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PHYLOGENETIC MIXTURES AND LINEAR INVARIANTS FOR EQUAL

INPUT MODELS

MARTA CASANELLAS AND MIKE STEEL

Abstract. The reconstruction of phylogenetic trees from molecular sequence data relies on
modelling site substitutions by a Markov process, or a mixture of such processes. In general,
allowing mixed processes can result in different tree topologies becoming indistinguishable from
the data, even for infinitely long sequences. However, when the underlying Markov process
supports linear phylogenetic invariants, then provided these are sufficiently informative, the
identifiability of the tree topology can be restored. In this paper, we investigate a class of
processes that support linear invariants once the stationary distribution is fixed, the ‘equal
input model’. This model generalizes the ‘Felsenstein 1981’ model (and thereby the Jukes–
Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can
also be described by a ‘random cluster’ process. We describe the structure and dimension of
the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic
tree (and for all trees – the so called ‘model invariants’), on any number n of leaves. We also
provide a precise description of the space of mixtures and linear invariants for the special case
of n = 4 leaves. By combining techniques from discrete random processes and (multi-) linear
algebra, our results build on a classic result that was first established by James Lake in 1987.

1. Introduction

Tree–based Markov processes on a discrete state space play a central role in molecular sys-
tematics. These processes allow biologists to model the evolution of characters and thereby
to develop techniques for inferring a phylogenetic tree for a group of species from a sequence
of characters (such as the sites at aligned DNA or amino acid sequences (Felsenstein, 2004)).
Under the assumption that each character evolves independently on the same underlying tree,
according to a fixed Markov process, the tree topology can be inferred in a statistically consistent
way (i.e. with an accuracy approaching 1 as the number of characters grows) by methods such
as maximum likelihood estimation (MLE) (Chang, 1996) and techniques based on phylogenetic
invariants (Fernández-Sánchez and Casanellas, 2016). This holds even though one may not know
the values of the other (continuous) parameters associated with the model, which typically relate
to the length of the edges, and relative rates of different substitution types.

The assumption that all characters evolve under the same Markov process is a very strong one,
and biologists generally allow the underlying process to vary in some way between the characters.
For example, a common strategy is to allow characters to evolve at different rates (i.e. the edge
lengths are all scaled up or down in equal proportion at each site by a factor sampled randomly
from some simple parameterized distribution). In that case, provided the rate distribution is
sufficiently constrained, the tree topology can still be inferred in a statistically consistent manner
(Allman et al., 2012; Matsen et al., 2008), and by using MLE, or related methods.

However, when this distribution is not tightly constrained, or when edge lengths are free
to vary in a more general fashion from character to character then different trees can lead to
identical probability distributions on characters (Allman et al., 2012; Steel et al., 1994). In that
case, it can be impossible to decide which of two (or more) trees generated the given data, even
when the number of characters tends to infinity. In statistical terminology, identifiability of the
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tree topology parameter is lost. For certain types of Markov models, however, identifiability of
the tree topology is possible, even in these general settings. These are models for which (i) linear
relationships (called ‘linear phylogenetic invariants’) exist between the probabilities of different
characters, and which hold for all values of the other continuous parameters associated with the
model (such as edge lengths) and (ii) these invariants can be used to determine the tree topology
(at least for n = 4 leaves) (Steel, 2011; Štefakovič and Vigoda, 2007). The first such invariants,
which we call linear topology invariants, were discovered by James Lake in a landmark paper in
1987 (Lake, 1987) for the Kimura 2ST model, and the Jukes–Cantor submodel.

Linear topology invariants were known to exist for Kimura 2ST and Jukes–Cantor models, and
the dimension of the corresponding (quotient) linear space had been computed for the Jukes–
Cantor model in Fu (1995) and Steel and Fu (1995). It is also known that more general models
such as Kimura 3ST or the general Markov model do not admit linear topology invariants (see
for example (Sturmfels and Sullivant, 2005) and (Casanellas and Fernández-Sánchez, 2011)).
Nevertheless, linear topology invariants had not been studied for evolutionary models with more
than 4 states or for models slightly more general than Jukes–Cantor.

In this paper we extend Lake–type invariants to a more general setting and for another type of
process, the ‘equal input’ model (defined shortly, but it can be regarded as the simplest Markov
process that allows different states to have different stationary probabilities). By building also
on the approach of Matsen et al. (2008) (which dealt just with the 2-state setting) we investigate
the vector space of linear invariants, and describe the space of phylogenetic mixtures on a tree
(or trees) under the equal input model once the stationary distribution is fixed. Note that
the space of phylogenetic mixtures is dual to the space of phylogenetic invariants, and hence
studying one of these spaces translates into results for the other space. This leads to our main
results (Theorems 1 and 2) which characterize the space of phylogenetic mixtures across all
trees, and on a fixed tree (respectively), along with an algorithm for constructing a basis for the
topology invariants. It is worth pointing out that while linear topology invariants are relevant for
distinguishing distributions arising from mixtures of distributions on particular tree topologies,
linear phlylogenetic invariants satisfied by distributions arising from mixtures of distributions on
trees evolving under a particular model (model invariants) can be used in model selection as in
Kedzierska et al. (2012). In brief summary, our main results describe the vector space (and its
dimension) of the space of phylogenetic mixtures of the equal input models for any numbers n
of leaves and κ of states:

• across all trees (Theorem 15) by providing a spanning set of independent points;
• for a fixed tree (Theorem 21); and
• for an infinite state version of the equal input model, known as Kimura’s infinite allele
model (Proposition 34).

Using the duality between phylogenetic mixtures and linear invariants, in Corollary 22 we
compute the dimension of the quotient space of linear topology invariants and describe an al-
gorithm for computing a basis of this space. Note that the dimension of the space of mixtures
had already been computed in Casanellas et al. (2012) and in Fu (1995) for the Jukes–Cantor
model. Theorem 31 and Corollary 33 provide a more detailed description for trees with n = 4
leaves. The case n = 4 is of particular interest, since the existence of a set of linear phylogenetic
invariants for this case and which, collectively, suffice to identify the tree topology means that
there also exist informative linear phylogenetic invariants that can identify any fully-resolved
(binary) tree topology on any number of leaves. This follows from the well-known fact that any
binary tree topology is fully determined by its induced quartet trees (for details and references,
see Semple and Steel (2003)).

We also establish various other results along the way, including a ‘separability condition’ from
which a more general description of Lake–type invariants follows (Proposition 7). We begin
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with some standard definitions, first for Markov processes on trees, and then for the equal input
model, which we show is formally equivalent to a random cluster process on a tree (Proposition 5).
We then develop a series of preliminary results and lemmas that will lead to the main results
described above.

2. Markov processes on trees

Given a tree T = (V,E) with leaf setX , aMarkov process on T with state space S is a collection
of random variables (Yv : v ∈ V ) taking values in S, and which satisfies the following property.
For each interior vertex v in T , if V1, . . . , Vm are the sets of vertices in the connected components
of T − v then the m random variables Wi = (Yv : v ∈ Vi) are conditionally independent given Yv.

