LM 00161 USE

An HPSG Grammar of Spanish
Implemented in ALE:
A Solution for Dealing with

Subcategorisation Alternances

Salvador Climent
Xavier Farreres

Report LSI-95-33-R

Facultat o'inf
de Barcelona - Bibiicteca

o 4 F‘{‘hﬂ jE
oAl s

AN HPSG GRAMMAR OF SPANISH IMPLEMENTED IN
ALE: A SOLUTION FOR DEALING WITH
SUBCATEGORISATION ALTERNANCES

Salvador Climent Xavier Farreres

climent@goliat.upc.es farreres @lIsi.upc.es
Departament de Llenguatges i Sistemes Informatics.
Facultat d’Informatica.
Universitat Politécnica de Catalunya.
November, 1994.

Abstract.

A core of a grammar of Spanish in HPSG including a solution to deal with verbal
subcategorisation alternances avoiding to list different senses in the lexicon is built in ALE.
Computational efficacy of HPSG and capabilities of ALE are tested by the way.

Contents

1 Introduction
2 HPSG
2.1 Signs
2.2 Principles
2.3 Rules
3 ALE
4 The grammar
4.1 Type System and Verb Subcategorisation
4.2 Rules
4.3 The lexicon
4.4 Difficulties of implementing HPSG in ALE
5 Conclusions
5.1 About ALE
3.2 About HPSG
6 Future Research
7 Appendices
7.1 The code
7.2 An example of analysis
References

00 g N N Uit AW oWw

w[\))—ai—l)—l)—n)——l)—lr—A)—ll—a
I T T I N S PO

1 Introduction!

The main target in this work has been to design a significant syntactic core of the grammar of
Spanish according to the HPSG (Head-Driven Phrase Structure Grammar) theory developed
by [Pollard & Sag 87,93], and to implement it in Robert Carpenter’s ALE (Attribute Logic
Engine) formalism. HPSG and ALE are presented (§2, §3); the grounds of the grammar here
developed are discussed (84); conclusions after having test HPSG and ALE are offered (§5);
and finally ALE’s code for a type structure intended to fully support HPSG and a grammar
handling a wide range of assertive sentences of Spanish is displayed (Appendices).

In building the grammar we have developed a system to avoid proliferation of verbal
lexical entries due to different subcategorisation patterns. It is well known that word meaning is
modelled by the context, probably in a systematic way which is still unexplained by linguistic
theory. Verbs, in particular, usually take different sets of complement arguments; each one of
these alternative surface realisations provides a tinge on the remaining basic meaning of the
verb.

The usual way of facing this phenomenon is posing a different lexical entry for every
subcategorisation pattern of the verb (e.g., see [Briscoe & Copestake 91]). We think this is not
a completely achieved solution, as long as (i) it enlarges the lexicon, which is already a
complex object in grammar theories as HPSG; and (ii) fails to capture the speaker's ability of
using the same word in different contexts, thus modelling its meaning. Consequently, we think
lexical entries should owe a structure able to support those generalisations.

A solution to do that, restricted to the syntax of some types of verbs, has been
developed: what we do is taking as a basic sense that realisation with the minimal
subcategorisation pattern —which is considered as "obligatory" for that verb— and treating
further complements as optative. This approach is discussed in §4.

Under the main goal of building a grammar lay two collateral aims: (a) to explore the
computational efficacy of pure HPSG (not of a unification grammar similar to HPSG); and
(b), to test ALE and its capacities for developing and handling a grammar of this kind. Both are
discussed along the paper and our conclusions with respect to it summarised in §5.

2 HPSG

HPSG has progressively become a reference point in recent NLP (Natural Language
Processing) research. It is a unification grammar, based in complex features selected from a
well-defined and structured set of features and values, based in the surface of the phrasal chain,
inductive, declarative, and informational.

Being a unification grammar, HPSG arranges and combines feature structures (FS) by
the operation of unification and the relation of subsumption; consequently, the well-formation
of phrases is understood as, and depends on, FS compatibility. HPSG’s FSs admit logic
operations, can be grouped in lists or sets, and can bear values which are consequence of a
function® .

The final aim of an HPSG parse is merging in one only FS all the information
(phonology, morphology, syntax, semantics, pragmatics) carried by a natural language chain.

" We would Tike to thank Dr. Horacio Rodriguez for many helpful comments and and corrections on a draft
version of this report. Nevertheless, of course we take sole responsibility for all remaining errors and omissions.

?E.g., the value of the phonological structure of a phrase, <PHON>, is the result of a function on the
<PHON> values of the words which compose fit, :

3

The components of an HPSG grammar are: (lexical or phrasal) signs, rules combining
signs; (universal or language-dependent) principles affecting every rule application, (language-
dependent) rules on phrasal surface order, and lexical rules.

Main information in HPSG is encoded in the lexicon, whereas in other syntactic
theories (as GB or GPSG) rules handle most of the work. It is basic in HPSGs philosophy that
a big bunch of a well-formed sentences of the language might be accounted by a very small
number of combinatory schemata -on which an as well limited set of principles must be
accomplished. This is one of the points which has contributed the more to make HPSG become
a very attractive formalism for NLP applications. The price to pay is, obviously, a lexical
component highly complex and structured -what anyway is in tune with the lexicalism
increasingly setting in the current lines of theoretic research in NLP.

2.1 Signs

The sign in HPSG, as we have pointed out, might be lexical or phrasal. It is described by
means of FSs -usually represented by directed acyclic graphs. The sharing of the same
Structure as a value of different attributes is allowed, and in fact it is a fundamental description
mechanism. Features are well-defined types of a hierarchical structure where both subsumption
and monotonic multiple inheritance do operate.

Lexical and phrasal signs basic structures are identical, except for the feature <DTRS>"
which is owned only by the last one. This feature reflects the process of phrasal sign
combination which has brou ght about the sign actually described.

Every <DTRS> feature is in turn described by the features <HEAD_DTR> (head) and
<COMP_DTR> (complements), which in turn are complex features that, if they themselves are
phrasal, bear a <DTRS> feature which describe they own compositional process. It’s to be
noticed that (a) the values of <HEAD_DTR> and <COMP_DTR> are fulfilled signs, not just a

simplified expression of their category; and (b) the representation denoted by <DTRS> is
surface-order independent.

Every lexical sign is described by the features <PHON>, <SYNSEM> and
<Q_STORE>. Phrasal signs add the feature <DTRS> to the previous three,

In its original formulation HPSG described <CAT> by
means of the features <HEAD> (denoting the grammatical category of the sign’s head) and

traditional criterion of obliquity. <SUBCAT> lists the simple or complex categories
subcategorised by the described sign -after the style of categories cancellation in Categorial
Grammar. Thus, a common_noun sign would bear as <SUBCAT> value a determiner or a
quantifier; a transitive_verb sign would bear a NP in nominative and a NP in accusative: and a
VP sign would bear as <SUBCAT> a NP in nominative. But theoretical problems of different
kinds which one can generalise by the certainly diverse nature of phenomena supposedly
feasible by <SUBCAT>® led to detach that one in a set of features specialised for every
different kind of subcategorisation: <SUBJ> (selection of subjects); <COMPS> (of
complements, e.g. compulsory complements of the verb or the NP as a complement of a
preposition in a PP); <ADJ> (of adjuncts or optional elements); <MODS> (selectional
restrictions of non-head elements, €.g., the nouns selected by adjectives) and <SPEC>

*tor “daughters”. A

“In our implementation, in fact orthographic form,

* Intuitively, one can see the differences existent between the selection of a determiner by the noun, that of
anoun by an adjective, that of an object by a verb, or that of a subject by the same verb (or by the VP?)

