
0. which+John+ialked+aboul —

(AzAdyAz[(y z) A (2 2)] Az((talk (about z)) j)): CN\CN 1,9 E/

11.  which+John+ialked+ about —
Ayrz{(y z) A ((talk (about z)) j)}: CN\CN =10

NSO W

l.]o:c.-\
oloNcl
NN TN

U\I.\D.del'a

— O 0
[07e]
et
~

1.4.1 Multimodal Fitch natural deduction

Multimodal calculi can be presented Fitch-style by giving the same rules for each family of con-
nectives with their associated adjunctions:

(17) a. n. a-¢: A
m. - x: A\;B
(a+iv) - (x ¢): B E\; n,m



b. = a-x: A it
m. | (a+;y) —¥: B unique @ as indicated

v - Az A\,B  I\i n,m

(18) a. n. a-¢: A
m. y-x:B/;A
(v+ia) - (x ¢): B E/; n,m

b. n a-z: A H
m. | (y+ia) —¢: B unique a as indicated
¥y - Azyp: B/;A  1fin,m

(19) a. =n. v —x: Ae;B
m. = A H
m+1. | b—y 3 H
p. &((a+:0)) —w(z,y): D  unique ¢ and b as indicated

6(v) —w(mx,mx): D Ee;n,m,m+1,p

b. n. a-¢: A
m. B-y: B
(0'+iﬂ) - (d),‘l/))? Ae;B Te; n,m

Label equations are to be added according to the algebras of interpretation.

1.4.2 Multimodal labelled Prawitz natural deduction

Labelled deduction can also be presented Prawitz-style; for the multimodal case (without seman-
tics) there is the following.

(20) : : :
v: B/iA a A a: A 0 A\ B
/t—___/l.E —\'_\I_E
Yo B a4y B
21 n n
1) a A a: A
Y4 B3 a4y B
_—/illl %\r[‘!
w1 BfiA 7 A\, B
(22) ' 5: AeiB
R L A8y
a: A ﬂ B.I. .iEn
a+iff: Ae;B f a A . b: B

H(a+ib): C
1(8): C

n

2 Discontinuity

We consider residuation calculi for two kinds of discontinuity: regular, for discontinuous functors,
and for infix binders as in quantifier raising, reflexivisation, pied piping and gapping, and head-
oriented such as head infixation and head extraction in Germanic verh clusters and verb fronting.
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In each case the essential strategy is to specify discontinuous adjunction as a primitive (as opposed
to derived) operation in the multigroupoid prosodic algebra of multimodal Lambek calculi, with
respect to which discontinuity operators are defined by residuation.

2.1 Regular Discontinuity

In the discontinuity calculus of Morrill (1993) connectives {/,\, e}, {<,>,°} and {{,|,®} are
interpreted by residuation with respect to adjunctions +, (., .) and W respectively in a trigroupoid
(L*,+,(.,.), W,¢) where + is associative and has (left and right) identity ¢ € L*, and (., .) and
W satisfy the “split-wrap” equation: (s1,s3)Wss = s1+s2+53. We see thal (¢, €) is a left identity
for W; ¢ is desired in the interest of linguistic generalisation: to include peripherality as a special
case of discontinuity. Also for linguistic reasons however, formulas are interpreted as subsets of
L = L*\{e}, preventing ¢ (but not (¢, €)) from inhabiting types. The prosodic label equations are
as follows:

(23) a. si+(sa+s3) = (s1+s2)+s3
b. ste=¢+s=s
c. (81,53)Wsa = s1+s0+4s3

A verb-particle construction is derived as in (24).

(24) 1. (rang,up) - phone: (N\S){N
2. John - j: N
3. Mary —m: N
4. ((rang, up)W John) - (phone j): N\S 1,2 ET
5. rang+John+up — (phone j): N\S =4
6. Mary+rang+John+up — ((phone j)m): S 3,5 E\

Discussion of semantics would take us outside the direct concerns of the present article; the reader
is referred to e.g. Moortgat (1988, 1991) and Morrill (1992a, 1993) for explication. The effect of
quantifier-raising, whereby quantifiers are to take sentential scope, is achieved by assignment of
a quantifier phrase such as ‘everyone’ to a “quantifying-in” type (S{N)[S. A simple instance of
quantifier-raising is shown in (25).

(25) 1. John — j: N

likes — like: (N\S)/N

everything — AaVy(z y): (SIN)[S
|a—2:N

e

N

Il
© 00 =1 & A

likes+a — (like 2): N\S
John+likes+a — ((like z) j): S
John+likes+a+e — ((like z) j): S
((John+tlikes, e)Wa) - ((like 2) j): S
(John+likes,e) — Az((like z) j): STN
0. ((John+likes, €)W everything) —
(AzVy(ex y) Az((like 2) j)): S
11, John+likes+everything — Vy((like y) j): S =10

—
==
—

HCDOO\]G}IO'\
—
—

Lo

2.2 Bracket Operators

To treat head-oriented discontinuity we shall require bracket operators, interpreted in a prosodic
algebra such as (L, +,[.]) where [.]is a unary operation (Morrill 1992b); for nice symmetric proof
theory we require that this is a 1-1 function (permutation) so that its inverse [.]7! is total.

26) [[s]'] = [[s))7" = s

@) D(J4) = {[slls € D(4))
D14y = {slls]€ DAY} = {[s]'|s € D(A))



Intuitively []A is the result of appointing or crystalising prosodic objects as domains or con-
stituents, and []7'A the result of annulling or dissolving appointment as a domain. Labelled
Prawitz-style natural deduction for bracket operators is as follows, including [.] and its inverse
[.]7! in prosodic labels, for which there is a prosodic label equation [[a]™}] = [[e]]7! = .

(28)

[a]: [ ]A [u]_l: A

(29)

2.3 Head-Oriented Discontinuity

Head-oriented discontinuity is obtained by combining a bracketing operation and a primitive
head adjunction in a headed calculus (Moortgat and Morrill 1991): the prosodic algebra is
(L, +1,4r, +h,[v-], €) with implications {\;, /1}, {\r,/r}, and {1,]} interpreted by residuation
w.r.t. 4+, +, and +, respectively. There are the following interaction axioms:

(30) (a++B)+ny = a+r(f+17)
(a+18)+n7 = (a0 B)+17y

And [v] and {v]~! are bracketing operators with respect to [,.]; € is a left and right identity for
+; and +,; the bottoming-out interaction for head adjunction is (for our Dutch example):

(31) [valtns = [vPB+i1x]
The following is a simple example of Dutch head-infixation:

(32) boeken+,[, kan+lezen]
books can read
“1s able to read books”

It has the Prawitz-style derivation (33).
(23) Loeken lezen kan
lezen: [w] 71 (N\,IVi)
boeken: N [vlezen]: N\, IVi by
bocken 4, [y lezen): TVi P\ IVi| VP

El

(boeken+,[,lezen])+pkan: VP

boeken+, ([, lezen]+pkan): %

boeken+,.[ykan+lezen]: VP -

3 Décidability

Backward-chaining Cut-lree labelled sequent proof search admits only a finite number of possible
rule applications for a given sequent., eliminating the principle connective of one of the (finite num-
ber of ) formulas, and choosing (one of the finite number of ) antecedent partitionings in the case of
binary rules. This creales subgoals the complexity of which in terms of connective occurrences to-
tals exactly one connective occurrence less. The situation obtains even with an unknown succedent



term. In a labelled sequent proof the succedent term is instantiated by backward-chaining proof
search. Thus theoremhood is decidable in that, for example, to determine whether antecedent
formulas under a given configuration yield a succedent formula we may compute the finitary la-
belled search space and then check whether one of the prosodic constructions obtained is the one
desired. This holds generally for multimodal residuation calculi with interaction axioms.

3.1 Desiderata for Efficiency

There are two sources of non-determinism however in (labelled or ordered) backward-chaining
sequent proof search: in choosing on which formula’s principle connective to key rule application,
and in choosing how to partition sequents in binary rules. With respect to the former, many
sequences of choice can yield proofs with the same construction; with respect to the latter, con-
siderable space may need to be searched before determining whether a partitioning terminated
i mitial identity axiom sequents or not. The [ormer, but not the latter, problem is addressed
by “proof normalisation” (for the case of Lambek calculus see Hepple 1990, which refines Konig
1989): fixing priorities of rule ordering to determine distinguished representatives of equivalence
classes of prools. Both drawbacks are addressed by proof nets (in linear logic), and the matrix
methods of Bibal (1981) and Wallen (1990). In these, formulas are unfolded, and proofs built
from the initial sequents. Through unfolding, the parts comprising a formula are made available
for examination in parallel, rather than only in serial according to the particular embedding of
connectives. By building from initial sequents we ensure effectively that only rule applications are
tried which are already known to terminate successfully in initial sequents.

