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Abstract

This paper aims to introduce a method for verification of programs, which is
fully automatic. This method consists in an algorithm called ALICE which, given
a program and an algebraic specification, answers if the program is correct w.r.t.
the algebraic specification. No user intervention is needed (except, of course, the
writing of the program and the specification). The paper also proves that the prob-
lem of determining the correctness of a program w.r.t. an algebraic specification is
undecidable (even if only partial correctness is required).

1 Introduction

Since 1969, when software’s chronic crisis was detected, it has been clear that the lack
of an automatic procedure of verification (that is, an automatic procedure for checking the

correctness or incorrectness of a program at compile-time) is a great drawback (see, for
instance, [Gib94]).

We say that a program is correct if the behaviour expected from it is the same as its
actual behaviour. Therefore, it is obvious that we can refer to the correctness of a program
only if we have a description of the behaviour expected from it, which will be called the
specification. This specification must be written in a formal language if we want to study
the problem of correctness from an automatic point of view.

Although a lot of research has been employed in order to find an automatic procedure
which serves to obtain correct programs, the most interesting results can be divided into
two groups. Firstly, there are the procedures derived from Hoare Logic ([HoaT71}, [Gri81],

*This paper is a summary of several parts of V.R. Palasi’s future thesis “Application of behavioral
equivalence to automatic verification of programs”.



[DiF88], [Coh90]). Secondly, there are the techniques known as transformational develop-
ment ([Bal8l], [Bau82], [PaS83]).

Though it is impossible to explain these theories here, we can say that none of them is
fully automatic. In Hoare Logic, the user must supply the invariant suitable for each loop.
In transformational development, the user must choose the transformation rule which will
be applied in each moment. Consequently, these theories allow us to do “semiautomatic
verification” or “computer-aided verification”, but never “automatic verification”.

This paper aims to introduce a method for verification of programs, which, unlike the
aforementioned, is fully automatic. This method consists of an algorithm called ALICE !
which, given a program and an algebraic specification, determines whether the program is
correct w.r.t. the algebraic specification. No user intervention is needed (except, of course,
the writing of the program and the specification).

The complete description of algorithm ALICE and the proof of its correctness appear in
the following research reports: [Pal96a], [Pal96b], [Pal96c], [Pal96d]. However, the brevity
of this paper makes it impossible to describe the algorithm with full particulars. Conse-
quently, we explain the intuitive ideas and we shall only give a formal description when it
is strictly necessary.

The structure of this paper is as follows. First, we describe the algebraic notation used
in it (Section 2). Then, we explain a general idea of our method (Section 3). Later, we
define the algebraic theory on which this method is based (Section 4). Sections 5 and 6
explain several parts of algorithm ALICE. Finally, some conclusions and future research
lines are outlined (Section 7).

2 Algebraic notation of this paper

We begin by concisely describing the notation of this paper (for a more detailed descrip-
tion, see [Pal96a]). The reader should realize that many-sorted algebra with Horn clauses
is used

Definition 1. A simple signature ¥ is a tuple £ = (5, F') where the members of S are
called sorts and those of F, function symbols or operations.

We refer to S as sorts(X) and to F as opns(X) . Variables of sort s are referred to as
vars(s).

11t is the acronym of “ALgebraic Inference of the Correctness of Environments”.



If an operation f has n arguments belonging to sorts wy, ..., w,, respectively, and its re-
sult belongs to sort s; we shall write f : wy...w, — s. We define opns(Z)y,={f | f :— s}

and 0pns(T)p1.wn,s={f | f: w1..w, — s}.

Definition 2. Let there be two simple signatures X; = (51, F1) and £g = (52, Fy). We
shall write £, C X, if $ € S, and F; C F,.

Definition 3. Let £ = (S,F) be a simple signature and X a set of variables. We refer

to the set of terms of sort s containing variables of X as Tg,(X). The set of terms (of any
sort) with variables of X is called Tg(X).

Furthermore, we define Tsx = Tx(D). The members of Ty are called ground terms.