Equivalently, if we were to direct all the edges away from some (root) vertex, v0, then this
condition says that conditional on Yv (for an interior vertex v of T ) the states in the subtrees
descended from v are independent of each other, and are also independent of the states in the
rest of the tree.

A Markov process on T is determined entirely by the probability distribution π at a root vertex
v0, and the assignment e 7→ P (e), that associates a transition matrix with each edge e = (u, v)
of T (the edge is directed away from v0). Matrix P (e) has row α and column β entry equal

to P
(e)
αβ := P(Y (v) = β|Y (u) = α), and so each row sums to 1. If stochastic vector π has the

property that π = πP (e) for every edge e of T , then π is said to be a stationary distribution for
the process. A phylogenetic model is a Markov process on a tree where the transition matrices
are required to belong to a particular class M.

In this paper we will be concerned with trees in which the set X of leaves are labelled, and
all non-leaf (interior) vertices are unlabelled and have degree at least three; these are called
phylogenetic X–trees (Semple and Steel, 2003). A tree with a single interior vertex is called a
star, while a tree for which every interior vertex has degree three is said to be binary. We will
write ab|cd for the binary tree on four leaves (a quartet tree) that has an edge separating leaves
a, b from c, d. A function χ : X → S is called a character and any Markov process on a tree with
state space S induces a (marginal) probability distribution on these characters. An important
algebraic feature of this distribution is that the probability of a character P(χ) under a Markov
process on T is a polynomial function of the entries in the transition matrices.

2.1. The equal input model. The equal input model (EI) for a set S of κ states is a particular
type of Markov process on a tree, defined as follows. Given a root vertex v0 let π be a distribution
of states at v0 and for each (directed) edge e = (u, v) (directed away from v0). In the EI model,
each transition matrix P (e) has the property that for some value θe ∈ [0, 1] and all states α, β ∈ S
with α 6= β we have:

(1) P
(e)
αβ = πβ · θe.

We shall assume that the distribution π is strictly positive throughout the paper.
This model generalizes the familiar fully symmetric model of κ states (such as the ‘Jukes-

Cantor model’, when κ = 4) to allow each state to have its own stationary probability. In the
case κ = 4 with S equal to the four nucleotide bases, the model is known as the Felsenstein 1981
model. The defining property of the model is that the probability of a transition from α to β
(two distinct states) is the same, regardless of the initial state α(6= β).

Lemma 1. The following properties hold for the equal input model.

(i) P
(e)
αα = 1− θe + παθe.

(ii) π is a stationary distribution for each vertex v of the T (i.e. P(Y (v) = α) = πα).
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(iii) The process is time-reversible (i.e. for each edge e, παP
(e)
αβ = πβP

(e)
βα ).

(iv) If p is the probability that the ends of e receive different states under the EI model, then
p = (1−

∑

α π2
α)θe.

(v) The process is multiplicatively closed. In other words, (P (e)P (e′))αβ = πβθ, where θ =
1− (1− θe)(1− θe′).

Proof. For (i), P
(e)
αα = 1−

∑

β 6=α P
(e)
αβ = 1− θe

∑

β 6=α πβ = 1 − θe(1− πα). For (ii), it suffices to

show that if (u, v) is a directed edge and u has stationary distribution π then v does too. But

P(Y (v) = β) =
∑

γ

πγP
(e)
γβ = πβP

(e)
ββ +

∑

γ 6=β

πγP
(e)
γβ = πβ .

For (iii), the result clearly holds if α = β so suppose α 6= β. Then

παP
(e)
αβ = πα(πβθe) = πβ(παθe) = πβP

(e)
βα .

For (iv),

p =
∑

α

πα

∑

β 6=α

P
(e)
αβ =

∑

α

πα

∑

β 6=α

πβθe,

which simplifies for the expression in (iv). Property (v) is left as an exercise. �

For an equal input model, the transition matrix P (e) has eigenvalue 1 − θe with multiplicity
k−1 (and eigenvalue 1 with multiplicity 1). Also, for fixed π the matrices P (e) commute, as they
can be simultaneously diagonalized by a fixed matrix (which depends on π). Equal input models
with also have a continuous realisation with rate matrix Q defined by its off-diagonal entries as
follows:

Qαβ = πβ , for all α, β ∈ S, α 6= β

(the diagonal entries are determined by the requirement that each row of Q sums to 0). Then
P (e) = exp(Qt) for t = − ln(1 − θe), and so θe = 1 − e−t. In the case where π is uniform,
the EI model reduces to the fully symmetric model in which all substitution events have equal
probability.

One feature of the EI model, that fails for most other Markov processes on trees, is the
following. Let σ be any partition of the state space S, and for a state s ∈ S let [s] denote the
corresponding block of σ containing s. Then for an EI process Y on the set V of vertices of a
phylogenetic tree T , let Ỹ be the induced stochastic process on V , defined by Ỹ (v) = [Y (v)] for
all vertices v of T .

Proposition 2. For any EI model with parameters π and {θe}, and any partition σ of S, Ỹ
is also an EI Markov process on T , with parameters π̃ and {θe}, where for each block B of σ,
π̃B :=

∑

β∈B πβ.

Proof. By Theorem 6.3.2 of Kemeny and Snell (1976), the condition for Ỹ to be a Markov process
is that it satisfies a ‘lumpability’ criterion that for any two choices α, α′ ∈ A ∈ σ, and block
B ∈ σ,

P(Y (v) ∈ B|Y (u) = α) = P(Y (v) ∈ B|Y (u) = α′).

For each B 6= A, this last equality is clear from (1), and since P(Y (v) ∈ A|Y (v) = α) =
1 −

∑

B∈σ,B 6=A P(Y (v) ∈ B|Y (u) = α) the criterion also holds for the case B = A. Finally, for

B 6= A, P(Ỹ (v) = B|Ỹ (u) = A) =
∑

β∈B(πβθe) = π̃Bθe. �
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2.2. A useful lemma. For results to come the following lemma, and its corollary will be helpful.

Lemma 3. For variables x1, x2, . . . , xr, consider polynomials f0(x), . . . , fM (x) ∈ R[x1, . . . , xr]
of the form

fi(x) =
∑

A⊆[r]

c
(i)
A

∏

j∈A

xj , c
(i)
A ∈ R.

(i) Then f0 ≡ 0 (i.e. c
(0)
A = 0 for all A ⊆ [r]) if and only if for any t 6= 0, f0(x) = 0 for all

x ∈ {0, t}r.
(ii) Let f = (f1, . . . , fM ) : R

r → R
M and let L : R

M → R be a linear map. Define
an equivalence relation among the elements of {0, 1}r by x ∼ x

′ if f(x) = f(x′), and let
x1, . . . , xs be representatives of these equivalence classes. We call qi = f(xi), i = 1, . . . , s.
Then L(f(x)) = 0 for all x ∈ R

r if and only if L(qj) = 0 for j = 1, . . . , s.