In the context of linear logic then proof nets have been developed as a method of eliminating
redundancy in the sequent representation of proofs. For these however a correctness check (the
“long trip condition”) is required. Correspouding proposals have been made for Lambek calculus
by Roorda (1991), in which correctness is checked by semantic labelling, and Roorda (1991) and
Moortgat (1991), in which correctness is checked by prosodic labelling. The latter approach ap-
pears to apply generally to residuation calculi and constitutes the point of departure of the present
proposals. As it stands, the method reduces proof net correctness to checking, by unification, sat-
isfiability of equations in groupoids, semigroups, and so on. Yet such problems as semigroup
unification are in general intractable, even though the sequent formulations of the calculi show
decidability. Somewhere the method loses control of constraints, and improved management is
required in order to achieve efficiency. We shall provide the necessary structure by organising the
proof nets used as clauses, in fact Horn clauses, of linear logic, for which a resolution strategy is
available in which at each unification step one term is ground, i.e. variable-free. This prepares the
way for computational theorem: proving in residuation calenli generally and illustration includes
the regular and head-oriented discontinuity calculi.

4 Sequent Calculus for Classical Linear Logic

The multiplicative fragment of linear logic, with which we shall be concerned, contains binary infix
connectives @ (a conjunction “times”) and " (a disjunction “par”) and a unary postfix negation
L (“neg”). Sequents are of the form I' F A where configurations I' and A are sequences of zero
or more formulas. There are the following sequent rules, which are sound for classical logic, (and
which would also be complete for classical logicif the structural rules of contraction and weakening
were included). The calculus enjoys Cut-elimination.

(34) a. b. I'tA,A ATEA
—id Cul
AF A K= AAS
(35) a. A B IYEA h. THA A B A
]) l)

L
B AT EA "= A B A A
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(36) a. T,A,BFA b. THAA T'FB,A
— QL @R
I A0BF A I, FAQB,A,A
(37) a. AAFT BA'FIY h. AFT,AB
=L — &R
AEB,A A FT, T AFT,AxB
(38) a. Tk AA b. T,4AFA
J_L A
At rFA '+ AL A

The linear implication —o is defined by A—~B = A* ¥ B, so any {&, &, L, —o} formula can
be considered an abbreviation for a {®, &, ‘L} one.

4.1 Negation Normal Form

A {®, &,1} formula is in negation normal form if and only if no connective occurrence falls
within the scope of a negation, i.e. negations may only be immediately attached to (unnegated)
atoms. We have the following proofs of the involution of negation:

(39) a  AbA b ArA
AAtE Fat A
Ab ALt ALt A

And there are the following proofls of a de Morgan law:

(40) a. AF A BrF B b. AF A B+ B
.LR J_L _LL 1
F A, AL + B, Bt AL AL B+ B
@R
FA®B, AL, B+ AL BL A B+
IR ®@L
FA® B, At % Bt iy At wBY A®BF
(A@B)* + At w Bt At w Bt ¢ (A® B)t

The other de Morgan law is obtained similarly. Hence using the equivalences (41) to reduce redexes
of the form on the left to contractums of the form on the right, any formula is converted to a
negation normal form.

(41) AtL = A
(A@B)* = AtwBt
(A Bt = AteBt

So 1 need not really be considered a connective in formulas but as a means of abbreviating { ®, % }
formulas in which atoms come in two flavours: positive and negative.

5 Proof Nets for Linear Logic

To validate a sequent using proof nets all formulas are first put on one side of the sequent turnstyle
using the negation rules:

(42) TH Ailfand only if T, AL+ ifand only if T+ A
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They are converted to negation normal form, after which a phase of “unfolding” ensues:

(43) a. A B b. A B
A® B A¥B

We refer to the result of unfolding until all leaves are atomic as a proof frame. Then an attempt
must be made to connect (or: link) all the (positive and negative) atoms in such as way that each
is connected with exactly one other, of complementary polarity. Such connections correspond to
initial sequent axioms. A connection of all the atoms is called a proof structure. The existence of
a proof structure is a necessary, but not sufficient, condition for theoremhood (note for example
that conjunction and disjunction are not distinguished!): we shall further require the “long trip
condition” which effectively checks partitioning, i.e. that we have connected as initial sequent
axioms atomic formula occurrences which were meant to be in the same sequent subproofs, and
not ones meant to be in different subproofs.
By way of example of unfolding and linking, there is the following:

(44) A+ (A—B)-oB if and only if
AF (AL EB)L&B  ifand only if
FAL (A®@BL)wB
(45) | |
A Bt
A®B* B
At (A®BL)x%B

The proof structure (45) is also a proof net. The proof structure (46) is a proof net for @=® (A,
B F A®B is a theorem) but not for @= % (A, B F A& B is not a theorem).

(46) [ 1 I |
A* A B Bt
A@B

A restriction to planar proof nets, ones with nested (i.e. non-crossing) connections, characterises
(together with the long trip condition) the theorems of cyclic linear logic, i.e. linear logic in which
exchange is limited to circuiar permutations.

6 Proof Nets for Lambek Calculus

In the previous section proof nets were given by moving all formulas to the right of the sequent
turnstyle. Here we shall do the converse: move all formulas to the left. that is we shall perform
refutation proofs. I'rom considerations of symmetry we see that the choice is not important, but
it will enable us to present our proposal in the familiar context of resolution refutation. We con-
sider the presentation of proof nets for Lambek calculus of Roorda (1991), but our polarities are
reversed. Formulas composed from the implicational connectives / and \ are signed positive for
antecedent occurrences and negative for succedent occurrences, and unfolded as follows.

(47) Bt A A= Bt A+ B B~ At
B/A* A\B+ BJ/A- A\B~-

The transmission of polaritics can be understood when we see an implication as a disjunction of its
consequent with the negation of its antecedent. The steps given are compilations of decomposition
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accordingly, with unfolding, involution of negation, and de Morgan laws for multiplicative con-
Jjunction or disjunction compiled in. The ordering given, which swaps the components of negative
(i.e. succedent) occurrences of implications allows restriction to planar connections.

The following, for example, are proof nets for lifting A + B/(A\B) and composition A\B, B\C
FA\Cin L.
(48) | l

A Bt
A\BT B~
AT B/(A\B)~

| | | |
AT BY BT Ct ¢ Af
A\B* B\C+ A\C~

Just by considerations of symmetry however we can see that there will also be a proof structure
for the invalid “lowering™: B/(A\B) F A. A long trip condition can express the required constraint.
Roorda (1991) expresses such a condition in terms of the lambda terms that are notational vari-
ants of intuitionistic natural deductions corresponding to Lambek proofs, and which provide the
semantic dimension of categorial logic. But which condition on axiom linking corresponds to NL?
How would we express the L+ NL hybrid? And what about the discontinuity calculi? Since these
varieties relate more directly to the groupoid prosodic dimension we shall follow Roorda/Moortgat
In using prosodic terms to express the correctness conditions.

6.1 Labelled Proof Nets

Roorda (1991) and Moortgat (1991) present unfolding with prosodic labelling as follows.

(50) a. y+a: BTY  a: A” a: A~ a+y: Bt
a new variable
v: BJAT v: A\BT
b, ki At y+k: B™ k+y: B~ k: AT
k new constant
y: B/A™ v: A\B~

The succedent (negative) unfoldings introduce (Skolem-like) constants. The antecedent (positive)
unfoldings introduce variables. Linking identifies the labels of linked atoms and the correctness
condition is that a proof structure is a proof net if and only if the set of equations induced by
linking is satisfiable. This can be checked by unification.

Consider lifting, for which we assume labelling thus by a constant I:

(51) I: A F I: B/(A\B)

Then there is the proof net (52).

(52)
a A~ a+2: Bt

20 A\B¥ 149 B
1A I B/(A\B)~

The linking yields the equations I=ae and a+2= 1+2 which are clearly satisfied. For composition
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as in (53) we obtain (54).

(53) 1: A\B, 2 B\C F 1+2 A\C

(54) | — ——

@A™  a+1: Bt b: B~ b+2: CT 34(1+2): C~ 3 AT
1: A\Bt 2: B\C* 1+2: A\C~

This yields the equations a=3, a+1=b and b+2 = 3+(1+2) which are satisfied with b=3+1 in the
associative case, but not in the non-associative one. For the invalid lowering however we have:

2. At 94c: Bt

¢ A\B~ I+c¢ BY
I A™ 1: B/(A\B)*

The equations /=2 and I4+c=2+c are clearly not satisfiable.

The method is attractive because we can see how it adapts to different residuation caleuli,
such as the partially associative calculus or the discontinuity calculi, just by unifying prosodic
terms according to the laws of the groupoid algebras of interpretation. Such direct association
of proof theory with interpretation is precisely the point of labelling: “bringing semantics back
into syntax”. Generality is obtained because we have identified the highest common factor of
sublinear residuation calculi, linear validity, (a lower common factor such as mere intuitionistic
validity, for example, would not provide much informative structure). The degrees of variation are
in effect built in as non-logical properties of term structure of quantifier-free first-order linear logic:
unfolded signed labelled atoms (literals) a: AT and #: B~ are atomic formulas of predicational
linear logic A(«) and B(3)* respectively. Linking corresponds to an application of the resolution
principle, together with unification of terms. It is this relation which we shall exploit to resolve
the computational shortcoming of the method as it stands: that testing satisfiability of the linking
equations appears to demand solution to such problems as semigroup unification, which are quite
intractable.

