
Graph-Partitioning Based Instruction Scheduling
for Clustered Processors

Alex Aled, Josep M. Codina, Jestis SBnchez and Antonio Gonziilez

Dept. of Computer Architecture
Universitat Polit2cnica de Catalunya

Barcelona - SPAIN

E-mail: {aaleta,jmcodina,fran,antonio}@ac.upc.es

Abstract
This work presents a novel scheme to schedule loops for
clustered microarchitectures. The scheme is based on a pre-
liminary cluster assignment phase implemented through
graph partitioning techniques followed by a scheduling
phase that integrates register allocation and spill code gen-
eration. The graph partitioning scheme is shown to be very
eflective due to its global view of the whole code while the
partition is generated. Results show a significant speedup
when compared with previously proposed techniques. For
some processor configuration the average speedup for the
SPECfi95 is 23% with respect to the published scheme with
the best pelfonnance. Besides, the proposed scheme is much
faster (between 2-7 times, depending on the configuration).

1. Introduction

The constant evolution of chip manufacturing technology
allows for an ever-decreasing minimum feature size of
microprocessor components, which results in an ever-
increasing transistors per die area. These transistors have
been typically used to enhance the compute or storage capa-
bilities of the processor. Moreover, transistors are faster in
each new process generation, which also contributes signifi-
cantly to increasing the performance of microprocessors.
However, this evolution has also caused new problems, wire
delays and power consumption being two of the most impor-
tant issues.

Global wires that do not shrink as technologies scale
have delays that remain practically constant, meaning that,
relative to gate delays, their delay do not scale [16]. This
implies that the percentage of logic that a signal can reach in
a single cycle decreases as technology improves [27][13.
Higher component density also results in a higher power
consumption density. This requires more powerfullexpen-
sive cooling techniques and higher overall power consump-
tion, which is especially critical in mobile systems. Besides,
the trend of decreasing power supply to reduce dynamic
power consumption is usually accompanied by a reduction in
the threshold voltage, in order to offset the impact on gate

1072-4451/01$10.00 0 2001 IEEE

delays. However, this results in an exponential increase in
static power consumption [38].

New approaches have been proposed in different areas
to overcome the above problems: compilers, OS and archi-
tectures. In this latter area, clustering’ is becoming a com-
mon trend in the design of current microprocessors, in
particular in the DSP arena. Clustering is based on partition-
ing the processor resources into several groups. Each
resource or unit is allocated to a given group. Each of the
groups is referred to as a cluster. The components of each
cluster are simpler and thus less power consuming than those
of a unified microarchitecture. Besides, their layout are per-
formed in such a way that each cluster’s components are laid
out close together in order to reduce communication delays.
Long (and slow) wires are used only for inter-cluster inter-
connections. The performance of clustered microarchitec-
tures strongly depends on the ability of the softward
hardware to distribute the instructions/operations among
clusters in such a way that workload is balanced and inter-
cluster communications are minimized.

Several commercial microprocessors have a clustered
organization, both in the general-purpose and embedded
domains. This trend is even more noticeable in DSP architec-
tures, such as the Texas Instrument’s TMS320C6x [39], the
Analog’s Tigersharc [12], the Equator’s MAP1000 [26], the
HFVST’s Lx [9] and the BOPS’S ManArray [31]. All of these
DSP processors also use a VLIW architecture, for which the
compiler is the main responsible for instruction scheduling.
This architecture is referred to in the rest of the paper as a
clustered VLW.

A key component of statically-scheduled processors,
and in particular of clustered VLIW processors, is the com-
piler. Among the different steps of compilation, code sched-
uling is probably the most critical for performance in this
kind of processors. In this paper, we focus on instruction
scheduling techniques for clustered microprocessors. In par-
ticular, we center on loop scheduling techniques since loops

1. Some other authors refer to the same concept as instruction-level
distributed processing 1371

150

represent the vast majority of the execution cycles in pro-
grams typically executed in such processors.

In this work we propose a novel modulo scheduling
algorithm for clustered architectures. Modulo scheduling is
a well-understood technique that is very effective to exploit
instruction-level parallelism in loops. The proposed tech-
nique tries to generate schedules that have the following
properties: high instruction-level parallelism, low register
pressure and low inter-cluster communication penalties. The
technique is evaluated using the SPECfp95 benchmark suite
for a clustered VLIW processor. The results show that our
algorithm can significantly outperform previously proposed
schedulers.

The main feature of the proposed technique is that the
distribution of instructions among clusters is performed
using a global view of the whole loop code, and considers the
interactions between the instructions’ distribution and the
final scheduling. Former proposals in this area were based on
a two phase approach. First the instructions were distributed
to clusters using just information about the data dependence
graph, and then, the instructions were scheduled following
the computed partition. More recent proposals have shown
that an integrated approach such that the instruction distribu-
tion and scheduling are performed in a single phase is more
effective than the two phase scheme since it can take into
account the interactions between cluster assignment and
scheduling. However, the drawback of these latter proposals
is that the cluster assignment of each individual instruction is
decided based on information about already scheduled
instructions. This can lead sometimes to bad decisions. For
instance, the scheduler may decide to allocate an instruction
in a different cluster to its predecessors because the inter-
cluster network is very lightly loaded at this point and the
registers in the predecessors’ cluster are scarce. However,
later one, there may be other instructions that must generate
many communications and would have benefited a lot from
this communication slot.