Definition 4. Given a simple signature ¥, we refer to a X-equation of arity n (that is,
Y-equation with n conditions) as e : ¢ = d; &..& ¢, = d, = &, = t,. If a X-algebra A
satisfies an equation e, then we shall write A |= e.

Definition 5. A simple specification is a tuple SP = (X, F) where ¥ is a simple
signature and E a set of equations. Given a simple specification SP, we refer to its initial
algebra as T'sp

3 General idea

The general idea of algorithm ALICE appears in Figures 1 and 2. If we want to check
the correctness of a program P w.r.t. an algebraic specification SP;, we must see if the
program and the specification are “equivalent” according to a reasonable notion of equiv-
alence (which is defined in Subsection 6.1).
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Figure 1: External view of algorithm ALICE.



Now, comparing a program and an algebraic specification is comparing two mathemat-
ical objects which are of a different kind. Consequently, it seems easier to compare two
specifications. Therefore, what we will do is to transform program P into an algebraic
specification SP, that is “equivalent” to it. This transformation will be made by algorithm
a (which is studied in Section §).

When algorithm « is finished, we will obtain two specifications SP; and SP;. We will
have to check if these specifications are equivalent (according to the meaning of equivalence
defined in Section 4). Algorithm B creates an algebraic specification SP; and a set I of
inductive theorems such that proving the equivalence between SP; and SP, is the same as
proving I in the initial algebra of SPs.

To sum up, the problem of determining whether P is correct w.r.t. algebraic specifica-
tion SP; has been reduced to proving several inductive theorems in a given initial algebra.
Therefore, we can use an inductive theorem prover (algorithm <) in order to solve this
problem.

.............................................................
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Figure 2: Internal structure of algorithm ALICE.

We should like to make two comments before finishing this section. The first one is
that algorithm ~ is just an inductive theorem prover. Since bibliography about proof of
inductive theorems exists (see [KoR90], [Red90] for Horn clauses), this algorithm will not
be explained here.

The second comment is that algorithm ALICE is not a decision procedure, since one of
its parts is an inductive theorem prover. However, it can be proved (the proof is in appendix
B) that the problem of determining whether a program is correct w.r.t. an algebraic
specification is undecidable (even if only partial correctness is required) . Therefore, no
decision procedure exists for this problem.



4 Visible semantics

Though there have been several proposals of initial ((GTW75}, [GTW78]), final ([Wan79],
[Kam83]) and behavioral ([Niv87], [Kna93], [BBK94}) algebraic semantics, none of them is
completely suitable for dealing with the problem of proving the correctness of an algorithm
w.r.t. an algebraic specification. The following example makes this clear.

4.1 Intuitive ideas

Let us suppose that there is an imperative programming language in which the operation
of multiplication is not built-in, and also that a function to compute this operation is
programmed. The result could be as follows?:

obs *(a,b:nat) ret c: nat
c:=0;
while b > 0 do
c:=c+a;
b:=b-1
endwhile
endfunction

If we wish to study the correctness of this function, we must have to write a specification
of it. The result can be as follows (initial semantics is used):

spec SP is

sorts
nat

signature
*: nat nat — nat

equations
Y a,b:nat
*(zero,b)=zero
#(suc(a),b)=—+(*(a,b).b)

endspec
We assume that operations suc, zero and + (with prefiz notation) have been defined. Their

signatures and equations have been omitted for reasons of brevity.

We shall consider that function “*” is correct if it is equivalent to specification SP;
according to some reasonable notion of equivalence.

Following the general idea explained in Section 3, we transform function “*” into the
following specification (via algorithm a):

?We use the programming language AL, which is described in Subsection 5.1. In this subsection the
meaning of obs is also explained.



spec SP; is
sorts
nat
signature
*: nat nat — nat
equations
Y a,b:nat
*(a,b)=eval function(“obs *(a,b:nat) ret c: nat ... endfunction”,ab)
endspec

Operation eval function is part of the algebraic semantics of the language. It is assumed
that all the operations of this algebraic semantics have been defined. Their signatures and
equations have been omitted for reasons of brevity. (For a more detailed description of the
algebraic semantics of a language, see Section 5).