6.2 Clausal Proof Nets

In the course of unfolding no attempt is made to preserve the relations between parts of a formula.
Such information, however, can serve to indicate restrictions on possible linkings, and hence guide
the instantiation of unknowns.

Observe that the subformulas of a positive (i.e. antecedent) implicational occurrence are allo-
cated to different subproofs, for example with /L in L:

(56) THA ALBAHFC
A1, BJA,T,AxF C

L

This means that neither the A occurrence and the B 6ccurrence, nor any of their subformula oc-
currences, should ever be connected by an axiom link, for that would correspond to putting them
in the same subproof. (The labelling already ensures the eventual fatlure of any such attempts,
but the point is that this information can be used to preempt such failure.) The same is not true
of the right rules however; in the following A and B are not allocated to distinct subproofs:
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(57) I'AFB

—/Ik
' B/A

What we shall do is group formulas in the course of unfolding in such a way that attention can
be limited to intergroup linking because intragroup linking is always known to fail. Since positive
implications are compiled into linear disjunctions (plus negation) we use the term clauses for the
groups, and we shall see how their form enables a particular resolution strategy.

The unfolding compilation is now not. simply recursive because while positive unfolding steps
preserve subformula structure in clause structure, we shall require a negative unfolding step to
break out of its clause: the subformulas occur in the same sequent subproof so that the no linking
discipline is not to be imposed. We represent a pseudo-clause, i.e. one not necessarily free of
compound categorial types. by X,Y, ... and use parenthetical notation to indicate subparts. The
unfolding schemala are the following (ordering of clauses is not required).

(58) a. X(y+a: Bt a: A7) N(a+y: Bt ska: A7)
a new variable
X(v: B/AT) X(y: A\B*)
b.  X(y+k:B™) k: At X(k+v: B™) k: AT
- k new constant
N(v: BJ/AT) X(v: A\B™)

Linking (and unification) is now seen as resolution between clauses:
(59) a: ATHY o't AT X
X &Y [MGU(a,a’)]

«, o unifiable

6.3 Resolution Strategy

The horizontal representations used so far will not accommodate on the page larger linguistic
examples, so we re-present the unfolding schemata in a vertical indented style:

(60) X(5: B/AYYiff
X(y+a: Bt va: A7) .
X(y: A\B*) ift a new variable
X(atvy: Bt da: A7)

X(y: B/A™) il
X(v+k: B™)
k: AT

X(y: AAB7)iff
X(k+v: B7)
ki AT

k new constant

Naturally the antecedent and succedent formulas of the target sequent are initially in separate
pseudo-clauses, since they pertain to the same goal sequent. Now we note the following (for
the implicational fragment): that all the clauses yielded by unfolding a positive (i.c. antecedent)
formula contain exactly one positive literal (the head), and zero or more negative literals (the
body), i.e. they are definite clauses. This can be seen from the fact that the antecedent occurrences
start with one occurrence of ¥ outermost, that the positive unfolding steps transfer a + to a single
formula of its single output pseudo-clause, and that the negative unfolding steps leave intact any
* on one oulput pscudo-clause, and introduces a * outermost on the other. We note further that



in all the definite clauses generated by antecedent (positive) formulas, all and only the variables
occurring in the negative literals occur in the positive literal: the antecedent formulas are initially
labelled by closed terms and so have no variables; the positive unfolding rules put the same
variable in positive and negative subcomponents of the same pseudo-clause, and the negative
unfolding rules introduce constants,

As for negative formulas, we see that an implicational succedent formula generates positive and
negative output pseudo-clauses as it introduces constants. So the target sequent succedent will
always unfold to yield one single-literal, i.e. wnzt, clause which is negative and which is ground. In
so doing il may also generate antecedent-style definite clauses.

Now, given the restriction to interclausal linking (no incest) we can see that any successful
linking must. connect the unique negative unit clause generated from the succedent to the head of
some definite clause. Since the label of the former is ground, and the label of the latter includes
all the variables of its body, any corresponding negative literals in the body of the definite clause
become ground on unification, and these in turn must resolve with positive heads, and so on.
One or more ground negative literals define the agenda at each stage. Thus all clauses are Horn
clauses, i.e. clauses with a maximum of one positive literal. We may choose to work breadth-first
or depth-first; thus precisely the Prolog search strategy, (depth-first) “linear” input resolution
(Chang and Lee 1973), SLD-resolution, is appropriate, but since we are also linear in the sense of
occurrence logic, the database of clauses is consumed as we go.

Consider again then lifting:

(61) 1: A F I: B/(A\B)

To mmimize what need be written we write proofs as illustrated in (62). The labelled and signed
sequent occurrences are listed down the page, starting with the succedent assignment. Unfolding is
performed as shown in (60), which places the negative output pseudo-clause of a negative unfolding
above the positive output pseudo-clause, so that working down the page the negative unit clause
obtained by unfolding the succedent pseudo-clause is always the first to appear. Indenting shows
the course of unfolding, and the fully unfolded clauses obtained are numbered in the left column.
One such clause is marked on the right as being the one resolved with the succedent unit negative
clause, and after a comma the unifying substitution is shown. The first line after the unfolding of
the sequent formulas is the (ground) result of applying this unifier to the body of the asterisked
clause. This is the successor agenda. By convention we choose to attempt further resolution with
the leftmost literal of this agenda or goal clause: we choose a suitable input clause and unify,
indicating the input clause and unifier on the right; the instantiated negative literals are added to
the front of the agenda, which is written in full on the next line of the derivation, and so on. This
gives a depth-first search. Adding the new negative literals to the back of the agenda would give
a breadth-first search,

(62) 1: B/(A\B)~
1. 1+2: 3~
2. A\BT
2. at+2 Bt s A— %, o=l
3. AT
1 A™ 3

In (62), after resolving the clause 2 with the mitial unit agenda 1 it only remains to match the
new agenda with clause 3. FFor composition the story is a little longer:

(63) 7: A\B, 2 B\C F [+2 A\C
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(64) 142: A\C~

1. 3+(1+2): C~

: 3 At
I: A\BT

3. a+1: Bt va: A~
2. B\Ct

4. b+2: CHpb: B * b=34+1
341 BT 3, a=3
3 A~ 2

7 Linguistic Examples

Linguistic application cannot be explained in a few lines; for motivation see for example Moorgat
(1988) and Morrill (1992a). Ilustration should be instructive however given even a little familiarity.
We consider linguistic examples starting with pure Lambek fragments. There is the following
derivation of ‘John walks’ as a sentence in L or NL.

(65) 1. John+walks: S~

John: Nt
walks: N\S*

3. a+walks: St a: N= % a=John
John: N™ 2

In the derivation of ‘John likes Bill’ the transitive verb gives rise to an agenda of length two.
Assuming an associative context, parentheses are ommitted from the prosodic terms.

(66) 1. Johntlikes+Bill: S~
2. John: Nt
likes: (N\S)/N*
Likes+a: N\S* v a: N~

3. btlikes+a: ST b: N~ a: N™  *¥p=John, a=Rill
4. Bill Nt

John: N7 Bull: N— 2

Bill: N— 4

The next example illustrates the eflfect for an auxiliary verh treated as a functor over a verb
phrase, which is itself a functor. The auxiliary creates an antecedent literal at line 4 labelled by
a Skolem constant, and this resolves with the subject literal of the embedded verb phrase.

(67) 1. Johntwillywalk: S~
2. John: Nt
will: (N\S)/(N\S)*
willya: N\ST & a: N\S™
btwill+a: ST b: N~ o a: N\S—

3. b+willta: ST b: N I+ @ S™  *, b=John, e=walk
4. 1. Nt

walk: N\S+

c+walk: Sty e N™
John: N~ vk I+ walk: S™
I+ walk: S~
[N~

]

,c=1

A2 B )

For the following minimalexample of object relativisation associalivily is essential. The relative
pronoun is a higher order functor and the positive antecedent literal unfolded from its argument
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corresponds to an “empty category” or “trace” of the extraction. But note that such a literal

arose in the non-extraction example (67) also.

(68) 1. which+Johntlikes: R~
which: R/(S/N)*t
which+a: RY wa: S/N-

2. which+a: RY e+ 1: S~ * a=John+likes
3. I Nt
4.  John: Nt
likes: (N\S)/N*
Likes+h: N\St s b: N~
5. c+likestb: ST e N™ ok b: N-
Johnylikes+1: S— 5, c=John, b=1
John: N™ o . N™ 1
1. N™ 3

7.1 Multimodal Unfolding

For multimodal calculi in general unfolding proceeds in the same way:

(69) a. X(y+ia: Bt wa: A7) X(a+iv: Bt wa: A7)
@ new variable
X(v: B/iAT) X(v: A\;B")
b.  X(y+ik: B7)©)k: AT X(k+iv: B7)(®)k: AT
= : - k new constant
X(y: B/iAT) X(y: A;B7)

7.2 Partially Associative Calculus

Assignment of a coordinator to (S>S)/S characterises a coordinate structure as a non-associative
domain. For example in the following the complementised sentence ‘that it rains and it shines’
is analysed as containing a domain [‘it rains and it shines’] composed of subconstituents ‘it rains’

and ‘and it shines’ (the latter is itself unstructured).