The proposed technique addresses this problem by per-
forming the instruction distribution using a global view of
the whole dependence graph and at the same time, taken into
account the major implications that the partition will have on
the scheduling step. The final scheduling is performed as a
separate phase, but the main interactions between these two
tasks (e.g. required memory port usage, inter-cluster inter-
connect utilization, etc.) are already estimated and consid-
ered during the cluster assignment. Besides, the proposed
instruction scheduling technique performs in a single phase
instruction scheduling, register allocation and spill code gen-
eration.

The rest of the paper is organized as follows. Section 2
provides background on graph partitioning and modulo
scheduling that are relevant to this work. Section 3 presents
the proposed algorithm, which is evaluated and compared

with other schemes in Section 4. Section 5 reviews the
related work and finally, Section 6 summarizes the main con-
clusions of this work.

2. Background

2.1. Graph Partitioning Background

Graph partitioning algorithms try to divide the set of vertices
of a graph into a previously determined number of parts,
respecting some constraints and trying to optimize some
functions. For instance, a common problem is to partition a
graph into two equally sized sets of vertices such that the cut
size is minimized (where the cut of a partition is the set of
edges between different sets of nodes), which is proved to be
a NP-complete problem.

Graph partitioning is a quite mature area that has pro-
duced many different contributions. A number of software
packages have been developed such as CHACO by Hen-
drickson and Leland [15], which includes inertial, spectral
and multilevel partition or METIS by Karypis and Kumar
1211, which includes fast multilevel strategies.

2.1.1. Multilevel Strategies for Graph Partitioning
Multilevel strategies have been shown to be very effective to
partition graphs [22]. Multilevel strategies consist of two
phases: first the graph is transformed into a smaller one (i.e.
a graph with less number of nodes) trying to keep a similar
structure to the original graph. Coarsening is an iterative pro-
cess that stops when the graph has a number of nodes small
enough (e.g. equal to the number of sets in which we want to
divide the graph). Then, the coarsened graph is partitioned
with a simple technique (e.g., each node is allocated to a dif-
ferent set). This partition induces a partition of all the previ-
ous graphs, including the original one. The second phase
considers each of the intermediate graphs, from the youngest
to the oldest (i.e. from coarser to finer nodes) and refines the
partition by considering the benefit of moving some nodes
from their current location to a different one.

2.1.2. Coarsening the Graph
Coarsening is a transformation that iteratively reduces the
number of nodes and edges of a graph. At each step, some
groups of nodes of the current graph are selected and each
group is fused into a coarser node. The weight of a coarse
node is equal to the sum of the weights of the fused nodes
that belong to it. Regarding edges, those connecting nodes of
the original graph that belong to the same coarse node disap-
pear. Those edges connecting nodes from the original graph
assigned to different nodes of the coarse graph remain in the
new graph connecting the corresponding coarse nodes.
There may appear some multiple edges between the same
pair of coarse nodes. In this case, they are combined into a

151

single edge whose weight is equal to the sum of the weights
of the original edges.

Note that each node of the original graph or any graph
generated in previous coarsening steps belongs to one and
only one node of the current coarse graph, and the sum of the
weight of all nodes does not change.

The coarsening process is usually performed by finding
a matching in the current graph. A matching of a graph G=
(y E) is a set M of edges such that no pair of edges e l , e2 of
M are adjacent. To generate good partitions, coarser graphs
should keep a similar structure to the original one. For this
purpose, it is interesting to coarsen the whole graph simulta-
neously so that the resulting coarse nodes after each step
have similar size. Thus, it is important to find matchings with
as many edges as possible. Furthermore, there may be some
edges which are better candidates than others for being in the
cut. For this purpose, each edge is assigned a weight that is
proportional to the penalty that would be caused by allocat-
ing these adjacent nodes to different sets. Then, at each step,
we will select a maximum weight matching', which is
defined as a matching such that the sum of the weight of its
edges is the highest among all possible matchings.

Once the matching has been computed the new graph is
built by fusing the nodes joined by edges of the matching
into new nodes of the coarse graph. Those nodes that are not
adjacent to any edge of the matching are also assigned to a
new node of the coarse graph.

2.1.3. Refining the partition
Once a graph with a small enough number of nodes is
obtained, its nodes are distributed among the sets with a sim-
ple algorithm (e.g. one node per set). This in turn induces a
partition of all finer graphs, including the original one. Then,
the algorithm proceeds backwards, from the coarsest to the
finest graph, trying to enhance the partition. For this purpose
several heuristics can be used, most of them based on the
algorithm by Kerninghan and Lin [23] and the improvements
by Ficuccia and Mattheyses [1 I]. The general idea is to move
nodes from one set to another whenever this improves the
partition.

2.2. Modulo Scheduling Background

Modulo scheduling is an instruction scheduling approach for
cyclic codes [32]. It is a very effective technique to exploit
instruction-level parallelism in loops. The main feature of a
modulo scheduled loop is its initiation interval (U), which is
the elapsed number of cycles between the initiation of con-
secutive iterations and its resource requirements. For loops
with a high trip count, the execution time is almost propor-
tional to the II. High register requirements may translate into

1. We have used the function implemented in the LEDA library [28]

II I MI1

Figure 1. Overview of the two algorithms.

the necessity to increase the II or adding spill code, which in
turn may require a higher II. In this work, we use an
approach that allocates registers and generates spill code at
the same time as instructions are scheduled.