“¥? is correct w.r.t. specification SP; if specifications
“*7) are “equivalent”. It is easy

Now, we can say that function
SP; and SP; (which is the algebraic semantics of function
to see some properties that this equivalence must fulfil.

1. Two specifications can be equivalent despite having different signatures (in our ex-
ample, SP, has at least one operation (eval function) which does not belong to SPy).

2. In fact, we can divide operations of a specification into two classes: those that we wish
to specify (such as “*”, in our example) and those that we describe only because they
are required to define the former (such as “eval_function”). We call them “observable”
and “hidden”, respectively. It is easy to see that two equivalent specifications must
have the same observable operations.

3. Finally, it is well known that a term represents a “computation” of the specified
software system. Terms that have some hidden operation represent computation
states that are not visible in the external behaviour of the system. Therefore, only
terms that only have observable operations (hence, “totally observable terms”) should
be considered to define the equivalence.

Therefore, we can suppose that two specifications are equivalent if their totally observ-
able terms “behave” in the same way. But this approach is not completely correct.

The problem with this approach becomes clear when we wish to specify data types like
stacks, lists, sets, etc. For these data structures, it is advisable to obtain an abstraction of
the internal implementation similar to that of the conventional behavioural semantics. To
do this, the observable sorts® must be divided into two classes. The “nonvisible” ones are
the sorts that have abstraction of the internal implementation (they will normally repre-
sent data structures). The remaining sorts are “visible” sorts (they will normally represent

3A sort s is observable if there is an observable operation of sort s



atomic types)?. Two specifications are equivalent if their visible results are the same, that
is, if their totally observable terms of visible sort “behave” in the same way.

To sum up, two levels of “observability” are needed. That which distinguishes between
observable and hidden operations and that which distinguishes between visible observable
and nonvisible observable sorts.

Although there are several formulations of algebraic semantics (see [GTW78], [Kam83],
[BBK94]) there is none which fulfils all the properties stated so far. One of the main
problems is that algebraic semantics is traditionally defined between algebras that share
the same signature and, as we have seen, this is not acceptable here.

Consequently, we must define an algebraic semantics suitable for solving our problem.
This is done in the following subsection.

4.2 Formal definitions

In this subsection, we shall formally define an algebraic semantics (called “initial visible
semantics”) which fulfils all the properties needed for dealing with the problem of program
correctness (that is, all the properties stated in the above subsection).’

Definition 6. A visible signature.is a triple ( Vis, X oss, L an) such that Loy = (Soss, Foss),
Yan = (S, F) are simple signatures and, moreover, Vis C Sois and Yoss € T au-

We refer to the tuple (Vis,Zoss) as observable signature and, therefore, we define
sig-0bs(X) = (Vis, L oss). The members of Sop, and of Foy, are called observable sorts and
operations, respectively.

We call the members of Vis visible sorts. The members of (S\Soss) and of (F\Foys)
are called hidden sorts and operations, respectively.

Definition 7. Suppose that ¥ = (Vis, X oss, L) is a visible signature. We say that
A is a X-algebra if it is a ¥ 4y-algebra.

We define Ts, Tx(X) as Tk, Ts,,(X), respectively. Analogously, for each sort s €
sorts(Zan), we define T, (X), Tx, as (Tx,,;)s(X), (Ts4y)s, respectively.

A term is totally observable of visible sort if all its operations are observable and, more-
over, its sort is visible.

4This issue is explained at great length in [Niv87] for conventional behavioural semantics.
5Visible semantics is completely defined in [Pal96a] .



Definition 8. Let ¥ = (Vis, Zoss, L au) be a visible signature. We define TVisg = {t |
t € (TEObs)'s AsE Vls}

Obviously, T'Viss is a subset of Tx. The members of T'Visg are called totally observable
(ground) terms of visible sort.

A totally observable (ground) term of visible sort represents a computation result which
is externally visible (that is, visible “from outside” the specified system). As was stated in
the above subsection, the visible equivalence must take into account only the totally observ-
able terms of visible sort. This can be seen in the following definition.

