AN CGIaIYG

Between Logic and Probability

Ton Sales

Report LSI-94-40-R

eD b B W
ees N T‘ ¢
DO @ | et
Facuitat d'tnformailca
de Barcelona - Biblioteca

JUT. 1994




Between Logic and Probability
TON SALES

Departament de Llenguatges i Sistemes Informadtics
Universitat Politécnica de Catalunya
Barcelona, Catalonia 08028 (Spain)

e-mail: sales@lsi.upc.es

Research Report
July 19th, 1994

Abstract

Logic and Probability, as theories, have been developed quite independently and, with
a few exceptions (like Boole’s), have largely ignored each other. And nevertheless they
share a lot of similarities, as well a considerable common ground. The exploration of the
shared concepts and their mathematical treatment and unification is here attempted
following the lead of illustrious researchers (Reichenbach, Carnap, Popper, Gaifman,
Scott & Krauss, Fenstad, Miller, David Lewis, Stalnaker, Hintikka or Suppes, to name
a few). The resulting theory, to be distinguished from the many-valued-Logics tradi-
tion, is strongly reminiscent, in its the mathematical treatment, of Probability theory,
though it remains in spirit firmly inside pure Logic.
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INTRODUCTION

In the parallel history of modern Logic and Probability Theory, some intriguing similarities
have baffled theoreticians: in particular, the one between a probability value of one or zero
and the logical concepts of truth and falsity. Such affinities have led some to suggest using
the supposedly rock-solid bases of Logic to underpin the epistemologically dubious foundations
of probability. On this common ground, at least two traditions have grown. The first, dating
back to Hume and Laplace, attempts to base Probability concepts on Logic and truth (as when
Laplace declares probability to be the proportion of “cases” in which a proposition is {rue).
In the line of Laplace, contemporary authors such as Ramsey [22], Popper [20] or Carnap [3]
openly declared Probability a generalization of Logic and, accordingly, tried to build up a com-
prehensive theoretical construct. The contrary —or complementary— tradition mentioned is
typically recent: though isolated authors like S. Watanabe [31] were insisting that Probability
was ‘previous’ to Logic, it was paradoxically a member of the first tradition, Popper (in his
1959 appendixes [20]), who hinted that Logic might be semantically grounded on Probability
valuations, thus giving way to the contemporary trend of probabilistic semantics of Logic of
W. Harper [9], Hartry Field [7] and their recent successors. Other people chose not to proclaim
either field tributary to the other but merely noticed the need to study the conceptual inter-
section points, especially the intriguing logical status of privileged probability values —the one
and the zero, as proxies for “truth” and “falsity”— and the possibility of properly speaking
of truth values and equating them to 1 and 0 (with intermediate values expecting their firm
logical interpretation someday); such authors —Reichenbach (23] and Zawirski in the thirties or
Watanabe [31] and Bodiou [1] in the sixties— were mostly Physics-oriented and insisted on the
need for “compatibility” between both theoretical fields. But Logic-oriented mathematicians
also have shown interest in the Logic/Probability interface, such as Gaifman (8] or Scott and
Krauss [26]; the latter view Logic as “a special case of Probability” and probability valuations
as “generalized theories”.

The present article attempts to explore this presumed compatibility between Logic and
Probability, with no claims at primacy of one over the other. Though it is independent from
—but fully compatible with— the recent Popper-grounded tradition of probabilistic semantics
(of which the author was unaware when he developed the present ideas back in 1981-82), its
simple purpose is to understand Logic better through use of Probability concepts. (In’this
it coincides more or less with the stated aims of e.g. Gaifman [8], Scott and Krauss [26] or
Fenstad [6].) By resisting classical Logic’s current emphasis on compulsory two-valuedness or
truth-functionality, many standard logical concepts may be seen in a new light and, hopefully,
be better understood. Examples of these are: (1) the connection between classical Logic and the
possible-worlds concept, (2) the relationship (and difference) between the conditional statement
in Logic and the conditioning operation in Probability (that so annoyed Stalnaker [28] or David
Lewis [14]), (3) the need (or redundancy) of van Fraassen’s [30] supervaluations, (4) the standing
and role of traditional 3-valued logics, (5) the truth-functional formulas for connectives, (6) the
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standing and implications of many-valued logics in general, (7) some self-suggested distances
and measures (like imprecision) in Logic, (8) a closer view on deduction under uncertainty
conditions and the role of Bayesian reasoning, and (9) an analysis of ignorance and non-rational
belief. The present treatment —that leaves points (8) and (9) to be pursued elsewhere (see
[24])— may also be seen as an attempt to systematize many computations and insights casually
introduced by authors such as, among others, Suppes [29], Stalnaker [28], Lewis [14] or Popper
and Miller [21] in different places, often on an ‘as needed’ basis.

Throughout the paper, probability is to be understood in a strictly technical sense, i.e. as
a normalized measure on sentences from a language (or, alternatively, on sets from a unijverse).
Nothing popularly considered relevant to Probability beyond this should be considered essential
here: neither should there be anything like “events” (“happening” in time somewhere) nor any
kind of frequential or objectivist interpretation going beyond mere rational belief. (Actually,
we will speak, simply, of valuations.) Thus, we will insist now and then to take “probability’ ev-
erywhere as a mere technical synonym for ‘normalized measure’, thus avoiding any connotation
associated with ‘chance’ so that the concept is being amplified to embrace not just ordinary
probability but also poorly characterized notions such as pure ‘rational belief’ or ‘truth value’
(and even ‘degree of error’, ‘truth content’, ‘informativeness’ or ‘verisimilitude’, as the case will
later arise). But, this being a logic context and the valued objects being sentences, we will
often indulge in preferring truth value to mere value or measure or the rather more misleading
“probability” as the linguistic label for a numerical value.

(One previous general remark: results presented here can be easily worked out by any careful
reader, so formal or detailed proofs —most being trivial computations— are generally omitted,
and left to the reader’s initiative.)

1. PRELIMINARIES

A standard presentation of sentential logic uses to be like this: first, assume sentences are
constructed by recursive application of the A, V and — connectives to the (possibly infinite)
set of propositional letters P, @, ... Second, assume sentences form a Boolean algebra (with
respect to the three connectives and two special sentences L and T). We will have then a
complete Proof Theory by identifying the “ F ” order defined by the Boolean algebra with
the deductive consequence relation. So the algebra of sentences we started with automatically
becomes the Lindenbaum-Tarski algebra of all sentences modulo the interderivability relation
“ Ak ” given by the I- order (i.e. A 4+ B iff A = B). Third, assume that all sentences are valued
in {0,1}. This can be done in the standard way of a normalized measure, by just requiring that
the valuation is additive and that T gets a value of 1; we will then have also the whole Model
Theory of Sentential Logic. '

In that orthodox presentation we now vary one single point: the valuation we propose is
on [0,1], not just on {0,1}. What we get is a new way of looking at Sentential Logic that in
the sequel this paper will attempt to explore. Only two remarks before we begin our analysis.
First: as it is obvious, the situation is relatively novel to Logic but traditional in Probability, for
the proposed valuation is no more nor less than a probability in all technical senses. However,
only a few mathematicians have defined probability as a valuation on sentences and many, since
Kolmogorov [12], have said they did but immediately substituted the more docile sets for the
sentences. (Only Carnap persisted in treating sentences, and only Popper stood by the need
to keep a double interpretation permanently open.) Also, the similarities —or differences—
between Logic and Probability (or truth/falsity and a probability value of one /zero) have never
been clear, despite efforts by Reichenbach (23], Carnap [4] and others. (Again, Popper opened
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the way to considering both two flips of the same coin.) We will explore how far we can go
on making valuations (normalized measures) in [0,1] on sentences. (Note also that we do not
require the valuations —even when interpreted as “truth” valuations— to be “extensional” or
“truth-functional” as done in many-valued logics.)

