.« JY00,s7/ 3206

(Opin S
A Note on Learning Decision Lists
Jorge Castro
Report LSI-95-2-R
s6y ¢ 1P
065 Ut/ i gy

Facuttat d'informidtica
de Barcelona - Biblioteca

16 ENE. 1995



A note on learning decision lists

Jorge Castro
Dept. Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
Email: castro@lsi.upc.es

January 13, 1995

Abstract
We show an algorithm that learns decision lists via equivalence queries, provided
that a set G including all terms of the target list is given. The algorithm runs in
time polynomial in the cardinality of G. From this learning algorithm, we prove
that log n-decision lists —the class of decision lists such that all their terms have low
Kolmogorov complexity— are simple pac-learnable.

1 Introduction

In Valiant’s original model of learning, “pac-learning” [7], one has to learn a target con-
cept with high probability, in polynomial time, from a polynomial number of examples,
within a certain error, under all probability distributions on the examples. This last
requirement, to learn under all distributions, is a strong one. Many concept classes are
not known to be polynomially learnable or known not to be polynomially learnable if
RP # NP, although some such concept classes are polynomially learnable under some
fixed distributions. However, learning under one fixed distribution may be too restrictive
to be useful.

Li and Vitdnyi proposed in [3] the simple pac-learning model with the aim to get a
compromise between practicability —in the sense that more concept classes are learnable-
and usefulness, understood as the property that guarantees that the concepts are learn-
able under a wide and interesting class of distributions. Roughly speaking, simple pac-
learning model replaces the condition of learning under all distributions of Valiant’s
original model by the request of learning under all simple distributions, provided the
sample is given according to the “universal” distribution (see next paragraph).

Simple distributions form a wide class that properly include all enumerable ones.
Specifically, they are those multiplicatively dominated by the universal enumerable dis-
tribution m. This distribution assigns high probabilities to low Kolmogorov complexity
examples. As we will see later, these properties of m have nice consequences with regard
to pac-learning under simple distributions.

With the new model, Li and Vitdnyi [3] developed a theory of learning for simple
concepts —concepts with low Kolmogorov complexity— that intuitively should be polyno-
mially learnable. In fact, they showed several examples that strengthen this intuition.



A decision list f over n Boolean variables is a sequence of terms fj ... f, such that
each term f;, for i = 1,...,1— 1, is a pair (fm;, fb;) where fm, is a monomial and fb;
is either 0 or 1. The last term f; is always (1, fb;). The value of a decision list f on
a setting of the n Boolean variables is defined to be fb;, where 1 is the least number
such that fm; is satisfied by the assignment. The class of k-decision lists consists of all
decision lists f for which each monomial fm; has at most k literals. Rivest gave in [5]
an algorithm for learning k-decision lists, for each constant k.

We will show here an algorithm for exact learning, via equivalence queries, of decision
lists. It works under the assumption that a set G, including all terms of the target list,
is known. This algorithm runs in time polynomial in the cardinality of G. From this
learning algorithm, we can solve the simple pac-learning problem for log n-decision lists,
cited as open in [3] (see also page 308 of [4]). Log n-decision lists is the class of all
decisions lists f over n Boolean variables such that each term f; of f has Kolmogorov
complexity O(logn).

2 Preliminaries

We follow sections 5.5 and 5.6 of [4] and section 2 of [3]. In this paper we work with
a discrete sample space S. The elements of S are called examples. A concept ¢ is a
subset of §. Abusing notation, we use ¢ and the characteristic function f:§ — {0,1}
of ¢ interchangeably for the concept ¢ C § and for the syntactic representation of c.
For a concept ¢, we denote by I/(¢) the minimum length of the representations of c. A
concept class C is a set of concepts. Fixed f as the target concept, a learning algorithm
draws examples from the sample space S according to a fixed but unknown probability
distribution P. Each example e comes with a label that shows the value of f(e).

Definition 2.1 A concept class C is pac-learnable iff there exists a learning algorithm
A such that, for each f € C and € (0 < € < 1), algorithm A always halts within time and
number of examples p(I(f),1/¢), for some polynomial p, and outputs a concept h € C
which satisfies

Prob(P(h# f)<e€e)>1—e.

Note that the pac-learning model requires that the algorithm learns under all distribu-
tions (the distribution P in the definition is unknown). We can also define, in a natural
way, pac-learning under a class A of distributions: simply requiring definition 2.1 only
on distributions from A.