Definition 9%. Let Y4 and ¥p be two visible signatures such that sig_0bs(X4) =
sig-obs(Xp). Let A be a ¥ 4-algebra and B a Yp-algebra. We say that A and B are visibly
equivalent (and we write A =y B) if":

Vi, t, € TVisg, it is fulfilled that A=t = ifand only if B =, = &,
Given the concept of the visible signature, that of the visible specification is easizy

definable.

Definition 10. A visible specification is a tuple SP = (Vis, Yo, Lan, £), where
Y = (Vis,Zops, Lau) is a visible signature and E is a set of Y-equations. We define

stg_obs(SP) = (Vis,Xoss). We refer to the initial algebra of the simple specification
(EAH,E) as Tsp.

We shall define the initial visible semantics of a specification. This semantics must have
the expressive power of initial semantics and fulfil the principle that two visibly equivalent
algebras should be considered equal according to initial visible semantics.

Definition 11. The initial visible semantics of a visible specification SP is defined as:
Vis—I[SP]={A| A=v Tsp}

Definition 12. Let SP; and SP, be two visible specifications. We say that SP; and
SP; are (initially) visibly equivalent if Vis — I[SP)] = Vis — I[SP,).

5 Algorithm o

As has been said in Section 3, algorithm « is the algorithm which transforms an im-
perative program into an equivalent algebraic specification (see Figure 2).

In [Pal96a] visible equivalence was defined starting from the concept of visible isomorphism, and
Definition 9 was a lemma.
"Moreover, notice that TVisg,, = TVisgy.



Now, we need a programming language in order to write a program. Obviously, algo-
rithm « is different for each language, though the underlying ideas are always the same.
In this section, we will explain these ideas and we will illustrate them with a particular
example: algorithm o for AL programming language.

5.1 AL programming language

In this section, we make a description of AL language. We suggest reading it together with
the AL program which is in appendix A.

AL (Adt language) is a language based on the concept of class. A class is a program-
ming module and a user-defined type at the same time. That is to say, the concept of class
in AL is the same as that of an object-oriented language, except that class inheritance is
not defined in AL.

An AL program is a sequence of class declarations. The declaration of a class T has
two parts. Firstly, under the reserved word state, type T is defined as a tuple of simpler
types, which are called attributes of T (for instance, in a class “stack”, type “stack” can
be defined as a tuple of an array and a pointer).

Secondly, (under the reserved word functions), functions using type T are defined as .
conventional imperative functions. They have some parameters and one result and the
possibility of declaring local variables and accessing the attributes of the type defined by
the class.

In fact, in order to obtain “abstraction from implementation”, only functions belonging
to class T' can directly access the attributes of type T8.

Since each type is defined starting from simpler types, it is required that there are some
built-in types. In AL, these are naturals, booleans and the type called table which allow
us to define all kinds of data structures.

Each function or class can be defined in AL as observable (obs) or hidden (hidden). A
hidden function or class can be used inside an AL program but is not visible from outside
(it only serves for implementation). Obviously, all the functions belonging to a hidden
class must be hidden too (the compiler checks this).

This is a short description of AL language. For a more complete and more formal
description, see [Pal96c].

8However, it is easy to see that functions belonging to other classes can indirectly access them via
functions of class T.




5.2 Problem of algebraic semantics of a language

We wish to define an algorithm which transforms a program into a visible algebraic
specification that is “equivalent” to it (see Figure 2). But before describing this algorithm,
we must explain what the word “equivalence” means for us.

We say that a program P and a visible algebraic specification SP; are equivalent if the
semantics of P is the same as that of SP;. Since the semantics of an algebraic specifica-
tion has already been defined in subsection 4.2, we must only define that of a program.
Moreover, since we have to compare the two semantics, it would also be useful to define
the semantics of a program in an algebraic way.

In fact, there have been several attempts at defining the semantics of an imperative
language via algebraic specifications (see for instance [Wan80] and [GoP81]). But these
works cannot be applied here for the following reasons:

o They are oriented to the definition of the semantics of a language and not to that of
a particular program.

e The way they define data types is not suitable here.