Proof. (i) The ‘only if’ part holds automatically; for the ‘if’ direction, given any subset B of [r],
let h(B) = h(xB) where xB

i = t if i ∈ B and xB
i = 0 otherwise. Then h(B) = 0 by hypothesis,

and h(B) =
∑

A⊆B cAt
|A|, by definition. Applying the (generalized) principle of inclusion and

exclusion it follows that, for each A ⊆ [n], cAt
|A| =

∑

B⊆A(−1)|A−B|h(B) = 0, so cA = 0.

(ii) The map h = L ◦ f satisfies the hypotheses of (i), hence L(f(x)) = 0 for all x if and only if
L(f(x)) = 0 for all x ∈ {0, 1}r. Then the statement follows immediately due to the definition of
the equivalence relation. �

In what follows we will use this lemma to check linear relations among the character proba-
bilities.

In the EI model, once we fix π, the probability PT (χ|Θ) of observing a character at the leaves
of T satisfies the hypotheses of the corollary with r equal to the number of edges and variables
in Θ = {θe}e∈E(T ). Indeed, by Lemma 1 (i), any entry of the transition matrix P (e) is a linear
function of θe and hence the expression

(2) PT (χ|Θ) =
∑

(sv)v∈SInt(T )

πsv0

∏

(u,w)∈E(T )

P (e)
su,sw

(where the sum is over the states at the set Int(T ) of interior vertices of T and subject to the
convention that sw = χ(l) if w is the leaf l) satisfies the hypotheses of Lemma 3.

Remark 4. Lemma 3 can be be slightly modified to accommodate substitution matrices with
more parameters as it was done in Fu (1995).

2.3. The equal input model as a random cluster model. Our alternative description of the
EI model is as an instance of the (finite) random cluster model (briefly RC ) on trees (this phrase
is also used to study processes on graphs, such as the ‘Ising model’ in physics). For an unrooted
phylogenetic tree with leaf set [n], each edge e of T is cut independently with probability pe. The
leaves in each connected component of the resulting disconnected graph are then all assigned the
same state s with probability πs, independently of assignments to the other components (see
Fig. 1). More precisely, for any binary function g : E(T ) → {0, 1}, define C(g) to be the set of
connected components in T \{e ∈ E(T )|g(e) = 1}. Then the probability PT (χ|{pe}e) of observing
a character χ at the leaves of T under the RC model is

(3)
∑

g:E(T )→{0,1}

P(χ|g)pg(e)e (1 − pe)
1−g(e)
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Figure 1. Cutting the three edges marked * in the tree on the left leads to
the partition of X shown at right. Under the random cluster model these four
blocks are independently assigned states from the distribution π.

where P(χ|g) is 0 if χ(i) 6= χ(j) for some leaves i, j in the same connected component in C(g)
and is equal to

∏

c∈C(g) πχc
otherwise (where χc denotes the value of χ at the leaves of T that

are in c). In particular, the RC model also satisfies the hypotheses of Lemma 3.

Proposition 5. The EI model with parameters π and {θe} produces an identical probability
distribution on characters as the random cluster model in which pe = θe for each edge e of T .

Proof. For the two models the probability of a given character (given by Eqns. (2) and (3))
satisfies the conditions required by Lemma 3 (ii), and so we can use it with M = 2 and L the
difference between the probability of a given character by the two models. Therefore, it suffices
to show that the two models produce the same probability distribution on characters whenever
θe = 1 for all e ∈ F and θe = 0 of all edges e of T not in F (for all possible choices of subset
F ∈ E(T )). Given F , notice that if θe = 1 for a directed edge e = (u, v) of T in the EI model,

then P
(e)
αβ = πβ for all β ∈ S, including β = α. In other words, when θe = 1 for e = (u, v), the

state at v is completely independent of the state at u. This is equivalent to cutting the edge
and assigning a random state according to the distribution π to v, and thereby to all the other
vertices of T for which there is a path to v that does not cross another edge in F (since P (e)

is the identity matrix on those edges); this is just the process described by the random cluster
model. �

3. Linear phylogenetic invariants in phylogenetics

Definition 6. Consider a phylogenetic model M with state space S on a phylogenetic tree T
with n leaves. A phylogenetic invariant of a tree T under the model M is a polynomial f in Sn

indeterminates that vanishes on any distribution PT,Θ that arises under the phylogenetic model
M (that is, f(p) = 0 if p = PT,Θ, for any set Θ of transition matrices and distribution at the
root vertex).

We say that a polynomial in Sn coordinates is a model invariant if it is a phylogenetic invariant
for any tree on n leaves under the phylogenetic model M. A phylogenetic invariant of a tree T
that is not a model invariant is called a topology invariant.

A phylogenetic invariant is a linear phylogenetic invariant (resp. linear model invariant, linear
topology invariant) if each monomial involves exactly one indeterminate and has degree 1. Note
that this implies that the polynomial is homogeneous (the independent term is 0). There are
phylogenetic invariants of degree 1 that are not homogeneous, for example the trivial phylogenetic
invariant that arises from the observation that in a distribution all coordinates must sum to one.
However, taking this trivial invariant into account, any other phylogenetic invariant of degree
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1 can be rewritten as a homogeneous phylogenetic invariant of degree 1 (indeed,
∑

i aixi + a is
a phylogenetic invariant if and only if

∑

i(ai + a)xi is a phylogenetic invariant). This is why
we only call linear phylogenetic invariants those that are homogeneous of degree 1. The sets of
linear model invariants and linear phylogenetic invariants of a tree T are vector spaces.

Linear phylogenetic invariants are of particular interest since they hold even if the process
changes from character to character (provide it stays within the model for which the invariant is
valid). An important early example of linear phylogenetic invariants were discovered by James
Lake in 1987 (Lake, 1987). In this paper, we first provide a new and more general version of
Lake’s invariants. It is the first time that linear topology invariants are given for non-uniform
stationary distributions and for models on any number of states, provided that they satisfy what
we call the Partial Separability condition (see below). It is worth noting that in our Lake–type
invariants the stationary distribution is assumed to be known.

For any phylogeneticX–tree, T (not necessarily binary), and an interior vertex v of T consider
the disconnected graph T − v. Let t and t′ be two of the trees incident with v.

Suppose that a Markov process Y on T takes values in state space S. For any state s of S
write Y (t) = s if all the leaves of T that are in t are in state s (similarly for t′). Consider the
following property.

(PS) Partial separability. For some interior vertex v, and for some subset {a1, a2, b1, b2} of
four distinct elements of S one has

P(Y (t) = ai|Y (v) = s) = π(ai)c, when s ∈ S − {a1, a2}, i = 1, 2;

and

P(Y (t′) = bj |Y (v) = s) = π(bj)d, when s ∈ S − {b1, b2}, j = 1, 2.