(70) 1. that+(it+rains, and+il+shines): CP~
that: CP/St
2. thai+a: CPt va: S™ *, a=(d+rains, and+it+shines)
3. d+trains: ST
and: (S>S)/St
and+b: S>StT wb: S~

4. (c, and+0): St c: ST b: S~

5.  i+shines: ST
(il+rains, and+il+shines): S~ 4, c=tl+rains, b=ul+shines
w4 rains: S” vk i+ shines: S~ 3
t+shines: S~ 5

7.3 Regular Discontinuity

We have scen earlier that the regular discontinuity calculus is interpreled in a prosodic algebra
(L,+,(.,.), W, ¢) (we shall neglect the issue whereby ¢ is not wanted in any type) for which in
addition to the associativity of + we have s+¢ = e+s = s and the splil-wrap equation (s, s3)W sy =

S1+859+83.



The techniques given here show how prool net theorem-proving in implicational residuation
calculi, and hence parsing in certain categorial logics, can be compiled into a form suitable for
SLD-resolution in linear logic. This indicates a general strategy for checking the correctness of
a proof net by unification in which one term is always ground, but leaves open the problem of
computing unifiers in any particular case.

For the regular discontinuity calculus the task concerns us with the following equations:

(71) a. s1+(s2+83) = (s1+52)+53
b, s+e=¢c4+s5=3s
C. (51,83)”].5‘3 = §1+S52+S53

The unification procedure is to compute, for a given ground term a, all the distinct assignments o
of ground terms to variables in another term o’ such that a = a’{g]. We treat the process in two
stages; (T1b) and (71¢) are considered normalisation rules (with redex on the left and contractum
on the right); associativity as in (7la) could be naturally treated by representing equivalence
classes of associative bracketings as lsts, though we shall not choose to do so.

In the first phase, the ground term « is normalised by transforming redexes to their contrac-
tums. The second stage proceeds by recursion on the structure of o’. There are the cases that o
is a variable, a constant, or has principle operator one of the three prosodic adjunctions. Finally
there are the cases thal o’ is, or can be instantiated to, a redex.”

If o' is a variable v then simply put v = a. If o’ 1s a constant & then if « is k succeed, otherwise
fail. If o is of the form (af, o) then if a is of the form (ai, as) unify a; and of and a2 and af.
If o’ is of the form of TWa¥ then if « is of the form a1 Was unify oy and o} and a» and o%. If o’ is
of the form a}+a% then find representatives a; and as satisfying a = a1+aa (using associativity)
and unify a; and af, and a2 and af.

It remains to consider the cases where o’ has the form of, or can be instantiated to the form of,
a redex (the redexes in a having been already removed in the first phase). If a’ can be instantiated
to B+¢ unify a and 8. If o’ can be instantiated to e+ unify o and F. If o’ can be instantiated to
(af, a5)Wah then find representatives a1, a2 and ag satisfying a = aj+as+as and unify a; with
al, as with of, and ag with of.

As seen earlier a simple instance of discontinuity is obtained by assigning the compound particle
verb prosodic form {rang, up) to a wrapping transitive verb type (N\S)|N. At line 3 of the following
derivation Mary+rang+John+up is unified with b+((rang, up)Wa) by the unifier {b = Mary,a =
John}.

(72) 1. Mary+rang+Johntup: S~
2. Mary: Nt
(rang, up): (N\S)IN*
((rang, up) Wa): N\S* s a: N~

3. b+((rang, up) Wa): S¥ ok b: N" v a: N=  * b=Mary, a=John
4. John: N*

Mary: N7k John: N~ 2

John: N™ 4

At line 4 of the following derivalion John+likes+everyone is unified with ¢V everyone by ¢ =
(John+likes,€), and (John+likes, €)W I is subsequently unified with b+likes+a by {b = John,a =
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1. talked+to+ Mary+ about+ herselfl: VP~
talked: (VP/PP)/PPT
talked+a: VP /PPt da: PP~

2. talked+ a+b: VP /PP v b PP~ 4 a: PP~
lo: PF’/N+
3. todc: PP s N—

4. AMary: Nt
about: PP/NT

5. about+d: PP i d: N—
hersclf: (PP INY|(((VP/PP)/N)>(VP[N))+
(eWherself): (VP/PP)/N)>(VPIN)* W e: PPIN~
(/. (e Wherself)): VPNt J f: (VP/PP)/N~ due: PPIN™
((f, (eWherself)) Wg): VP T g: N™ o f: (VP/PP)/N~ s e: PPN~
((f, (eWherself)) Wg): VPT M g: N~ W f1: VP/PP N~ " e: PPN~
((f, (eWherself)) Wg): VP sl g: N™ W f4-142: VPN J e: PPIN—
6. ((f, (eWherself)) 1¥g): VP W g: N= ¥R f4 14 2: VPR N— K (elW3): PP~
¥, [=talked+ 10, g=Alary, e=(aboui, €)
7. 2 Nt
8. 2. PP+
9. 1: N+t

Mary: N7 talked+to+1+2: VP~ vEK ((about, €) W3): PP—
talked+-to+ 1+ 2: VP~ vl ((about, ¢) W3): PP~

2: PP~ skto+1: PP~k ((about, ) 1W3): PP~

tod1: PP~ vt ((about, ) 1V3): PP~

I: N7 o ((about, €) 1V3): PP~

((about. €) W3): PP~

8 N~

Figure 1: Non-c-commanding object-antecedent reflexivisation

(73) 1. Johntlikest+everyone: S™
2. John: Nt
likes: (N\S)/Nt
likes+a: N\ST o a: N
3. b+likesta: STV b: N™ wa: N™
everyone: (STN)|S*
(cWeveryone): ST e S|N-

4, (cWeveryone): Stk (cWI1): 8= *, c=(Johntlikes, )
5. I: Nt
(Johnt-likes, ) W1 S~ 3, b=John, a=1
John: NTw 1. N™ 2
1. N~ 5

’

1O W N A
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a=lo+ 1, b=2
c=1

d=3

Our {inal example, in Figure 1, shows non-c-commanding object-antecedent reflexivisation,

7.4 Head-Oriented Discontinuity

The same methods are applicable Lo head-oriented discontinuity, for which we also require bracket

unfolding:

(74) [a]7!: At [a]: A*
o []4+ o []_144*'

(75) [a]™ ! A~ [ov]: AT
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Recall the appropriate label equations:

(76) (a+:B)+ny = a++(B+n7)
(o0 +18)+ny = (a+nB)+17
(77) [val+aB = [vB+1a]

Then the earlier verb-infixing example i1s derived as {ollows by clausal resolution:

(78) 1.  boeken+, [ kant lezen]): VP~
2. boeken: NT
lezen: [v]~1(N\,IVi)*
'[vlc:cn]: N\, IVi*

3. a+y[olezen]: IVit a: N™
kan: IVi]VP+
4. btpkan: VPt b TVI~ * b = boekend, [y lezen ]
boeken+,{ lezen ]: Vi~ 3, a = boeken

boeken: N—

The only non-trivial step is that resolving the unit goal clause with the head of clause 4, for which
the unification is explicated by the following:

(79) boeken+, [ kan+lezen] = boekent, ([ ,lezen |+, kan) =
(boekent, [, lezen])+p kan
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Appendix: Implementation of Discontinuity Calculi

Program Listing

/*

Operators for lexical assignments Alpha - Phi := A
and assignments Alpha - Phi: A

*/

- op(500, xfx, :).

i~ op(500, xfx, :=).

:— op(450, xfx, -).

/*

Operators cver, under, to, from, wrap and infix

*/

:- op(400, xfx, /).
:- op(400, xfx, \).

;- op(400, xfx, wur).
:- op(400, xfx, in).

:— op(400, xfx, >). % also right-headed prosodic adjunction
:— op(400, xfx, <). % also left-headed prosodic adjunction

op(400, xfx, h). % head adjunction
% Headed operators

:— op(400, xfx, ol). % over left
:— op(400, xfx, ul). % under left

:- op(400, xfx, or). % over right
-~ op(400, xfx, ur). % under right

:- op(400, xfx, hw). % head wrap
:= op(400, xfx, hi). % head infix
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% Bracket operators

i~ op(300, fx, v).
:= op(300, fx, a).

/*

Prosodic surface adjunctions + and wrapping adjuction ’W’; splitting adjunction will be represented [.,

*/

:=- op(300, yfx, +).
;= op(300, xfx, ’W’).