3. The GP Scheme

This section presents the proposed code generation frame-
work. We refer to it as GP scheme (Graph-Partitioning based
scheme).

3.1. Overview

The proposed code generation framework is illustrated in
Figure 1 and works as follows. First of all, the data depen-
dence graph (DDG) is partitioned according to the heuristics
shown below in Section 3.2. The input to the partitioning is
the minimum initiation interval (MU). The result of this step
is the cluster assignment of each node and an initiation inter-
val bound due to the inter-cluster bus/es (IIbus). This initia-
tion interval depends on the number of communicatioris
obtained by the partition:

where NComm is the number of values communicated by the
bus according to the partition, LatBus is the latency of the
bus (we assume a non-pipelined bus) and NBus the number
of buses. The value of lIbus corresponds to the minimum
number of cycles needed to schedule all the communications
given by the partition through the NBus available bus/es.

Once the partition has been computed, the next step is
the scheduling phase. This phase tries to obtain a valid
scheduling of the DDG following the partition and using the
same initiation interval (II) as the one used for computing the
partition. This initiation interval is used instead of IZb, (even
if the former is smaller than the latter) on the hope that some
communications will be performed through memory instead
of the bus (following the strategy described below in Section

152

3.3.2). Then, following a precomputed order, each node is
tried to be scheduled in the assigned cluster. This step takes
into account all resource requirements (functional units, reg-
isters and, if needed, bus slots). If the schedule succeeds, the
algorithm proceeds with the next operation. However, if the
node cannot be scheduled in the selected cluster, two differ-
ent alternatives have been analyzed as showed in Figure 1:

a) Increase the initiation interval and re-start the schedul-
ing phase using the same partition.
This alternative represents the option in which the goal
is to obtain a schedule that exactly matches the parti-
tion. This heuristic ignores any information given by
the scheduler (this alternative is called Fixed Partition).

b) Try to schedule the node in one of the other clusters fol-
lowing the strategy described in Section 3.3 (this alter-
native is called GP).
If any cluster is feasible, the node is scheduled in such
cluster and the algorithm continues with the following
operation (trying again in the cluster assigned by the
partition). On the other hand, if the node cannot be
scheduled in any cluster, then the initiation interval is
increased. At this point, we have to decide if the best
choice is (i) to re-compute the partition starting from
the new initiation interval, or (ii) to re-start the sched-
ule phase with the current partition. This decision is
taken by comparing the increased initiation interval 11,
and the Ilbus. Since the partition tries to minimize the
impact on execution time of the cut (see Section 3.2), if
IIb,,> II, recomputing the partition will try to reduce
Ut,,, so it will be beneficial. On the other hand, if IIb,
I II, recomputing the partition will likely result in no
benefit and the scheduler will use the current one.

3.2. Graph Partitioning for Modulo Scheduling

Our objectives are slightly different to conventional graph
partitioning problems. Concerning workload, an exact bal-
ance among the clusters is not needed. All we need is that the
operations allocated to each cluster do not saturate any
resource. Regarding the edges in the cut, it is more important
to minimize the effect that they have on the execution time
than their number.

3.2.1. Coarsening the Graph
To coarsen the graph we use a maximum weight matching
algorithm. The weight of an edge reflects two different fac-
tors. The most important one is the impact on execution time
of adding a delay to this edge. The second factor is the slack
of the edge. The slack of an edge is defined as the number of
delay cycles that could be added to this edge without affect-
ing execution time. These two factors are converted into a
single metric by multiplying the former times the highest
value of the latter plus one and adding the highest value of

the slack minus the actual slack. We finally add one unit in
order to avoid any edge to have zero weight (because edges
with zero weight will never be in the maximum weight
matching.) In this way, any difference in the former factor
has always a greater weight than the largest difference in the
latter factor. This is summarized by the following expres-
sion:

weight (e) = delay(e)’ (maxsl t1) t maxsl - slack(e) t 1

where delay(e) is the difference between the execution time
before and after adding a delay equal to the latency of the bus
to the edge and rnaxsl is the maximum slack of any edge of
the graph, i.e.,

delay(e)= (niter-l)’(ll-Mll) t new-max-path - max-path

maxsk max {slack(e) I e is an edge of G)

niter is the iteration count of the loop (obtained through pro-
filing) and m a x j a t h and new-maxgath are the longest
paths in the graph before and after adding a delay in the edge,
respectively.

Each pair of nodes of the matching that are joined by an
edge will be compacted into a single macro-node. In this
way, we favor that these two nodes are mapped into the same
cluster. Let G’=(V’, E ’) be the new graph after compaction,
then IV’I= IVI- Imatchingl.

Coarsening is iteratively repeated until a graph with as
many nodes as clusters in the architecture is obtained. Then,
each node is assigned to a different cluster and this induces a
partition of the original graph: every original node belongs to
a unique macro-node and it is assigned to the cluster where
the macro-node is.

3.2.2. Refining the Partition
Once an initial partition has been obtained, it is improved
upon by analyzing all intermediate partitions, starting from
the result of the most recent compaction and iterating back
through intermediate results until we reach the original
graph. We use two heuristics in order to improve the partition
at each step: one tries to balance the workload whereas the
other tries to minimize the impact on the execution time of
the edges between nodes allocated to different clusters.