4

(specifiers, e.g. the determiner for a noun).

word
PHON list
SYNSEM synsem
LOC loc
CAT cat
ADJ list
COMPS list
FILL list
HEAD head
MARK list
SUBJ list
CONT cont
CONTEXT context
BACKGR list
NONLOC nonloc

phrase
DTRS con_struc
PHON list
SYNSEM synsem
LOC loc
CAT cat
ADJ list
COMPS list
FILL list
HEAD head
MARK list
SUBUJ list
CONT cont ,
CONTEXT context
BACKGR list
NONLOC nonloc

fig.1 General specifications for both a lexical and a phrasal sign.

2.2 Principles
As we said above, HPSG posits a set of principles of global effect on every rule of the

grammar. The existence of both Universal and Language-Dependent Principles is supposed.
Main Universal Principles are Head-Feature Principle (HFP) and Subcat Principle (SP).

HFP, following the generativist tradition, posits that phrases are projections of their
heads; consequently it declares that the head (<KHEAD>) of every phrasal sign shares structure
with the head of its <HEAD_DTR>.

SP stands for the cancellation of categories when constructing superior phrase nodes
from its components. It states that the value of the <SUBCAT> list of a mother node is equal to
the <SUBCAT> list of its head-daughter minus those elements of the list corresponding to its
non-head daughters. As long as, as we have said before, in later HPSG developments the
<SUBCAT> feature has been detached in several other features, SP has been forced to an
adaptation to the new structure arrangement; but anyway the underlying idea keeps unchanged.

5

Other Principles are posited for other linguistic aspects such as semantics,
quantification, etc. We don’t present them here for their explanation would become too long-
winded and we have not made use of them in our grammar either.

2.3 Rules.

HPSG makes use of three sorts of rules: Lexical Rules (LR), Lineal Precedence Rules (LPR)
and Immediate Dominance Schemata (IDS).

LRs are generalisations on the Lexicon intended to avoid redundancy in its development
and maintenance. Typical examples for LRs are those of morphological derivation from a
word’s lemma.

LPRs establish phrasal surface order. IDS, otherwise, are surface-order-independent;
they are not rewriting rules but constituent well-formation schemata, i.e., each one declares a
set of conditions which have to be achieved when combining certain kinds of signs; otherwise
one can not say that this combination is a well-formed phrase of the language.

It is important to get the idea that every IDS is not aimed to combine specific signs, but
kinds of signs which share certain common characterisations. In IDSs descriptions of both the
signs to be combined and the resultant sign are partial and underspecified. The final
determination of the built-in sign is a result of the interaction of IDSs with the Principles and
the Type Structure, plus the action on all them of the unification mechanism.

Consequently, for instance, the original formulation of HPSG’s IDS-1 (represented in
fig. 2) stands for the combination of a non lexical sign whose <SUBCAT> list bears one only
element with precisely this subcategorised sign, giving as a result -the mother node- a non
lexical sign bearing the empty list as a value for <SUBCAT> and its value for <HEAD>
structure-shared the <HEAD> value of its head-daughter (the sign firstly described). So, this
schema allows for the combination of pairs such as a subject-NP and a VP to make out a
Sentence, or also a Determiner and a Nominal Group to make out a NP.

HEAD [1]
SUBCAT <

12] HEAD [1]
SUBCAT <[2]:

fig. 2: IDS-1

3 ALE

ALE (Attribute Logic Engine) is a computer language for natural language parsing. It is
strongly typed and based on a type system with multiple monotonic inheritance. ALE’s
simplest elements are Feature Structures. The main difference between ALE and other feature-

6

based formalisms are:
(1) every feature structure belongs to a predefined type; and

(ii) every feature structure must be well typed in two senses: only appropriate features for the
type can be included in the feature structure; and only feature structures belonging to types
appropriate for a feature can be associated as values to that feature.

Even though it allows for multiple inheritance, it poses some restrictions to the type structure in
order to make this type of inheritance controllable: on one side, there must be a unique common
daughter for each group of parents who share more than one daughter; on the other side, each
feature name can only be introduced once in one type in the hierarchy, and only their daughters
have access to it’s definition. The first restriction introduces extra types in the system, as we
have to introduce an extra type where multiple inheritance exists, and all inheritance paths must
cross there, but it is the only way how every two types which are unified have their unification
pertaining to a type in the system. The second eliminates the need of electing a type to inherit a
feature from. With these two restrictions the system can also be compiled, and then the speed
highly increases. A nice thing is the concept of appropriateness, which carries the notion of
which attributes are appropriate for a type. This way we know forehand if two types are
compatible and unification will be successful by only looking at the attributes involved, and we
can deduce immediately the final type of the unification process. This, added to the compiled
type system saves parse time, and detects errors hastily and evades incisor unifications.

The type system is thus the most important component of the System, as all other components
have to restrict their definitions to the types defined. A type in ALE is defined as follows

type sub [subtypel,...,subtypeN]
intro [featurel:typel -...featureM:typeM].

The sub part defines the subtypes, and the intro part defines the definition of the structure. If
a type doesn’t have subtypes, there is nothing between the brackets. A type can be subtype of
more than one type. A feature can be introduced in this type or in a parent type; if not, it’s an
erroneous feature. The type after the colon define the possible values for the feature. These
types must be defined within the type system. Restrictions ensure that the unification of two
types will in turn be a type in the system,

In ALE macros, lexical rules, grammar rules, lexical entries and logic predicates may be
defined. Macros are expanded when called, and they are a way to save code. Lexical rules are
used to take lexical entries and generate new derived lexical entries; this means only a small
lexicon has to be defined, and then expanded via lexical rules. The grammar rules are of the
rewriting type, this means, they take some components and rewrite them as result into another
more complex one. Lexical entries are defined apart from the type system, in order to keep
them stored with an efficient access method. It is also possible to include logic predicates
Prolog-like, which can be introduced in any point in the rules, to do some extra tests.

The reason for chosing ALE instead of other similar systems, is the adecuation of this system
to HPSG requirements. HPSH define all entries as restrited to one particular type, and ALE
was the only one known system that alowed to do this. Not only this, but this restriction of
features to one type, as the work done by Carpenter on well-typed feature systems points out,
allows for the elimination of extra analyses. This added to the restrictivity HPSG applies to the
analysis, results in a very good performance. Of course, there have been problems in encoding
the principles, but ALE allows the insertion of prolog code thus making of ALE an open

system, and this has given us various options at the time of deciding on the way of encoding
them.

4 The grammar

The grammar built here is constrained to syntax and focused on phrasal structures
caused by different sorts of verbs on assertive active sentences. Notwithstanding, the type
system implemented is wide enough to support further grammar’s extensions with both
semantics and other syntactic phenomena -as questions, long distance dependencies etc. A
quick look on the type system provided in Appendix-1 shall make the reader notice that
practically every type supplied by the fundamentals chapters in [Pollard & Sag 87, 93] stand
properly in our type system® .

We also develop a sortal for synsem types intended to encode verbal polisemy. Usual
approaches to lexical representation describe the meaning of a verb by enumerating every
sense, corresponding every sense to a subcategorisation context. We thought this practice fails
to properly represent lexical knowledge as long as, although showing different diatheses
alternations, a verb (usually) keeps its basic conceptual meaning across each one of these
senses. Thus we believe that solutions have to be found to maintain this regularity and prevent
for lexical over-representation.

4.1 Type System and Verb Subcategorisation

The basic HPSG type system has been necessarily extended with types depending on
the verbal sorts we have posited. Consequently, a bizarre branching off of the types
<SYNSEM>, <LOC> and <CAT> is produced. We could have put the same information on
verbs without complicating the type system by coding it in ALE’s macros, but we thought that
that way both we were walking off of HPSG’s spirit and we were going to retrieve less
informational results. In addition, as we said above, in ALE the advantages of putting
information in the type system instead of in other modules are diverse -being the most relevant
time saving access during parsing and pre-detection of inconsistencies.