Here c and d are arbitrary functions dependent on the tree and associated parameters (but not
the states) and π is an arbitrary function of the states such that π(ai) 6= 0, π(bi) 6= 0, i = 1, 2
(for various models with π given by the stationary distribution).

Partial separability is satisfied by various models. For example, when |S| = 4, it holds for the
Kimura 2-ST model (and hence the Jukes-Cantor model) by taking {a1, a2} = {A,G} (purines)
and {b1, b2} = {C, T } (pyrimidines), in which case π(ai) = π(bi) =

1
4 for i = 1, 2. The property

also holds for the fully symmetric model on any number of states. Moreover, the property holds
for the EI/RC model on any number of states if t and t′ are single leaves. The partial separability
condition should be viewed as an algebraic constraint rather than as a natural condition that
one might expect to hold for most evolutionary models. For instance it, is not a natural property
satisfied by evolutionary models and, for instance, it is not satisfied for the EI/RC model if t or
t′ are not single leaves.

Let E be any event that involves the states at the leaves of T not in t or t′. For example, if y
and y′ are leaves of T not in t or t′ then E might be the event that Y (y) = s and Y (y′) = s′ for
some particular s, s′ ∈ S.

Let us write pEij for the probability of the three–way conjunction E∧{Y (t) = ai}∧{Y (t′) = bj}.
Notice that pEij is a sum of probabilities of various characters (i.e. a marginal distribution). Let

p̃Eij =
1

π(ai)π(bj)
· pEij and let ∆ := p̃E11 + p̃E22 − p̃E12 − p̃E21.

Proposition 7 (Lake–type invariants). If a Markov process on T satisfies the partial separability
condition (PS), then ∆ = 0.

Proof. By the Markov property,

pEij =
∑

s

P(Y (v) = s) · P(E|Y (v) = s) · P(Y (t) = ai|Y (v) = s) · P(Y (t′) = bj |Y (v) = s).
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Let rij = π(ai) · π(bj), and let

∆s = r22p1p
′
1 + r11p2p

′
2 − r12p2p

′
1 − r21p1p

′
2,

where pi = P(Y (t) = ai|Y (v) = s), and p′j = P(Y (t′) = bj|Y (v) = s). Then we can write

∆ =
1

π(a1)π(a2)π(b1)π(b2)

∑

s

P(Y (v) = s) · P(E|Y (v) = s) ·∆s.

Thus it suffices to show that ∆s = 0 for all s.
We consider three cases: (i): s ∈ {a1, a2}, (ii) s ∈ {b1, b2} and (iii) s ∈ S − {a1, a2, b1, b2}.
In Case (i), suppose s = ai. Then p′1 = π(b1)d and p′2 = π(b2)d, and so

∆s = d[p1r22π(b1) + p2r11π(b2)− p2r12π(b1)− p1r21π(b2))].

= dp1[r22π(b1)− r21π(b2))] + dp2[r11π(b2)− r12π(b1)] = 0 + 0 = 0.

Case (ii) is similar. In Case (iii), pip
′
j = rijcd and so

∆s = cd[r22r11 + r11r22 − r12r21 − r21r12] = 0.

�

Example 8. When we take t and t′ single leaves, the EI/RC model satisfies the (PS) property
and Lemma 7 can be applied. If the stationary distribution π is fixed, then ∆ gives rise to two
types of linear phylogenetic invariants for the quartet tree 12|34,

H1 :
xxyxy

π(x)π(y)
+

xxyzw

π(z)π(w)
−

xxyzy

π(z)π(y)
−

xxyxw

π(x)π(w)

H2 :
xxyyx

π(x)π(y)
+

xxywz

π(z)π(w)
−

xxyyz

π(z)π(y)
−

xxywx

π(x)π(y)

(here xχ1χ2χ3χ4 is the coordinate that corresponds to PT (χ1χ2χ3χ4)). To see how these follow
from Proposition 7, for H1 take x = a1, y = b1, z = a2, w = b2 and let E be the event that
Y (1) = a1 and Y (2) = b1; for H2 take x = b1, y = a1, z = b2, w = a2 and let E be the event
that Y (1) = b1 and Y (2) = a1. Note that these are topology invariants because the first is not a
phylogenetic invariant for the quartet 13|24 while the second is not a phylogenetic invariant for
14|23.

4. Generating linear invariants for the RC/EI model on κ states

4.1. Combinatorial concepts and terminology. Let T be a phylogenetic X–tree, X = [n],
and consider a Random Cluster model (or Equal Input model) on T , with stationary distribution
π on a set S of κ states. Henceforth we assume that π is fixed and it is positive, that is, πs 6= 0
∀s ∈ S. We denote by ei the pendant edge incident with leaf i. A character χ : [n] → S shall be
denoted as χ = χ1 . . . χn if χi = χ(i) for i = 1, . . . , n. We let Ch(n, κ) to be the set of characters
on [n] for a fixed state space (S) of size κ and denote by N its cardinality (N = κn). We think
of a distribution PT,Θ on the set of characters under the RC model on T as a vector of Ch(n, κ)
coordinates and therefore lying in the real vector space with coordinates xχ, χ ∈ Ch(n, κ) (the
point PT,θ has coordinate xχ equal to PT (χ|Θ)).

Let F be a subforest of T , that is, a subgraph comprised of a collection of vertex disjoint trees
{T1, . . . , Tr} such that the only nodes of degree ≤ 1 in Ti are leaves of T (we allow Ti to be
formed by only one leaf and we allow F = {T } also). We say that a subforest F = {T1, . . . , Tr}
is a full subforest if ∪iL(Ti) = X ; we let FT be the set of full subforests of T . For a full subforest
F , we define ΘF to be the following collection of edge parameters under the RC model: θe = 0
if e ∈ E(Ti) for some Ti ∈ F and θe = 1 for all other edges e. We denote by σ(F ) the partition
that F describes on [n], that is, two leaves are in the same block of σ(F ) if they lie in the same
subtree of F . The full subforest formed by singletons will be called the trivial subforest.
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Given a character χ, we define σ(χ) to be the partition {S1, . . . , Sl} of the set of leaves defined
according to “two leaves i, j are in the same block of the partition if χi = χj”. Note that given a
full subforest F = {T1, . . . , Tr} of T and a character χ, PT (χ|ΘF ) is zero if σ(F ) does not refine
σ(χ) and is equal to

∏r
i=1 πsi otherwise (here si stands for the value of χ at the leaves of Ti).