Improving Workload Balance
Each refinement step considers the current partition and tries
to improve it by moving some individual macro-nodes. The
granularity of the macro-nodes varies from the coarsest at the
beginning to the finest (e.g., a single original node) at the
end.

At each step, we first try to improve workload balance if
the current partition overloads any machine resource (i.e.,
the utilization ratio of each resource cannot be higher than

153

100%). For this purpose, we consider each overloaded
resource from the most to the least saturated one. Then, for
each cluster cl where this resource is overloaded and for all
coarse node v in this cluster cl containing any operation that
uses this resource, we try to move this node v from cl to any
other cluster c2 such that the resulting partition neither over-
loads this resource nor the more critical resources previously
considered in c2. As long as v is moved out of c l , the load in
cl diminishes. This process is repeated until no resource is
overloaded or until no beneficial movement is found. In the
latter case we wait for the next step (when the granularity of
the nodes will be finer) to balance the load.

Minimizing the Impact of Inter-Cluster Edges
At each step, after trying to improve the workload balance,
we consider movements that reduce the impact on the execu-
tion time of the edges between nodes in different clusters.
We consider every node that has a neighbor in a different
cluster. If this node can be moved to its neighbor’s cluster
(i.e., there are enough resources) the impact on the execution
time of this movement is computed. If there are not enough
resources in the destination cluster, but the required
resources can be made available by moving a node from the
destination to the source cluster, all feasible interchanges
between pairs of nodes are considered and their impact on
the execution time is computed. Among all the possible sin-
gle node movements and pair of nodes permutations, the one
providing the largest benefit in terms of execution time is
selected and applied (if the benefit is positive). In case of a
tie, the transformation that maximizes the slack of the edges
between nodes in different clusters is chosen. Finally, in case
of a tie in this second metric too, the solution that minimizes
the number of edges between different clusters is selected.

Once a node movement or an interchange of a pair
nodes is applied, the process is repeated again until no fur-
ther benefit can be obtained by this procedure.

The impact on execution time of a given partition is esti-
mated by considering a hypothetical machine with the actual
resources except for registers, which are assumed unlimited,
and without considering the effects of potential conflicts due
to scheduling constraints (i.e., the scheduling of individual
instructions is not performed) and assuming an ideal mem-
ory that serves every access in a single cycle. The intercon-
nection network as well as the memory ports are taken into
account in a realistic way. Estimating the execution time of a
software pipelined loop requires us to know its initiation
interval (Il). The I1 is set according to the scheme described
above in Section 3.1.

3.3. Instruction Scheduling and Register Alloca-
tion

In this section we present our approach to instruction sched-
uling and register allocation, taking into account the cluster
assignment previously computed. Both tasks are performed
at the same time, generating spill code on-the-fly when
needed. It is based on the URACAM modulo scheduling
framework for clustered VLIW architectures [4]. We first
describe the original URACAM technique. Then, we present
the proposed extensions in the context of this work.

3.3.1. Figure of Merit
Since finding the optimal schedule has an exponential com-
plexity, we rely on heuristics to search the solution space for
efficient schedules. Besides, the schedule is produced
through an iterative process that works by adding instruc-
tions to a partial schedule until all instructions have been
scheduled. Thus, it is crucial to have a function that allows
one to compare different partial schedules and decide which
one is better. The result of this function is what we will define
as ourfigure of merit.

The ultimate figure used to compare two schedules is
the execution time, but this is not useful for comparing par-
tial schedules. Therefore, the proposed figure of merit i!;
based measuring the utilization of the most critical
resources. The underlying assumption is that a balanced uti-
lization of the critical resources is desirable in order to avoid
the saturation of those resources before the schedule has
been finished.

The utilization of the functional units is determined
beforehand and does not depend on the schedule. The
selected I1 has been chosen in such a way that there are
enough slots for any required functional unit operation.
However, the utilization of other critical resources is unpre-
dictable and depends on the particular schedule. These criti-
cal resources are the inter-cluster interconnection network,
the memory ports and the registers.

Given a partial schedule and the current instruction that
is to be scheduled, we use a multi-dimensional figure of
merit to compare the different partial schedules resulting
from inserting the instruction in alternative slots. The figure
of merit consists of a set of (2 x NCZusrers + 1) percentages:

One for inter-cluster communications. Percentage of
free communication slots before scheduling the current
instruction that are consumed by the new inserted
instruction.
NClusters for memory. For every cluster, percentage
of free memory access slots before scheduling the cur-
rent instruction that are consumed by the new inserted
instruction.

154

NClusters for registers. For every cluster, percentage
of free lifetimes before scheduling the current instruc-
tion that are consumed by the new inserted instruction.

The reason why we use as part of the figure of merit the
percentage of remaining resources that are consumed by the
analyzed instruction is that scarce resources are more valu-
able than abundant ones. In particular, the value of a given
type of resources is inversely proportional to the amount of
currently remaining resources of this type.

Then, we need a function that compares two figures of
merit and determines which one is better. For this purpose,
the components of each figure of merit are sorted from high-
est to lowest. Then, values are compared pairwise starting
from the highest until a significant difference is found
(greater than a given threshold). In this case, the figure of
merit with the lowest component is chosen. If all pair of
components are similar, the choice is made by adding all the
components of each figure of merit and selecting the one
with the lowest sum.