We have structured our grammar around six types of verbs. Our basic aim was
respecting the fundamental HPSG’s target of accounting for many syntactic structures with a
very little set of rules. This goal has been achieved as long as our grammar consists of only
three rules, which allow for quite diverse sentence formations, as long as for building NPs and
PPs. The strong encoding of verb sorts in the type structure permits unification to do the work
of correct sentence formation without proliferation of rules.

In addition to that, as we have already pointed out, we have worked with the idea of
every verb belonging to a single verbal type. It is known that verbs show different surface
syntactic alternations which usually result in different entries in the lexicon as long as each one
asks for different subcategorisation specifications. See the examples under (1):

(1) (a)Juan comia. Juan ate
(b) Juan comfa patatas. Juan ate potatoes
(c) Juan compré patatas. Juan bought potatoes

(d) Juan compr6 patatas para su hijo. Juan bought his son potatoes

In (1a,b), the verb “comer” (to eat) shows an intransitive(a)/transitive(b) alternation; in
(Ic,d), “comprar” (to buy) alternates direct object(c)direct+indirect object(d) performances. To
permit both (@) and (¢/d) formations the usual solution is generating (for each verb) a
different lexical entry per surface performance.

*features as <CONTEXT> or <BACKGR> (used in semantics) or <NONLOC> (used in long-distance
dependencies) are unexploited in our grammar.

8

Thus, (b) entry for “comer” would subcategorise for both a subject and for a
complement NP, while (a) entry would only subcategorise for a subject:

(2) (a) COMER <NPsubj>
(b) COMER <NPSUbj NPg;e obj.>

In order to manage these phenomena, [BRISCOE & COPESTAKE 1991] put forward
generating different lexical entries for each subcategorisation model of a verb via lexical rules
applied to a basic entry.

However, we think of “comer’ as being just one only concept independently of its
syntactic environment: in both cases it expresses a particular kind of process of somebody
ingesting something; the difference is that while in (2a) the ingested thing remains
unexpressed, in (2b) it is explicitly stated. Therefore we have preferred to represent verbs such
as “comer” as a single verb which sometimes takes a direct object and sometimes do not:

(3) COMER <NPSllbj (NPdil‘.Obj.)>

We achieve this effect by considering the minimum complement-taking alternance as
the basic word-sense and treating subsequent complements as optionals i compulsory
complements are listed in <COMPS> and “optionals” are in <ADJ>.

E.g.: An approach to a <SYNSEM> specification for a verb such as “comer”:

(4)
B -

synsem_vod
[
LOC: loc_vod

CAT: cat_v_o_d
HEAD: verb

SUBJ: [NP_nominative]
COMPS: [empty_list]
ADJS: [NP_accusative]

b v

o w——

[Of course, in order to get an accurate syntactic parse, a real Adjunct has to be
differentiated of these "optional” arguments. Thus, listing together adjuncts and optional
arguments in ADJS is not the finest solution, but some problems in implementing optionality
in ALE has led us to do that. The problem is Ale doesn’t implement optionality within the
system, and we had to build some Prolog clauses to manage this feature; this led to a loss of
power because of extra backtracking introduced. In the future, either implementing optionality
in COMPS list or adding a new subcategorisation feature OPT_COMPS is going to be a best
resolution for the issue.]

Our approach results, as we pointed out above, in six verb sorts: v_sa, v_o_o,

"In straight ingestion contexts; we don’t care about metaphorical sense extensions.

9

v_o_d, v_d_o, v_d_i and v_di_o, exemplified respectively by “ser”, “morir”, “comer”,
“golpear”, “comprar” and “dar”. This nomenclature is intended to be mnemonic: in v_X_Y,
position X mean obligatory complements, while Y mean optional ones; moreover, d means
direct object, i indirect object, sa an adjective phrase, and o the empty list. In intermediate
types, X means any verb complement (not the empty list). Thus, v_d_i means “ a verb which
takes compulsorily a direct object and optionally an indirect object” and v_o_d “a verb that
may (optionally) take a direct object”. Each sort of verb admits obviously optional PP
complements. This is not encoded in verb sorts as it is common to all of them: a superior type
provides this information.

Examples considered are:
(5) v_sa: “ser”. José es tonto.
v_0_0: “morir”. José murid.
v_o_d: “comer”. Juan comia.
Juan comia patatas.
v_d_o: “golpear”. José golped a Juan.
v_d_i: “comprar”. Juan compré arsénico.
Juan compré arsénico para José.
v_di_o: “dar”. Juan dié patatas a José.

[Sanfilippo et al., 94], also working within ALE and an HPSG-like grammar, have
recently made a similarly aimed approach. They associate verb entries to underspecified lexical
types; each type has subtype extensions, each one bearing a different <COMPS> pattern,
which describe possible uses of the verb. Further procedural attachments (Prolog-style clauses
associated to phrase formation rules) will solve type ambiguity attending to the context.

The final effect of such arrangements is different types of <CAT> features as long as it
contains features <COMPS> and <ADJ>, whose contents vary with every sort of verb;
consequently, <LOC> (the feature containing <CAT>) and <SYNSEM> -(that one containing
<LOC>) have to be in turn organised in appropriate types.

Moreover, the need of arranging these types in lists as values of the appropriate
subcategorisation features forces to typify lists depending on their syntactic contents (e.g., lists
of noun-headed, prep-headed etc., elements, lists of subst-elements - subst lumps together
noun, verb, prep and adjective-); and so on.

All this makes the background of the system sound and capable to work with a
little number of phrasal rules. But the other way round it conveys a big drawback: every
widening or correction made on the grammar will have to deal with a delicate reformulation of
the type system, flexibility and ease of maintenance of the grammar is severely damaged.

4.2 Rules

The three phrasal rules which operate in our grammar are: subj_head, comps_head and
adjs_head. As their names point out they respectively combine heads with their subjects,
complements and adjuncts.

These terms have to be managed carefully not to be misunderstood in the present
context. Now that the following remarks have to be noticed:

- as we said above, optional complements of verbs are listed in <ADJ>, although not being
10

adjuncts in strict grammatical sense. Thus the value of the <ADJ> feature of verb-headed
phrases will be a list of real adjuncts (e.g., PPs) plus these optional complements.

- subject is not to be strictly understood in its usual grammatical-function meaning; not only
sentence subject NP phrases are subjects of VPs but also determiners are treated as subjects of
nouns in a NP. Later developments of HPSG includes information relative to articles etc. in a
feature for nouns called <SPEC>. Nevertheless, we have preferred not including this feature
here and maintain former HPSG configurations (which dealt with determiners as <SUBJ> of

common nouns) as long as we didn’t found a reason in Spanish to introduce that new feature
<SPEC>.

HPSG’s principles used here are Head-Feature Principle and Subcat Principle.
[Semantics Principle (which passes <CONT> values from the head-daughter to the superior
node) is formally implemented in our system, although it is quite contentless: the only features
actually acting are <PARA:INDEX>, which state number, person and gender concordances.]
Principles are declarative preconditions which extend their action on every aspect of the
grammar, specially on the rules. Unfortunately there is no way of implementing such a high-
level device in ALE. The same thing happens with HPSG’s language-dependent Constituent
Ordination Principles, supposed to fix phrasal surface order. Therefore, the solution we have

chosen to implement such principles has been to make them present and acting in every rule of
the grammar,

The rules are the following:

subj_head rule combines VPs with their subject NPs and Noun Groups with their
Determiners. In both cases <COMPS> and <ADJ>s have to be already retrieved. The result is
a saturated phrase -subcategorisation lists are all empty lists. Notice that the passing of the
features <head:HEAD> and <cont:C> from the head daughter to the higher level phrase
ensures the observance of both Head-Feature Principle and Semantics Principle (in fact,
concordance). This effect will be also achieved in comps_head and adjs_head rules.

subj_head rule

(phrase,

synsem:loc:(cat:(head:HEAD,
subj:[1,
comps:{],
mark:[],
fill:[],
adj:[1),
cont:C),

dtrs:(head_dtr:HEADDTR,

subj_dtr:SUBJDTR))

=

cat>

(SUBJDTR,synsem:SUBJ),

cat>
(HEADDTR,
synsem:loc:(cat:(head:HEAD,
subj:[SUBJ],
comps:{]),
cont:C)).

fig. 3:subj_head rule.