The example of subsection 4.1 can help us to see the last reason. Let us focus on the
signature of operation “eval function”. Since function “*” has two parameters of natural
type and one result of the same type, the signature of “eval_function” should be “function
nat nat — nat”.

However, we should be able to translate any imperative function into algebraic nota-
tion. Therefore, there must be one operation such as “eval function” for each combination
of parameters and result types. The problem is greater in a programming language such
as AL, which allows the user to define an indefinite number of new types. In fact, the
number of operations such as “eval function” would be infinite. Analogously, the number
of operations such as “eval_assignment”, “eval expression”, “eval_statement” (and, as a
general rule, all the operations which deal with different types) would also be infinite.

This problem is solved in {GoP81] by creating the generic sorts value (which means
any value regardless of its type) and lval (which means any list of values). A program (in
AL an imperative function) is translated into the algebraic notation as an operation with
the signature lvalue — value. In this way, there is one single “eval function”, one single
“eval_assignment” and so on.

But the example in Subsection 4.1 shows that this solution is not acceptable here. If

we have a function declared as “obs *(a,b:nat) ret c: nat”, its translation into algebraic
notation must be an operation with the signature “nat nat — nat”, since it must be

10



compared to an operation with the same signature (that defined by the user in SP;).

Consequently, our solution must be type-dependent enough to translate each imperative
function into an algebraic operation with the same types. But it must be type-independent
enough to avoid having infinite “eval function”, “eval_assignment”, etc.

5.3 The solution to this problem

The solution proposed here is dual. On the one hand, AL language will be specified from
the sorts value, lval, which allows us to avoid the existence of infinite operations. On the
other hand, we will add to each particular program a set of sorts and operations which
cause each imperative function to be translated into an operation with the suitable signa-
ture.

In this way, the semantics of any program P will be a visible specification Trad(P)
composed of two parts. ‘

1. A type-independent and program-independent part, which is not included here be-
cause it is similar to that of [GoP81]. Furthermore, it is fully described in [Pal96¢].

2. A part that is different for each program and is composed of the following sorts and
operations (which specify the data types of an AL program):

o For each class T in the program, there are

— One sort T called “sort associated to the class”.
— The following conversion operations:
*x geny : T — value
* espr : value — T
— The equation espr(genr(v)) = v (where v is of sort value)

e For each function with a heading as < obskind > f(a; : Ty,...,a, : T,) return
an41t T,y (Where < obskind > may be either obs or hidden) there are:

— One operation f : Ty X ... X T, — T,4; called “operation associated to

the function” (where, for any ¢, T; is the sort associated to T7).

— One equation f(ay,..., ax) = espr,,,(eval — function(< obskind > f(a; :
T{yytn : Th)return anqy : Thoy, gent, (a1) i gengy (az) it ... i geng, (@a)))®.

Visible sorts are nat and bool. Observable ones are nat, bool, table and those asso-
ciated to any class declared as “obs”. Observable operations are the constructors of nat,

®a:bi:c means the list of values [a,b,c].

11



obs i table and, also the operations associated to any function declared as “obs”.}®

To sum up, the semantics of P can be defined as:
Semantics(P) = Semantica(Trad(P))

Now, algorithm « is the algorithm which transforms a program into an algebraic spec-
ification that is equivalent to it (that is, a specification with the same semantics as the
program). Therefore, algorithm o must be that which transforms P into Trad(P)".

Moreover, since we are dealing with initial visible semantics, the above statement is
equivalent to:

Semantics(P) = Vis — I{Trad(P)]

And this equation is the fully formal definition of the semantics of any program P.

6 Algorithm [

6.1 The need for this algorithm

Algorithm ALICE aims to deduce whether program P is correct w.r.t visible specifi-
cation SP; (that is to say, whether P and SP; are equivalent): in other words, whether P
and SP; have the same semantics.

