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Abstract

The paper focuses on automatic simplification algorithms for the
generation of a multiresolution family of solid models from an initial
boundary representation of a polyhedralsolid. An algorithm for gen-
eral polyhedra based on an intermediate octree representation is pro-
posed. Simplified elements of the multiresolution family approximate
the initial solid within increasing tolerances. A discussion among dif-
ferent octree-based simplification methods and the standard marching
cubes algorithm is finally presented.
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1 Introduction

Many computer graphics applications, such as virtual reality, require mod-
elling and visualization of very large and geometrically complex systems.
Interactive techniques for handling, operating and rendering these models
require new and powerful algorithms. Multiple level of detail representa-
tions or multiresolution models are specially well suited for these purposes.
The need for a family of decreasing complexity representations for the same
object was already stated in [6]. Although multiresolution models are some-
times obtained interactively [10], extensive research is being done in algo-
rithms for automatic generation of multiresolution representations.

Most of the current automatic simplification methods are based on trian-
gular meshes. Some of them have been proposed for surfaces (see for instance
[8, 17, 20]), whereas other schemes are suitable for the simplification of poly-
hedral solids, [7, 11, 16, 13], or general objects in voxel representations, [9].
Some of them have however several drawbacks concerning the output model,
the lack of approximation bounds and the lack of topology simplification,



Output Topology Error Feature

Model Simplification | Bounds | Preservation
Schroeder’92 ceA N N N
Turk’92 c° A N N N
Hoppe’93 c°, A N N Y
Gross’95 ce, A N N N
Eck’95 Co A N Y N
Rossignac’92 - Y Y Y
Kalvin’93 co A N N N
He’95 MC Y Y N
Proposed two-manifold Y Y Y

Table 1: Comparative performance of different algorithms.

as shown in Table 1. All These methods are based on the direct computa-
tion of the whole set of simplified representations. Concerning the model
of the output multiresolution objects, and referring to Table 1, almost all
cited schemes produce simplified objects that are modelled by a mesh of C°
triangles. Exceptions are the approaches feported in [9] and in [16]. The
approache in [16] is very efficient in time but may produce non-regular and
non-solid objects with isolated faces, edges and points. The approach in
[9] models output objects through a marching cubes algorithm. Concerning
the kind of simplificacion, all approaches except the two above are unable
to simplify the topology of the object and reduce its genus. Concerning
the existance of precise bounds on the approximation degree of the output
objects, only the methods in [7, 9, 16] guarantee bounded approximations.
Finally, only [16] and [11] preserve the features present in the initial object.

In this paper, an algorithm for to simplify general polyhedra automat-
ically is proposed. The algorithm is based on the generation of an inter-
mediate MDCO representation which is used to generate a multiresolution
family of approximating polyhedra. The algorithm uses the multiresolution
structure implicit in the hierarchical models. Two different approaches are
presented. The first approach is based on an intermediate compaction of the
MDCO into a face octree representation. The second approach is based on
the generation of a feasible TG map. Both approaches are discussed. The
paper is organized as follows. Next section includes the statement of the
simplification problem and a top level description of the proposed approach.
Sections 3 and 4 present respectively the proposed approaches. These al-
gorithms are discussed through practical examples in section 5. The work
presented here is a continuation of [2] where the general scheme for octree-
based simplification was proposed, and of [1] where a specific algorithm for
the case of orthogonal polyhedra was presented.



2 Statement of the Problem and Proposed Ap-
proach

In the next sections, we address the automatic simplification problem for
general two-manifold polyhedra. The problem can be stated as follows:
Given a general, two-manifold polyhedron P with ns(P) faces, a multires-
olution family of two-manifold polyhedra Py, P;, ... P, approximating the
initial object P must be generated. The simplification algorithm must fulfil
the following requirements,

e The approximation degree of the individual polyhedra P, must be
monotonically decreasing from the closest approximation P to P, to
the coarser one Py. More precisely, a set of tolerances €1, €3, . . . ; with
€t > €k41 must exist such that the distance between the surface of P
and the surface of P is bounded by ¢; that is,

dist(sur f(P), sur f(F)) < €

e The number of faces of the polyhedra P; must be monotonically de-
creasing from the best approximation B to P,

ns(Pe-1) < ng(Py)

 Both the geometry and the topology - genus - of the initial polyhe-
dron P must be simplified. Usually, P, will be a genus-0 bounded
approximation to P.