The second remark concerns the Booleanity of the sentences. Either this is assumed (im-
posed) or it just arises naturally from a “minimal algebra” of sentences with only two connectives
(say, - and A): Popper [20] showed that by giving values in [0,1] to each pair of sentences (or
sets, for he deliberately chose to leave the objects uninterpreted) we could define very naturally
a binary function (that we can —predictably- call “conditional probability”) from which we
can define the usual (unary) probability; the interesting point here is that, by requesting that
the binary Popper functions satisfy a few very undemanding and reasonable conditions, the
algebra of sentence classes modulo equiprobability becomes automatically a Boolean algebra.
The Boolean structure of sentences we postulated above can thus be either imposed by fiat or
supposed to be the product of such valuations (and our sentences are then mere representatives
of all member-sentences of Popper’s minimal algebra assigned the same conditional-probability
values). Though we could justify the Booleanity of the sentences by recurring to Popper val-
uations —and then our values would simply be Popper’s induced unary probabilities— in this
paper we choose to leave the origins of both (Booleanity and valuation) unexplained and given.
So we begin.

Suppose, first, we have a propositional language £, whose members (henceforth denoted
A,B,...) are sentences. We shall assume that £ is closed by the propositional operators A,
V and - and, moreover, that it has the structure of a Boolean algebra. Thus, the structure
(L,A,V, -, L, T) (with signature (2,2,1,0,0)) has the following properties (for arbitrary A, B
and C):

1. ANA=A and AVA=A (Idempotency) (1)
2. ANB=BAA and AVB =BV A (Commutativity) (2)
3. AN(BAC)=(ANB)AC and AV(BVC)=(AVB)VC (Associativity) (3)
4. AN(BV A)=A and AV (BAA)=A (Absorption) 4
5. AN(BVC)=(AAB)V(AAC) andits dual (Distributivity) (5)
6. ANL=1 and AVL=4 andA A T=4 and AV T= T (Bounds) (6)
7.AAN-A=1 and AV-A= T (Complementation) (7)

The resulting structure is, of course, the well-known Lindenbaum-Tarski algebra of propo-
sitions. It is, if finite, of cardinality 2VV (for some N) and atomic, with exactly N atoms. If
there are n propositional letters in the language —acting as generators of the resulting free
Boolean algebra— the structure has 22" elements, with 2" atoms. In case there are infinitely
many letters (generators) the algebra has the same cardinality as the set of generators, and is
positively not atomic. The Lindenbaum-Tarski character of this algebra may be taken on word,
as we do, or may be induced by Popper valuations (in case they are assumed); or we can simply
leave the question open until we conclude —as we do (see (31) below)— that the equality of £
simply coincides with the interderivability relation, and so £ is a Lindenbaum-Tarski algebra.
(Note that more standard presentations, as in Gaifman [8] or Scott and Krauss (26], define
theoremhood or derivability first and then define their valuations on the subsequent quotient
algebra.)

As in all Boolean algebras, a partial order (that we denote by F) is definable in the structure
—which is then characterized as a Boolean lattice, with bounds 1 and T— through the
equivalence:




8. AFB < AAB=A <= AVB=B (Partial order) (8)

Suppose, secondly, that we impose a valuation on this structure, that takes any sentence
A in the language and assigns it a real number [A], that we could either call “probability of
A” or simply “value of A” but that we will rather biasedly call “truth value of A” (whatever
sense we may make of this). This valuation is required to be a non-trivial real-valued measure
of the sentences in the Lindenbaum-Tarski algebra £ satisfying the following three standard
conditions (that give it all the technical characteristics of a probability):

i) ForanyAin £ [A]>0
ii) For any 4 and B in £ suchthat AAB =1 [AvV B]=[A]+[B] (Finite additivity)
iii) [T]=1.

though we prefer —for compatibility with a weaker presentation elsewhere [24]— this equivalent
formulation: '

9. There is a valuation v : £ — [0,1]: A — [A] such that:
9a. [L] =0, and [T] = 1. ‘ (9)
9b. If A+ B then [A] < [B] (Monotonicity) (10)
9c. Forany A and B, [AAB]+[AV B] = [A] + [B] (Finite additivity) (11)

Once we are given the nine conditions 1-9 above —admittedly over-redundant (actually, 2 and
5-7 plus 9a and 9c would suffice)— we have all we need to proceed.

Observe that if the valuation described in 9 had been defined in {0, 1} instead of [0, 1], conditions
1-9 would have completely characterized the standard (two-valued) Propositional Logic. In
particular, from 1-8 arises all of its proof theory, while conditions 9a-c —together with the
immediately derivable facts (12-13) (see below)— describe completely its model theory (its
truth tables).

It is to be specially emphasized that condition 9 as stated above —that the v valuation has
[0,1] as its range of values rather than merely {0,1}— is the single differing point between our
presentation of Propositional Logic and the ordinary two-valued view of it. The first naturally
subsumes the second as a special case.

Notice that we have used finite additivity here. In this we follow the trend of questioning
whether countable additivity, usually required in Probability Theory, is really necessary. In our
case it is not. (Moreover, this condition can be obtained through compactness, if need be.)

(A remark, on notation: [A] = 1 will be sometimes abbreviated as “k=y A”, which has the
advantage of showing explicitly that a particular valuation v is involved.)

From conditions (1-11) the five formulas below follow immediately:

[~A] =1 - [4] (12)
[AAB] < [4] < [AV B] (13)
[4A B] < min([A],[B]) (14)
[4V B] > max([4],[B]) (15)
If A;ANAj= 1 (i#3) then [VIZFA] = YIZF [4)] (16)

If we now define the conditional or if then connective in the usual —classical— manner:

A—B =4y ~AVB ,| (17)




then the following formula immediately obtains:

[A— B] = 1-[A]+[AA B] (18)
and, from these, also:

[A— B] - [B— A] = [B] - [A4] (19)

If we then define the biconditional or equivalence connective in the usual manner:
Ao B =45 (A— B) A (B> A) (20)
then the following formulas are immediately obtainable:
[A ~ B] [A—- B]+[B— A]-1 (21)
[4A « B] 1-[Av B]+[AA B]

As is to be expected in a Boolean algebra,
AFB < -AVB=T.
If we denote A =T by “F A”, this can be written as:
AFB < +FA- B, (22)
more in line with the usual formulation of the Deduction Theorem of elementary logic.
Now, we define the relation between A and B given by [A — B] = 1 —that we note by
“A =, B” (notice it depends on the particular valuation v chosen)—:
[Definition:] “A|=, B” if and only if [A — B] =1.