% Lexical assignments

about - about
:= pp/n.
and - ([imd, X, [Imd, Y, fand, Y, X11]
:= (s>s)/s.
believes—- believe
:= (n\s)/s.
bill - b
= n.
book - book
:= cn.
for - [Imd, X, X]
:= pp/n.
[gives, the+cold+shoulder]
- shun

:= (n\s)wr n.
[(either, or]
- [Imd, X, [1md, Y, [or, X, Y111
1= (s/s)wr s.
everyone- [lmd, X, [all, Y, [app, X, Y11]
:= (s Wr n)in s.
herself - [1md, U, [1md,X,{1lmd,Y,[app,[app,X,Y],[app, U, YI111]
= (X 9r n)in((((n\s)/X)/n)>((n\s)wr n))

:= X=n; X=pp. % obj. antec. n and pp pied-piping

himself - [imd,X,[1lmd,Y,[app,lapp,X,¥Y]1,Y]]]

:= ((n\s)wr n)in(n\s). % Sbj. antec.
john -3

:= n.
likes ~ 1like

:= (n\s)/n.
man - man

:= cn.
mary - m

=n.

[neither; nor)
- [Imd, X, [1md, Y, [lmd, Z, [not, [or, [app, X, Z1, [app, Y, 2113111
:= ((n\s)/(n\s))ur (n\s).

of - of
:= (en\cn)/n.
or - [md, X, [(lmd, Y, [Imd, 2, [or, [app, Z, Y], [app, Z, X1111]
:= (n\((s wr n)in s))/n. % "wide~scope ’or’" assignment
picture - picture
:= ¢n.
[rings, up]
- phone
:= (n\s)wr n.
seeks - seek
= (n\s)/(((n\s)/n)\(n\s)).
sings - sing
:= n\s.
shows - show
:= ((n\s)/n)/n.

some - (imd,z,(1md,X,[xst,Y,[and, [app,Z,Y],[app,X,¥]111]1]

J



someone
talks

that

the
thinks
to
votes
walks

whom

whose

woman

boeken
gooien
gooien
het
jan
kan
kan
kunnen
leest
lezen
Reg
willen
wil
zal

zal

% reset

reset :-

% clear

:= ((s wr n)in s)/cn.

- [1md,X,[xst,Y,[app,X,Y]1]1]

:= (s wr n)in s.

- talk

:= ((n\s)/pp)/pp-

- [1md, X, (Imd, Y, [1lmd, Z, [app, [app, and, [app, Y, Z]],
Lapp, X, 211111

:= (cn\cen)/(s/n). % non-pied-piping relative pronoun

- [lmd, X, liota, Y, [app, X, Y]]]

:= n/cn.

- think

:= (n\s)/s.

- to

:= pp/n.

- vote

:= (n\s)/pp.

- walk

:= n\s.

- [Imd, X, [lmd, Y, [Imd, Z, [1lmd, W, [and, [app, Z, W],
[app, Y,[app, X, W111111] % pied-piping assignment

:= (n wr n) in ({cn\cn)/(s/n)).

- [Imd, U, [Imd, X, [lmd, Y, [1lmd, Z, [1md, W, [and, [app, Z, W],
[app, Y, [app, X, [iota, Vv, [and, [app, U, V],
[app, poss, W, V1]1111]111]1

:= ((n wr n) in ((cn\cn)/(s/n)))/cn. % pied-piping assignment

- woman

:= cn.

- books

= n.

- throw

:= a(pp ur (n ur ivi)).

- throw

:= pp ur a(n ur ivi).

- it

i=n,

|

i=n.

- can

:= jvi hi (n ur s).

- [1md, X, Capp, X, can]]

:= q ol (s hw (ivi hi(n ur s))).
- can

:= ivi hi ivi.

- [Imd, X, [app, X, read]ll

:=q ol (s hw a(n ur (n ur s))).
- read

:=a (n ur ivi).

- away

:= pp.

- want

:= ivi hi idvi.

- want

:= divi hi (n ur s).

- shall

:= ivi hi (n ur s).

- [1md, X, {app, X, shalll]

q ol (s hw (ivi hi(n ur s))).

resets the gensymb record to 1

clear,
assert(rec(1)), !.

removes any gensymb records
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clear :-
retract(rec(.)),
clear, !.

clear := !.
% gensymb(-N1) generates a new symbol (integer) N1

gensymb(N1) :-
retract(rec(N)),
N1 is N+1,
assert(rec(N1)), ¢.

/*
lex(+PformIn, -Xs, -PformOut) means that Xs is a list of lexical clauses obtained by lexical lookup
on PformIn. PformOut is the result of tokenising PformIn according to the tokens used in Xs.

*/

lex(PformIn, Xs, PformQut) :-
copy(PformIn, K, PformOuti, N), !,
lex1(PformOutl, K, N, Xs, PformOut),

lex(Pform, [], Pform).

/*
copy(+Pform, ?K, -Pforml, ?N) copies prosodic form Pform to Pformi, replacing the first word
(atom) unifiable with K by N; not resatisfiable; fails if there is no such word

*/

copy(AlphatBeta, K, Alphal+Beta, N) :—
copy(Alpha, K, Alphal, N), !.

copy(Alpha+Beta, K, Alpha+Betai, N) :-
copy(Beta, K, Betal, N), !.

copy(Alpha’W’Beta, K, Alphal’W’Beta, N) :-
copy(Alpha, K, Alphal, N), !.

copy(Alpha’W’Beta, K, Alpha’W’Betal, N) :-
copy(Beta, K, Betal, N), !.

copy([Alpha,Beta], K, [Alphal,Beta], B) :-
copy(Alpha, K, Alphal, N), !'.

éopy([Alpha,Betal, K, [Alpha,Betai], N) :-
copy(Beta, K, Betal, N), !.

copy(K, K, N, N) :-
atom(K), !.

copy{(Alpha>Beta, K, Alphal>Beta, K) :-
copy(Alpha, K, Alphal, N), !.

copy(Alpha>Beta, K, Alpha>Betal, ¥) :-
copy(Beta, K, Betal, N), !.

copy(Alpha<Beta, K, Alphal<Beta, ) :-
copy(Alpha, K, Alphai, K), !.

copy(Alpha<Beta, K, Alpha<Betal, N)
copy(Beta, K, Betal, N), !.

copy(Alpha h Beta, K, Alphai h Beta, N) :-
copy(Alpha, K, Alphai, N), !.

copy(Alpha h Beta, K, Alpha h Betal, N) :-
copy(Beta, K, Betal, N), !.



copy(b(Alpha), K, b(Alphal), N) :-
copy(Alpha, K, Alphal, N), !.

copy(u(Alpha), K, u(Alphal), N) :-
copy(Alpha, K, Alphal, N), !.

/*

lex1(+PformOutl, +K, +N, -XXs, ~PformOut) looks up lexical assignments containing an occurrence of

the word K, and checks if the other words in the lexical entry also occur in PformOutl; lexical lookup

is then continued; XXs is the list of tokenised lexical clauses resulting obtained from lexical assignments;
PformOut is the result of tokenising PformOutl correspondingly, with the first occurrence of word K

having been replaced by the result of tokenising N.

*/

lex1(PformOutl, K, N, [cls([a(AlphaT-Phi:A)])IXs], PformQut) :-
Alpha-Phi := A,
copy(Alpha, K, Alphal, N),
gensymb(N) ,
do_all(Alphal, PformOutl, AlphaT, PformOutT),
lex(PformQutT, Xs, PformQut) .

/*
do_all(+Alphal, +PformDutl, -AlphaT, -PformOutT) checks that each word occurrence in the prosodic form
Alphal has a corresponding occurrence in PformOutl, tokenising in the process to AlphaT and PformOutT

*/

do_all(Alphal, PformOutl, AlphaT, PformOutT) :-
copy(Alphail, K, Alpha2, N),
copy(PformOutl, K, PformOut2, N),
gensymb(N) ,
do_all(Alpha2, PformOut2, AlphaT, PformQutT), !.

do_all(Alpha, Pform, Alpha, Pform) :- !.

/*
unfold(+InCls, -OutClss) makes one unfolding step of the (pseudo-)
clause InCls, to give the list of output (pseudo-) clauses OutClss
*/

unfold(cls([a(Gamma-Chi:B/A) |L]),
[c1s([a(Gamma+Alpha-[app,Chi,Phi] :B), s(Alpha-Phi:A)|L])]).

unfold(cls([a(Gamma-Chi:A\B)|L]),
[c1s([a(Alpha+Gamma-[app,Chi,Phi]:B), s(Alpha-Phi:a)[L])]).

unfold(cls(L), [cls(Ln), cls([a(K-X:A)1)]) :-
append(L1, [s(Gamma-([1lmd,X,Psi]:B/A)|L2], L),
append(L1, [s(Gamma+K-Psi:B)|L2], Ln),
gensymb(K) .

unfold(cls(L), [cls(Ln), cls([a(K-X:4)1)]) :-
append(L1, [s(Gamma-[1lmd,X,Psi]:A\B)|[L2], L),
append(L1, [s(K+Gamma-Psi:B)|L2], Ln),
gensymb(K) .

unfold(cls([a(Gamma~Chi:B<A)|L]),

[cls([a([Gamma, Alphal-[app,Chi,Phil:B), s(Alpha-Phi:4)[L))]).
unfold(cls([a(Gamma-Chi:A>B)|L]),

[c1s([a([Alpha, Gammal-[app,Chi,Phi]:B), s(Alpha-Phi:A)|L})]).

unfold(cls(L), [cls(Ln), cls([a(K-X:A)1)]}) :-
append(L1, [s(Gamma-[1md,X,Psi]:B<A)IL2]}, L),
append(L1, [s([Gamma, K]-Psi:B)|L2], Ln),
gensymb(K) .

unfold{(cls(L), [cls(Ln), cls(la(K-X:A)1)]) :-
append (L1, [s(Gamma-[1md,X,Psi]:A>B)IL2], L),
append(L1, [s([K, Gammal-Psi:B)|L2], Ln),
gensymb(K) .