For any partition σ of [n], and any phylogenetic tree T on [n], we say that σ is convex on T (or
compatible with T ) if the collection of induced subtrees {T [B] : B ∈ σ} are vertex disjoint (here
T [B] is the minimal connected subgraph (subtree) of T containing the leaves in B). Let co(T )
be the set of partitions of [n] that are convex on T . There is a natural correspondence between
full subforests of T and convex partitions on T that associates to each partition σ ∈ co(T ) the
full subforest FT (σ) = {T [B] : B ∈ σ}. Therefore, the number of full subforests of a tree T is
equal to | co(T )|, |FT | = | co(T )|. When T is a binary tree, |co(T )| = F2n−1 where Fk is the k–th
Fibonacci number, starting with F1 = F2 = 1 (see Steel and Fu (1995)). By contrast, for a star
tree on [n] we have |co(T )| = 2n − n. A partition σ = {B1, . . . , Bk} of [n] is incompatible with
T if it is not convex on T , that is, there exist two blocks Bi and Bj from σ for which T [Bi] and
T [Bj] share at least one vertex. A singleton block B of σ is a block of size 1. The number of
partitions of [n] is known as the Bell number Bn.

Finally, let Inc(T ) be the set of partitions of [n] that are not convex on T (i.e. they are
‘incompatible’ with T ). Thus |Inc(T )| = Bn − |co(T )|.

4.2. Results.

Lemma 9. (a) Let Θ be a collection of parameters (θe)e∈E(T ) such that θe is either 0 or 1 for
all e ∈ E(T ). Then there exists a unique full subforest F ∈ FT such that PT,Θ = PT,ΘF

.
(b) A degree 1 polynomial

∑

χ λχxχ is a linear phylogenetic invariant for a tree T if and only
if

∑

χ

λχPT (χ|ΘF ) = 0

for any full subforest F ∈ FT .

Proof. (a) We first prove that two full subforests F and G satisfy P(χ|ΘG) 6= P(χ|ΘF ) for some
χ if F 6= G. As F,G are full subforests, they are different if and only if they induce different
partitions σ(F ), σ(G) on the set of leaves. Then there exists an edge e0 such that e0 is compatible
with σ(F ) (i.e, σ(F ) refines the bipartition induced by e0) but is not compatible with σ(G) (or
the other way around). If χ is the character that assigns state x at the leaves of one connected
component of T − e0 and state y 6= x at the leaves of the other component, then P(χ|ΘG) = 0
while P(χ|ΘF ) is not zero.

Given Θ, let A be the set of edges e in T such that θe = 1. Let σ(T \ A) be the partition
induced on X when removing all edges in A (if an edge in A is a pendant edge, then removing
it means that we separate the corresponding leaf). If F is the subforest FT (σ(T \ A)), then we
have PT,Θ = PT,ΘF

.
(b) This follows from part (a) and Lemma 3 (ii). �

Let Θ be a collection of edge parameters on a tree T evolving under the RC model. For a site
character χ, we define

p̃Tχ (Θ) =
PT (χ|Θ)

πχ1πχ2 . . . πχn

.

We call x̃χ the corresponding coordinates: x̃χ =
xχ

πχ1πχ2 ...πχn
.

Lemma 10. We say that two characters χ and χ′ are equivalent, χ ≡ χ′, if σ(χ) = σ(χ′) and
χi = χ′

i for any leaf i that belongs to a block of the partition of cardinality greater than or equal
to 2. Let χ, χ′ be two characters on the set X = [n].



10 MARTA CASANELLAS AND MIKE STEEL

(a) If χ ≡ χ′ then x̃χ − x̃χ′ is a linear model invariant.
(b) If π is not invariant by any permutation of the set of states, then for any tree T the

equality p̃Tχ (Θ) = p̃Tχ′(Θ) for every Θ implies that χ ≡ χ′ (i.e. in this case every linear

phylogenetic invariant of type x̃χ − x̃χ′ satisfies χ ≡ χ′).

Proof. (a) Let χ and χ′ be two equivalent characters, let σ be σ(χ) = σ(χ′), and let T be
any X–tree. According to Lemma 9 (b) we need to check that p̃χ(ΘF ) = p̃χ′(ΘF ) for any
F = {T1, . . . , Tr} ∈ FT .

If σ(F ) does not refine σ, then PT (χ|ΘF ) and PT (χ
′|ΘF ) are zero and we are done.

If σ(F ) does refine σ, then PT (χ|ΘF ) = πs1 . . . πsr where si is the value of χ at the leaves of
Ti (note that we may have si = sj). Therefore p̃Tχ (ΘF ) =

1

π
n1−1
s1

...πnr−1
sr

where ni = |L(Ti)|. As

σ(F ) refines σ(χ) = σ(χ′) and the states of χ and χ′ coincide for any block of σ of size ≥ 2, the
states of χ and χ′ also coincide at the leaves of Ti if ni ≥ 2. Therefore, p̃Tχ (ΘF ) = p̃Tχ′(ΘF ).

As for (b), assume that π is not invariant by any permutation of the set of states (i.e. πs = πt

if and only if s = t). Assume that for a tree T we have p̃Tχ (ΘT ) = p̃Tχ′(ΘT ) for any collection of

edge parameters ΘT . Then, for each block Bi of σ(χ) of size bi greater or equal than 2 consider
the forest Fi = {TBi

,∪l/∈Bi
{l}}, where TBi

is the smallest subtree of T joining the leaves in Bi.
Then p̃Tχ (ΘFi

) = 1

π
bi−1
si

if si is the state of χ at the leaves of Bi. By hypothesis this is equal

to p̃Tχ′(ΘFi
). But p̃Tχ′(ΘFi

) is zero if σ(χ′) does not contain the block Bi. Performing the same

argument for any block Bi of size bi ≥ 2 we obtain σ(χ) = σ(χ′). Now for each such block Bi

we have p̃Tχ (ΘFi
) = p̃Tχ′(ΘFi

) and hence 1

π
bi−1
si

= 1

π
bi−1

s′
i

if s′i is the state of χ′ at the leaves of Bi.

As bi ≥ 2, the assumption on π implies si = s′i. Thus, χ and χ′ are equivalent characters. �

Remark 11. If π is the uniform distribution (i.e we consider the κ-state fully symmetric model),
then we have PT (χ|Θ) = PT (χ

′|Θ) if and only if σ(χ) = σ(χ′). Indeed, in this case if we consider
any permutation g of the set of of states S, the polynomials xχ − xg·χ are linear phylogenetic
invariants for any tree (see Casanellas et al. (2012)), where g · χ stands for the corresponding
permutation of states at the leaves. But these polynomials can also be rewritten as xχ − xχ′ for
σ(χ) = σ(χ′).

Examples: n = 3 and n = 4

• For n = 3, Lemma 10 gives the following. If κ ≥ 3 and we consider three different states
x, y, z and another set of three different states x′, y′, z′, the linear invariants obtained in
Lemma 10 are:

x̃xyz − x̃x′y′z′ , x̃xxy − x̃xxz, x̃xyx − x̃xzx, x̃yxx − x̃zxx.