This relation is a quasiordering that contains the lattice order AF B (ie. AF B = A . B)
and satisfies the following conditions:

AEyB <= [A]l=[AAB] <= [B]=[AV B]
If A=, B then [A] < [B] (but note the converse is not true in general)

We now define the relation between A and B given by [A © B] = 1 and we note it by
“A =, B” (notice the dependence on the particular valuation v chosen):

[Definition:] “A =, B” if and only if [A < B]=1. (23)

Note that “=,” (which we can call “equality under a valuation”) is an equivalence relation and
contains the ordinary propositional (Lindenbaum-Tarski) identity (ie. A= B = 4=, B). It
yields the following two properties:

A=, B ifandonly if A=, B and B |5, A.
If A=y B then [A]=[B] (Truth-value equality). (The converse is not true in general)

Now, the definition below follows the usual line:
[Definition:] “k= A” if and only if [A] =1 for all valuations (24)

(Remark: Here “[A] = 1 for all valuations” means “v(A) = 1 for all {0,1]-valuations v of A”.
From now on, “for all valuations” will be sometimes informally shortened to “(Vv)”.)

As is obvious, |=, contains |= (i.e. |= A = |=, A), and the given definition can be informally
written in this way: “E A iff (Vv) |=, A”.




Naturally,
If A= B then [A] = [B] for all valuations (25)

(because the valuation is meant to be a function in the mathematical sense).

This has a corollary:
If FA then |= A (Soundness) (26)

(because A =T yields [A]=[T] =1 for any valuation).

Conversely, we are forced to admit —by convention— that:
If [A] = [B] for all valuations, then A = B (27)

because we have no other way to distinguish any two propositions through the semantic means
available (i.e. the [0,1]-valuations). Actually, we know that the ordinary {0, 1}-valuations suffice
to distinguish and identify all the elements of a Boolean algebra (this is a consequence of the
Prime Ideal Theorem). So we have a considerably softened version of (27):

If [A] = [B] for all binary valuations, then A = B (28)
As a corollary of (27) we get:
If = A then F A (Weak completeness) (29)
The two relationships (25) and (27) shown above between propositions and values can be
combined to yield this (informally stated) semantical characterization of propositional identity:
A =B ifand only if (Vv) A=, B (30)
where “Vv” can be here —and subsequently— taken to mean “for all binary valuations v” (see
(28)).
Now, combining (30), (23), (24), (29) and (26) we get
A=P ifandonlyif F4 < B (31)

confirming that the Boolean algebra we presented in (1-8) was just the Lindenbaum-Tarski
algebra of all sentences modulo the interderivability relation + A & B.

Also, the soundness and weak completeness conditions, taken together, yield this equivalence:

[Weak completeness theorem: ] + A if and only if |= A

Now we put forward this (that we state informally):

[Definition:] “A |= B” if and only if (vv) {[A]=1 = [B]=1}.
It is easy to show that

AEB ifandonlyif FA— B
Thus, |=, contains |= (ie. A |= B = A |=, B), and the last definition can also be wri'tten:
“AEB iff (W) A, B

Recalling the above semantical characterization of propositional identity (“A = B iff
(Yv) [A] = [B]”), we would like to have a reasonable characterization of “A = B” along the
same line: something as “4 |= B iff (Yv) [A] < [B]”. Unfortunately, this does not hold. The
most we can have is just the rightward half:

If Al=B then [A] < [B] for all valuations.
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Now, again from the given semantical characterization of propositional identity (30) we
have:

A=AAB ifandonlyif [A]= [A4A B] for all valuations.

Note the the left-hand side is equivalent to writing “A  B”, while the right-hand part amounts
to saying “[A — B] = 1 for all valuations” (or else, by definition, “= A — B”, that we have
shown to be equivalent to “4 |= B”). So we are led to this new characterization of the soundness
and completeness condition:

[Strong completeness theorem: ] A\ B if and only if A |= B.

A could represent a list (or, better, a conjunction) of propositions A, ... y A, —the premises—.
In that case, it would read thus, in its most general form:

[Completeness theorem: ] Ay, ..., A, - B ifand only if A4, ..., 4, =B

where the left-hand A’s are the conjuncts of 4 = A4;A ...AA,, while the right-hand term is
(demonstrably) equivalent to stating “{ [4;] =...=[4,] =1 = [B]=1 } for all valuations”.

2. SENTENCES AS SET EXTENSIONS

Two widely-known and yet under-exploited results in Boolean Algebra Theory (see [13])
have to do with representations of Boolean algebras on set structures. They can be stated thus:

A. Every finite Boolean algebra has a representation in the algebra of all subsets of a (finite)
set.

B. Every Boolean algebra is representable on —isomorphic to— a field of sets. (Stone’s Rep-
resentation Theorem.)

In particular, the free sentential algebra L generated by countably many propositional
letters has a representation in —is isomorphic to— :

(a) The lattice £ of principal filters of L. Principal filters are theories deductively derived from
a single sentence. If £ is finite, all filters are principal. (In Tarski’s terminology theories
are “closed deductive systems”.)

(b) A field B of sets. More specifically: B is a countable non-atomic Boolean subalgebra of the
powerset P(O) of all ultrafilters (or all binary epimorphisms) 6 of L. (If £ is finite and has
n generators then £ is isomorphic to the whole of P(©), which then has 22" elements and
is atomic, with exactly 2" atoms.) P(0©) is the Stone space associated with £, and each
element or “point” § corresponds to a complete theory of L.

(c) The field of sets B mentioned above, where B is precisely characterizable as the class of
clopens of the P(@) Stone space of L. Clopens correspond to the finitely axiomatizable
theories of L.

(d) A subdirect product of copies of {0, 1}.
(e) Any countable interval algebra such as the set of rationals in [0, 1).

By the Normal Form Theorem ([13]), each sentence A in a free algebra L is expressible in normal
form as a finite disjunction of finite conjunctions of literals. Also, by the above (equivalent)
representations, A is the isomorphic image, respectively, of:

(a) The theory (or set of deductive consequences) derived from A.

(b) The set of complete theories that include A (as a derivable sentence).
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(c) A finitely axiomatizable theory that includes A.

(d) A set of strings of 0’s and 1’s. If £ has n generators, the strings have length n, and there
are 2" such strings: they correspond to the interpretations of the ordinary Model Theory
(truth tables) of Sentential Logic.

(e) A finite union of intervals of generators (given in some order).

All these properties are well-known (see e.g [13]) and can be considered elementary. What we
are presently interested in is, simply, that, given the Boolean sentence algebra L, there exist a
set ©® (whatever the meaning we give its elements §) and a ‘representation’ function that can
be characterized as

a) a homomorphism of £ into the powerset P(0) of 0, i.e.
p:L—PO):A» A (ACO)
b) an isomorphism of £ into the Boolean subalgebra B of clopens in P(0), i.e.

p:L—B:A— A (BCP(©),AC0O)

which is just the restriction of p to B (though we also note it by “p”). (This is the Representation
theorem)

So, every time we have a Sentential Logic we have also an inherent accompanying structure or
universe that we make here ezplicit and name O; it is explicitly definable from its sentences
A € L. (This always happens, even in strictly two-valued logics.)