11

comps_head rule combines verbs with (obligatory) complements and prepositions
—understood as heads of PPs- with NPs. Subcat Principle acts by erasing one element of the
<COMPS> list of the head when passing that list to the superior node.

comps_head rule

(phrase,

synsem:loc:(cat:(head:HEAD,
subj:SUB]J,
comps:T,
mark:MARK,
fill:FILL,
adj:ADJ),

cont:C),
dtrs:(head_dtr:HEADDTR,
comp_dtr:COMPDTR))

>

cat>

(HEADDTR,

synsem:loc:(cat:(head:HEAD,
subj:SUBJ,
comps:[COMPIT],
mark:MARK,
fill:FILL,
adj:ADJ),

cont:C)),
cat>

(COMPDTR,synsem:COMP).

fig. 4: comps_head rule.

adjs_head rule combines verbs with optional complements and verbs or other categories
with adjuncts (e.g., nouns with adjectives).

adjs_head rule

(phrase,

synsem:loc:(cat:(head:HEAD,
subj:SUBJ,
comps:COMPS,
mark:MARK,
fill:FILL,
adj:T),

cont:C),
dtrs:(head_dtr:HEADDTR,
adj_dtr:ADIDTR))

=

cat>

(HEADDTR,

synsem:loc:(cat:(head:HEAD,
subj:SUBJ,
comps:COMPS,

12

mark:MARK,
fill:FILL,
adj:[ADJIT)D),
cont:C)),
cat>
(ADIDTR,synsem:ADJ).

fig.5: adjs_head rule.

As we have said, the principles have been encoded into the rules. As a matter of example, if we
take the last figure, there is the encoding into ALE of the rule AD]J S_HEAD. But if we look
more precisely, there is a sharing of the HEAD value between the superior category and the
first daughter. This is the inclusion of the HEAD principle into the ADJS_HEAD rule. This is,
of course, nor the best way to encode principles, as every new principle has to be inserted into
each rule, and every new rule has to be encoded with all principles into it.

These rules (applying on the type system and the lexicon) permit the formation of sentences
generable by the following context-free grammar (categories prefixed by * stand for terminal
vocabulary; x/y means alternative possibilities; terms in brackets are optional; categories X

bear accusative case, while X5, bear dative):

S -->NP VP

NP --> *proper_noun

NP --> *det *noun (*adj) (PP)
PP --> *prep NP

VP --> *v_sa *adj

VP -->*v_o_o (PP)

VP -->*y_o_d (NP,/PP,) (PP)

VP -->*v_d_o NP,/PP, (PP)

VP -->*v_d_i NP, (PP,) (PP)

VP -->*y_di_o NP,/PP, PP, (PP)

Agreement between nodes is provided by the unification mechanism via specifications stated in
lexical entries.

4.3 The Lexicon

The lexicon in our system is by now merely representative of classes of vocabulary.
Thus it is deliberately small but powerful enough since a remarkable set of words is
representable by their means just by attributing word lemmas to ALE macros (see appendix).

The lexical rules device has not been exploited yet; we have only implemented a plural
formation rule just in order to test this capability of ALE.

4.4 Difficulties of implementing HPSG in ALE

HPSG is a formalism based on principles. ALE is a rewriting formalism. This

13

discrepancy between both approaches leads to problems when implementing HPSG on ALE.

First, there appears a basic problem of any rewriting formalisms -not only of ALE.
HPSG schemata (what would be called rules in ALE) are described from a structure-validating
point of view. But when working with a rewriting formalism, we work from a structure-
constructing point of view. Thus, sometimes there is no one-to-one relation between HPSG
rules and those of the ALE grammar.

Second, some independent principles operate over HPSG schemata, and each principle
apply on every schema. As ALE cannot encode principles separately, we had to embed all
principles in every rule. For example, we had to encode word order rule by rule, rather than
declaring a higher order principle (as HPSG theory points out). This is a potential source of
problems and inconsistencies when building, enlarging or modifying the grammar.

S5 Conclusions

The results of this work, i.e. the grammar for assertive sentences of Spanish headed by
six different sorts of verbs each accepting different subcategorisation patterns and the type
structure which supports this grammar and further enlargements in HPSG, are to be seen in the
Appendix-1 below. As well, a sample parse is displayed in Appendix-2.

Next, our final conclusions after having tested ALE and HPSG for the current purposes
are offered.

5.1 About ALE

- One of the aims of the work was to test the performance of ALE when working with a
complex formalism, as HPSG is. Results are impressive, mainly due to the great time saving
because of type system compilation.

- ALE’s strong typing also carries some drawbacks; e.g. sometimes one really doesn’t care
about the value of some attribute (e.g.. PHON), but when working in ALE one is forced to
declare everything as a type -namely, one has to include the phonetic value of each word into

the type system as one cannot simply declare the type “string” and treat phonetic values as
strings.

-The type system has to be maintained at different points of the code. We have to have a well
defined type structure, and when we use it in a rule, lexical entry or other components, we
have to fit this type structure. Consequently, if we modify the type structure for any
component, we have to edit the other components to make them coherent with the modification;
there is no way of automating it. When building an application, this type of modifications are
very usual. There should be a way for the system to handle this better, for example deducing
paths, and using partial paths into rules or components.

-Co-indexations frequently cannot be defined into the type system, only at lexical entries or
rules.

-As a final comment, it is hard to correctly implement a principles and parameters formalism on
a rewriting formalism. Even though we haven’t tried this solution, some principles could be
encoded as Prolog clauses and inserted at proper places intro the rules to ensure legal structures
to be built, rather than encode principles as a part of the rules. This could be a good sollution
because we could take control over where the test of the principles should be carried, and reject
an analysis as long as we detect a bad analysis. The problem with this implementation is it
causes extra backtracking into the system, as something that ALE would consider correct is
rejected due to the principles restrictions. It should be tested wether the fast detection of
inconsistencies would be worth the added backtracking.

14

5.2.- About HPSG.

It is a very powerful formalism for dealing with linguistic restrictions. Inasmuch as the
highly structured nature of its signs permits encoding in them all their syntactic and semantic
concordance requests, only extremely accurate parses will leak out unification filter. In our
implementation, even lacking semantic content, we get one only analysis of every (non
ambiguous) sentence.

The same way, sign complexity along with strong typing provides that all information
obtainable from parsing is expressed and agglutinated in one only structure; one has not no
maintain separate representation levels and transduce information from one to another.

But, as every sin carries its own punishment, the counterpart of this advantages lies in
the same source that makes them possible: one has to work with a complex lexicon and put a
lot of information on it. Although this is commonly seen as a good long-term strategy for
dealing with language processing, it is pretty unsuitable for quick grammar developments and
certainly utopic for wide language coverage. When one decides to work inside HPSG
framework, one has to face seriously at once the problem known as the bottleneck of lexical
acquisition.