• For n = 4, Lemma 10 gives the following. If κ ≥ 4 and we consider four different states
x, y, z, w and another set of four different states x′, y′, z′, w′, the linear phylogenetic
invariants of Lemma 10 are:

x̃xyzw − x̃x′y′z′w′ , x̃xxyz − x̃xxy′z′ , x̃xxxy − x̃xxxy′,

and the analogous invariants obtained for the other partitions of [4] involving singletons.

✷

There are several ways to construct linear invariants from smaller trees and a systematic way
to find model invariants for certain models with stationary distribution has been described in Fu
and Li (1991). The most immediate one, used already in the quoted paper, uses the following
marginalization lemma. If i is a leaf of T , we call Ti the tree obtained by removing leaf i and its
incident edge, and suppressing the resulting degree–2 vertex if the interior node had degree 3.
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Lemma 12. Let i be a leaf of a phylogenetic [n]–tree T and let Ti be the corresponding tree. Let

l be a linear homogeneous map l : Rκn−1

→ R and let Mi : R
κn

→ R
κn−1

be the marginalization
map at leaf i. If l(pi) = 0 for any distribution pi from a Markov process on the tree Ti, then
(l ◦Mi)(p) = 0 for any distribution p that comes from a Markov process on the tree T .

Proof. To prove this lemma one just needs to observe that for any distribution p coming form a
Markov process on T , Mi(p) is a distribution on Ti that comes from the Markov process that at
each edge e has the same transition matrices as e had on the tree T . �

Another construction, which is new, and particular to the RC/EI model is described in the
following lemma. This lemma shall be used in section 6 where we provide specific linear invariants
for quartet trees.

Lemma 13. [Extension lemma] Let ∆ =
∑

χ aχxχ be a linear invariant for an [n]–tree T evolving
under the RC model.

(a) Let T ′ be the tree obtained by subdividing an edge of T and attaching a new pendant
edge at the newly introduced node. Let s be a new state not involved in ∆ (that is,
aχ = 0 if χ contains s). Then,

(4)
∑

χ

aχxχs

is a linear invariant for T ′ (where the new leaf is labelled as leaf n+ 1).

(b) Let T ′ be the tree obtained by subdividing an edge of T and attaching a tree T̃ of
m+ 1 leaves to the newly introduced node (so that T ′ has n +m leaves and the newly
introduced leaves are labelled from n+1 to n+m). Let µ be a character on m leaves for
which aχ = 0 if χ contains some state in µ (that is, ∆ does not involve the states of µ
at any leaf). Then

∑

χ aχxχµ is a linear phylogenetic invariant for T ′ (where χµ stands

for states χ at the first n leaves and states µ at the other m leaves).
(c) Suppose T is the star tree, and let µ be a character on m leaves for which aχ = 0 if χ

contains some state in µ. Then, for the star tree T ′ with n +m leaves evolving under
the RC model,

∑

χ aχxχµ is a linear phylogenetic invariant.

Proof. (a) By Lemma 9, we only need to check that (4) vanishes for the distributions generated
with Θ = ΘF where F is a full subforest of T ′. We denote by ΘF |T the corresponding probabilities
at the edges of T and we denote by ∆(ΘF |T ) the value of ∆ evaluated at PT,ΘF |T

.

If F contains a tree with the new edge e′ on it, then, for all χ involved in ∆, we have
PT ′(χs|ΘF ) = 0 (because s is a state not involved in ∆) and then (4) trivially vanishes. If
F does not contain the edge e′, then the new leaf is a singleton in F . In this case we have
PT ′(χs|ΘF ) = πsPT (χ|ΘF |T ). Therefore (4) evaluated at PT ′,ΘF

is ∆(θF |T ) multiplied by πs, so
it vanishes as well.

(b) If T̃ is binary, then the addition of T̃ can be obtained by successively adding cherries to
T . So, assume that we have added one cherry as in (a), so that we have assigned state s to the
new leaf ln+1, and now we add a new cherry to the edge leading to ln+1. Now the new state
s′ that we consider for the new leaf now can be allowed to be equal to the state s as long as
s′ differs from the states that appear in ∆. Indeed, if s′ = s, there might be forests containing
the new cherry, but all of them give probability zero for the states appearing in the polynomial
except if the forest is formed by the new cherry and other trees. For such a forest F we have
P(χss|ΘF ) = πsP(χ|ΘF |T ) and hence the polynomial evaluated at the parameters of this forest
is ∆(ΘF |T ) multiplied by πs which vanishes again.

If T̃ is not a binary tree, then it can be also constructed from a binary tree by contracting edges.
As for binary tree the polynomial is a phylogenetic invariant, so it is when we contract edges
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(note that if a polynomial is a phylogenetic invariant for a tree, then it is also a phylogenetic
invariant for the tree T0 obtained by contracting one edge e0 because any collection of edge
parameters at T0 gives a collection of edge parameters for T by assigning θe0 = 0).

(c) This follows from (b) by contracting edges. �

5. Phylogenetic mixtures

So far, we have found some linear polynomials that turn out to be either model invariants or
topology invariants. But we were not able to say whether these invariants actually generate the
space of linear phylogenetic invariants for a tree T . On the other hand, it would be interesting
to know whether a distribution where all these linear invariants vanish is actually a linear com-
bination from distributions on a tree or a mixture of trees. To this end, one defines the space of
mixtures on a tree (Štefakovič and Vigoda, 2007).

Definition 14. Fix a distribution π on the set of states. Given a particular tree T , we denote by
PT,Θ the distribution of a RC model with parameters π,Θ on T . We define the space of mixtures
on T as

Dπ
T =

{

p =
∑

i

λiPT,Θi

∣

∣

∣

∑

i

λi = 1

}

.

If T is the set of phylogenetic trees on [n], we define the space of phylogenetic mixtures on [n] as

Dπ =

{

p =
∑

i

λiPTi,Θi

∣

∣

∣

∑

i

λi = 1 , Ti ∈ T

}

When {pi}i∈I is a set of points in an affine linear space, we denote by 〈pi| i ∈ I〉a the linear
span of these points, that is, the set of points q =

∑

i λipi with
∑

i λi = 1 (we put the subindex
a in order to distinguish this affine linear span from the usual linear span of vectors). Note that
the spaces of phylogenetic mixtures are affine linear varieties,

Dπ
T =

〈

p
∣

∣

∣ p = PT,Θ

〉

a
, Dπ =

〈

p
∣

∣

∣ p = PT,Θ, T ∈ T
〉

a
,

and both lie inside the hyperplane

H =







x = (xχ)χ ∈ R
N

∑

χ∈Ch(n,κ)

xχ = 1







.

Strictly speaking, for applications in phylogenetics it is only relevant to consider points in
Dπ (or Dπ

T ) that are actually distributions. In other words, one should be mainly interested in
convex combinations of the points PT,Θ:

{

p =
∑

i

λiPT,Θi

∣

∣

∣
λi ≥ 0,

∑

i

λi = 1

}

and

{

p =
∑

i

λiPTi,Θi

∣

∣

∣λi ≥ 0,
∑

i

λi = 1 , Ti ∈ T

}

.