Though clearly there is no need to name or qualify the members of © , we may indulge in calling
them possible worlds, or possibilities (following Shafer [27]) or eventualities (to distinguish
them from Probability’s outcomes or elementary events) or cases (as in Laplace or Boole) or,
metaphorically, even observers or states, observations, instants of time or stages of development,
elementary situations or contezts in which things happen, and so on. © is thus configured as
the real universe of discourse or reference frame (the set of possible worlds). It also coincides
with Fenstad’s [6] (or e.g. Miller’s [17]) model space, and then the s are also Fenstad’s models
or —after (d) above— all possible interpretations of A (2" of them in the finite case).

We can establish a general, one-to-one correspondence between the two worlds (the language
world £ and the referential universe ©, both made up of “propositions”) and their constituent
parts, thus:

L <~ B '
A(AeLl) &= A(AcCoO)’
AANB ANB
AVB << AUB
-A <= Ac
T — C]

L = ¢
AFB << ACB
A=B <+ A=B

If £ has a finite number of generators, then it has 2" atoms a and the following two bijective
correspondences also hold:

L <= P(0)
a = {6}
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(The arrows are meant to be read “corresponds isomorphically to”; also, “A°¢ ” is the
set-complement of A, ais an atom of £, and 8 is an element of ©.)

As to the precise nature of the “possible worlds” § € ©, nothing needs to be specified
about them except, maybe, that each 6 is just a discernible unit, merely something that can be
isolated and told apart precisely from all other 8s ; so © is —just— a frame of discernment (in
Shafer’s sense).

It is remarkable that when Boole, just after studying classes, set out to analyze propositions
(in 1847), he conceived them by means of an alternative interpretation of his elective symbol
z (already introduced for classes) which —he said— now stood for the cases (or “conceivable
sets of circumstances”) —out of a given hypothetical “universe”— in which the proposition
was true. This is stunningly close to our set-extensional representation of propositions in the
set O of possible worlds, to which the Stone theorem gives rigorous legitimacy. And, since set
propositions are measurable —an idea we shall immediately turn to—, an easy step carries the
picture into probability, a step Boole inevitably made when he, in the last chapters of his 1854
book [2], somewhat obscurely likened the product z -y of two propositions to the probability of
simultaneaously having both.

Something similar occurred later to MacColl [16] when he distinguished between proposi-
tions that were certain, variable or impossible (meaning they were always, sometimes or never
the case). Historically, Russell, when reviewing MacColl’s work in 1906, argued that MacColl’s
“propositions” were not such but rather propositional functions. This is still the conventional
answer today. However, we can reconcile both views by converting, through the Representation
Theorem, a proposition A (a piece of the language L) into a propositional function that takes
values in {0,1}, the values of a characteristic function (i.e. Russell’s “propositional function”),
so defining a set A in a world of cases or circumstances (Boole’s terms) corresponding to what
we have called possible worlds and distinguishing MacColl’s certain (or Peirce’s [19] necessary)
propositions (our case A = B) from wariable or contingent ones (the general A C B case).

3. TRUTH AS MEASURE

The valuation
v:L —[0,1]: A~ [A4]

and the representation isomorphism
_ p:L— B:Ar A
clearly induce a [0,1]-valued measure p in B C P(0).
[Definition:] p: B — [0,1] is the valuation in P(©) induced by the isomorphism
p:Le— BCP(O) insuchawaythatp=vop?, ie p(A)=[A]

Intuitively, the measure p({6}) of each individual  in a finite ® universe should seemingly
correspond to the relative importance or the relevance this individual has in that universe. Thus,
in a reading of © where the  are interpreted as observers, u({0}) would represent the importance
a “superobserver” assigns to each particular 6. In a fests or modal “possible worlds” reading,
#({6}) would be the relevance attributed to test § or the degree of realizability of the given
possible world. And so on. The p measure corresponds to the weighing function A in Fenstad’s
[6] model space.

As is known, p (or M) is not only additive but countably so; thus p is eligible as a standard
“probability” measure (in the technical sense), though we do not think countable additivity is
anything we should require from such a measure (and we will not).
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[A-B] [A--4]_, _1-[4- B]

LBIAL = =g 4] 4]

Note that, in general,
[Bl4] # [A — B]

Particularly, we have always
[BIA] < [A— B]

ezcept when either [A] =1 or [A — B] =1, in which cases (and they are the only ones)
[B|A] = [A — B] . (This has been noticed by many people, notably by Reichenbach (23],
Stalnaker [28], Lewis [14] and Popper [20].)

The statement ‘A — B’ can have, among other readings, one logical (“A is sufficient for
B” or “B is necessary for A”), another (loosely) “causal” (“A occurs and B follows”). Because
A — B is valued in [0,1], its value [A — B] (and the values [B|A] and [A|B]) now mean only
degrees, and so B — A may be —and usually is— read “evidentially” (“B is evidence for A4”).
Within such a frame of mind,

— [BlA] (or “o4” —or even “vp”, see next paragraph—) could be termed “degree of suffi-
ciency or causality” of A (or “causal support for B”), to be read as “degree in which 4 is
sufficient for B” or “degree in which 4 is a cause of B”. In view of (32), it is roughly a
measure of how much of A is contained in B.

— [A|B] (or “v4” or “op”) could be termed “degree of necessity” or “evidence” of A (or
“evidential support for A”, to be read as “degree in which A is necessary for B” or “degree
in which B is evidence (= support of hypothesis) for A (=the hypothesis)”. With (32) in
mind, it can be seen as how much of B overlaps with A.

Such measures may be directly estimated by experts, normally by interpreting the s frequen-
tially, in terms of cases, like Boole. (“Cases” may be statistically-based or simply imagined,
presumably on the basis of past experience or sheer plausibility.) Thus, o4 in a causal reading of
“A — B” would be determined by answering the question: “How many times (proportionally)
—experience shows— A occurs and B follows?” For v, the question would be: “How many
times effect B occurs and A has occurred previously?” (Similarly for the evidential reading of
“A — B”".) Once o and v have been guessed, they may be adjusted (via the

o4 _ [B]
va  [4]

relation) and then lead —by straightforward computation— to [A — B], [B — A] and the
aap value (see below), which allows one to compute all other values for connectives and also
to get a picture of the structural relations linking A and B.

4. CONNECTIVES AND SENTENTIAL STRUCTURE

The goal here is to find the truth value of composite propositions in £. For the negation
connective this is easy: it is given by formula (12). For the rest we have the three following
formulas that are a direct spin-off of additivity (11) and the definitions (17) and (20):

[Av B] = [A]+[B] - [AA B]
[A—B] = 1-[A]+[AAB] . (33)

11




Now suppose we want to express the conjunction value as a product:
[AAB]) =[A4]-T (or [AANB] =7'.[B])
We have (provided [A] # 0):

_[AAB] _v(AAB)
A T v(4)

= 'UA(B)

which yields on £ a new valuation vy : £ — [0,1] with the same properties as the original
valuation v (indeed v, satisfies equations (9) and (11), as is easy to prove).