* Relevant features of P such as sharp edges must be kept as much as
possible during the simplification sequence from P, to P;.

e Flat regions of the initial polyhedron P must be approximated by
large, planar faces in P, whenever possible.

The proposed approach uses an intermediate MDCO octree structure
which is pruned to different levels in order to obtain the multiresolution
family elements Pi. The multiresolution structure which is implicit in the
intermediate octree model is used in the generation of the different level of
detail solids. See Figure 1. An MDCO,[2], is a classical octree containing
white, black and grey nodes, together with terminal grey nodes. In what
follows we will refer to the terminal grey nodes by T'G nodes. White nodes
correspond to cubic regions completely outside the solid and black nodes
correspond to cubic regions completely contained in the solid. Grey nodes
contain part of the object boundary and therefore must be subdivided. Fi-
nally, TG nodes are grey nodes at the deepest allowed level of the tree and
are not subdivided. An inmediate consequence of these definitions is that
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Figure 1: Scheme of the proposed approach.

the boundary of the object is completely contained in the region of the space
corresponding to the set of TG nodes, [3]. TG nodes are represented by a
particular code plus the color (white for outside, black for inside) of each
of the eight vertices of the corresponding cubic region. It must be observed
that, according to the above definitions, every TG node contains part of
the boundary of the represented object. The colours of the eight vertices
of TG nodes lead to 256 different combinations that can be grouped, using
rotational symmetries and complements, into 14 equivalence classes, [19].
These classes are illustrated in Figure 2. Now, the proposed approach in
this paper consists of three steps (see Figure 1),

1. The MDCO representation Oy, of the initial polyhedron P is obtained.
The MDCO generation is based on a simultaneous space subdivision

and clipping of the boundary of P, [4]. The notation O,, stands for a
m-level MDCO.
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Figure 2: The 14 equivalence clases of TG nodes. Class 0 includes the
numbering of vertices.



2. A multiresolution family of octree representations Oy, Og, ... O,, of P
is obtained. Every Oy is the result of a simple pruning operation on
the deepest level of Oyyy. Grey nodes at the k-level of Og4; become
the new TG nodes of Ok. See Figure 1.

3. Finally a feasible polyhedron P is reconstructed from every interme-
diate MDCO, O. A two-manifold polyhedron P; is said to be feasible
with respect to a MDCO Oy if the k-level MDCO representation of
Py is Ok. In other words, the boundary of P, must be completely
contained in the space region corresponding to the TG nodes of O.

An inmediate consequence of this approach is that a monotonically decreas-
ing degree of approximation is automatically obtained:

dist(sur f(P),surf(P;)) < ¢, = ¢ 2™%

Where ¢ is the length of the main diagonal of the O; TG nodes.

Steps 1 and 2 in the algorithm are straightforward and need no further
comments. A first possibility for step 3 is the marching cubes algorithm,
(9], although in this case the resulting boundary representations are too
verbose in much cases as it is shown in section 5. Next two sections present
two different approaches for step 3: section 3, presents a method based on
an intermediate face octree compaction of the MDCOs Ot and section 4
presents a method based on the iterative detection of planar, connected TG
regions.

3 Simplification Based on Face Octrees

Assume that a MDCO, Oy, is given. A method to generate a feasible poly-
hedron with respect Oy is based in the construction of a polygonal boundary
using a face octree as an auxiliar data structure. The algorithm has two ma-
jor steps. First a set of non planar quadrilaterals that covers the set of TG
nodes in O is generated. Then a valid boundary representation is derived
from the set of quadrilaterals with the help of a face octree extracted from
the set of TG nodes in Oy.

3.1 Generating a Covering of the TG nodes Set

The set of quadrilaterals covering the TG nodes is computed in the form
of a geometrically deformed model (GDM), [14]. It is an elastic network
shaped by a set of points as follows. We start by associating a point with
each TG node; we shall call these points the TG node representative points.
Next each representative point is placed in the node centre and a mesh of
quadrilaterals is generated by defining an edge between each representative
point and the points that represent a face neighbour of the considered TG
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Figure 3: Face node and associated band.

node. A cost function is associated with every representative point in the
network and each representative point is constrained to stay inside the limits
of the TG node it represents. By minimization of the cost function while
the constraints are satisfied, the network is deformed to fit the set of TG

nodes, [12]. The result is a set of deformed, non planar quadrilaterals that
cover the TG nodes.