While developing this work we have been progressively led to see HPSG more as a
formalism to do theoretical linguistic inquiry than to actually build applications up. Although
these are only personal opinions, we think some theoretical HPSG preemptions need to be
relaxed to make the formalism handy, i.e. either maintaining a very limited set of phrasal rules
while overloading the type structure (it’s easier to deal with grammar modification/enlarging by
working on a set of rules than on the web of types) or deeply grouping sign’s features in a way
that one has to go through long paths to retrieve values and to set types for every path step
depending on the final value when building the type structure. At this respect we think that
flattening signs (make them less indented) although may lead to some mismatches with the
theory would make them more readable and controllable.

6 Future research

Once ALE’s potentialities have been tested, we would like to explore those of LKB®
framework to parse HPSG, as long as we would be able to handle already existent Lexical
Knowledge structures to semi-automatically generate a proper HPSG lexicon, and also to take

profit of its greater expressive power. About the analyser, we plan building a Principle-Based
parser.

® A Lexical Knowledge representation system built within ACQUILEX-I (ESPRIT BRA 3030) and ACQUILEX-II
(BRA 7313) projects. It is fully described in [COPESTAKE 92].

15

7 Appendices
7.1 The code

%% Fo %0 % Fo To To %o To To T Fo To %o Yo %o %o To To %o Yo
% type hierarchy %
%% Fo %0 %o Yo Fo %o %o %o To %o To To %o Yo %o o To %o %o Yo

bot sub [sign, synsem, loc, cat, head, list, nonloc, pform, bool, cont, context, para, index,
psoa, con_struc, pers, num, gen, case, vform, ontologia, morfo].
sign sub [word,phrase]
intro [phon:list,synsem:synsem].
word sub []
intro [].
phrase sub []
intro [dtrs:con_struc].

con_struc sub [head_struc,conj_struc].
conj_struc sub [].
head_struc sub [head_subj_struc,head_comp_struc,head_mark_struc,head_fille

r_struc,head_adj_struc]
intro [head_dtr:sign].

head_subj_struc sub []
intro [subj_dtr:sign].
head_filler_struc sub []
intro [filler_dtr:sign],
head_comp_struc sub []
intro [comp_dtr:sign].
head_mark_struc sub []
intro [marker_dtr:sign].
head_adj_struc sub [}

intro [adj_dtr:sign].
nonloc sub []

intro [inher:wh_str,to_bind:wh_str].
cont sub [nom_obj,verb_obj].
contextsub []

intro [backgr:list].

verb_obj sub [].

nom_obj sub [expl_obj,ref_obj]
intro [para:para].

expl_obj sub [}]

intro [para:expl].

16

ref_objsub []

psoa
para

pron

index

pers
num
gen
head
subst

adj

det
funct
mark
noun

case

prep

pform
verb

verbsa

viorm

sn
prim
seg
ter
sing
plur
masc
fem

intro [para:ref,restr:list].

sub [].

sub [expl,ref]

intro [index:index].

expl sub {l.

ref sub [npro,pron].
npro sub [].

sub [ppro,ana].

ppro sub [].

ana sub [refl,recp].
refl sub [].
recp sub [l

sub [}

intro [pers:pers,num:num,gen:gen].

sub [prim,seg,ter].

sub [sing,plur].

sub [masc,fem].

sub [subst,funct].

sub [noun,verb,adj,prep]

intro [prd:bool].

sub {]

intro [mod:synsem].

sub [].

sub [det,mark].

sub {].

sub [propi,comu])

intro [case:casel].

propi sub [].

comu sub [].

sub [nom,ac,dat,geni,voc,abl].

nom sub [].

ac sub [].

dat sub [].

geni sub [].

voc sub {].

abl sub [].

sub []

intro [pform:pform].
sub [].

sub [verbsa)
intro [vform:vform).
sub []

intro [prd:true].
sub [fin,nonfin].
fin sub [].
nonfin sub [].
sub [].

sub [].

sub {l.

sub [].

sub [].

sub [].

sub [].

sub [1.

17

%0 %o %o %o Yo %o To To %o To %o %o To To Fo %o T Yo To T Fo
% typ. cat %
%o %0 %o %o %o To % Fo To %o o Fo To To To %o %o T To %o %o Yo

cat sub {cat_subst,cat_funct] :
intro [head:head,subj:list,comps:list,mark:list,fill:list,adj:list].
cat_subst sub [cat_noun,cat_verb,cat_adj,cat_prep].
cat_funct sub [cat_det,cat_mark].
cat_noun sub [cat_propi,cat_comu]
intro [head:noun].
cat_propi sub []

intro [head:propi,subj:e_list,comps:e_list,mark:e_list,fill:e_lis t,adj:e_list].
cat_comu sub []

intro [head:comu,subj:list_1_det,comps:e_list,adj:list_1_adj,mark :e_list,fill:e_list].
cat_verb sub f[cat_v_x_x,cat_v_sa]

intro [head:verb,subj:list_1_noun].

cat_v_X_x sub [cat_v_o_x,cat_v_d_x,cat_v_di_o].
cat_v_o_xXx sub [cat_v_o_o,cat_v_o_d]
intro [comps:e_list].
cat_v_o_o sub {] % morir
intro [adj:e_list].
cat_v_o_d sub [1 % comer
intro [adj:list_1_subst].
cat_v_d_x sub [cat_v_d_o,cat_v_d_i]
intro [comps:list_1_subst].
cat_v_d_o sub [] % golpear
intro [adj:e_list].
cat_v_d_i sub [] % comprar

intro [adj:list_1_prep].
cat_v_di_o sub [] % dar

intro [comps:list_2_subst_prep].
cat_v_sa sub []

intro [comps:list_1_adj,head:verbsa].
cat_adjsub []

intro [head:adj,subj:e_list,comps:e_list,adj:e_list,ma rk:e_list,fill:e_list].
cat_prep sub []

intro [head:prep,subj:e_list,adj:e_list,mark:e_list,fill:e_list].
cat_detsub []

intro [head:det,subj:e_list,comps:e_list,adj:e_list,mark:e_list,f ill:e_list].
cat_mark sub []

intro [bead:mark].

%% Yo %e To %o %o %o %o %o %o T Fo Fo Fo Fo %o Yo Yo %o %o Yo T %o %o
% typ. synsem %
%% To%e %o To %o %o %o %o I T Fo To T %o Fo To To %o %o Yo Yo %o %o

synsem sub [synsemsubst,synsemfunct]
intro [loc:loc,nonloc:nonloc].
synsemsubst sub {synsemnoun,synsemverb,synsemadj,synsemprep]
intro [loc:locsubst].
synsemfunct sub [synsemdet,synsemmark].
synsemnoun sub [synsempropi,synsemcomu]
intro [loc:locnoun].
synsempropi sub []
intro [loc:locpropil.
synsemcomu sub {]

18

intro
synsemverb
Synsemvxx
synsemvsa
intro
synsemvox
synsemvoo
intro
synsemvod
intro
synsemvdx
synsemvdo
intro
synsemvdi
intro
synsemvdio
intro
synsemadj
intro
synsemprep
intro
synsemdet
intro

synsemmark

intro

[loc:loccomu].
sub [synsemvxx,synsemvsa].
sub [synsemvox,synsemvdx,synsemvdio].
sub []
{loc:locvsal.
sub [synsemvoo,synsemvod].
sub {]
[loc:locvoo].
sub {]
floc:locvod].
sub [synsemvdo,synsemvdi].
sub []
[loc:locvdol.
sub {]
[loc:locvdi].
sub []
[loc:locvdio].
sub []
[loc:locadj].
sub {]
{loc:locprepl.
sub f]
[loc:locdet].
sub {]
[loc:locmark].