The [A] # 0 proviso may be unnecessary if the 7 function has been evaluated directly, as Popper
proposed back in 1959 [20].

With the current £/P(©) representation in mind, we have:
#ANB)

T= 32

W(A) (32

Thus, the new valuation takes in account, out of a subset of @, only the part contained
in A, and it gives it a value related only to that part. So we define T as the relative truth
“[B|A] ” (i.e. the “truth of B relative to 4”):

[Definition:] Relative truth of B with respect to A is the quotient

[AA B]

B4l =

([A1 #0)

[ Remark: Here we break with our own implicit notational convention according to which double
brackets separate the syntax (inside) from the outer world of semantics. ]

If [B|A] = [B], then we say that A and B are independent (because the valuation v (B) =
v(B) remains unaffected by A). In that case, the conjunction can be expressed as the product:

[AAB] = [A]-[B]
(and then we have also:
[4— Bl =1-[A]+[A]-[B] =1 - [4]-[-B] .)
In any other case we say that A and B are mutually dependent and speak of the relative truth
of one with respect to the other. Note the dependence goes both ways and the two situations
are symmetrical. We have (always assuming [A] # 0 and, in,the third and seventh formulas,
A not binary): :
[A]-[B|A] = [B]-[A|B] = [AA B] (Bayes formula)
[4|A] =1
[A]-4] = [-4]4] = 0
[4A BlA] = [B|A] = [A - B|4]
[Av B|A] =1 =[A - B|B]
[B|A] + [-B|A] =1 (Complementation)
[B] = [A]- [B|A] + [-~A] - [B|-A] (Distribution)
[4— Bl =1-[A]-[-B|4]

10




[A~ B] = 1-[A]-[B]+2-[AA B] (34)
(formula (33) is (18) again, and (34) immediately derives from (21) ).
So the problem now reduces to finding the numerical expression [AA B] of the conjunction AA B

as a function of the (numerical) “truth” values [A]] and [B] of the component propositions A
and B.

For any A = p(A) and B = p(B) we have, obviously:
pCANBCACAUBCO (35)
and, because of the induced monotonicity of u:
0<pu(ANB)<p(A)<p(AUB)<1

In (35) there is a smooth, comprehensive gradation of possible cases. We distinguish four
extreme cases; the first two concern intersection, the third and the fourth union:

- Case 1: ANB = ¢. We have:
p(ANB)=0
- Case 2: Subcase (a): ANB = A (i.e. A C B). We have:
#(AN'B) = 4(A) < u(B)
or Subcase (b): ANB =B (i.e. B C A). We have:
p(ANB) = pu(B) < p(A)
In either subcase we have:
#(A N B) = min [u(A), x(B)] (36)
- Case 3: Subcase (a): AUB = A (i.e. BC A). We have:
W(AUB) = u(A) > u(B)
or Subcase (b): AUB = B (i.e. A C B). We have:
#(AUB) = pu(B) > p(A)

In either subcase we have:

#(A U B) = max [u(A), u(B)] (37)
- Case 4: AU B =-0. We have:
p(AUuB)=1

Cases 2 and 3 describe a single situation —that we shall call ‘case @’— because, thanks to
the additivity of pu: '

p(AUB)= p(A)+p(B) - pu(ANB)=
= p(A) + p(B)— min [p(A), u(B)] =
= max [u(A), u(B)]

and vice versa. On the other hand, cases 1 and 4 can be treated as one, because we have,
respectively:

pANB)=0 (for case 1), and
p(AuB)=1 (for case 4),

that by the additivity of u yield, respectively:
p(AUB) = pu(A) + u(B) (for case 1), and
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#(ANB)=p(A)+pu(B)-1 (for case 4).

We can cover the situations described by the above four formulas with a single name —we
shall call it ‘case ©’— and a pair of formulas:

4(A 0 B) = max [0, 4(A) + u(B) - 1], (38)
that summarizes in a single statement the first and fourth formulas, and
k(A UB) = min [1, 4(A) + s(B)}, (39)

that does the same for the second and third formulas.

Thus, by tracking what happens with measure u when A (as B) goes all the way —in
smooth gradation— from ¢ to © (see (35)), it is easy to see that not one but many values are
possible for (A N B) and p(A U B), and that those values are strictly bounded as prescribed
by formulas (36) and (37) in one extreme case, and by (38) and (39) in the other. This has
a straightforward translation into truth values and composite propositions. The first thing we
learn is that the binary connectives —as propositional functions— are not functional, i.e. they
yield different values for a proposition despite the fact that the operands may have stable values.
(We shall see below, however, that the binary connectives are actually functional, but in three
—not two— variables.) The second is that the range of values of composite propositions has,
nevertheless, strict and prescribable bounds. We analyze that, and distinguish the two extreme
cases we mentioned:

A) Case @ : It summarizes cases 2 and 3 above. This situation is what we call mazimum
compatibility between two propositions A and B. The value of the connectives is given by:

[AA B] = min ([A],[B])

[Av B] = max ([A],[B])
(which are (36) and (37) in truth-value notation).
We shall often abbreviate the right-hand members as “ [AAB]*” and “ [AV B]* , respectively.
Case @ obviously corresponds to any of those situations:

A CB (or,equivalently, A+ B)

B C A ( or, equivalently, B+ A)

all of which justifies our speaking of “mazimum compatibility”. We could have called this case
also simply compatibility or coherence (because of lack of incoherence, see case 8) or mutual
implication (because here either A - B or B  A). The situation here is one of [mutual]
dependence, as [ B|A] —or [A|B]— equals one. (We could speak of correlation as well.)

From [A A B] and (83)-(34) we obtain at once:
[4- B] = min (1,1~ [4] + [B])
[A~ B] = 1-|[4]- [B]|
We shall abbreviate the right-hand members as “ [A — B]* ” and  [4 & B]* .

B) Case © : It summarizes cases 1 and 4 above. There is what we call minimum compatibility
between two propositions 4 and B. The value of the connectives is given by:

[AAB] = max (0,[A] + [B] - 1)
[AVE] = min (1,[4]+ [B])
(which are (38) and (39) in truth-value notation).
We shall often abbreviate the right-hand members as “ [AAB]~ ” and “ [AV B]~ *, respectively.
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Case © obviously corresponds to any of the situations described next:
ANB =¢ (or,equivalently, AAB=1)
AUB =0 (or,equivalently, F AV B)

all of which justifies our speaking of “minimum compatibility”. We could have called this case
also simply incompatibility or incoherence (because either AAB = 1 or ~A A =B = 1), or
mutual contradiction (because here either A+ -B or =4 I B).

From [A A B] and (33-34) we obtain at once:
[4- B] = max (1 - [4], [B])
[4 < B] = |[A]+[B] -1]
We shall abbreviate the right-hand members as “ [A — B]~ ” and “ [4 « B]~ ”.