3.2 Generating the Boundary Representation

A boundary representation can be derived from the quadrilaterals already
computed making use of information about local planarity of the approxi-
mated surface represented by means of a face octree.

A face octree is an octree with white, black, face and grey nodes, and
a tolerance € that controls the degree of approximation of the representa-
tion, [3], [5]. White nodes represent regions outside the solid, black nodes
represent regions inside the solid. Face nodes contain a connected part of
the object boundary and each of them has an associated plane, 7, that ap-
proximates the boundary S within the node with a given tolerance e (see
Figure 3). Grey nodes are those nodes that cannot be labeled as white,
black or face nodes. Face octrees are halfway between classical and ex-
tended octrees; they are more concise than classical octrees, and they are
well suited to approximate representations of objects with complex surface
boundaries, 3, 5, 15]. Here, a face octree is computed by applying the pro-
cedure reported in [12] to the GDM obtained in section 3.1. The face octree
is generated in such a way that its tolerance € is equal to the length of the
main diagonal of TG nodes. The face octree represents the local planarity
of the approximated surface.

Once the face octree is computed, for each face node in the face octree,
those deformed quadrilaterals that are inside the node are projected on the
plane associated with the node by projecting orthogonally the representa-
tive points. The projected quadrilaterals that are inside each face node are
collapsed in one planar polygon defined by the subset of the projected rep-




Figure 4: Projected quadrilaterals. Quadrilaterals ¢; and ¢ are inside node

a. Quadrilaterals ¢5 and g¢g are inside node b. Quadrilaterals g3 and g4 have
vertices in both nodes.

resentative points such that at least one of the quadrilateral edges incident
on it is partially inside and partially outside the face node. The set of non
planar, deformed quadrilaterals that have different vertices inside different
face octree nodes are split into two triangles. This completes the boundary
representation. Figure 4 shows two face nodes in the octree that are neigh-
bours. Quadrilaterals q; to gg are projected quadrilaterals; ¢; and ¢, are
inside node a, g5 and g¢ are inside node b; all of them are planar quadrilat-
erals embedded in the plane associated with the respective face octree node
and will be included in the planar polygon. Quadrilaterals g3 and g4 have
vertices in different face octree nodes, in general they are not planar and are
split into two triangles. For an indepth discussion see [18].

The resulting boundary representation computed in this way approxi-
mates the initial set of TG nodes with a precision given by the tolerance of

the auxiliar face octree, that is, the edge length of the initial TG node set,
(12, 18).

4 Direct MDCO to Boundary Representation Con-
version

In the particular case of orthogonal polyhedra, a simple, non-iterative al-
gorithm for the MDCO to boundary representation conversion in step 3 of
the algorithm, has been proposed by Ayala et al. in [1]. In this work we
have designed and implemented an heuristic algorithm for the general case
of two-manifold polyhedra. The procedure that converts MDCO to bound-
ary representation in the step 3 of the algorithm is based on the concept of
TG maps.

TG nodes in a MDCO can be classified into non-regular nodes that
corresponds to class zero in Figure 2, and regular nodes which include classes
1 to 13. Regular nodes can be classified in turn into planar nodes (classes



Figure 5: Object with 326 faces used to test the general algorithm.

1, 2, 5, 8 and 9) and non-planar nodes. In planar TG nodes, an splitting
plane can be found such that separates black vertices from white vertices.
Obviously, connected regions of planar nodes can contain single planar faces
of the reconstructed polyhedron F.

A TG map is defined as a grouping of regular TG nodes of a MDCO
into regions ry, rq, ... rn. This grouping induces a classification of the TG
nodes into in, on and join types which define the TG map. A TG node is
classified as in if the node is inside any region ry, that is, the node is in(r;).
It is classified as on if it is on the boundary between two regions: it is on(r;)
and on(r;). Finally, a TG node is classified as join if there exist at least
three values 17, 7, k such that the node is on(r;), on(r;) and on(ry). There
are many valid TG maps for a given MDCO: any grouping of TG nodes into
connected regions leads to a different TG map.