26

unfold(cls({a(Gamma-Chi:B wr A)|L]),
[cls([a(Gamma’W’Alpha-[app,Chi,Phi]:B), s(Alpha-Phi:A)[|L])]).

unfold(cls([a(Gamma-Chi:A in B)|L]),
[cls([a(Alpha’W’Gamma~-[app,Chi,Phi] :B), s(Alpha-Phi:A)|L])]).

unfold(cls(L), [cls(Ln), cls([a(X-X:M)])]) :-
append(L1, [s(Gamma-[1md,X,Psi]:B wr A)|L2], L),
append{(L1, [s(Gamma’W’K-Psi:B)[L2], Ln),
gensymb(K) .

unfold(cls(L), [cls(Ln), cls(la(K-X:4)1)]) :-
append(L1, [s(Gamma-[1md,X,Psil:A in B)[L2], L),
append(L1, {s(K’W’Gamma-Psi:B)|[L2]}, Ln),
gensymb(K) .

unfold(cls([a(Gamma-Chi:B or A)[L]),
[cls([a(Gamma>Alpha-[app,Chi,Phi]:B), s(Alpha-Phi:A)|L])]).

unfold(cls([a(Gamma-Chi:A ur B)|L]),
[cls([a(Alpha>Gamma~[app,Chi,Phi]l:B), s(Alpha-Phi:A)|L})]).

unfold(cls(L), [cls(Ln), cls(la(K-X:A)])]) :-
append(L1, [s(Gamma-[1md,X,Psi]:B or A)|L2], L),
append(L1, [s(Gamma>K-Psi:B)|L2], Ln),
gensymb(K) .

unfold(cls(L), [cls(Ln), cls([a(K-X:A)])]) :-
append (L1, [s(Gamma-[1md,X,Psi]:A ur B)[L2], L),
append{(L1, [s(K>Gamma-Psi:B){L2], Ln),
gensymb(K) .

unfold(cls([a(Gamma-Chi:B ol A)|L]),
[c1s([a(Gamma<Alpha-[{app,Chi,Phi]:B), s(Alpha-Phi:A)IL])]).

unfold(cls([a(Gamma-Chi:A ul B)|L]),
[c1s([a(Alpha<Gamma-{app,Chi,Phi]:B), s(Alpha-Phi:A)IL])]),

unfold(cls(L), [cls(Ln), cls([a(K-X:A)])]) :-
append (L1, [s(Gamma-[1md,X,Psi]:B ol A)|L2], L),
append (L1, [s(Gamma<K-Psi:B)|L2}, Ln),
gensymb (K) .

unfold(cls(L), [cls(Ln), cls([a(k-X:A)1)]) :-
append(L1, [s(Gamma-[1lmd,X,Psi]:A ul B)|L2], L),
append (L1, [s(K<Gamma-Psi:B)|[L2], Ln),
gensymb(K) .

unfold(cls([a(Gamma~Chi:B hw A)|L}),

[cls{{a(Gamma h Alphka-[app,Chi,Phi}:B), s{Alpha-Phi:A){L]}]).
unfold(cls([a(Gamma-Chi:A hi B)I|L]),

[cls([a(Alpha h Gamma-[app,Chi,Phi]:B), s(Alpha-Phi:A)|IL])]).

unfold(cls(L), [cls(Ln), cls([a(XK-X:A)1)]1) :-
append(L1, [s(Gamma-[1md,X,Psi]:B hw A)|L2], L),
append(L1, [s(Gamma h K-Psi:B)|L2], Ln),
gensymb(K) .

unfold(cls(L), [cls(Ln), cls([a(K-X:A)])]) :-
append(L1, [s(Gamma-[1md,X,Psi]:A hi B)|L2], L),
append(L1, [s(K h Gamma-Psi:B)|L2], Ln),
gensymb (K) .

unfold(cls(L), [cls(Ln)]) :-
append(L1, [a(Alpha-Phi: a A)[L2], L),
append(L1, [a(b(Alpha)-Phi: A)|L2], Ln).
unfold{(cls(L), [cls(Ln)]) :-
append(L1, [s(Alpha-Phi: a A)[L2], L),
append(L1, {s(b(Alpha)-Phi: A)[|L2], Ln).
unfold(cls(L), [cls(Ln)]) :-
append(L1, [a(Alpha-Phi: v A)[|L2], L),
append(L1, (a(u(Alpha)-Phi: A)[L2], Ln).
unfold(cls(L), [cls(Ln)]) :-
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append(L1, [s(Alpha-Phi: v A)|L2], L),
append(L1, [s(u(Alpha)-Phi: A)|L2], Ln).

/*

unf(+X, -U) means that U is the list of clauses resulting from
completely unfolding the pseudo-clause X

*/

unf(X, U) :-
unfold(X, XL), !,
unf_1(XL, U).

unf (X, [X]).

/*

unf_1(Xs, U) means that U is the list of clauses resulting from
completely unfolding the list of pseudo-clauses Xs

*/

unf_1C[1, [1)

unf_1([X[Xs], YsZs) :-
unf(X, Ys),
unf_1(Xs, Zs),
append(Ys, Zs, YsZs).

/*
match(+SClss, +AClss) means that the succedent clauses SClss can
be matched off against the antecedent clauses AClss

*/
match([1, [1).

match([s(Alpha-Phi:A)|Gs], L) :-
append(L1, [cls([a(Alphal-Phi:A)|Ds])(L2], L),
eql(Alpha, Alphal),
append(Ds, Gs, DsGs),
append(L1, L2, LiL2),
match(DsGs, LiL2).

/*
eql(Alpha, Alphal) means that the ground prosodic term Alpha is unifiable with the prosodic
term Alphal, which on exit is itself grounded accordingly

*/

eql(Alpha, Alphal) :-
pnorm(Alpha, Alphal),
eq(AlphaN, Alphal).

/* .
pnorm(+Alpha, -Gamma) means that Gamma is the result of normalising the ground prosodic term Alpha

*/
pnorm(Alpha, Gamma) :-
pcontract(Alpha, Beta), !,
_pnorm(Beta, Gamma) .
pnorm{Alpha, Alpha).
/*
pcontract(Alpha, Gamma) means that Gamma is the result of performing
one contraction step on the ground prosodic term Alpha
*/

pcontract({Alpha, Gammal] ’N’Beta, Alpha+Beta+Gamma).

pcontract (Alpha+0, Alpha).
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pcontract (O+Alpha, Alpha).

pcontract (Alpha+Beta, Alphal+Beta) :-
pcontract(Alpha, Alphal).

pcontract (Alpha+Beta, Alpha+BetalN) :-
pcontract(Beta, BetaN).

pcontract(Alpha’W’Beta, AlphaN’W’Beta) :-
pcontract(Alpha, Alphal).

pcontract(Alpha’W’Beta, Alpha’W’Betal) :-
pcontract(Beta, Betall).

pcontract{[Alpha, Beta], [AlphaN, Beta]) :-
pcontract(Alpha, AlphaN).

pcontract([Alpha, Betal, [Alpha, BetaN]) :—
pcontract(Beta, Betal).

pcontract(Alpha>0, Alpha).

pcontract(0>Alpha, Alpha).

pcontract (Alpha<0, Alpha).

pcontract(0<Alpha, Alpha).

pcontract ((Alpha>Beta) h Gamma, Alpha>(Beta h Gamma)).
pcontract((Alpha<Beta) h Gamma, (Alpha h Gamma)<Beta).
pcontract(b(Alpha) h Beta, b(Beta<Alpha))
pcontract(b(u(Alpha)), Alpha).

pcontract(u(b(Alpha)), Alpha).

pcontract (Alpha>Beta, AlphaN>Beta) ;-
pcontract(Alpha, Alphal).

pcontract(Alpha>Beta, Alpha>BetaN) :-
pcontract(Beta, Betal).

pcontract (Alpha<Beta, AlphaN<Beta) :-
pcontract(Alpha, Alphall).

pcontract(Alpha<Beta, Alpha<BetaN) :-
pcontract(Beta, BetalN).

pcontract(Alpha h Beta, AlphaN h Beta) :-
pcontract(Alpha, Alphal).

pcontract(Alpha h Beta, Alpha h BetaN) :-
pcontract (Beta, BetaN).

pcontract(b(Alpha), b(AlphaN)) :-
pcontract(Alpha, AlphaN)..

pcontract(u(Alpha), u(AlphaN)) :-
pcontract (Alpha, AlphaN).

