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Abstract

A linear algorithm for radiosity is presented, linear both in time and storage. The
new algorithm is based in previous work by the authors and in the well known
algorithms for progressive radiosity and Monte Carlo particle transport.

Introduction

We will present here a new algorithm for radiosity that is linear, both in time
and storage, in the number of patches. This algorithm is based in our previous work
[Sbert93], and in ideas borrowed from progressive radiosity [Cohen88] and in particle
transport from the literature about radiative heat transfer [Siegel92] and Monte Carlo
radiosity [Pattanaik92, Shirley91].

In progressive radiosity we choose a patch with accumulated unsent energy, on
the fly we compute the form factors from that patch to all the others and so we can
distribute the energy emitted by it. A patch that so receives energy stores it in two
places: an accumulator that at the end of the process will account for the radiosity of the
patch, and another accumulator for the unsent energy. That unsent energy is of course
updated to 0 whenever the patch is chosen as the shooting patch. In particle transport
techniques, first used in Radiative Heat Transfer and introduced in the Radiosity field
by Shirley and Pattanaik, we send rays from the sources, and we follow them through
its interaction with the surfaces in the environment. Every ray from a source transports
an equal quantity of energy, namely the total sent by the source divided by the number
of rays we are going to cast from that source. [Sbert93] cast rays in a global way to
obtain a form-factor matrix with time cost linear in the number of patches, for a fixed
error. Every ray intersected the whole scene and gave as a result an ordered intersection
list. That list of intersected patches was followed a pair of patches at a time, updating
the number of lines between them and the total of lines crossing each of them. The
quotient of the two quantities gave us the form-factor.

We present here two versions of a new algorithm. The first version is a pure
global one, not taking into account potentially big local errors. Those errors appear
mainly due to the fact that the lines crossing a patch are proportional to the surface of a
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patch, and then a little source patch will cause a big amount of error. That problem is
adressed by the second version of the algorithm.

Overview of the algorithm

From progressive radiosity we borrow the idea of having two quantities per
patch, the accumulated energy and the unsent energy. From particle transfer we borrow
the idea of rays transporting energy in quanta (discreet amount of energy) from sources
to the environment. From our previous work we take the idea of casting global lines
(instead of casting them locally at each light source) and building ordered intersections
lists. But in our new algorithm, on the contrary to progressive radiosity, we have to wait
until the end of the process to have a workable image; i.e. we don't refine it
progressively.

We are going to cast globally a determined number of oriented lines. We
consider the lines oriented. Each line will supply us with an intersection list, and we
follow this list taking into account successive pairs of patches. Each patch (if not
emissor) has with it two quantities. One records the energy accumulated, the other one
is the unsent energy. When we take one pair of patches along the intersection list , the
first patch in the pair will transmit its unsent energy to the second in the pair. So we
update to O the unsent energy of the first patch, and increment the two quantities at the
second patch, the accumulated and the unsent energy. In the case of a source we keep
also a third quantity, the emitted energy per line exiting the source. We compute that
energy in the following way: Given the number of lines we are going to cast, for any
light source we compute beforehand the forecasted lines passing through it. We divide
the total energy by this number, and we will have the energy that should transport a
single line exiting the surface. Then, if the first patch of a pair is a source patch, the
energy transported to the second patch of the pair will be incremented with the emitted
energy per line.

The algorithm is then as follows:



Initialise emitted energy, luminance and unshot energy for every patch /*Precompute emitted */

I*energy per ray crossing a source, */
I*and put to zero every other thing*/
While not all rays cast do /*One pass for every global line cast*/
Begin
Cast a ray
Build sorted list of intersections [*Build an ordered list of patches intersected*!
For every pair of patches i,j in the intersections list do /*One pair of patches at a time*/
I Begin
Transfer to patch j the unshot energy of patch i 1*As in progressive radiosity*!
If patch i is emissor do
Transfer to patch j the energy per ray exiting patch i I*As in particle */
I*transfer. That energy */
I /*was precomputed */
I*inthe initialisation*!
Put to 0 the unshot energy of patch i i*As in progressive radiosity*/
Update accumulated and unshot energy for patch j i*As in progressive radiosity*!
l End fOI‘
End while

Fig.1 The same line will transport energy from patch a to patch b, and from patch c to
patch d.

Complexity

We will show that the error of the new algorithm decreases linearly with the
number of lines and increases linearly with the number of patches. Suppose Li* is the
exact solution for patch i, Li is the solution with the new algorithm and Li’ is the
solution with the algorithm presented in [Sbert93].

For any Li, Li*, Li’ values we have
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(Li*-Li)2 <= 2 (Li*-Li"y2+ 2 (Li’-Li)2 (1)

This fact is easily proven. Developing the squares, and passing all terms to one side of
the inequality, we would obtain

(Li*+Li-2Li")2 >=0

Then, summing (1) for all the patches
2 Ai Li*-Li)2<=22; Ai (Li*-Li")2+ 2X; Ai (Li-Li)2

As shown in [Sbert93] the first term after the sign of inequality is linear in the
number of patches. If we now show that the second term is linear too, we should have
proved our assertion. We have verified the linearity of the second term empirically. We
have performed some tests based in different scenes and different number of patches,
all based in 100 runs. Those tests, summarised in Tables 1&2, appear to confirm the
desired linearity. The error in those tables is the square of the RMS error, that we term
as quadratic error. Finally, in Table 3 we have computed the error respective to a
solution computed with exact (analytical) form factors. Again, there seems to be
linearity.