However, as the dimension of a polyhedron is the dimension of its affine hull, we focus on
computing the dimension of Dπ and Dπ

T .
For any distribution π, we denote by Lπ the vector space of linear model invariants and by

Lπ
T the space of all linear phylogenetic invariants for a tree T . The orthogonal subspace of Lπ

(respectively Lπ
T ) shall be denoted by Eπ (respectively Eπ

T ), that is, E
π is the set of vectors in

R
N where all the linear model invariants vanish and Eπ

T the set of vectors where all the linear
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phylogenetic invariants for T vanish (by identifying dual and orthogonal spaces). In other words,
Eπ

T and Eπ are spanned by the following vectors of distributions:

Eπ
T =

〈

~p
∣

∣

∣
~p = PT,Θ

〉

, Eπ
T =

〈

~p
∣

∣

∣
~p = PT,Θ, T ∈ T

〉

.

Note that when we use p ∈ R
N as a vector, we use the notation ~p to distinguish it from its use

as an affine point in R
N . Then the following equalities are clear

Dπ
T = Eπ

T ∩H , Dπ = Eπ ∩H.

Therefore, studying phylogenetic mixtures (on [n] or on a tree) is equivalent to studying linear
phylogenetic invariants (only model invariants or together with topology invariants). Note that
due to Lemma 9, it is clear that

Eπ
T = 〈~p = PT,ΘF

|F ∈ FT 〉 , Eπ = 〈~p = PT,ΘF
|T ∈ T , F ∈ FT 〉

(see also Matsen et al. (2008) Prop. 10).
In this section we compute the dimension of the spaces of phylogenetic mixtures.

5.1. Model invariants and phylogenetic mixtures. We fix n ≥ 4 throughout this section.
We call Σκ the set of partitions of [n] of size at most κ (note that if κ ≥ n, this is the whole set
of partitions of [n]). If σ is a partition of [n] compatible with trees T and T ′, and we consider
F = FT (σ) and F ′ = FT ′(σ), then one has PT,ΘF

= PT ′,ΘF ′ . This point will be briefly denoted as
qσ (because it does not depend on the chosen tree compatible with σ). We give the coordinates
of the points qσ for n = 4 shortly, see Example 18. Note that Dπ = 〈qσ | σ ∈ Σn〉a, but this
spanning set of points are not affine linearly independent if κ ≥ n:

Theorem 15. If π is a distribution on κ states with positive entries, then {qσ | σ ∈ Σκ} are
affine linearly independent points. Moreover, if π is the uniform distribution or a generic distri-
bution, or if κ ≥ n, then Dπ coincides with 〈qσ | σ ∈ Σκ〉a and has dimension |Σκ| − 1 (which
equals Bn − 1 if κ ≥ n).

The inclusion 〈qσ | σ ∈ Σκ〉a ⊆ Dπ clearly holds (and if κ ≥ n, the other inclusion is trivial).
The idea for the proof of the other inclusion is to use Dπ = Eπ ∩H , bound the dimension of Eπ

from above by a quantity d and prove that the set of points qσ span an affine linear variety of
dimension d− 1. We first need the following lemma.

Lemma 16. (a) For any κ, the set {qσ | σ ∈ Σκ} is formed by affine linearly independent
points for any distribution π (with positive entries).

(b) If πU is the uniform distribution, then the set of linear model invariants is spanned by
the set of polynomials xχ − xχ′ for σ(χ) = σ(χ′). In particular, the set of vectors EπU

where the model invariants vanish has dimension equal to |Σκ|.

Proof. (a) We need to prove that if we have a linear combination

(5)
∑

σ∈Σκ

λσqσ = 0

with
∑

σ λσ = 0, then we need to prove that the coefficients λσ are zero. We proceed by induction
on m = min{n, κ}. Note that as all partitions of [n] are of size at most n, Σκ equals the set Σm

of partitions of size at most m.
If m = 1, then Σκ contains a single element and there is nothing to prove. Assume that m ≥ 2

and consider a linear combination as in Eqn. (5).
Note that the coordinate x̃χ of qσ is zero if σ does not refine σ(χ). Let x̃χ be a coordinate

such that σ(χ) has the maximum size m. Then x̃χ is different from zero only for qσ(χ) (because
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the other points qσ correspond to partitions that do not refine σ(χ)). Thus, λσ(χ) = 0 and hence
in (5) we have λσ = 0 for all σ of size m. Thus, we are left with a linear combination such as

∑

σ∈Σm−1

λσqσ = 0 ,
∑

σ∈Σm−1

λσ = 0.

The result follows by the induction hypothesis.
(b) For the uniform distribution, each polynomial xχ − xχ′ for σ(χ) = σ(χ′) is clearly a model
invariant (see Remark 11). Thus the set of vectors EπU where these polynomials vanish has
dimension less than or equal to |Σκ|. The set of points considered in (a) for πU is contained in
EπU ∩H , and hence (asH is an equation linearly independent with the previous polynomials), the
dimension of EπU is |Σκ|. It follows that the inclusion EπU ⊆ {x ∈ R

N |xχ = xχ′ if σ(χ) = σ(χ′)}
is actually an equality and the set of model invariants is spanned by the polynomials xχ − xχ′

for σ(χ) = σ(χ′). �

Now we are ready to prove the theorem.
Proof of Theorem 15. We claim that the dimension of Eπ can be bounded from above by the
dimension of EπU :

Claim: For a generic distribution π, the dimension of Eπ is less than or equal to the dimension
Eπ0 for a particular distribution π0.

Proof of Claim: We think first of the coordinates of π as parameters, so that we consider
model invariants as linear polynomials in the variables xχ with coefficients in the field of rational
functions R(π) (i.e. the field of fractions of the ring of polynomials R[π1, . . . , πκ]). The set of
all model invariants is a R(π1, . . . , πκ)-vector space. Consider a basis l1, . . . , lt of this space and
let E be its orthogonal subspace, E = {x ∈ R

N |li(x) = 0, i = 1, . . . , t} so that dimE = N − t.
When we substitute π by a particular value π0, l1, . . . , lt may not be linearly independent any
more, and the corresponding space Eπ0 may have dimension ≥ dimE. But for a generic π, the
dimension of the corresponding space coincides with dimension of E (because π moves in an
irreducible space). Therefore, for a generic π we have dimEπ = dimE ≤ dimEπ0 and the claim
is proved.