/%
eq(Alpha, Alphal) means that the normal form ground prosodic term Alpha is unifiable with the
prosodic term Alphal, which on exit is itself grounded accordingly

x/



eq(Alpha, V) :-
var(V), ', V = Alpha.

eq(Alpha, X) :-
integer(X), !, Alpha = X.

eq([Alpha, Betal, [Gamma, Deltal) :-
eq(Alpha, Gamma),
eq(Beta, Delta).

eq(Alpha’W’Beta, Gamma’W’Delta) :-
eq(Alpha, Gamma),
eq(Beta, Delta).

eq(Delta, [Alpha,Betal] 'W’Gamma) :-—
eq(Delta,Alphal+Gammal+Betal),
eq(Alphal, Alpha),
eq(Betal, Beta),
eq(Gammal, Gamma) .

eq(Alpha, Beta+0) :-
eq(Alpha, Beta).

eq(Alpha, O+Beta) :-
eq(Alpha, Beta).

eq(AlphaBeta, Gamma+Delta) :-
eq2(AlphaBeta, Alpha, Beta),
eq(Alpha, Gamma),
eq(Beta, Delta).

eq(Alpha>Beta, Gamma>Delta) :-
eq(Alpha, Gamma),
eq(Beta, Delta).

eq(Alpha<Beta, Gamma<Delta) :-
eq(Alpha, Gamma),
eq(Beta, Delta).

eq(Alpha h Beta, Gamma h Delta) :-
eq(Alpha, Gamma),
eq(Beta, Delta).

eq(b(Alpha), b(Aiphai’) :~
eq(Alpha, Alphal).

eq(u(Alpha), u(Alphal)) :-
eq(Alpha, Alphal).

eq(Alpha, Beta>0) :-
eq(Alpha, Beta).

eq(Alpha, O>Beta) :-—
eq(Alpha, Beta).

eq(Alpha, Beta<0) :-
eq(Alpha, Beta).

eq(Alpha, O<Beta) :-
eq(Alpha, Beta).

eq(Alphal>Delta, (Alpha>Beta)h Gamma) :-
eq(Delta, Betal h Gammal),
eq(Alphal, Alpha),
eq(Betal, Beta),
eq(Gammal, Gamma) .

29
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eq(Delta<Betal, (Alpha<Beta)h Gamma) :-
eq(Delta, Alphal h Gammal),
eq(Alphal, Alpha),
eq(Betal, Beta),
eq(Gammal, Gamma).

eq(Delta, b(Alpha) h Beta) :-
eq(Delta, b(Betal<Alphal)),
eq(Alphal, Alpha),
eq(Betal, Beta).

eq(Delta, b(u(Alpha))) :-
eq(Delta, Alpha).
eq(Delta, u(b(Alpha))) :-
eq(Delta, Alpha).

/*
eq2(+AlphaBeta, -Alpha, -Beta) means that (ground, normal form) prosodic term AlphaBeta is equal to
the result of associative surface adjunction of Alpha and Beta

*/
eq2(Alpha+Beta, Alpha, Beta).

eq2(Alphat+Beta, Alphal, Alpha2+Beta) :-
eq2(Alpha, Alphal, Alpha2).

eq2(Alpha+Beta, Alpha+Betal, Beta2) :-
eq2(Beta, Betal, Beta2).

/*
eval (+Phi, -NF) means that NF is the result of normalising the semantic form Phi

*/

eval(Phi, NF) :-
numbervars(Phi, 0, _),
evall(Phi, NF).

/*
evall(+Phi, -NF) means that NF is the result of normalising the frozen semantic form Phi

*/

evall (Phi, NF) :-
contract(Phi, Phil), !,
evall(Phil, NF).

evali(Phi, Phi).

/*
contract(+Phi, -Phil) means that Phil is the result of applying one
contraction step to the frozen semantic form Phi

*/

contract ([app, [1lmd, X, Phi], Psil], Chi) :-
subst(Psi, X, Phi, Chi).

contract([HIT], [HIT1]) :-
contractlist(T, T1).

contractlist([Phi|Phis], [Phi1l|Phis]) :-
contract (Phi, Phil).

contractlist ([PhilPhis], [Phi|Phis1]) :-
contractlist(Phis, Phisl).

/*

subst(+Phi, +X, +Psi, ~NPsi) means that NPsi is the result of replacing



by Phi all Xs in the frozen semantic form Psi

*/

subst(Phi, X, X, Phi),

subst(_, _, C, C) :-
atom(C) .
subst(_, _, X, X) :-

X = P$VAR’ ().

subst(Phi, X, [HIT], [H1]T1]) :-

subst(Phi, X, H, H1),

subst(Phi, X, T, T1).
% Test prosodic forms
% Simple sentences
pf(i, john+walks, s).
pf(2, john+likes+mary, s).
pf(3, john+seeks+mary, s).
pf(4, mary+shows+thetwoman+the+book, s).
% Discontinuous functors
pf(5, john+rings+mary+up, s).
pf(6, john+gives+mary+the+cold+shoulder, s).
pf(7, either+john+walks+or+mary+sings, s).
pf(8, john+neither+walks+nor+sings, s).
% Relativisation
pf(9, the+man+that+mary+likes+walks, s).
pf(10, the+man+that+john+thinks+mary+likes+walks, s).
pf(11, the+man+that+john+thinks+bill+believes+mary+likes+walks, s).

% Coordinate Structure Constraint

pf(12, [john+walks, and+mary+sings], s).
pf(13, that+[john+walks, and+mary+likes], cn\cn).

% Partee/Rooth "wide-scope ’or’*"

pf(14, jchn+thinks+bill+or+mary+walks, s).
% Subject-antecedent reflexivisation
pf(15, john+likes+himself, s).

pt(16, johntvotes+for+himself, s).

pt(17, john+shows+himself+the+book, s)

% Object antecedent reflexivisation

pf(18, john+shows+mary+herself, s).
pf(19, john+shows+herself+mary, s).

% Pied-Piping object antecedent reflexivisation

pf(20, johntshows+mary+the+picture+tof+herself, s).

% Non-c-command pied-piping object antecedent reflexivisation
pf(21, john+talks+to+mary+about+herself, s).

% Quantification
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pf(22, someone+walks, s).

pf(23, some+man+walks, s).

pf(24, everyonet+likes+someone, s).

pf(25, john+seeks+someone, s).

pf(26, everyone+seeks+someone, s).

pf(27, bill+thinks+someone+walks, s).

pf(28, bill+thinks+some+man+shows+everyone+john, s).
pf(29, thetbook+that+john+shows+teveryone, n).

% Pied-Piping

pf(30, the+man+whomtjohn+likes+the+picture+of, n).
pf(31, the+man+thet+picture+of+whom+john+likes, n).
pf(32, the+man+whose+book+john+likes+the+picture+of, n).
pf(33, thetman+thetpicturetof+vhose+book+john+likes, n).

pf(d(1), boeken>b(kan<lezen), n ur s).

pf(d(2), boeken>b(wil<(kunnen<lezen)), n ur s).
p£(d(3), het>(weg>b(zal<gooien)), n ur s).
pf(d(4), het>b(zal<(weg>gooien)), n ur s).
pf(d(5), het>(weg>b(zal<(willen<gooien))), n ur s).
pf(d(6), het>b(zal<(willen<(weg>gooien))), n ur s).
pf(d(7), het>b(weg>(willen<gooien)), n ur s).
pf(d(8), het>(ueg>b(willen<gooien)), n ur s).
p£(d(9), het>(weg>(willen<b(gooien))), n ur s).
pf(d(10), leest<(jan>(boeken>b(0)))}, q).

pf(d(11), kan<(jan>(boeken>b{(lezen))), q).
pf(d(12), zal<(jan>(boeken>b(kunnen<lezen))), q).
pf(d(13), zal<(jan>(het>b(willen<(weg>gooien)))), q).

% test(?N) tests parsing from prosodic form N

test(N) :-
pf(N, Alpha, A),
reset,
nl, nl, write(N), write(’. *), write(Alpha: A),
lex(Alpha, M, TokenAlpha),
unf_1([{cls([s(TokenAlpha-Phi:A)])IM], [cls(0)|01]),

match(0, 01),
eval(Phi, NF), nl, nl, write(NF), fail.

Log

?7- test(_).