As in our new method we do not compute neither explicitly nor implicitly the
form-factor matrix, but instead compute directly the luminance vector, it is clear that
our cost in storage is linear in the number of patches.

number of patches

lines 6 54 600

103 0.0009254 0.0073325 -

104 0.0000885 0.0008175 0.0079969
105 0.0000081 0.0000796 0.0008868
106 : 0.0000080 0.0000888
107 - - 0.0000088

Tablel. Quadratic error (square of RMS) for scene 1, a cubical enclosure. The error is

computed respective to the solution found with the method of [Sbert93].




number of patches

lines 114 456 1824

104 0.0010487 0.0041131 -

105 0.0001092 0.0004458 0.0017342
106 0.0000113 0.0000453 0.0001792
107 : - 0.0000180

Table2. Quadratic error (square of RMS) for scene 2, a cubical enclosure with three
cubes inside. The error is computed respective to the solution found with the method of

[Sbert93].

number of patches
lines 6 54
103 0.0007985 0.009267
104 0.0000789 0.0007775
105 0.0000079 0.0000801
106 : 0.0000080

Table3. Quadratic error (square of RMS) for scene 1, a cubical enclosure, respective to
the analytical solution.

Improving the algorithm.

We present here two ways of improving the performance of the algorithm. First
we propose an hybrid algorithm, consisting of one or more local passes, and finally the
global pass. Second, when considering a given pair of patches, we exchange the unsent
energy in both directions.

We are burdened with two facts: First, the work done with the first shot lines may be
wasted in the sense that probably they do not transport energy at all. That is, much work
is done to put the system in a state where each line transports energy between every pair
of patches. Only then, when most of the patches have unshot energy the system will
work at its best. Second, as it is a global algorithm, the lines passing through any source
will be proportional to the surface of the source, not to its strength, and then the error
may be a big one for small area sources. In fact, the standard deviation of A, the
expected number of lines through a patch, will be VA (considering Poisson
approximation to binomial distribution), so for instance for an expected value of 100
lines the standard deviation is 10, that is a 10%. It would mean that we expect to make
an error of about a 10% in the total energy sent from that source, so a big error. If A is
10000, the relative error comes down to 1%, a more acceptable error. But if we have to
make sure that for each small source pass a minimum of 10000 lines, the total quantity

of lines cast would be enormous, and our method would become not very practical.
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Then the question is: May we put the system in a working state in a direct and
local way?. As often done, the answer is as follows:

1-Shoot energy directly from all the sources, in a local Monte Carlo way, or in
any other way.

2-Put to O the energy of the sources, and initialise the energy of the patches to
the irradiated (received) energy, factored by the reflectivity.

3-Follow the algorithm proposed in the previous section with no additional
change.

4-Sum to the final result the initial energies.

We see that we do not add complexity, because the work done in the first shot is
O(n), where n is the number of patches.

The algorithm could be again modified in the sense that before applying part 2,
we could shoot again from the patch or patches with most unshot energy, like it is done
in progressive radiosity. Part 2 to 4 could account then for the slow convergence of
progressive radiosity, and we should have then an hybrid algorithm with the advantages
of both progressive radiosity and global radiosity.

Some tests are summarised in Tables 4&S5. Table 4 shows the quadratic errors
(square of RMS error) when the first shot is an exact one. That is, we have computed
analytically the form-factors from the source to the other patches with the formulae in
[Siegel92] and distributed the energy according to those form-factors. Compared to
Table 3, Table 4 shows a decrease of an order of magnitude. If we look at Table 5,
where we have put the respective quadratic errors for the two versions of the algorithm,
and we have supposed a much more smaller light source than in Table 4, we see that the
decrease is about 50 times. The smaller is the light source and the more strength it has,
the more will the decrease be.

number of patches

lines 6 54

103 0.0000833 0.0009188
104 0.0000083 0.0001084
105 0.0000008 0.0000112
106 - 0.0000011

Table4. Quadratic error (square of RMS) for scene 1, a cubical enclosure, respective to the
analytical solution, with the first shot computed with analytical form factors. Compare
with Table 3.



lines first version first shot exact
103 0.0457937 0.0008846
104 0.0051473 0.0001051
105 0.0005056 0.0000105
106 0.0000505 0.0000011

Table5. Quadratic error (square of RMS) respective to the analytical solution for scene
3, a cubical enclosure divided in 54 patches and a light in a patch in the middle of a
face, with as much energy as scene 1.