That is to say, algorithm ALICE aims to deduce whether:
Semantics(SP;) = Semantics(P)

Since we are dealing with initial visible semantics, we have that:
Semantics(SP,) = Vis — I[SPi]

Furthermore, as we have seen in the above section:
Semantics(P) = Vis — I[Trad(P)]

Consequently, statement Semantics(S) = Semantics(P) is equivalent to:
Vis — I[SP,) = Vis — I[Trad(P))

By definition 12, this statement is equivalent to:

10For a more detailed and more reasoned explanation of this, see [Pal96c].
11The definition of Trad(P) shows that this is a very simple algorithm and its complexity is linear.

12



SP; and Trad(P) are initially visibly equivalent

That is to say, the proof of the correctness of a program can be reduced to the proof
of the initial visible equivalence between two algebraic specifications. As can be seen in
Figure 2'?, the latter is implemented by the combination of algorithms 8 and v. Now,
we know that algorithm + exists, since it is just an inductive theorem prover. Therefore,
algorithm B is needed, because if this algorithm exists, we will have solved our problem.

6.2 Description of algorithm [

Algorithm £ is the algorithm which reduces the proof of the equivalence between two
specifications SP; and SP; in initial visible semantics to the deduction of inductive theo-
rems, that is, of equalities in an initial algebra (see Figure 2).

If we were dealing with initial semantics, this reduction would be easy. In order to prove
that SP; and SP; are equivalent, it would be enough to deduce satisfaction of equations
belonging to SP; in the initial algebra of SP, and that of equations belonging to SP; in
the initial algebra of SP;.

The same method can be applied to the initial behavioural semantics, though it would
be necessary to work with behavioural satisfaction instead of conventional satisfaction. But
this is no problem, since the former can be reduced to the latter (see [BiH94], [BHW94)).

However, this method is not valid in initial visible semantics'®. The reason is that SP;
and SP; may have different signatures, and consequently the equations of SP; may not
make sense in the initial algebra of SP, or vice versa.

Therefore, our method is different. We create a specification SP; whose initial algebra
contains (at least) all the information contained in the initial algebras of SP; and SP;.

Then, we reduce the proof of initial visible equivalence between SP; and SP, to the
proof of a set I of inductive theorems on SP; (see Figure 2).

It 1s obvious that we must take care in the choice of SP; and the set I of inductive
theorems. These issues are discussed in [Pal96d]. Here, we only explain the outcome which
we have obtained.

Let us start by defining the concept of V-renaming. Its formal definition is not included
here (the reader can find it in [Pal96d]). Informally, a specification SP; is a V-renaming
of SP, if we can obtain SP, starting from SP, by changing all the names of the sorts and
operations. Bijections 6 : sorts(SP;) — sorts(SP;) and ¢ : opns(SP;) — opns(SPy)

12In this figure, specification Trad(P) is called SP;.
13Although the concept of visible satisfaction can be defined (see [Pal96a]).

13



respectively mean the change of names of the sorts and the operations. They are called
V-renaming bijections.'*

Now, we will define the concept of V-reunion. Intuitively, a V-reunion of SP, and
5P, is a simple specification which contains all the sorts and operations of SP; and the
V-renaming of SP, and, also several other sorts and operations.

Concretely, the formal definition of a V-reunion is as follows.

Definition 13'%. Let SP, = (Vis, Z o4, (Zau)1, By) and SP, = (Vis, Zobs, (Zan)2, By)

be two visible specifications with the same observable signature.

Let there be a specification SPy = (Visy, (X0 )4, (Zai1)a, Ey), such that SP, is a V-
Renaming of SP, via the V-renaming bijections § and ¢.

We say that a simple signature SP; = (X3, E3) is a V-reunion of SP; and SP, via SP,
if: 4

o sorts(Zs) = sorts((Zau))U(sorts(X an)a)Uy where v & (sorts((Zau)1)Usorts((San)a)).

o opns(X3) = opns((Zan)1) U (opns(Xan)s) U Frew where Fl., contains the following
function symbols:

— yes:i— 7y

— plus iy Xy — v

— For any s € sorts(Eoys)
trans, : s X 0(s) — v

where yes, plus, trans ¢ (opns((Zau)1) U opns((Zan)a))

o E3=E UE,U E,., where E,., contains the following equations:

— plus(yes, yes) = yes
— Vs € sorts(Xops) Vo € opns(Tops)as
trans,(o, #(c)) = yes
— Vwl,..,wn,s € sorts(Xoss) Vo € 0pns(Zoss)wi.wn,s

trans,(o(ty, ta, ..., tn), (o) (w1, Uz, ooy Up)) =
plus(transy, (4, u1), plus(transy, (t2, u2), ..., transy, (ty, va)...))