This approach to comparing figures chooses the one that
maximizes the available resources of the most used type of
resources. This can be summarized as a philosophy that tries
to benefit the weakest (most used resource) so that the differ-
ence between the strongest (least used resource) and the
weakest shortens gradually.

3.3.2. Tkansformations
The proposed instruction scheduling technique does not
allow backtracking but it includes mechanisms in order to
reduce the pressure on a given type of resource at the expense
of increasing the pressure on another type. This can be ben-
eficial if the partial scheduling reaches a state in which any
resource is overloaded while others are not. To achieve this
purpose, some transformations to the partial schedule are
considered at each step, as described below.

Register pressure can be reduced by inserting spill code.
Another transformation diminishes the use of the bus: the
source cluster stores the value on a given location and the
destination cluster reads it. Both transformations increase
the pressure on memory ports. For this purpose, the figure of
merit is extended with an additional component that repre-
sents the usage of the remaining memory slots, that is, the
total memory slots minus the number of memory operations
in the original code (which is known beforehand)

Finally, memory pressure can be reduced by either
removing spill code or by inserting copy operations that use
the interconnection network instead of memory to make
communications.

Note that spill code and communications through mem-
ory are the only instructions that can be unscheduled.

3.3.3. Instruction Scheduling
First of all, the nodes of the data dependence graph are sorted
according to the Swing Modulo Scheduler ordering algo-
rithm [25]. Following this ordering, one node at each time is
tried to be scheduled. For this purpose, a list of alternative
partial schedules is obtained, one per cluster with available
resources. The best candidate is chosen according to the fig-
ure of merit described in Section 3.3.1. Then, all transforma-
tions described in Section 3.3.2 are tried starting by the
transformation that deals with the most saturated resource.
Transformations are applied until no improvement can be
achieved. Should there be no possible scheduling, the initia-
tion interval is increased and the whole process is re-initial-
ized.

3.3.4. Extensions to the Base Algorithm
The graph partition gives some useful extra information to
the scheduler about the usage of memory ports on each clus-
ter. Therefore, the remaining memory slots can be consid-
ered as a resource local to each cluster instead of a global
one. URACAM has been enhanced in order to take into
account this extra information by extending the figure of
merit with NClusfers additional components that represent
the usage of the remaining memory slots in each cluster.

4. Evaluation

4.1. Experimental framework

The modulo scheduling algorithm has been implemented in
the ICTINEO compiler [2] and evaluated for the SPECfp95
programs.

Three different configurations of the clustered VLIW
architecture have been considered. All of them are 12-issue
and have the same number of total resources that are divided
homogeneously among the different clusters. These configu-
rations are shown in Table 1 :

Table 1. Clustered VLIW configurations and latencies

The first configuration is called unijied and it is com-
posed of a single cluster with four functional units of each
type (integer, floating point and memory) and a unique reg-
ister file. The 2-cluster configuration has 2 functional units
of each type and half of the registers per cluster whereas the
4-cluster configuration has 1 functional unit of each type and

155

a quarter of the registers per cluster. For the clustered config-
urations we will show results for 1 bus (results for two buses
follow a similar trend) with different latencies (1 or 2 cycles)
and different total number of registers (32 or 64) in order to
study the flexibility of each algorithm. For all configurations
the memory hierarchy is shared by all the clusters and con-
sidered perfect (i.e., all cache accesses hit). For a realistic
memory, techniques to reduce the impact of cache misses
when modulo scheduling is applied should be used [34].

The unified configuration represents our baseline since
it has the same resources as the clustered configurations but
it does not suffer from the inter-cluster communication pen-
alties. Therefore, the instructions per cycle (IPC) of the uni-
fied configuration is an upper bound of what can be achieved
by the clustered ones. Note that this measure (IPC) is inde-
pendent of the processor cycle time. However, the clustered
organizations may benefit from a faster clock, and thus, an
IPC for a clustered configuration close to that obtained for
the unified configuration means an overall performance
improvement when the cycle time is considered.

In this section, we use IPC as the main performance
metric. The IPC includes the contribution of the prolog and
epilog. The number of iterations of each loop has been
obtained through profiling. The programs were run until
completion using the test input data set. The performance
figures shown in this section refer to the modulo scheduling
of innermost loops. We have measured that the scheduled
loops represents around 95% of the total execution time. For
some of them the initiation interval reaches a limit that
makes modulo scheduling inappropriate. For these cases, list
scheduling is applied. Nevertheless, we have measured that
this happens for just a few loops.

4.2. Performance figures

Figure 2 shows the results for 2 (the first two graphs on the
top) and 4 clusters (on the bottom) when there is 1 inter-clus-
ter bus with a I-cycle latency. For each cluster we present
results for a total number of 32 and 64 registers. The mean-
ing of the different bars is the following one. White bars rep-
resent the results for the unified configuration. For this
configuration, heuristics described in Section 3.3 are used in
order to deal with register pressure. This configuration rep-
resents our baseline. The second bar (in light grey) shows the
results for clustered configurations using the URACAM
scheduler. URACAM performs cluster assignment, instruc-
tion scheduling and register allocation in a single phase. It
has been shown to outperform previous modulo schedulers
for clustered architectures [4]. Unlike the technique pro-
posed in this paper, URACAM performs cluster assignment
based only on the information of the partial schedule instead
of the whole code. The next two bars correspond to the
schemes proposed in this work. The third bar (in dark grey)