As a second way to improve the algorithm we propose that, when considering a
given pair of patches, we exchange the unsent energy in both directions. That is, if we
do not take into account the orientation of the intersections list, then we have that every
line joining two patches represents a two-directional path between them. That is, each
of them sends simultaneously to the other the unsent energy. In this way we may spare
a 50% of lines cast. Table 6 gives some error results. This last improvement is used to
compute the radiosity of the images presented here. Figures 3&4 show the distribution
of the quadratic error for the runs corresponding to Table 6. The quotient of the
standard deviation by the mean (Coefficient of Variation) is for 6 patches 77.1% for the
first case and 80.6% for the second case, and for 54 patches 20.4% and 22.3% |,
respectively. The graph shapes for both 6 and 54 patches look like those of x2
distributions, with a few degrees of freedom for 6 patches and about fifty degrees for
54 patches. This is also consistent with the values of the Coefficient of Variation for
those %2 distributions. If this ressemblance to a %2 distribution is due to the simplicity
of the scenes considered, or is valid for most scenes, must be further investigated. As
the Coefficient of Variation becomes smaller incrementing the degrees of freedom, a %2
behaviour would mean increased stability with increased number of patches, that is, less
fluctuation of the error.
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Fig.2 The same line will transport the unsent energy from patch a to patch b, and
simultaneously the unsent energy from patch b to a. The same with patches ¢ and d.

number of patches

lines 6 54

103 0.0003190 0.0031117
104 0.0000298 0.0003121
105 0.0000039 0.0000315
106 . 0.0000031

Table6. Quadratic error (square of RMS) for scene 1, a cubical enclosure, respective to
the analytical solution, taking into account bidirectionality of a line between two

patches.
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Figure 3. Graphs of frequencies of the errors of the 100 runs corresponding to the 6
patches case in Table 6, for 10000 lines and 100000 lines, respectively. Errors are given
in 10-5 units in the first case, and in 10-6 units in the second case.
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Figure 4. Graphs of frequencies of the errors of the 100 runs corresponding to the 54
patches case in Table 6, for 100000 lines and one million lines, respectively. Errors are
given in 10-3 units in the first case, and in 10-6 units in the second case.

We present in Figures 5&6 two images obtained making use of the algorithm
with both improvements presented in this section. The scene consists of a cubical
enclosure with three cubes inside. The average length of an intersection list is of 1.38,
and of a non-empty intersection list of 2.33. The number of patches is 12150. The
source is the whole front wall (not seen in the image). In Figure 5 we have cast eight
millions of local rays from the source, and twelve millions of global rays. The average
number of lines per patch of the enclosure is 1474, per patch of the big cube is 1164,
and for the smaller cubes 655. In Figure 6 we have cast sixteen millions of local rays
from the source, and twenty four millions of global rays. The average number of lines
per patch of the enclosure is 2948, per patch of the big cube is 2328, and for the smaller
cubes 1310.

Conclusions and future work

We have presented here a new Monte Carlo algorithm for computing the
radiosity of a scene, based on three existing techniques: progressive radiosity, particle
transport, and global Monte Carlo. The cost have been shown to be linear in time and
space with respect to the number of patches, for a given scene and a global error bound.
We have also presented two improvements to the basic algorithm, based on considering
a first local shot, and then switching to the global method, and also in considering
transfer of energy along two directions for a same line. We have shown how at least for
very simple scenes, the method is stable, in the sense that the fluctuations of the error
decrease with increased number of patches. We have also shown how for those very
simple scenes the error distribution looks like a %2 distribution. Nevertheless, much
work must be done along the following lines:

-analysis of the error

A thoroughly analysis of the error must be done, focused in two points. The first
point will be to see if the error follows a x2 distribution and which degrees of freedom
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it has. The second point is to find an heuristic formula which gives us an a priori value
of the error, based on the parameters of the scene. This formula will permit us to
compute the number of lines necessary for a given scene and a given error.

- progressive radiosity

A natural continuation of the work presented in this paper, as well as the one
presented in [Sbert93], is to find a progressive refinement approach well suited to the
global Monte Carlo integration. In [Sbert93b] we propose a solution, wich could be
extended to the technique presented here.

-non-planar surfaces

In [Sbert93b] we show how we may use scenes with non-planar parametric
surfaces. A future work would be to show how the presented algorithm is also well
suited to those same scenes.

- non-diffuse surfaces

We are going to extend the algorithm in the following way, not yet
implemented: If the intersected surface is a non diffuse one, we record the intersection
point and the direction of intersection. When we follow the intersection list from a
patch onto the next in the list, if we detect a non-diffuse surface as the patch receiving
the energy, we trigger a procedure to recursively transport that energy, as does Shirley
[Shirley90]. That procedure finishes either when the light lands on a diffuse surface, or
when its energy has diminished below some preestablished threshold.

-bundles of parallel lines

In [Sbert93b] we show how we may use random bundles of parallel lines to
compute form factors, the main advantage of this being that we could project the whole
scene in the direction of the bundle and then use incremental methods, as described by
Bucklaew [Bucklaew89]. A future work would be to show how those bundles may also
substitute our random lines in the algorithm presented here.
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Figures 5 (top) &6 (bottom): Scene with 12150 patches. 8 and 16 millions of local rays,

respectively, and 12 and 24 millions of global rays, respectively.
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