141t is easy to see that the algorithm which creates a V-renaming of a visible specification has a linear
complexity w.r.t. the input.

'°In this definition, we have used the names v, yes, plus and trans. There may be some trouble if, in
SPy or 5Py, any of these names have already been used. This naming conflict is easily avoided by using
names other than those belonging to SP; or SP,.
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where E,., N (Ey U Ey) = O

Bijections 6 and ¢ will be called V-reunion bijections. We can state the following the-
orem.

Theorem 14. Let SPl = (Vis, 2055, (2A11)1,E1) and SP2 = (ViS,EObS, (2A11)2,E2) be
two visible specifications with the same observable signature. Let SP; be a V-reunion of
SPy and SP, via any specification, where the V-reunion bijections are called 8 and é.

Then, the following statements are equivalent:

® Vs € Vis, Va, 25 € vars(s); y1, y2 € vars(6(s)) it is fulfilled that
(Tsp, = trans,(z1, y1) = yes & trans,(zy, 12) = yes = 1 = ¥2) A
(Tsp, = trans,(z1, y1) = yes & trans,(z,, Y1) = yes = 13 = 1)

e SP; and SP; are initially visibly equivalent.
Proof. The proof is in [Pal96d]. O

That is to say, proving the initial visible equivalence between two specifications has
been reduced to proving several inductive theorems over specification SP;. But this reduc-
tion is the aim of algorithm 3

Therefore, algorithm £ is the algorithm that, starting from two specifications, builds
their V-reunion and the inductive theorems stated in Theorem 14. It is easy to see that
the complexity of this algorithm is linear.

7 Conclusions and future work

An algorithm (called ALICE) which automatically deduces whether a program is cor-
rect w.r.t. an algebraic specification has been explained. In fact, the algorithm reduces
the proof of correctness to the proof of some inductive theorems. This latter can be im-
plemented by an inductive theorem prover, such as those described in the bibliography.

Though ALICE serves for performing automatic verification of programs, it is not a
decision procedure (in fact, no decision procedure exists for this problem, see [Pal96b]).
Therefore, it is advisable to use it class by class. That is to say, ALICE is individually
applied to each class. If the result is “correct”, the class is correct. If the result is “incor-
rect”, there is an error in the class and we will have to debug it. On the other hand, if the
algorithm cannot give a conclusive answer, we will have to mark the class as “doubtful”.!8

%Because of the existence of these “doubtful” classes, it is not possible to completely dispense with the
traditional testing at run-time.
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There are two future research lines. On the theoretical side, we wish to extend this
method of verification to object-oriented programming. The aim is to describe an algo-
rithm such as ALICE for object-orientation and to prove its correctness. To do this, we
will probably have to use order sorted algebra ([GoM92]) instead of many-sorted algebra.

On the practical side, we wish to build an environment based on algorithm ALICE,
which allows us to develop a program in the following way. First, a prototype of the program
in algebraic specification is built. Then, the programmer translates the algebraic notation
into imperative code class by class. When each class is translated, algorithm ALICE is used
in order to determine its correctness. Finally, we obtain an imperative program which is

developed with a “seamless development” method ([Coad1]) and is partially or completely
verified.”.
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A An AL class

obs seq-nat is (** Sequence of naturals (simplified for reasons of brevity)**)

state
members : table;
length : nat;
functions
obs empty_seq return s:seq.nat is
body

s.length:=0
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endfunction;
obs add (s:seqnat; n:nat) return s2:seq.nat is
i:nat;
body
1=1;
while i<=s.length do
s2.members[i]:=s.members]i]
endwhile;
s2.members(s.length+1]:=n;
s2.length:=s.length+1;
endfunction;
obs member (s:seq-nat; i:nat) return n:nat is
body
n:=s.members|i]
endfunction;
endclass.