6

U u.m
D URICAM

8 CP
g 4 8 W P . *

1

n

sp~cr~9s . M regbters

(a) 2-cluster

X

SPECfpY5.32 rcgktm

8
n 1

smcf(I%. M

(b) 4- cluster

Figure 2. IPC obtained for configurations with 1 bus
with a latency of I cycle

shows the results for the approach (a) shown in Figure 1 and
explained in Section 3.1. In this approach, the scheduling
step follows exactly the cluster assignment determined in the
graph partitioning phase. When the scheduling fails to find a
valid slot for an instruction, the initiation interval is
increased and the scheduling phase re-started. We refer to
this approach as Fixed Partition. Finally, the last bar (in
black) shows the results for the proposed GP technique

156

SPECfpYS -32 rcgkters

SPECrpY5 . M ~ i s ~ c r s

4- cluster

Figure 3. IPC obtained for configurations with 7 bus
with a latency of 2 cycles

(alternative (b) in Figure l), in which sometimes the partition
is re-computed when increasing the initiation interval.

From these graphs we can draw several conclusions.
The GP produces significant gains for all configurations with
respect to the best performing previously published scheme
(URACAM). The GP variation that we call Fixed Partition
achieves performance levels that in general are between the
URACAM and GP. On average, the schedules obtained by the
GP technique in a 2-cluster with 32-register configuration
improves in 23% and 7% the performance of the URACAM
and Fixed Partition approaches respectively. Only for
hydro2d and mgrid in the 4-cluster 32-register configuration,
and for mgrid in the 4-cluster @-register the IPC of GP is
outperformed by the URACAM. This is due to two possible
reasons: (i) the effect of the prolog and epilog, and (ii) the
fact that the partitioning phase ignores register pressure, and
then it tends to schedule operations in the fewest number of
clusters, which may increase the register pressure in these
clusters.

In Figure 3 we can see the results for a 4-cluster config-
uration with 1 bus and a latency of 2 cycles. Like in the pre-
vious configurations the GP is the best approach and
significantly outperforms the URACAM. For 32 registers,
su2cor, hydro2d and upsi obtain worse results than the Fixed
Partition approach. We have observed this is because in
some cases it is detrimental to re-compute the partition when
the initiation interval is increased. If the reason why the
schedule fails is register pressure, re-computing the partition

with an increased initiation interval will tend to assign oper-
ations more concentrated in fewer clusters, and then the reg-
ister pressure on this cluster will be increased. This suggests
that including some heuristics that consider the register pres-
sure during the graph partitioning phase may be an interest-
ing research area.

Finally, we show the time required to compute the
scheduling. In Table 2 we can see, for different configura-
tions, the average time required by our software to compute
the scheduling for the different algorithms. We can see that
URACAM is the most time-consuming approach (it is
between twice and seven times slower than the other two
schedulers, depending on the architecture configuration).
The conclusion is that the proposed techniques obtain better
schedules in less time. The main reason of this behavior is

Table2. Average CPU time required to compute the
schedule for all benchmarks

that URACAM always tries to schedule an operation in all
clusters, whereas the other two schemes follow the pre-com-
puted partition.

5. Related Work

Modulo scheduling is the most popular scheme used to per-
form software pipelining ([32][24]). It consists on finding a
fixed pattern of operations (of length II - initiation interval)
in which there are operations from different iterations of the
original graph. However, finding the optimal solution on a

' resource constrained scenario is an NP-complete problem.
For this reason, many different heuristics have been pro-
posed in order to find near-optimal schedules. These heuris-
tics have different goals: increase the throughput (e.g.,
[18][40][33]), minimize register pressure (e.g., [14][7]),
reduce the effect of cache misses (e.g., [3]), or improve sev-
eral of them simultaneously (e.g., [17][6][25][34]). All these
heuristics focus on modulo scheduling for unified architec-
tures (i.e., a non-partitioned configuration), and do not con-
sider the inter-cluster communication problems.

There are several works related to instruction schedul-
ing for clustered VLIW architectures, mainly for acyclic
code (e.g., [8][3][19][30]). For instance, Kailas, Ebcioglu
and Agrawala I201 have recently presented an approach to
produce schedules for acyclic code that combines cluster

157

assignment, instruction scheduling and register allocation in
a single phase. These works differ from the approach pre-
sented in this paper in that they focus on scheduling instruc-
tions in acyclic codes. Besides, they use different cluster
assignment heuristics.

Recently, some schemes for modulo scheduling for
clustered VLIW architectures have been proposed:

Nystrom and Eichenberger [29] proposed an algorithm
that performs modulo scheduling for such architectures
in two phases: first the dependence graph of the loop
body is partitioned (and then, each operation assigned
to a cluster), and later the operations are scheduled fol-
lowing the graph partition. If any of these two phases
fails, the algorithm is re-started by increasing the initi-
ation interval. They focus on two main aspects: the
impact of loop-carried dependences and the negative
impact of aggressively filling clusters. Their study
ignored the effects of register pressure. The algorithm
proposed in this work also follows the strategy of a
sequential partitiodscheduling of the graph. However,
there are important differences in the implementation
of these two phases: (i) the partition focuses on the
impact on the execution time of the loop rather than just
on communications’, (ii) the partition uses more infor-
mation about the implication of its decisions on the
scheduler, and (iii) several heuristics are applied by the
scheduler in order to reduce the communication and
register pressure.
Femandes et al. [101 proposed an approach to perform
both scheduling and partitioning in a single step for
software pipelined loops. However, they assume an
architecture with an unusual register file organization
based on a set of local queues for each cluster and a
queue file for each communication channel.
Scinchez and GonzPlez [35] proposed a unified assign-
and-schedule approach in which cluster selection and
scheduling of operations are done in a single phase. In
that paper, they showed that their technique was better
than their implementation of the cluster assignment and
scheduling in two sequential steps as proposed in [29].
The reason they showed was that cluster selection for
each node is dependent on current state of the schedule.
That work was later extended to deal with a distributed
cache memory [36] and with a sophisticated approach
to insert spill code on-the-fly and effective mechanisms
to deal with communications, register and memory
pressure at the same time [4]. These works differ from
the approach presented in this paper in one main
aspect: they assign instructions to clusters individually,