To%e %o %0 %o Fo%e %o To To To e Fo %o %o o %o Fo To %o To % To %o %o

% typ. loc

%

To%e %o %o % FoTo %o To %o To %o o %o Fo Vo %o Fo %o Fo Fo %o %o %o %o

loc
intro
locsubst
intro
locfunct
locnoun
intro
locpropi
intro
loccomu
intro

sub [locsubst,locfunct]}

[cat:cat,cont:cont,context:context].
sub [locnoun,locverb,locadj,locprep]
[cat:cat_subst].

sub [locdet,locmark].

sub [locpropi,loccomu]
[cat:cat_noun].

sub []

[cat:cat_propi].

sub []

[cat:cat_comul].

locverbsub [locvxx,locvsal.

locvxx
locvox
locvoo
intro
locvod
intro
locvdx
locvdo
intro
locvdi
intro

locvdio sub []

intro

locvsa sub []

sub {]

sub []

sub [locvox,locvdx,locvdio].
sub [locvoo,locvod].
sub []

[cat:cat_v_o_o].

[cat:cat_v_o_d].

sub [locvdo,locvdil.
sub [}

[cat:cat_v_d_o].

[cat:cat_v_d_il.

[cat:cat_v_di_o].

19

intro
locadj sub {
intro
locprep
intro
locdet sub [
intro
locmark
intro

Yo %o o %o To To %o T o To To %o Fo To Fo %o %o o %o %o %o Yo

% lists

Do %o %o T To %o To %o o %o To Te o %o %o %o %o o %o o % Yo

list sub

[cat:cat_v_sa].
]
[cat:cat_adj].
sub (]
[cat:cat_prep].
]
[cat:cat_det].
sub []
[cat:cat_mark].

%

[e_list,nelist].

e_list sub [].
nelist sub[list_1,list_2]

intro
list_1 sub
intro
list_1_mnoun
intro
list_1_prep
intro
list_1_det
intro
list_1_adj
intro
list_1_subs
intro
list_2 sub
intro
list_2_subs
intro
bool sub

fhd:bot,tl:list].

{list_1_noun,list_1_prep,list_1_det,list_1_adj,list_1_subst

[tl:e_list].
sub []
[hd:synsemnoun].
sub []
[hd:synsemprep].
sub []
[hd:synsemdet].
sub []
[hd:synsemadj].

t sub []
[hd:synsemsubst].

[list_2_subst_prep]
[tl:list_1].

t_prep sub []

[hd:synsemsubst,tl:list_1_prep].

[true,false].

true sub [].
false sub [].

%o %6 To %o %o Fo %o %o To %o To To %o %o %o Yo %o T To %o To %o

% ontology

%o % %o %o To %o FoFo %o Fo To o Fo %o T To %o %o To %o Fo o

ontologia

%

sub[verbo,jose,def,hombre,tonto,patata,prepos].

jose sub [].
hombresub [].
def sub [].
tonto sub [].
patata sub [].

verbo sub
v_sa sub
V_X_X sub

X sub
0_0 sub

d
x sub
o sub

[v_x_x,v_sal.
[ser].
[v_o_x,v_d_x].
[v_o_o,v_o_d].
[morir].

sub [comer].
[v_d_o,v_d_i,v_di_ol.

[golpear].

20

]

v_d_i sub
v_di_o sub
morir sub
comer sub
golpearsub
comprar

dar sub
ser sub
prepos sub
a sub

[comprar].
[dar].

[a].
[1.

%% o %e %o o % %o T To Te Fo o %o Fo To Fo To Fo Fo Yo To

% lexicon

%

%% %0 % %o Fo e Yo T To Fo T Fo %o To T To To Fo Yo o To

el —-—->
la --->
las -—->
los -——>
hombre--->
golpea --->
come --->
muere --->
compra--->
da >
es >
jose --->
tonto --->
tontos --->
patata --->
a ——

CXCRORONON NN RORORORORORORORS)

det(def,masc,sing,ter).
det(def,fem,sing,ter).
det(def,fem,plur,ter).
det(def,masc,plur,ter).
comu(hombre,masc,sing).
verb_d_o(golpear,sing,ter).
verb_o_d(comer,sing,ter).
verb_o_o(morir,sing,ter).
verb_d_i(comprar,sing,ter).
verb_di_o(dar,sing,ter).
verb_sa(ser,sing,ter).
propi(jose,masc).
adj(tonto,masc,sing).
adj(tonto,masc,plur).
comu(patata,fem,sing).
preposicion(a).

%% %0 % To Fo %o Fo To To %o e To To To To To Fo %o Fo o To

% macros

%

%o%0 %o %o o o To To T % Fo %o Yo Fo %o To o %o %o %o % %

nom macro
(word,
Synsem:synsemnoun).
comu(Ph,Gen,Num) macro
(word,
phon:{Ph]},
synsem: (synsemcomu,
loc:(cat: (subj:[@ syn_det(Gen,Num,_)],
adj:[@ syn_adj(Gen,Num)l),
cont:
(ref_obj,
para: (npro,
index:(gen:Gen,num:Num)))))).
syn_adj(Gen,Num) macro
(loc: (locadj,
cont: (ref_obj,
para:
(npro,

index:(gen:Gen,num:Num))))).

21

adj(Ph,Gen,Num) macro
(word,
phon:[Ph],
synsem:(synsemadj, @ syn_adj(Gen,Num))).

syn_det(Gen,Num,Pers) macro
(loc: (locdet,
cont: (ref_obj,
para: (npro,
index:(gen:Gen,num:Num,pers:Pers))))).

det(Ph,Gen,Num,Pers) macro
(word,
phon:[Ph],
synsem:(synsemdet, @ syn_det(Gen,Num,Pers))).

propi(Ph,Gen) macro

(word,

phon:[Ph],

synsem: (synsempropi,

loc:cont:(ref_obj,para:(npro,index:(gen:Gen,num:sing))))).

verb_d_o(Ph,Num,Pers) macro

(word,

phon:[Ph],

synsem: (synsemvdo,

loc: (cat: (head:vform:fin,
subj:[loc:(locnoun,cont:para:(AG,index:(num:Num,pers:Pers)))],
comps:[loc:cont:para:PAC],

mark:[],
fill:[D),
cont: (verb_obj,
agente:AG,
paciente:PAQC)))).
verb_o_d(Ph,Num,Pers) macro
(word,
phon:[Ph],
synsem: (synsemvod,
loc: (cat: (head:vform:fin,
subj:[loc:(locnoun,cont:para:index:(num: Num,pers:Pers))],
mark:[],
fill:[D,
cont:verb_obj))).
verb_o_o(Ph,Num,Pers) macro
(word,
phon:[Ph],
synsem: (synsemvoo,
loc: (cat: (head:vform:fin,
subj:[loc:(locnoun,cont:para:index:(num:Num,pers:Pers))],
mark:[],
fill:[D,
cont:verb_obj))).
verb_d_i(Ph,Num,Pers) macro
(word,
phon:[Ph],

22

synsem: (synsemvdi,
loc: (cat: (head:vform:fin,
subj:[loc:(locnoun,cont:para:index:(num:Num,pers:Pers))],
mark:{],
fill:[1),
cont:verb_obj))).
verb_di_o(Ph,Num,Pers) macro
(word,
phon:[Ph],
synsem: (synsemvdio,
loc: (cat: (head:vform:fin,
adj:[l,
subj:[loc:(locnoun,cont:para:index:(num:Num,pers:Pers))],
mark:[],
fill: {1,
cont:verb_obj))).
verb_sa(Ph,Num,Pers) macro

(word,
phon:[Ph],
synsem: (synsemvsa,
loc: (cat: (head:vform:fin,
subj:[loc:(locnoun,cont:para:index:(num:Num,pers:Pers))],
mark:[],
fill:[]),

cont:verb_obj))).

preposicion(Phon) macro
(word,
phon:[Phon],
synsem:(synsemprep,loc:cat:comps:list_1_noun)).