It can be proved that there exists an universal enumerable distribution, denoted by m,
that multiplicatively dominates each enumerable distribution. It can be shown that

m(z) = g-K(z)+0(1)
where K(z) denotes the Kolmogorov complexity of z. The universal distribution has

many important properties. Under m, easily describable objects have high probability,
and complex objects have low probability.



Definition 2.2 A distribution P is simple iff it is multiplicatively dominated by the
universal distribution. That is, there exists a constant ¢, such that for all z,

cm(z) > P(z).

It can be shown that simple distributions properly include enumerable ones and that
there is a distribution which is not simple. The following theorem relates learning under
simple distributions with learning under the universal distribution m.

Theorem 2.3 ([3]) A concept class C is pac-learnable under the universal distribution
m, iff it is pac-learnable under simple distributions, provided that in the learning phase
the set of examples is drawn according to m.

This theorem says roughly that a concept class is polynomially learnable under m if
and only if it is polynomially learnable under each simple distribution. In [3] it is shown
how to exploit this completeness theorem to obtain new learning algorithms. Now, we
define

Definition 2.4 A concept class C is simple pac-learnable iff it is pac-learnable under m.

We assume the reader knows the exact learning or learning via queries models (see [1]
and [2]). In particular, we will work with the learning via equivalence queries model.
Roughly speaking, in this model the learning algorithm has to produce in polynomial
time a representation of the target concept, doing a polynomial number of equivalence
queries. An equivalence query asks whether a representation given by the algorithm is
a representation of the target concept. Equivalence queries are answered by a teacher
affirmatively —when the asked representation is a representation of the target concept-
or with a counterexample that shows the difference.

A pac-learning algorithm can.be obtained from a learning via equivalence queries
algorithm by means of a now standard transformation (see [1] and [2]):

Theorem 2.5 Let C be a concept class. If C is learnable via equivalence queries then
C is pac-learnable.

In the next section we will use this theorem to show a simple pac-learning algorithm
for log n-decision lists. We will proceed as follows. First we will give an algorithm that,
assuming a set G including all terms of the target list is known, learns the target list
doing equivalence queries in time polynomial in the cardinality of G. After that, we will
show that if the target list is a log n-decision list and we draw a polynomial number of
examples according to the universal distribution m, with high probability we can obtain
a set G of polynomial size that includes all terms of the target list. From these facts we
may conclude that log n-decision lists are simple pac-learnable.



E

3 Learning decision lists

Let f = fi...f: be a decision list with f; = (fmi, fbi), for i = 1,...,t ~ 1, and f; =
(1, fby). Let G = {g1,.. .,gs} be a set of terms with g; = (gmi, gbi) for i=1,...,s, and
let us assume that {fi,..., ft} € G.

We consider the following algorithm Learn_Dlist that knowing the set G, tries to learn
f doing equivalence queries. Here E denotes a set of labeled examples according to f,
obtained from previous queries.

function Learn_Dlist (G) ret g : decision_list
E:=0
¢ :=Grouplist(G, E)
Ask the equivalence query g = f?
while the teacher does not reply “yes” do
Let e be the new counterexample
Let g = (gmy, gbi) be the first term of g such that gmy(e) =1
E := EU (e, gb)
g :=Grouplist(G, E)
Ask the equivalence query g = f?
endwhile
return g
endfunction

The core of the algorithm is the function Group_list. Intuitively, this function returns
a decision list g by grouping all terms of G according to their behaviors on E. Given a
labeled example (e,b) of E and a term g; of G, we say that (e, b) is a consistency (resp.
an inconsistency) of g; iff gmi(e) = 1 and gb; = b (gb; = E). Each term g; of G appears
in ¢ placed in the first group of terms with the following property: each inconsistency of
gi is a consistency of some term in a previous group. The function Group_list is formally
defined as follows (here ++ denotes list concatenation):

function Grouplist (G', E) ret g : decision_list
foralli=1,...,sdo
Let C; be the set of labeled examples (e, b) € E
such that gm;(e) = 1 and gb; = b
(* let us call C; the consistent set of the term g; *)
Let I; be the set of labeled examples (e,b) € E
such that gmi(e) =1 and gb; =0
(* let us call I; the inconsistent set of the term g; *)
endfor
g := nul list
while G’ # 0 do
Let Newgroup be the list of terms of G’ such that their inconsistent



sets are empty. It does not matter the order in the list
g := g++Newgroup
G' := G' — {terms of Newgroup}
for all g; € G’ do
for all g; € Newgroup do
L:=I-(I;nCj)
endfor
endfor
(+ consistent examples of terms in Newgroup have been erased
from the inconsistent sets %)
endwhile
return g
endfunction

Assuming that Group_list halts, each time that it is called it generates a new list g,
in such a way that g = gr(g, 1)++-- ++gr(g, k), where gr(g,1) —the first group of g- is a
list of terms having no inconsistencies in E, and in general, gr(g,¢+ 1) is a list of terms
whose inconsistencies in E are included in the union of the consistent sets of terms in
previous groups. Now, we are ready to prove the following lemma

Lemma 3.1 Assuming that G includes all terms of f, the algorithm Learn_Dlist halts
and learns f in time polynomial in s, where s is the cardinality of G.