Figures 5, 6 and 7 give an example of a TG map. Figure 5 shows the
object on which the experiments have been carried out. Figure 8 shows the
MDCO representations of octrees Oz, Og and O7 of the test object. A TG
map defined on the octree O¢ is presented in Figure 7. The upper part of
the picture shows in, on and join nodes in white, green and red respectively.
For the sake of clarity, only the wireframe of on and join nodes that separate
different regions in the TG map are represented in the picture bottom.



Figure 6: O3, Og and O7 MDCO representations of the object in Figure 5.

A feasible TG map is a TG map that defines a polyhedron contained in
the corresponding MDCO. More precisely, a TG map defined on a MDCO,
O, is said to be feasible if there exists a two manifold polyhedron P such
that 1) The k-level MDCO representation of Py is Og; 2) every vertex of the
polyhedron P is contained in a join node and every join node contains a
vertex of Py; and 3) every edge of the polyhedron is contained in join and
on nodes and every on node contains part of an edge of P;. From these
conditions, it is obvious that every in node will contain a part of a face of
the polyhedron.

Given these definitions, the present algorithm works following the scheme
shown in Figure 8 and, starting from Op, it generates an intermediate TG
map from which the reconstructed polyhedron Py is obtained.

This is inmediate at the deepest level m of the MDCO, as we already
know that the resulting polyhedron P, is the initial one P. For a general:
level k, The octree Oj_1 is computed by a one-level pruning operation on
Op. Then, a first TG map of the k£ — 1 level MDCO can be easily obtained
through a classification of the Ox_; TG nodes with respect to the boundary
of Py (arrows b and c in Figure 8): nodes with one or more vertices of P
are considered join, nodes with no vertex and containing part of one or



Figure 7: A feasible TG map defined on the octree Og. The top part shows
in, on and join nodes. The bottom shows only on and join nodes.
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Figure 8: Scheme of the MDCO to boundary representation conversion al-
gorithm for general, two-manyfold polyhedra.

more edges of Py are considered on, and the rest of nodes - with faces of
Py - are considered in. Next, its topology is iteratively reduced (arrow d
in Figure8) while the TG map is still feasible. The topology reduction of
the TG map works on the TG map data structure by iteratively grouping
pairs of neighbour planar regions in the TG map. It is worth to note that
the topology reduction process is a discrete problem where the number of
neighbour regions to be tested for possible groupings is finite and decreas-
ing. When there is no possible region grouping that generates a feasible
TG map, the polyhedron Py, is generated automatically as a by-product
of the feasible function (arrow e in Figure 8). The structure of the pro-
posed algorithm automatically guarantees a decreasing number of faces and
a decreasing approximation on FPj.

The present version of the algorithm uses a weak, correct but not com-
plete version of the feasible function that will be improved as part of the
future work. Given the TG map defined on a MDCO O, for each region
a plane that approximates the region is computed in such a way that it
intersects all join type nodes of the region. If, for some region, it is not
possible to figure out such a plane, then the TG map is not feasible. Once
an approximating plane has been determined for each region, the approxi-
mating planes in every join type node are intersected in order to figure out

11



# levels 1(2(34 5 6 7 8 9 10 11 12 13
# divisions 214|816 32 64 | 128 256 512 | 1024 | 2048 | 4096
# faces 66|66 6 | 300 | 433 | 809 | 1779 | 2311 | 1984 | 2439 | 2439

Table 2: Hierarchy of approximations for an orthogonal building.

the vertices of a polyhedron . The TG map is said to be feasible if the
MDCO representation of ¢ coincides with octree O. Non planar faces can
be generated when more than three planes intersect within a join node. In
this case, these faces are triangulated in order to compute the geometry of
Q.

It must be observed that regions of the MDCO with non-regular (class
0) TG nodes represent parts of the space where the object has part of its
boundary in every TG node but at the same time all vertices of all TG
nodes are either inside or outside the solid. It is easy to see, [1], that any
representation for P, that ensures these two properties is admissible. Recon-
struction of the polyhedron in non-regular zones may result in disconnected
components (shells) of P in order to ensure-the approximation bounds, [1].

This is acceptable for most applications, since the approximation guarantees
the desired precision.