Y00 Yo% %o To Yo Fo To To %o o Yo %o To %o % % Fo Yo Yo Yo
% lexical rules %
Yo% Fo %o Yo Fo %o Fo Yo Te To %o o To %o To To To %o % %o Yo

plural_n lex_rule

@ comu(Phon,Gen,sing)

oS

@ comu(Phon,Gen,plur)

morphs

(X,V) becomes (X,V,s) when vocal(V),
(X,C) becomes (X,C,es).

Do % To %o % To %o %o Yo Fo Yo %o Yo %o %o To To To o T Fo Yo
% rules %
Yo% Yo Yo Yo Yo Yo %o To Fo %o To Yo Fo %o o Fo Yo To %o Yo Yo

subj_head rule

(phrase,

synsem:loc:(cat:(head:HEAD,
subj:(],
comps:[],
mark:{],
fill:[1,
adj:[D,
cont:C),

23

dtrs:(head_dtr:HEADDTR,
subj_dtr:SUBJDTR))

=

cat>

(SUBJDTR,synsem:SUBJ),

cat>

(HEADDTR,

synsem:loc:{cat:(head:HEAD,
subj:[SUBJ],
comps:[]),

cont:C)).

comps_head rule

(phrase,

synsem:loc:(cat:(head:HEAD,
subj:SUBJ,
comps:T,
mark:MARK,
fill:FILL,
adj:ADI),

cont:C),
dtrs:(head_dtr:HEADDTR,
comp_dtr:COMPDTR))

=

cat>

(HEADDTR,

synsem:loc:(cat:(head:HEAD,
subj:SUBJ,
comps:[COMPIT],
mark:MARK,
fill:FILL,
adj:ADJ),

cont:C)),

cat>

(COMPDTR,synsem:COMP).

adjs_head rule

(phrase,

synsem:loc:(cat:(head:HEAD,
subj:SUBJ,
comps:COMPS,
mark:MARK,
fill:FILL,
adj:T),

cont:C),
dtrs:(head_dir:HEADDTR,
adj_dtr:ADJDTR))

=

cat>

(HEADDTR,

synsem:loc:(cat:(head:HEAD,
subj:SUBJ,
comps:COMPS,
mark:MARK,
fill:FILL,

24

adj:[ADIIT)),
cont:C)),
cat>

(ADJDTR,synsem:ADJ).

o %o %0 %o %6 %o %o %o Fo % % %o % % %o % %o % % % % %
% clauses %
%% Yo% %o %o To %o To % % %o %o % % % %o % % % % %

vocal([a]).
vocal(fe]).
vocal([i]).
vocal({o]).
vocal([u]).

7.2 An example of analysis

[2 rec([elhombre tonto,da,patatas,ajose]).

STRING:
0 el 1 hombre 2 tonto 3 da 4 patatas 5 a 6 jose 7

CATEGORY:
phrase
DTRS head_subj_struc
HEAD_DTR phrase
DTRS head_comp_struc
COMP_DTR phrase
DTRS head_comp_struc
COMP_DTR word
PHON nelist
HD jose
TL e_list
SYNSEM {0] synsempropi
LOC locpropi
CAT cat_propi
ADJ e_list
COMPS e_list
FILL e tist
HEAD propi
CASE case
PRD bool
MARK e_list
SUBJ e_list
CONT ref_obj
PARA npro
INDEX index
GEN masc
NUM sing
PERS pers
RESTR set
ELEM bot
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc

25

HEAD_DTR word
PHON nelist
HDa
TL e_list
SYNSEM synsemprep
LOC locprep
CAT cat_prep
ADJ [1] e_list
COMPS list_1_noun
HD [0]
TL [2] e list
FILL [3] e_list
HEAD [4] prep
PFORM pform
PRD bool
MARK [5] e_list
SUBJ [6] e_list
CONT [7] cont
PARA pé}a
INDEX index
GEN gen
NUM pum
PERS pers
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
PHON list
SYNSEM [10] synsemprep
LOC locprep
CAT cat_prep
ADI 1]
COMPS [2]
FILL [3]
HEAD [4]
MARK{5]
SUBJ [6]
CONT [7}
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
HEAD_DTR phrase
DTRS head_comp_struc
COMP_DTR word
PHON nelist
HD patata
TL e_list
SYNSEM [9] synsemcomu
LOC loccomu
CAT cat_comu
ADJ list_1_adj
HD synsemadj
LOC locadj
CAT cat_adj
ADJ e_list
COMPS e_list

26

FILL e_list
HEAD adj
MOD synsem
LOC loc
CAT cat
ADJ list
COMPS list
FILL list
HEAD head
MARK list
SUBI list
CONT cont
PARA para
INDEX index
GEN gen
NUM num
PERS pers
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
PRD bool
MARK e_list
SUBJ e_list
CONT ref_obj
PARA npro
INDEX index
GEN [8] fem
NUM plur
PERS pers
RESTR set
ELEM bot
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc

TL e_list
COMPS e_list
FILL e_list
HEAD comu

CASE case

PRD bool
MARK e_list
SUBJ list_1_det

HD synsemdet
LOC locdet
CAT cat_det
ADJ e_list
COMPS e_list
FILL e_list
HEAD det
MARK e_list
SUBJ e_list
CONT ref_obj
PARA npro
INDEX index
GEN [8]

27

NUM plur
PERS pers
RESTR set
ELEM bot
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
TL e_list
CONT ref_obj
PARA npro
INDEX index
GEN [8]
NUM plur
PERS pers
RESTR set
ELEM bot
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
HEAD_DTR word
PHON nelist
HD dar
TL e_list
SYNSEM synsemvdio
LOC locvdio
CAT cat_v_di_o
ADJ [11] e_list
COMPS list_2_subst_prep
HD (9]
TL [12] list_1_prep
HD [10]
TL [18] e_list
FILL [13] e_list
HEAD (14] verb
PRD bool
VFORM fin
MARK [15] e_list
SUBJ [16] list_1_noun
HD (28] synsemnoun
LOC locnoun
CAT cat_noun
ADJ e_list
COMPS e_list
FILL e_list
HEAD [20] comu
CASE case
PRD bool
MARK e_list
SUBJ e_list
CONT [21] ref_obj
PARA npro
INDEX index
GEN masc
NUM sing
PERS ter

28

RESTR set
ELEM bot
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
TL e_list
CONT [17] verb_obj
PARA para
INDEX index
GEN gen
NUM num
PERS pers
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
PHON list
SYNSEM synsem
LOC loc
CAT cat
ADJ (11}
COMPS [12]
FILL [13]}
HEAD (14}
MARK [15]
SUBIJ [16]
CONT [17]
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
PHON list
SYNSEM synsem
LOC loc
CAT cat
ADJ {11]
COMPS [18]
FILL [13]
HEAD [14]
MARK [15]
SUBIJ [16]
CONT [17]
CONTEXT context
" BACKGR set
ELEM bot
NONLOC nonloc
SUBI_DTR phrase
DTRS head_subj_struc
HEAD_DTR phrase
DTRS head_adj_struc
ADI_DTR word
PHON nelist
HD tonto
TL e_list
SYNSEM [19] synsemadj
LOC locadj