Proof We have just to prove that Learn_Dlist runs in time polynomial in s. We proceed
by steps.

Fact 1. The function Group_list halts in time polynomial in s and the cardinality of E.

We show that Newgroup is always non empty. At the beginning of the process of
Group_list, the set G’ is G and includes all terms fj,..., fi of the target list f. The
first group gr(g,1) is always nonempty because f; does not have inconsistencies. Let
us suppose that gr(g,7) is the last group constructed and G’ # @. Either, all terms of
f are already in a group, or there exists a term of f in G'. In the first case, the term
fi = (1, fb;) of f is in a group. As each example of E is either consistent or inconsistent
for f;, we may conclude that all inconsistent sets of terms in G’ have already been erased.
So, Newgroup is G'. .

In the second case, let f,, the first term of f that belongs to G'. As E is a set of
examples of f, the inconsistent set of f,, is empty because all its inconsistencies in E are
included in the union of the consistent sets of fi,..., fs;—1 that, by hypothesis, belong
to previous groups. So, f,, belongs to Newgroup. |

Fact 2. The decision list g returned by Group_list has at most ¢ 4+ 1 groups of terms,
where ¢ is the number of terms of f.

Using ideas from above it can be shown the following: f1 € gr(g,1), s0 f2 € gr(g, 1)U
gr(g,2) and, in general, f; € gr(g,j) and j < 4. So, fy = (1, fb:) € gr(g,7)and j < t.
Now the result is clear. a



Fact 3. Let g; be a term of G and let gr(g,o;) be the group of g; before processing
Group_list. Let gr(g,p;) be the group of g; after processing Group_list. It holds that
0; < Wi

When a new counterexample is put in E the inconsistent set of g; cannot decrease. A
contradiction appears if we suppose o; > p; for some 1 < i < s. a

Fact 4. The term g; has to change of group by processing Group_list.

Let us suppose that g; € gr(g,t) before processing Group_List. Note that the last coun-
terexample e will be put in the inconsistent set of g; and will not be put in the consistent
sets of terms in gr(g,j) with § < i. Now, by fact 3, it is clear that g; has to change of
group by processing Group_List. a

Fact 5. Each term g; changes of group at most ¢ times.
It is a consequence of facts 2 and 3. &)

Fact 6. The function Learn_Dlist halts in time polynomial in s.

By facts 4 and 5, the while instruction of Learn_Dlist is processed at most st times. Now,
by fact 1 we get the result. (m]

Now, let us suppose that f is a logn-decision list. The following lemma says that,
drawing examples under the universal distribution, with high probability a set G including
all terms of f can be obtained in polynomial time.

Lemma 3.2 Let f be a log n-decision list and let f; = (fm;, fb;) fori=1,...,t be the
terms of f. Let ¢ be a constant such that for all ¢ = 1,...,t, it holds K(fm;) < clogn.
Let ¢ be a real number such that 0 < € < 1. There exists an integer n. depending only on
¢ such that for all n > n., if we draw n°*+? /e examples according to m, with probability
greater than 1 — € a set G including all terms of f can be obtained in time O(n¥c+2) /e?),

Proof The idea is from [3] (see also [4]). If we draw n°t? /e examples according to m,
it holds the following,

Fact. Forall n > n., where n. is an integer depending only of ¢, with probability greater
than 1 — € all examples of the following form will be drawn.

For each monomial m over n variables with K(m) < clogn: the example
vectors O,,, defined as the vectors that satisfy m and have 0 entries for all
variables not in m; the example vectors 1,,, defined as the vectors that satisfy
m and have 1 entries for all variables not in m.