So, in summary, the value of the connectives is always inside a slack interval, with bounds ©
and &:

Minimum value Actual value Maximum value
max (0, [4] + [B] - 1) [4AA B] min ([A], [B])
max ([4], [B]) [4v B] min (1, [A] + [B])
max (1 — [A], [B]) [4— B] min (1,1~ [A] + [B])
I[4] + [B] -1 [A < B] 1-—|[A] - [B]|

We have, perhaps more graphically:

e [AAB]- < [AAB] < [AA B]* @
® [AvB]* < [AvB] < [AVB]~- 2]
o [A—B]- < [A- B] < [4A - B]* @
(e} [AoB]- < [AeoB] < [A« B]* @
l | !
0 c a d 1

The above diagram is actually oversimplified: each connective would have a different projection
on the [0,1] line, and each would have a different triple of values c, a and d; in each triple, ¢ and
d are the minimum (c¢) and maximum (d) values, respectively, that the actual value (a) of the
corresponding composite proposition can reach, as the swing along [0,1] takes a from the © to
the @ case.

A rather stunning fact about the above graph is that the width d — ¢ is constant for the three
first connectives (and exactly double that length for the biconditional). Indeed,

[AAB]* —[AAB]- =[AVB]~-[AVB]* =[A— B]* -[A— B}~ =

=([4 ~ B]" - [A~ B]")/2 = min ( [4], [B], 1-[4], 1-[B]), _

a quadruple minimum that only depends on the values of [A] and [B] and is always < 1/2. We

note this value by “ A(4, B)” or “ A 4p” and notice that A(4, B) = A(-4,B) = A(A,~B) =
A(-~A4,-B).

Another striking fact about connectives is that we can parameterize their values through a

unique parameter we name “ a(A4, B) ” or “ a5 ” and we call “degree of compatibility between

propositions A and B” or “relative position of propositions A and B (inside @)”. Its value is:

aan [AAB]-[ANAB]-

A5 = [AAB]* —[AA BJ-

(40)
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Symmetrically we define a second parameter we name “ 8(A4,B) ” or “ f4p ” —that we call
“degree of incompatibility [between propositions A and B]”— through the formula

BaB =af 1— aap

Naturally, 0 < asp < 1 and, simultaneously, 1 > 8,45 > 0 —where the leftmost and rightmost
bounds refer to cases © and @, respectively, so that both cases are completely determined by
one parameter (or both of them):

Case ® (Mazimum compatibility): asp =1 (or Bap = 0).
(Note that then —and only then— [A A B] = [AA B]*.)

Case © (Minimum compatibility): asp = 0 (or fap = 1).
(Note that then —and only then— [A A B] = [AA B]".)

Both cases coincide if —and only if— at least one of the propositions A or B is valued binarily.
In this situation —which is equally well described by both case profiles— a4p and Bap are
undetermined, and the actual value of the connectives is given by any of the formulas above.

In the general case, the parameter a4 p acts as an indicator or measure of “relative position”
of propositions A and B inside ©, and also as a cursor ranging inside the (fixed) interval between
bounds, pointing to the actual value of the connective. We can formulate each connective as
a linear function (a. convex combination of case @ and case © values) “interpolating” between
bounds (=the extreme @ and © values), so that its effective value is given by the values [A]
and [B] and the parameter a. (Thus each connective is functional in three variables, the third
being a.)

Indeed we can, and get the following set of formulas (where (41) derives directly from (40) while
(42)-(44) are obtained from (41) via (11) and (33-34)):

[ANB] = axp-[AABI* + fan-[4n B- (41)
[AVB] = aup-[AVB]* + Bap-[AV B]- (42)
[A— B] = asp-[A— B]* + Bap-[A— B]"- (43)
[4 B] = asp-[Ao B + fap-[A o B]- (44)

So by knowing a single value (either of [A A B], [AV B], [A — B], [4 « B], aap or B45) we
can compute the other five.

Alternatively, formulas (41)-(44) can be replaced by this set:
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[AAB] = min ([AL[B]) - Bas-Aus (45)

IIAVB]] = max (IIA]], I[B]]) + BaB - AuB (46)
[[A-—)B]] = min (1,1—[[A]]+[[B]]) — BaB AR (47)
[A-B] = 1 - |[A]-[B]| — 2-BaB-Aus (48)

where it is prominent that the value of the connectives is the value for case @ plus a negative
correction (except for V, whose correction is positive) of size proportional to the incompatibility
Bap and the (constant) interval length A 4p (which is a function of [A] and [B] only).

Incidentally, connectives for case @ —(generally) upper bounds for actual values, in fact—
coincide with values (functionally) assigned by Lukasiewicz-Tarski to the connectives in their
Lo logic [15]. On the other hand, connectives for case © —(generally) lower bounds for actual
values, in fact— coincide with values (functionally) assigned to them by threshold logic. The
difference here is that those connectives are no longer functional in the truth values of the
operands, but act as mere bounds for actual values. These depend not only on the truth-values
of the component propositions but also on a third term indicating their relative position as well.

The a parameter satisfies the following relations:

a(4,4)=1 and a(4,7A4)=0

a(4,B) = a(B, A)

a(A,B) = a(~4,~B)=1-a(A,~B)=1-a(-4,B) [ =pB(-4,B),etc. ]

and analogously for ). With those relations in mind various properties of ordinary logic can
g y p Yy 1og
be easily proved. For instance:

[AA-A] = a(A,~A)-[AA-A]T + B(A, —A)-[AAN-A]" =[AA-4] =0

[AV-A] = a(4,-A) - [AV -A]t + B(4,-A4) . [AV-A]~ =[AV —A]" =1

[4 - B) = a(A, B)- min (1,1- [4] + [B]) + A(4, B)- max (1 - [4], [B]) =

= ﬂ(ﬂA, B)- min (1, [[—!A]] + ﬂB]]) + a(—nA, B)-_max ([[—lA]], [[B]]) = [[ﬂA Vv Bl]

We said that two propositions A and B were independent when their conjunction could be
expressed —in value— as the product of [A] and [B]:

[AAB] = [A]-[B]
It is easily shown that the necessary and sufficient condition for that to happen is:

asp = max ([A],[B]) if[A]+[B]<1

= max ([~A],[-B]) if [A]+ [B] >1

(the expression in the second row is equivalent to 1— min ([AD, [B]) )- Analogously,

Bap = min ([-4],[-B]) if [A]+[B] <1
= min ([A],[B]) if[A]+[B]>1

16




(the expression in the first row is equivalent to 1— max ([A],[B]) ). Note that A —always
compatible with itself— is never independent from itself (except when its truth value is binary).
Similarly, A and ~A —always incompatible— are never mutually independent (except when
their truth value is binary).