29

CAT cat_adj
ADJ e_list
COMPS e_list
FILL e_list
HEAD adj
MOD synsem
LOC loc
CAT cat
ADJ list
COMPS list
FILL list
HEAD head
MARK list
SUBJ list
CONT cont
PARA para
INDEX index
GEN gen
NUM num
PERS pers
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
PRD bool
MARK e_list
SUBIJ e_list
CONT ref_obj
PARA npro
INDEX index
GEN masc
NUM sing
PERS pers
RESTR set
ELEM bot
CONTEXT context
BACKGR set
ELEM bot
NONLOC ponloc
HEAD_DTR word
PHON nelist
HD hombre
TL e_list
SYNSEM synsemcomu
LOC loccomu
CAT cat_comu
ADJ list_1_adj
HD [19)
TL [22] e_list
COMPS [23] e_list
FILL [24] e_list
HEAD [20]
MARK [25] e_list
SUBJ [26) list_1_det
HD [27] synsemdet
LOC locdet
CAT cat_det

30

ADJ e_list
COMPS e_list
FILL e_list
HEAD det
MARK e_list
SUBJ e_list
CONT ref_obj
PARA ppro
INDEX index
GEN masc
NUM sing
PERS ter
RESTR set
ELEM bot
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
TL e_list
CONT [21]
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
PHON list
SYNSEM synsem
LOC loc
CAT cat
ADI [22]
COMPS [23]
FILL [24]
HEAD [20]
MARK [25]
SUBJ [26]
CONT [21]
CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc
SUBJ_DTR word
PHON nelist
HD def
TL e_list
SYNSEM [27]
PHON list
SYNSEM [28]
PHON list
SYNSEM synsem
LOC loc
CAT cat)
ADJ e_list
COMPS e_list
FILL e_list
HEAD [14]
MARK e_list
SUBJ e_list
CONT [17}

31

CONTEXT context
BACKGR set
ELEM bot
NONLOC nonloc

ANOTHER? t.

no
17-

References

BADIAT. Inicios de una gramitica para el espafiol en ALEP, un formalismo de unificacién.
Proceedings of the Xth SEPLN annual meeting, Santiago de Compostela. 1993,

BRISCOE EJ. and COPESTAKE AA. Sense extensions as lexical rules. Acquilex WP num.
22. 1991.

CARPENTER B. The Logic of Typed Feature Structures. Cambridge University Press. New
York. 1992,

CARPENTER B. ALE: The Attribute Logic Engine User’s Guide. Version 8. CMU. Pittsburg.
1992.

COPESTAKE A. The Representation of Lexical Semantic Information. PhD Thesis. Co gnitive
Science Research Papers 280. University of Sussex. 1992.

POLLARD C. & SAG I .Information-Based Syntax and Semantics. CSLI, Stanford. 1987.

POLLARD C. & SAG I. Head-Driven Phrase Structure Grammar., (Draft version). CSLIL.
Stanford. 1993

SANFILIPPO A., BENKERIMI K. & DWEHUS D. 1994. Virtual Polysemy. COLING 94
Proceedings. Kyoto. 1994,

STEFANOVA M., ter STAL W. A comparison of ALE and PATR; practical experiences.
Twente Workshop on Language Technology. 1993.

32

LSI-95-1-R
LSI-95-2-R
LSI-95-3-R

LSI-95-4-R

LSI-95-5-R
LSI-95-6-R

LSI-95-7-R
LSI-95-8-R

LSI-95-9-R

LSI-95-10-R
LSI-95-11-R,
LSI—95—1'2—.R
LSI-95-13-R
LSI-95-14-R
LSI-95-15-R

LSI-95-16~R

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Research Reports — 1995

“Octree simplification of polyhedral solids”, Dolors Ayala and Pere Brunet.
“A note on learning decision lists”, Jorge Castro.
“The complexity of searching implicit graphs”, José L. Balcazar.

“Design quality metrics for object-oriented software development”, Alonso Peralta, Joan Serras,
and Olga Slavkova.

“Extension orderings”, Albert Rubio.
“Triangles, ruler, and compass”, R. Juan-Arinyo.

“The modifiability factor in the LESD project: definition and practical results”, Nuria Castell
and Olga Slavkova.

“Learnability of Kolmogorov-easy circuit expressions via queries”, José L. Balcdzar, Harry
Buhrman, and Montserrat Hermo.

“A case study on prototyping with specifications and multiple implementations”, Xavier Franch.

“Evidence of a noise induced transition in fluid neural networks”, Jordi Delgado and Ricard V.
Solé.

“Supporting transaction design in conceptual modelling of information systems”, Joan A.
Pastor-Collado and Antoni Olivé.

“Computer (PC) assisted drawing of diagrams for forecasting soaring weather”, Lluis Pérez
Vidal.

“Animats adaptation to complex environments as learning guided by evolution”, Mario Martin,
P p ’
Marius Garcia, and Ulises Cortés.

“Learning to solve complex tasks by reinforcement: A new algorithm”, Mario Martin and Ulises
Cortés.

“Analysis of Hoare’s FIND algorithm with median-of-three partition”, Peter Kirschenhofer,
Conrado Martinez, and Helmut Prodinger.

“MDCO to B-Rep conversion algorithm”, Dolors Ayala, Carlos Andijar, and Pere Brunet.

LSI-95-17-R

LSI-95-18-R

LSI-95-19-R

LSI-95-20-R

LSI-95-21-R.

LSI-95-22-R

LSI-95~23-R

LSI-95-24-R

LSI-95-25-R,

LSI-95-26-R

LSI-95-27-R

LSI-95-28-R

LSI-95-29-R

LSI-95-30-R

LSI-95-31-R

LSI-95-32-R

LSI-95-33-R

LSI-95-34-R

LSI-95-35-R

LSI-95-36-R

LSI-95-37-R

“Augmented regular expressions: A formalism to describe, recognize. and learn a class of
context-sensitive languages”, René Alquézar and Alberto Sanfeliu.

“On parallel versus sequential approximation”, Maria Serna and Fatos Xhafa.

“A set of rules for a constructive geometric constraint solver”, Robert Juan-Arinyo and Antoni
Soto.

“From degenerate patches to triangular and trimmed patches”, Marc Vigo, Niiria Pla, and Pere
Brunet.

“Learning Ordered Binary Decision Diagrams”, Ricard Gavalda and David Guijarro.

“The complexity of learning minor closed graph classes”, Carlos Domingo and John Shawe-
Taylor.

“Approximating the permanent is in RNC”, J. Diaz, M. Serna, and P. Spirakis.
“Constraint satisfaction as global optimization”, Pedro Meseguer and Javier Larrosa.
“A rule-constructive geometric constraint solver”, R. Juan-Arinyo and Antoni Soto.
“External schemas in object oriented databases” (written in Spanish), José Samos.
“An approach to belief in strong Kleene logic”, Gustavo Nifez and Matias Alvarado.
“Dynammic belief modeling”, Antonio Moreno and Ton Sales.

“Proceedings ICLP Workshop on Deductive Databases and Abduction”, to appear. H. Decker,
U. Geske, A. Kakas, C. Sakama, D. Seipel, and T. Urpi (editors).

“Difference lists and difference bags for logic programming of categorial deduction”, F. Xavier
Lloré and Glyn Morrill.

“An experiment on automatic semantic tagging of dictionary senses”, German Rigau.
“Slices of meaning: a study on nouns of portions”, Salvador Climent and Maria Antonia Marti.

“An HPSG grammar of Spanish implemented in ALE: A solution for dealing with subcategori-
sation alternances”, Salvador Climent and Xavier Farreres.

“Optimal and nearly optimal static weighted skip lists”, Conrado Martinez and Salvador Roura.
“Evaluation of expressions in a multiparadigm framework”, Xavier Burgués and Xavier Franch.

“Equivalence between executable OOZE and algebraic specification”, Vicent-Ramon Palasi
Lallana.

“Automatic deduction of the behavioral equivalence between two algebraic specifications”,
Vicent-Ramon Palasi Lallana.

PR

Hardcopies of reports can be ordered from:

Nuria Sdnchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secrelsiQlsi.upc.es

See also the Department WWW pages, http://www-1si.upc.es/waw/