This fact is shown in the proof of theorem 3 of [3]. Now, we obtain the set G with the
following procedure:

Draw n°*t2 /e examples according to m. Let E be this set of examples.
G:=0
For each pair of examples in £ do
Let m be the monomial which contains z; if both examples have ‘1’ in
position i, contains Z; if both examples have ‘0’ in position ¢, and does



not contain variable z; otherwise (1 <1 < n)
G = G U {(m,0),(m, 1)}

endfor

Let us call this procedure Get.set. Using the fact above, it is clear that Get_set satisfies
the lemma. a

Finally, we are ready to show simple pac-learning for log n-decision lists. Let f be
as in lemma 3.2 and let t be the time of Learn_Dlist running on a set that includes all
terms of f. With probability at least 1 — ¢, the algorithm

Get_set(G)
Let s € O(n2(ct2)/¢?) be the cardinality of G
Simulate Learn_Dlist for #(s) steps

learns f exactly. Removing the equivalence queries in the standard way (as in the proof of
theorem 2.5, see [1] and [2]) we obtain a pac-learning algorithm, say A, with the following

property,

Prob(m(gsa # f) <€) 2

Prob (m(gA -',é f) < €|{f1,...,ft} - G) 'PI'Ob({f],...,ft} C G) >
(1-e)(1-€)>1-2¢

where g4 denotes the output list of A. Therefore, we have shown

Theorem 3.3 Let D. be the class of log n-decision lists having all their terms Kol-
mogorov complexity bounded by clogn. The D, classes are simple pac-learnable.

4 Conclusions

Li and Vitanyi gave in [3] several examples of simple pac-learning. The outline of their
proofs is the following. First a certain property P —that depends on the class C they
try to learn— is shown to happen with high probability drawing examples under m.
Second, assuming that property P happens, a pac-learning distribution-free algorithm
—frequently an Occam algorithm- for C is given. This work shows that, in some cases, a
learning via equivalence queries algorithm may be easier to get than a pure pac-learning
distribution-free or an Occam one.

We have some evidences of the fact that the similar learning scheme used in this
paper, namely:

1. With high probability get property P.
2. Assuming P, try a learning via equivalence queries algorithm for C.

can be improved in such a way that more general classes of decision lists would be simple
pac-learnable. If we confirm these results, they will be written in a separate paper.



In a recent paper [6], an algorithm for exact learning, via equivalence queries, of
decision lists has been independently obtained by Simon. Given a set of Boolean functions
F it can be defined, in a natural way, the class D of decision lists having all their terms
functions in F. Assuming that F is known, Simon’s algorithm, denoted by Declist, learns
Dr in time polynomial in the cardinality of F. Algorithms Declist and Learn.Dlist are
similar. Note that if F is known, the set G including all terms of the target list needed
by Learn_Dlist can be obtained in linear time, just consider:

G= U {(£,0),(f,1)}.

JEF

Acknowledgements

I discussed ideas of this work with José L. Balcdzar who introduced me topics of learning
theory. Ricard Gavalda showed me the proof of theorem 2.5.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87-106, 1987.

2. D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.

3. M. Li and P. Vitdnyi. Learning simple concepts under simple distributions. SIAM
Journal of Computing, 20(5):911-935, 1991.

4. M. Li and P. Vitdnyi. An introduction to Kolmogorov complezity and its applications.
Springer-Verlag, 1993.

5. R. Rivest. Learning decision lists. Machine Learning, 2:229-246, 1987.

6. H. Simon. Learning decision lists an trees with equivalence queries. To appear in
EUROCOLT 95.

7. L. Valiant. A theory of the learnable. Comm. ACM, 27:1134-1142, 1984.



LSI-94-45-R

LSI-94-46-R

LSI-94-47-R

LSI-94-48-R

LSI-94-49-R

LSI-94-50-R

LSI-95-1-R

LSI-95-2-R

LSI-95-3-R

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Recent Research Reports

“On RNC approximate counting”, Josep Diaz, Maria J. Serna, and Paul Spirakis.

“Prototipatge semantic d’un model conceptual deductiu” (written in Catalan), C. Farré and
M.R. Sancho.

“Generacié i simplificacié automatica del Model d’Esdenivents Interns corresponent a un model
conceptual deductiu” (written in Catalan), C. Farré and M.R. Sancho.

“B-Skip trees, a data structure between skip lists and B-trees”, Joaquim Gabarr6 and Xavier
Messeguer.

“A posteriori knowledge: from ambiguous knowledge or undefined information to knowledge”,
Matias Alvarado.

“An approach to the control of completeness based on metaknowledge”, Jordi Alvarez and
Niria Castell.

“Octree simplification of polyhedral solids”, Dolors Ayala and Pere Brunet.
“A note on learning decision lists”, Jorge Castro.

“The complexity of searching implicit graphs”, José L. Balcazar.

Copies of reports can be ordered from:

Nuria Sanchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secrelsi@lsi.upc.es