I. Note that there. is not a direct relation between number of commu-
nications and execution time -- some communications may not af-
fect execution time at all.

taken into account only previously assigned instruc-
tions, and they ignore resources needed by operations
to be scheduled in the future. The scheme proposed in
this paper is more effective since it has a global view of
the whole dependence graph, and instructions are allo-
cated to clusters all at the same time, taking into
account the properties of the global solution.

6. Conclusions

This work has presented an approach to scheduling instruc-
tions for clustered VLIW architectures. A main feature of the
proposed technique is that it performs a preliminary cluster
assignment based on a global analysis of the whole code of
each loop, using graph partitioning techniques. It partitions
the data dependence graph before starting the scheduling
using estimations of the impact of the partition on the sched-
uling phase. Then, it uses simple but effective heuristics to
find a good schedule. Instruction scheduling, insertion of
communications and register allocation with spill code gen-
eration are performed in a single phase. The proposed tech-
nique has been shown to be more effective than previously
proposed approaches. For instance, for a 2-cluster, 1-bus, 32-
register configuration the proposed scheme outperforms the
best previously published scheme by 23%.

Among different alternatives that have been evaluated,
the scheme based on selectively recomputing the partition,
based on parameters obtained from failed schedules, is the
most effective scheme.

Finally, the proposed technique has shown to be very
competitive in terms of required computing time. Compared
with a state-of-the-art previous approach, this is around 2-7
times faster on average.

References

A. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger,
“Clock Rate versus IPC: The End of the Road for Conven-
tional Microarchitectures”, in Proc. of the 27th Int. Symp.
on Computer Architecture, pp. 248-259, June 2000
E. AyguadB, C. Barrado, A. GonzSllez, J. Labarta, D. Lbpez,
S . Moreno, D. Padua, E Reig, Q. Riera and M. Valero, “Icti-
neo: a Tool for Research on ILP”, in SC’96, Research
Exhibit “Polaris at Work”, 1996
A. Capitanio, D. Dytt and A. Nicolau, “Partitioned Register
Files for VLIWs: A Preliminary Analysis of Tradeoffs”, in
Procs. of 25th. Int. Symp. on Microarchitecture (MICRO-

J.M. Codina, J. Sanchez and A. Gonz&lez, “A Unified Mod-
ulo Scheduling and Register Allocation Technique for Clus-
tered Processors”, in Procs. of Int. Con$ on Parallel
Architectures and Compilation Techniques (PACT’2001),
Sept. 2001
C. Ding, S. Cam and P. Sweany, “Modulo Scheduling with
cache reuse information”, in Procs. of Europar’97,

25), pp. 192-300, 1992

158

pp.1079-1083, August 1997
161 A.E. Eichenberger, E.S. Davidson and S.G. Abraham,

“Optimum Module Schedules for Minimum Register
Requirements”, in Procs. of Supercomputing 9.5, pp.3 1-40,
July 1995
A.E. Eichenberger and E.S. Davidson, “Stage Scheduling: a
Technique to Reduce the Register Requirements of a Mod-
ule Schedule”, in Procs. of 28th. lnt. Symp. on Microarchi-
tecture (MICRO-28), pp.338-349, Nov. 1995
J. R. Ellis, “Bulldog: A Compiler for VLIW Architectures”,
MIT Press, pp. 180-1 84, 1986
P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F. Home-
wood, “Lx: A Technology Platform for Customizable
VLIW Embedded Processing”, in Proc. of the 27th Int.
Symp. on Computer Architecture, pp. 203-213, June 2000

[lo] M.M. Femandes, J. Llosa and N. Topham, “Distributed
Modulo Scheduling”, in Procs. of Int. Symp. on High-Per-
formance Computer Architecture (HPCA-S), pp. 130- 134,
Jan. 1999

[l 11 C.M. Fiduccia, R.M. Mattheyses, “A Linear-Time Heuristic
for Improving Network Partitions”, in Proc. ogf the 19th
IEEE Design Automation Conference, pp. 175-181, 1982

[12] J. Fridman and Zvi Greefield, “The TigerSharc DSP Archi-
tecture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000

[13] L. Gwennap, ‘‘Digital 21264 Sets New Standard”, Micro-
processor Report, 10(14), Oct. 1996

[14] R. Govindarajan, E.R. Altman and G.R. Gao, “Minimal
Register Requirements Under Resource-Constrained Soft-
ware Pipelining”, in Procs. of 27th. Int. Symp. on Microar-
chitecture (MICRO-23, pp.85-94, NOV. 1994