5 Results and Discussion

The results of the particular algorithm for orthogonal polyhedra, [1] are
presented in Figure 9 and in Table 2. Figure 9 shows a building modeled from
documents of the nineteenth-century architect Ildefons Cerda, who designed
the modern Barcelona urban planning, and the approximate simplifications
P10, Py and Pr. Table 2 contains the corresponding number of faces nz(Py)
as a function of the level k. The approximation error in P is bounded by
d 2'3~* where d is the main diagonal of the cubes of the 4096 x 4096 x 4096
spatial decomposition of the initial volume. For a detailed discussion see [1}.
Observe that, for very coarse approximations, Py is simply a rectangular
prism with six faces.

We have implemented a marching cubes algorithm to reconstruct Py
from the set of TG nodes of the corresponding MDCO, and we have tested
the general algorithm with the object in Figure 9 which depicts a general
polyhedron with 326 faces. Results obtained approximating the initial ob-
ject by means of MDCOs with with four, five and six levels that shown in
Table 3. The second column gives the number of non regular nodes, the
third gives the numer of planar nodes, the fourth the number of non planar
nodes and the fifth column the toal number of nodes. The two last columns
contain respectively the number of faces of the reconstructed polyhedra Py
by applying the standard marching cubes algorithm to the TG nodes of the
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Figure 9: Simplifications of a real building with 2311, 809 and 433 faces.

MDCO, and the number of faces when the polyhedra is reconstructed using
the face octree-based approach presented in section 3.

The improvement of the face octree-based simplification over the march-
ing cubes results is quite obvious. The upper part of the Figure 10 presents
the face octree compaction of O3, Og and O7 . Whether or not both face
octree based and marching cubes approaches yield a real simplification de-
pends to a large extent on the number of faces in the initial object, the
larger the number the higher the simplification. In any case, the results

MDCO Number of nodes of the MDCO Faces of Pi
non regular planar non planar  total | Marching Cubes Face octree
o 8 739 10 757 1504 685
Os 621 3179 29 3228 6427 1351
Os 33 12520 6 12859 25448 2596
Table 3: Number of nodes of the MDCO and number of faces resulting in

different approximations to the object in Figure 9.
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Figure 10: On top: face octree compaction of Os, Os and Or. On the
bottom: Corresponding final boundary representation of the polyhedra Ps,
Fs and P

obtained by the face octree approach are much better than those yielded by
the marching cubes approach.

In the lower part of the Figure 10 the corresponding final boundary
representations of polyhedra Ps, P; and P; are displayed. Finally, Figure 11
presents a feasible TG map defined on Oy, and the simplified polyhedron Py
generated by the general algorithm. Polyhedron B, only has 89 faces, which
clearly improves both the marching cubes and the face octree simplification
results.

6 Conclusions and Future Work

In this paper, an algorithm for automatic simplification of general polyhedra
has been presented. The algorithm is based on the generation of an inter-
mediate MDCO representation which is used for the generation of a mul-
tiresolution family of approximating polyhedra. Two different approaches
based on an intermediate compaction of the MDCO into a face octree repre-
sentation and on the generation of a feasible TG map have been presented.
The algorithm guarantees a bounded approximation based on the maximum




Figure 11: The feasible TG map defined on O4 and the simplified polyhedron
Py generated by the general algorithm.
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surface-to-surface distance, and a decreasing degree of approximation in the
multiresolution set. An automatic simplification of both geometry and topol-
ogy is obtained, the coarser approximation being a simple 0-genus prism in
most cases. The algorithm preserves relevant features like sharp edges and
approximates flat regions by large, non-triangular faces. On the other hand,
possible disconnected components within the approximation tolerances can
be produced.

Future work includes devising more accurate algorithms for the general
case, specially for the feasible function and for the detection of candidate
neighbour regions for grouping TG nodes. The use of a finite set of discrete
candidate planes for the generation of the geometry of feasible TG maps
will also be investigated together with to which extent this discretization
may affect the quality of the resulting approximations; in particular the
effect on visualization artifacts generated by changes in the normal vector
between subsequent approximations will be investigated. This approach will
be compared with discrete marching cubes algorithms.

Alternative algorithms for the MDCO to boundary representations con-
version will also be investigated and compared with those presented in sec-
tions 3 and 4 in this paper. In particular, seed algorithms similar to [7]
may be specially interesting. Finally, and besides the analysis of improved
algorithms for the reconstruction of non-regular zones, algorithms for the
estimation of the initial polyhedron P in the case that P is unknown will
be investigated. Possible approaches include face compaction in the dis-
crete marching cubes reconstruction of the O; TG map, and the use of face
octree-based reconstruction.
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