1. john+walks:s

[app,walk,j]

2. john+likes+mary:s

[app, [app,like,m], j]

3. john+seeks+mary:s

[app, [app,seek, [1md,$VAR(1), [1md,$VAR(O) ,[app, [app,$VAR(1),m],$VAR(0)]1]1]], j]
4. mary+shows+thetwoman+the+book:s

[app,[app, [app,show,[iota,$VAR(2), [app,woman,$VAR(2)]]], [iota,$VAR(O), [app,book ,$VAR(O)
111 ,m]

S§. john+rings+mary+up:s



[app, [app,phone,ml, j]

6. john+gives+mary+the+cold+shoulder:s

[app, [app,shun,m], j]

7. either+john+walks+or+mary+sings:s

[or, [app,walk,j], [app,sing,m]]

8. john+neither+walks+nor+sings:s

[not, [or, [app,walk,jl, [app,sing, j11]

9. the+man+that+mary+likes+walks:s
[app,walk,[iota,$VAR(4), [app, [app,and, [app,man,$VAR(4)]1], [app, [app,like,$VAR(4)],m]11]]
10. the+man+that+john+thinks+mary+likes+walks:s

[app,walk,[iota,$VAR(4),[app, [app,and, [app,man,$VAR(4)]], [app, [app,think, [app, [app,like,$VA
R(4)1,m11,3]11]

11. the+man+that+john+thinks+bill+believes+mary+likes+walks:s

[app,walk,[iota,$VAR(4), [app, [app,and, [app,man,$VAR(4)]], [app, [app, think, [app, [app,believe,[a
pp, lapp,like,$VAR(4)],m]],b]1],311]1]

12. [johnt+walks,and+mary+sings]:s

[and, [app,walk, j], [app,sing,m]]

13. that+[john+walks,and+mary+likes] :cn\cn

14. john+thinks+bill+or+mary+walks:s

[app, [app,think, [or, [app,walk,b],[app,walk,m]]1], ]

[or, [app, [app, think, [app,walk,bl], j], [app, [app,think, [app,walk,m]], j1]
15. john+likes+himself:s

[app, [app,like,jl, ]l

16. john+votes+forthimself:s

[app, [app,vote,jl,j]

17. john+shows+himself+the+book:s

[app, [app, [app,show, j], [iota,$VAR(1), [app,book,$VAR(1)]]1], ]

18. john+shows+marytherself:s

[app, [app, [app,show,m] ,m], j]

19. john+showstherself+mary:s

20. john+shows+mary+the+picturetof+herself:s

[app, [app,[app,show,m], [iota,$VAR(4), [app, [app, [app,of,m],picture] ,$VAR(4)]]], ]
21. john+talks+to+marytabout+herself:s

[app, (app,[app,talk, [app,to,m]], [app,about,ml],j]

22. someone+wvalks:s
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[xst,$VAR(1) , [app,walk,$VAR(1)]]

23. some+man+walks:s

[xst,$VAR(1),[and, [app,man,$VAR(1)], [app,walk,$VAR(1)]]]

24. everyonet+likes+someone:s

[all,$VAR(4), [xst ,$VAR(2), [app, [app,like,$VAR(2)],$VAR(4)]]]
[xst,$VAR(4),[all,$VAR(2), [app, [app,like,$VAR(4)],$VAR(2)]]]
25. john+seeks+someone:s

[app, (app,seek, [1md,$VAR(2), [Imd,$VAR(O) , [xst ,$VAR(3) , [app, [app, $VAR(2) ,$VAR(3)],$VAR
(0)11111,3]

[xst,$VAR(3),[app, [app,seek, [1md,$VAR(2),[1md,$VAR(O) , [app, [app, $VAR(2) ,$VAR(3)],$VAR
(0)1111,31]

26. everyone+seeks+someone:s

[al1,$VAR(6),[app, [app,seek, [Imd ,$VAR(3) ,[1md,$VAR(1) , [xst,$VAR(4), [app, [app,$VAR(3),$V
AR(4)],$VAR(1)1]]11],$VAR(6)]]

[al1,$VAR(6), [xst,$VAR(4) , [app, [app,seek,[1md,$VAR(3), [1md,$VAR(1), [app, [app,$VAR(3) ,$V
AR(4)],$VAR(1)]11]11,$VAR(6)]1]]

[xst,$VAR(6) ,[all,$VAR(4), [app, [app,seek,[1md,$VAR(3), [1md,$VAR(1), [app, [app,$VAR(3),$V
AR(6)],$VAR(1)111],$VAR(4)]]]

27. bill+thinks+someone+walks:s

[app, [app,think, [xst,$VAR(1), [app,walk,$VAR(1)1]],b]
[xst,$VAR(1),[app, [app, think, [app,walk,$VAR(1)]],b]]
28. bill+thinks+some+mant+shows+everyone+john:s

[app, [app,think, [xst,$VAR(4) , [and, [app,man,$VAR(4)], [all,$VAR(2), [app, [app, [app,show,$VAR
(2)1,3],$VvAR(4)11111,%]

[app, [app,think, [a11,$VAR(S), [xst,$VAR(2), [and, [app,man,$VAR(2)], [app, [app, [app,show,$VAR
(5)1,31,$VAR(2)1111],b]

[xst,$VAR(4),[and, [app,man,$VAR(4)], [app, [app,think,[all,$VAR(2), [app, [app, [app,show,$VAR
(2)1,31,$vAR(4)11],0111

[xst,$VAR(4),[and, [app,man,$VAR(4)], [all,$VAR(2), [app, [app,think, [app, [app, [app,show,$VAR
(2)1,31,$vAR(4)11,b11]1]

[all,$VAR(5), [app, [app,think, [xst,$VAR(2), [and, [app,man,$VAR(2)], [app, (app, [app,show,$VAR
(5)1,31,$vAR(2)1171,b]1]

[all,$VAR(5), [xst,$VAR(2), [and, [app,man,$VAR(2)], [app, [app,think, [app, [app, [app,show,$VAR
(5)1,31,8VAR(2)1],01113

29. thetbook+that+john+shows+everyone:n

[iota,$VAR(7), [app, [app,and, [app,book,$VAR(7)]1], [all,$VAR(2),[app, [app, [app,show,$VAR(2)]
,$VAR(7)],3111]

30. thetman+whom+john+likes+thetpicturetof:n

[iota,$VAR(8), [and, [app,man,$VAR(8)], [app, [app,like,[iota,$VAR(1),[app, [app,[app,of,$VAR(8
)1,picturel ,$VAR(1)11],311]



31. thetman+the+picturetof+vhom+john+likes:n

[iota,$VAR(8),[and, [app,man,$VAR(8)], [app, [app,like,[iota,$VAR(2), [app, [app, [app,of,3VAR(8
)1,picturel] ,$VAR(2)]1],31]]

32. the+man+vwhose+book+johntlikes+the+picture+of:n

[iota,$VAR(105,[and,[app,man,$VAR(10)],[app,[app,like,[iota,SVAR(i),[app,[app,[app,of,[iota,$
VAR(4), [and, [app,book,$VAR(4)], [app,poss,$VAR(10) ,$VAR(4)]1]11],picture] ,$VAR(1)11],311]

33. the+man+the+picture+of+whose+book+john+likes:n

[iota,$VAR(10), [and, [app,man,$VAR(10)], [app, [app,like, [iota,$VAR(2), [app, [app, [app,of,[iota,$
VAR(4), [and, [app,book,$VAR(4)], [app,poss,$VAR(10) ,$VAR(4)11]] ,picture] ,$VAR(2)]1]],j1]]

d(1). boeken>b(kan<lezen):n ur s

[1md,$VAR(O) , [app, [app,can, [app,read,books]],$VAR(0)]]

d(2). boeken>b(wil< (kunnen<lezen)):n ur s

[1md,$VAR(O) ,[app, [app,want, [app,can, [app,read,books]]],$VAR(0)]]
d(3). het> (weg>b(zal<gooien)):n ur s

[1md,$VAR(O) , [app, [app,shall, [app, [app,throw,away],it]],$VAR(0)]]
d(4). het>b(zal< (weg>gooien)):n ur s

[1md,$VAR(O) , [app, [app,shall, [app, [app,throw,away],it]],$VAR(0)]]
d(5). het> (weg>b(zal< (willen<gooien))):n ur s

[1md,$VAR(O) , [app, [app,shall, [app,want, [app, [app,throw,away],it]]],$VAR(0)]]
d(6). het>b(zal< (willen< (weg>gooien))):n ur s
[1md,$VAR(O),[app, [app,shall, [app,want, [app, [app,throw,away],it]1]1],$VAR(0)]]
d(7). het>b(weg> (willen<gooien)):n ur s

d(8). het> (weg>b(willen<gooien)):n ur s

d(2). het> (weg> (willen<b(gooien))):n ur s

d(10). leest< (jan> (boeken>b(0))):q

[app, [app,read,books], j]

d(11). kan< (jan> (boeken>b(lezen))):q

[app, [app,can, [app,read,books]], j]l

d(12). zal< (jan> (boeken>b(kunnen<lezen))):q

[app, [app,shall, [app,can, [app,read,books]]], j]

d(13). zal< (jan> (het>b(willen< (weg>gooien)))):q

[app, [app,shall,[app,want, [app, [app, throw,away],it]]], ;]
no
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