[15] B. Hendrickson and R. Leland, The Chaco User’s Guide
version 2.0, Tech. ReportSAND95-2344, Sandia National
Labs, Albuquerque, NM, 1995

[16] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires”, in
Procs. of the IEEE. pp. 490-504. April 2001

[17] R.A. Huff, “Lifetime-Sensitive Modulo Scheduling”, in
Procs. of Int. Conj on Programming Languages Design and
Implementation (PLDI’93), pp.318-328, 1993

[18] S. Jain, “Circular Scheduling: a New Technique to Perform
Software Pipelining”, in Procs. of rocs. of Int. Con$ on Pro-
gramming Languages Design and Implementation
(PLDI’9I). pp.219-228, June 1991

[19] S. Jang, S. Cam, P. Sweany and D. Kuras, “A Code Genera-
tion Framework for VLIW Architectures with Partitioned
Register Banks”, in Procs. of 3rd. Int. Con$ on Massively
Parallel Computing Systems, April 1998

[20] K. Kailas, K. Ebcioglu and A. Agrawala, “CARS: A New
Code Generation Framework for CLustered ILP Proces-
sors”, in Proc. 7th Int. Symp. on High-Performance Com-
puter Architecture (HPCA-7) , Jan. 2001

[21] G. Karypis and V. Kumar, A Fast and High Qualify Multi-
level Scheme for Partitioning Irregular Graphs, Tech.
Report 95-035, Dept. of Computer Science, University of
Minnesota, Minneapolis, MN, 1995

[22] G. Karypis and V. Kumar, “Analysis of Multilevel Graph
Partitioning”, in Proc. of 7th Supercomputing Conference,
1995

[23] B.W. Kemighan and S . Lin, “An Effective Heuristic Proce-

[7]

[8]

[9]

dure for Partitioning Graphs” Bell Syst. Tech. J., pp. 291-
307,1970

[24] M.S. Lam, “Software Pipelining: an Effective Scheduling
Technique for VLIW Machines”, in Procs. of Int. Con$ on
Programming Languages Design and Implementation
(PLDIW), pp.318-328, June 1988

[25] J. Llosa, A. Gonzilez, E. AyguadC and M. Valero, “Swing
Modulo Scheduling”, in Procs. of Int. Con$ on Parallel
Architectures and Compilation Techniques (PACT’96),

[26] “MAP1 000 unfolds at Equator”, Microprocessor Report,
12(16), Dec. 1998

[27] D. Matzke, “Will physical scalability sabotage performance
gains?“, IEEE Computet; 30,(9), pp. 37-39, September 1997

[28] K. Mehlhorn and S. Naher, “LEDA: a library of efficient
data structures and algorithms”, ACM Communications, 38,

[29] E. Nystrom and A. E. Eichenberger, “Effective Cluster Ass-
ingment for Modulo Scheduling”, in Procs. of 31th. Int.
Symp. on Microarchitecture (MICR0-31), pp. 103-1 14,
1998

[30] E. Ozer, S. Banerjia and T.M. Conte, “Unified Assign and
Schedule: A New Approach to Scheduling for Clustered
Register File Microarchitectures”, in Procs. of 3Ist Int.
Symp. on Microarchitecture (MICRO-31), pp. 308-315,
Nov. 1998

[31] G.G. Pechanek and S. Vassiliadis, T h e ManArray Embed-
ded Processor Architecture”, in Proc. of 26th. Euromicro
Conference, pp. 348-355, Sept. 2000

[32] B.R. Rau and C.D. Glaeser, “Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for High
Perfomance Scientific Computing”, in Procs. of Workshop
on Microarchitecture (MICRO-I4), pp.183-198, Oct. 1981

[33] B.R. Rau, “Iterative Modulo Scheduling: an Algorithm for
Software Pipelining Loops”, in Procs. of3Oth. Int. symp. on
Microarchitecture (MICRO-27), pp.63-74, Nov. 1994

[34] J. Sinchez and A. Gonzilez, “Cache Sensitive Modulo
Scheduling”, in Procs. of 30th. Int. Symp. on Microarchitec-
ture (MICR0-30), pp. 338-348, Dec. 1997

[35] J. Sanchez and A. Gonzilez, “The Effectiveness of Loop
Unrolling for Modulo Scheduling in Clustered VLIW
Architectures”, in Procs. of the 29th. Int. Con$ on Parallel
Processing (ICPP-29), pp. 555-562, Aug. 2000

[36] J. Sanchez and A. Gonzilez, “Modulo Scheduling for a
Fully-Distributed Clustered VLIW Architecture”, in Procs.
of 33th. Int. Symp. on Microarchitecture (MICRO-33), Dec.
2000

[37] J.E. Smith, “Instruction-Level Distributed Processor”,
IEEE Computer. 34(4), pp. 59-65, April 2001

[38] Y. Taur, “CMOS Scaling and Issues in Sub-0.25 pm Sys-
tems”, in Desing of High-Performance Microprocessor Cir-
cuits, IEEE Press, pp. 27-45,2001

[39] Texas Instruments Inc., ‘‘TMS320C62x/67x CPU and
Instruction Set Reference Guide”, 1998

[40] J. Wang and C. Eisenbeis, “Decomposed Software Pipelin-
ing: a New Approach to Exploit Instruction Level Parallel-
ism for Loops Programs”, in IFIP, Jan. 1993

pp.80-86, Oct. 1996

pp. 96-102, 1995

159