When two propositions are independent, the connectives can be expressed —in value— in
this way:

[AAB] = [A]-[B]

[Av B] = [A]+[B]-[A]-[B]

[A— B] = 1-[A]+[A]-[B]

[Ae« B] = 1-[A]-[B]+2-[A]-[B]

[41B] = [A] and [B|4] = [B]

In the general case, the values of a,p (or Bap) are usually not known, but two consider-
ations stand out: first, all computations can proceed if we know [A], [B] and —just— one of
these eight values: [AA B], [AV B], [A — B], [A < B], [A|B], [B|A], asp or f4p —from
which all others are derivable at once by the above formulas (40)-(48). Also, by being given
[B|A] and [A|B] (i.e. the o4 and v, easily elicited from experts) we can compute every value,

e.g.:

asB = 5 04+ [A]- max (0,[A] + [B] — 1)] (orelse=1—B4p)

Aap
Bap = A,lm [ min ([A],[B]) — 04 - [A]] (orelse=1-a,p)
[AAB] = o4-[A] = va-[B]
[AVB] = (1-04)-[A]+[B] = [A}+ (1 - va)-[B]
[A-B] = 1-[A]-(1-04) = 1-[A]+va-[B]
[B— 4] = [A- B]+([A] - [B])
[A<~B] = [A- B]+[B— A]-1

In certain cases the value of a is either irrelevant (e.g. when one of the propositions is
binary-valued) or immediate. This last happens, for instance, when A + B or B 4 (so
asp =1) or when AF-Bor-BtF A (soayp =0). And also, in particular, when B = A4 or
when B = -4, because then a(A4, A) =1 and a(A4,-A4) = 0, whence we can easily derive, e.g.,
the principles of identity (- A — A), non-contradiction (F =(4 A =A4)) and excluded middle
(F AV -A) —by verifying that, indeed, [A » A] =1, [AA =4] = 0 and [AV ~A] = 1 for any
valuation. .

Knowing the truth values [A] and [B] is the only requisite demanded by logics based on
Junctional connectives such as Lukasiewicz’s Lo,, where the values of composite propositions
are given directly by our case ®-formulas (and so agp = 1 for every A and B), which means
that —viewed from our perspective— in L, all propositions are compatible. In our treatment of
logic —incidentally— assuming such a thing would be clearly unrealistic or utterly impossible,
because in £ every proposition A has a negation, and a negation ~A automatically stands as
incompatible with A, thus contradicting the assumption (that all propositions are compatible).

The need to know the ayp (or f,4p) parameter is a new and peculiar requisite to the
present “probability logic” formalization (which has yielded us a very general Boolean multi-
valued non-truth-functional logic). The a parameter roughly corresponds to what Reichenbach
in his ‘probability logic’ called ‘ Kopplungsgrad’ [23]; it acts as a sort of descriptor or “memory”
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of the (relative) structural disposition of propositions A and B “inside” £ (or of A and B inside
©). This situation parallels the one familiar in Probability.

5. THREE-VALUED LOGIC AS A SPECIAL CASE

Classical three-valued logics, especially Kleene’s system of strong connectives [11] and Lu-
kasiewicz’s L3, give the following tables for the values of connectives (where U stands for “un-
determined”):

A 0 U 1 \Y 0 U 1 - 0 U 1
0 0 00 0 0 U 1 0 111
U 0 X U U U Y 1 U U Z 1
1 0 U 1 1 111 1 0 U 1

where X =Y = U in both Kleene’s and Lukasiewicz’s tables, and Z = U in Kleene’s but Z = 1
in Lukasiewicz’s. Clearly, the three classical Aristotelian principles do not hold in these logics
(except that - A — A does in Lukasiewicz’s), for if A (and so A too) is “undetermined” (i.e.
its value is U there is no way that (A A -A4) and AV - A can be assigned in them the 1 value
they should have (and, so, these expressions can never be theorems in those logics —unless,
that is, theoremhood is extended to designated values other than 1).

Now, if we abbreviate “[A] € (0,1)” by “[A] = U” (as in Kleene o Lukasiewicz) the values
given in the above tables coincide exactly with those that would have been computed by our
formulas, ezcept that X,Y and Z would remain undetermined until we knew a4p. In general,
our values would match Kleene’s, but in certain cases they would yield differing results:

1) If [A] 4+ [B] £ 1 and A and B are incompatible (typically because A N B = ¢) then X = 0.
2) If [A] + [B] > 1 and A and B are incompatible (typically because AUB = ©) then ¥ = 1.
3) If [A] < [B] and A and B are compatible (typically because A C B) then Z = 1.

Note that in the particular case in which B is -4 we have always [A A ~A] = 0 (from 1) and

[AV -A] =1 (from 2). We have also [A — A] = 1 (from 3). These three results are perfectly
classical and in full agreement with what is to be expected from a Boolean logic.

The above analysis strongly suggests that if, for some reason, upholding classical Aristotelian
principles is worthwhile, then any three-valued logic should not be strictly functional, but allow
some non-functionally-determined values available in predictable cases. Something in this spirit
is what Van Fraassen suggested when he advocated ‘supervaltations’ (30]. Now, we contend,
the same results are obtained automatically through our formulas.

6. THE GEOMETRY OF LOGIC: ORDER, DISTANCE, _
TRUTH LIKELIHOOD, INFORMATIVENESS, IMPRECISION AND ENTROPY IN £

[Definition:] Distance (or Boolean distance) between two propositions or theories A and B is:
d(4,B) =4 1 - [A— B]=[AV B] - [AA B] = [[4] - [B]| +2-Bap - Aus
(Naturally, if A+ B then d(4,B) = [B]-[4].)

[Definition:] Compatible distance between two propositions or theories A and B is:
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d*(4,B) = |[A] - [B]| = 1 - [4 & B]*
This distance can also be expressed in this way:

d*(4, B) = [A] + [B] - 2 min ([A], [B]) (49)

It is interesting to notice that:
- both d and d* are really distances (in the mathematical sense)

— the distance between two propositions or theories is the same as the distance between their
negations or antitheses (i.e. d(4,B)= d(—~4,-B), and the same holds for d*)

— the Boolean distance d(A, B) equals the value of the symmetric difference between A and B
[ defined by AA B =4 (AA-=B)V(-4AB)]so we have:

d(A,B) = [AAB] . and  d(4,1) = [A]

Moreover, we have the following miscellaneous properties —that hold in any metric Boolean
algebra and were comprehensively studied by David Miller in his ‘Geometry of Logic’ paper
(18):

d(A,B) = d(AAB,1)

d(A,B)+d(-4,B) = d(4,-4) =

d(AAB,A) = d(B,AV B)

d(A,B) = d(AAB,AV B)

(Incidentally, the last two formulas show the quadrilateral ACBD —where C = A A B and
D = AV B— is a rectangle.)

In view of the previous relations, we could define a truth likelihood value for A —approxi-
mating Popper’s (and Miller’s) verisimilitude measure— by making it to equal the distance
between A and falsehood, i.e. d(A, L). We obtain, immediately:

d(A, L) =d(T,1)~d(T,A)=1-d(4,T)=1-d(AAT, L) = 1-d(-4, 1) = 1 - [-A] = [4]

So here we have a further interpretation of our “truth values” [A] in terms of truth likelihood
or Popper’s verisimilitude (a promising concept —only partially developed— which initially led
this author to suggest it as a means to measure the truth content of a theory and to evaluate the
distance to other theories). We remark that we might as well consider [A] as a rough measure of
partial truth or “truth content” of A. In a similar spirit, we are reminded that a rather puzzled
Scott [25] once suggested the “truth value” [A] of many-valued logics could be interpreted as
one (meaning truth) less the error of A (or rather of a measure settling the truth of A) or the

inezactness of A (as a theory); in this framework, it comes out that, in our terms, [A] =1-¢4
and €4 =1-[A] =d(A4,T).