B Software correctness is undecidable

In this appendix, we wish to prove that the problem of determining whether a program
is correct w.r.t. an algebraic specification is undecidable (even if only partial correctness
is required). The reasonings which we use can be applied to formal specification systems
other than algebraic specification, as we will comment below.

To make the proof easier to write, we will suppose that an object-oriented program-
ming language or a programming language based on abstract data types (such as AL8)
is used. The algebraic semantics used in this proof is based on initial semantics, but it
must allow us to define hidden symbols (such as visible semantics, which is explained in
Section 4, or external semantics, which is described in [Pal96e]). This is necessary, since, if
we cannot use hidden symbols, we cannot specify all semicomputable data types ([BeT87]).

B.1 Total correctness.

Firstly, we consider total correctness. In order to prove that the problem of checking total
correctness is undecidable, we will reduce the halting problem to this. Let us suppose that
we wish to determine whether a function P (with heading “function P(pl:tl; ...; pn: tn)
ret r : tr”) halts with a certain input al,..., an. To determine this, we build a function
Phalting defined as follows:

function Phalting ret r:bool is

18] fact, in order to unify our notation, all examples in this appendix are written in AL language.
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temp:tr
body
temp:=P(al,..,an);
r.=true
endfunction

It is easy to see that P halts with the input al,..., an if and only if Phalting returns
“true”.

Now, let us define the following algebraic specification:

spec HALTING-SPEC is
sorts
bool
signature
true: — bool
Phalting: — bool
equations
Phalting=true
endspec

Function Phalting is (totally) correct w.r.t. algebraic specification HALTING_SPEC if
and only if Phalting returns true. And Phalting returns true if and only if P halts. That
is to say, we have reduced the checking of the halting of P to the checking of the total
correctness of Phalting w.r.t. HALTING_SPEC. Since the halting problem is undecidable,
so is the total correctness problem. (The reader should observe that this reasoning is not
only applicable to algebraic specification, but to any kind of formal specification).

B.2 Partial correctness

Now, let us prove that checking partial correctness is also undecidable. Let us suppose a
function P (with heading “function P(pl: t1; ...; pn : tn) ret r : tr”). We wish to deter-
mine whether this function halts with the input al, ..., an. Let us build function Phalting as
in the above subsection. As above, we have that P halts if and only if Phalting returns true.

Now, let us build algorithmically an algebraic specification (called PHALTING_SPEC)
which has the same semantics as function Phalting. A way to obtain this is to apply al-
gorithm o to function Phalting (that is, PHALTING_SPEC would be Trad (Phalting), see
Section 5).

It is easy to see that the semantics of PHALTING_SPEC only has two terms: Phalting

1 true, because all the other sorts and operations (those one which describe the language)
are hidden. In fact, there are only two possibilities in the semantics of PHALTING_SPEC:
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1. Phalting and true are equivalent.

2. Phalting and true are not equivalent.

. We have that P halts if and only if Phalting returns true. Since the semantics of
PHALTING_SPEC is the same as that of function Phalting, this means that P halts if and
only if Phalting and true are equivalent in the semantics of PHALTING_SPEC (that is, if
the first possibility occurs).

Therefore, P halts if and only if PHALTING.SPEC is equivalent to the following func-

tion:

function Phalting ret r:bool is
body
r:=true
endfunction

Now, in order to determine the equivalence between PHALTING_SPEC and this func-
tion, it is sufficient to have an algorithm which deduces partial correcteness. This is be-
cause, since the function always halts, proving its partial correctness is the same as proving
its total correctness.

Therefore, we have reduced the halting problem to the problem of determining the
partial correctness of a function w.r.t. an algebraic specification. Consequently, the latter
is undecidable, which is what we wished to prove.

This reasoning can be extended to all formal specification systems S which fulfil that

there is an algorithm such that, starting from a program P, it builds an S specification
with the same semantics as P.
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