Further along the line of exploring related ideas, we now observe that, for any proposi-
tional letters P and Q, any uniform truth valuation yields [P] = [~P] = .50, [P A Q] = .25
and [PV Q] = .75, which is like saying that, if all letters are equiprobable, the given values
are the probability of the given proposition being true (a number that Bar-Hillel and Hintikka
call, appropriately, “truth-table probability” [10]). So this value’s complement to one should
seemingly correspond to the amount of information —in a loose sense— we have when the
proposition is true. This is precisely what Bar-Hillel and Hintikka define as “degree of infor-
mation”, semantical information or informativeness I(A) of a proposition 4. (Viewed in our
terms, I(A) equals 1 — [A], or [=A].) These authors use the concept to model the reasoning
process, assumed to be driven by an increase both of informativeness and parsimony. What is
interesting is that they compute the informativeness of composite propositions by combining
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them according to rules which amount to a multi-valued truth-value non-functional calculus of
the functional-cum-supervaluation type. So, they suggest that equalities

I(Av B) =I(A)-I(B) and

I(AANB)=1I(A)+I(B)—-I(A)-I(B)
are appropriate, but that I(A A -A) and I(A4 V -A) should be assigned, respectively, the 1 and
0 values (supervalues, in fact, in Van Fraassen’s sense [30]). All these values coincide with those
predicted by our formulas: indeed, if A and B are assumed independent the above equations

follow automatically from our formulas, while if B = =4 the 1 and 0 are a consequence of the
zero compatibility between 4 and - A.

We now define a new measure in L:

[Definition:] Imprecision of a proposition (or theory) 4 in £ (or £) is the value for A of the
function

f:L~—[0,1] suchthat f(A4)=[4« -4]* (50)

(We could as well have used the word “fuzziness” instead of imprecision, but the former term —
aside from its technical adequacy— is so much tied to Fuzzy Set Theory that it is better to leave
it there; moreover, “imprecision” is a rather neutral descriptor, aptly covering vagueness —a
formal imprecision built inside the language— as well as uncertainty —of a more epistemological
nature.) It is immediate that:

£(4) = 1 - d*(4,~4)
(and note that, had we used [4 & —A] in (50) or d(4, ~A) in the last formula, we would have
had an identically zero function f —and a useless definition—).

As is easily deducible —from (49)—, we have:
f(A) = 2 min ([4],1 - [A4]) (51)

which is equivalent to saying that the imprecision of a proposition A equals twice the error we
make when we evaluate on A the truth of the law of non-contradiction or of the excluded middle
by considering there really is maximum compatibility between A and —A (This equivalence is
trivial to verify, since the right-hand expression in (51) equals 2 x [A A =A]t or, equivalently,
2x(1-[AVv-4]Y))

Following this line of reasoning, we observe:

— Classical (two-valued) logic is the special case of ours in which all propositions in £ have zero
imprecision; if there exists just one imprecise proposition then we are in our general logic.

- Ordinary multi-valued logics —like L.,— are the ones where at least one proposition has
non-zero imprecision. This measure being —as it is— an error function, imprecision is here
just the degree in which these logics fail to distinguish contradictions (their lack of “resolving
power”, so to speak) affecting the proposition involved.

— Measure f fulfills a number of conditions that suggest it can be used as an entropy méasure
(in the sense of De Luca & Termini [5]); these conditions are:

- f(A) = f(~4) (i.e. affirmation and negation of 4 are both equally imprecise)

— There are in £ ‘minimal’ propositions (i.e. A such that f(4) = 0) as well as ‘maximal’
propositions (i.e. A such that f(4) € (0,1])

~If[A] < [B] < 1/2 or [A]>[B]>1/2 then f(A)< f(B)

— A proposition reaches its highest imprecision value when its truth value is 1/2.
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(Note, however, that the f measure sometimes plays —often forcedly— the role of a measure
of ignorance. But, if so, assimilating ignorance to maximum imprecision seems too simplistic
(ignorance would then reduce to the [A] = 1/2 case). Instead, a situation of ignorance seems
to be better and more realistically modeled not just inside a proposition, with no concern for
alternatives, but rather in the form of a certainty function —plausibly of the sub-additive type—
like the one we mention elsewhere [24] and that we call —after Shafer [27]— ‘vacuous’.)

7. THE SPECIAL CASES

The valuation logic we have defined in this paper is general and powerful enough to include
familiar, well-known logics as particular instances of itself. This is the case of (a) standard
classical logic —normally considered to be necessarily two-valued— and of (b) standard (but
non-classical) many-valued logics like Lukasiewicz-Tarski’s £, infinite-valued logic [15] —or,
more simply, the three-valued formalisms by Kleene, Bochvar, Lukasiewicz (and others) we
already treated above as a special case of ours. But our logic may also help to explain certain
scattered results or ideas that are not normally part of the logic mainstream. We have mentioned
already Boole’s [2], MacColl’s [16] and Peirce’s [19] views on propositional functions, or Scott’s
view of error (25], among others. All of them can be naturally explained inside our frame. Thus:

Classical two-valued logic is the special case of our general logic in which every proposition
is binary (i.e. VA € £ [A] € {0,1}) or, equivalently (by (51)), in which every proposition has
zero imprecision (i.e. VA € L f(4) =0).

Lukasiewicz-Tarski’s Lo, logic [15], as ours, generalizes classical (two-valued) logic in the
sense that it allows the members of the lattice of propositions to take values in [0,1] other than
0 or 1. Both systems of many-valued logic include classical two-valued logic as a special case.
Nevertheless, while we give up functionality, L., gives up Booleanity. In fact, if the {0,1} truth
set is extended to [0,1] those two properties of classical logic cannot be both upheld, and either
must be given up.

Our logic admits L, as a special case since, indeed, L., behaves exactly as ours would do if
no proposition in £ could be recognized as a negation of some other and, then, it would be
assigned systematically the ®-case connective formulas. Naturally that would give an error in
the values of composite propositions involving non-fully-compatible propositions, but it would
also restore the lost truth-functionality of two-valued logic. Recalling what the @-case stands
for, Lo, amounts —from our perspective— to viewing all propositions as having always maximal
mutual compatlblhty That means that L., conceives all propositions as nested (i.e. for every
A and A', either A C A’ or A’ C A where A is p(A4)). (Such a picture is strongly reminiscent
of Sha.fer’s (27] description of conditions present in what he calls consonant valuations.)

Thus, in our terms, Ly is a special case of our general loéic (or, better, an approximation
to it under special assumptions) characterized by systematic usage of the @-formulas. This
approximation (a simplification, actually) implies maximum compatibility between all pairs of
propositions of £, which entails the fiction of a total, linear order F- in £ —and C in P(0)—
(that means a coherent, negationless umverse) and w}uch is probably the best assumption we
can make when mformatmn on propositions is lacking and negations are not involved —or
cannot be identified as such. (Such an option is as legitimate as that of assuming, in the
absence of information on propositions, that these are independent.) In L, obvious negations
may be a problem, but it can be solved by applying error-correcting supervaluations —that our
logic supplies automatically. (And note that, in particular, the error incurred in by £, when
failing to distinguish between a proposition and its negation —thus not being able to recognize
a contradiction— is just the quantity we called imprecision.)
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