By the Claim, for a generic π, the dimension of Eπ is less than or equal to dimEπU for the
uniform distribution πU and the dimension of this vector space is |Σκ| (by Lemma 16(b)). Thus,
dimEπ ≤ |Σκ|. On the other hand, the dimension of 〈qσ | σ ∈ Σκ is |Σκ| − 1 by Lemma 16(a).
The inclusion

〈qσ | σ ∈ Σκ〉 ⊆ Dπ = Eπ ∩H

finishes the proof. Note that if κ ≥ n one immediately has Dπ = 〈qσ | σ ∈ Σn for any π, and its
dimension follows from Lemma 16(a). ✷

Remark 17. In Theorem 15 we give a set of affine independent points that span Dπ for almost
any distribution π. From this set of points (vectors) it easy to compute a basis of the space of
linear invariants Lπ as its orthogonal space.

Example 18. We give here the coordinates of the points that span the spaces of mixtures on
trees with n = 4 and κ = 4 or κ = 3.

For κ = 4 we have |Σ4| = B4 = 15 and Dπ = 〈qσ | σ ∈ Σκ〉. We start with 12 partitions σ
that correspond to forests in the star tree T∗. We call q• the point corresponding to the trivial
subforest of T∗ (formed by singletons). We call qij the points corresponding to the full subforest
of T∗ formed by the tree T [i, j] and singletons (this gives six points, qij , i < j). Then we consider
the forests formed by a subtree of three leaves i, j, k and a singleton, which gives four points q123,
q124, q134, q234. Finally, we denote by q1234 the point corresponding to the forest F = {T∗}. To
simplify notation we write the normalized coordinates x̃χ1...χ4 instead of xχ1...χ4 . Let the space
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Table 1. Linearly independent points for DT∗ for n = 4 in coordinates x̃′s

xxxx xxxy xxyx xyxx yxxx xxyy xyxy xyyx xxyz xyxz xyzx yxxz yxzx yzxx xyzw
q• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
q12

1
πx

1
πx

1
πx

0 0 1
πx

0 0 1
πx

0 0 0 0 0 0

q13
1
πx

1
πx

0 1
πx

0 0 1
πx

0 0 1
πx

0 0 0 0 0

q14
1
πx

0 1
πx

1
πx

0 0 0 1
πx

0 0 1
πx

0 0 0 0

q23
1
πx

1
πx

0 0 1
πx

0 0 1
πy

0 0 0 1
πx

0 0 0

q24
1
πx

0 1
πx

0 1
πx

0 1
πy

0 0 0 0 0 1
πx

0 0

q34
1
πx

0 0 1
πx

1
πx

1
πy

0 0 0 0 0 0 0 1
πx

0

q123
1
π2
x

1
π2
x

0 0 0 0 0 0 0 0 0 0 0 0 0

q124
1
π2
x

0 1
π2
x

0 0 0 0 0 0 0 0 0 0 0 0

q134
1
π2
x

0 0 1
π2
x

0 0 0 0 0 0 0 0 0 0 0

q234
1
π2
x

0 0 0 1
π2
x

0 0 0 0 0 0 0 0 0 0

q1234
1
π3
x

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. The new point added for tree 12|34

xxxx xxxy xxyx xyxx yxxx xxyy xyxy xyyx xxyz xyxz xyzx yxxz yxzx yzxx xyzw
q12|34

1
π2
x

0 0 0 0 1
πxπy

0 0 0 0 0 0 0 0 0

Table 3. The two points added when considering the quartets 13|24 and 14|23

xxxx xxxy xxyx xyxx yxxx xxyy xyxy xyyx xxyz xyxz xyzx yxxz yxzx yzxx xyzw

q13|24
1
π2
x

0 0 0 0 0 1
πxπy

0 0 0 0 0 0 0 0

q14|23
1
π2
x

0 0 0 0 0 0 1
πxπy

0 0 0 0 0 0 0

of states S be {x, y, z, w}. In order to prove that the 15 points we provide are affine linearly
independent, it is enough to look at the following 15 coordinates of these points:

x̃xxxx, x̃xxxy, x̃xxyx, x̃xyxx, x̃yxxx, x̃xxyy, x̃xyxy, x̃xyyx,

x̃xxyz, x̃xyxz, x̃xyzx, x̃yxzx, x̃yxxz, x̃yzxx, x̃xyzw.

In Table 1 we write the coordinates of the first 12 points considered above.
If we consider the previous points plus the point q12|34 that corresponds to the forest {T [1, 2], T [3, 4]}

on the tree T12|34, then we obtain a set of linearly independent points that span Dπ
12|34. In Table

2 we show the coordinates of this new point.
Now we consider the points corresponding to the forests compatible for the remaining quartets,

q13|24, q14|23 (their coordinates are shown in Table 3). The previous points together with these
two points span the space of mixtures Dπ.

Consider now the case κ = 3. Then, according to Theorem 15, Dπ has dimension 13 for generic
π. Indeed, if we consider the 15 points above, then they are no longer linearly independent when
the last column of the table is removed. The last 14 points suffice to span Dπ in this case.

6. Phylogenetic mixtures on a fixed tree

In this section we compute the dimension of the space of phylogenetic mixtures on a tree, give
an algorithm to compute a basis of the space of liner topology invariants and we explain whether
Lake–type invariants of Proposition 7 suffice to describe the space of phylogenetic invariants. For
κ = 2 there are known to be no linear topology invariants (Matsen et al., 2008); these arise for
κ ≥ 3 (see Lemma 27 below, though Lake–type invariants only appear when κ ≥ 4). Moreover,
even when κ = 4 for certain models there exist other linear topology invariants beyond the
Lake–type ones (Fu, 1995). By considering the EI/RC model we show how it is possible to
characterize the quotient space of linear topology invariants for any number of states and taxa,
and provide an explicit algorithm for constructing a basis for the (quotient) space of topological
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Table 4. Table of example 19.

xxxx xxxy xxxy xxyx xyxx xxyz

~q• π3
x π2

xπy π2
xπy π2

xπy πxπyπz

~q12|3 π2
x πxπy 0 0 0

~q13|2 π2
x 0 πxπy 0 0

~q23|1 π2
x 0 0 πxπy 0

~q123 πx 0 0 0 0

invariants. As explained in the introduction, linear topology invariants are of interest because
they provide a way to distinguish distributions coming from mixtures on a particular topology
from distributions arising as mixtures on another topology.

Recall that Eπ
T is the space of vectors where the linear phylogenetic invariants vanish. We

know by Lemma 9(b) that a homogeneous linear polynomial vanishes on all distributions PT,Θ

if and only if it vanishes on all distributions of type PT,ΘF
for F a full subforest of T . Therefore

we have
Eπ

T = 〈~qF | F ∈ FT 〉.

Example 19. Let n = 3, let T be the tripod tree and assume that κ ≥ 3. We prove here that
the vectors ~qF , for F ∈ FT are linearly independent. These vectors are: ~q• corresponding to the
trivial subforest, ~q12|3, ~q13|2, ~q23|1 corresponding to full sub forests with one singleton, and ~q123
corresponding to the tree itself. We choose three states x, y, z and we provide in Table 4 the
submatrix corresponding to the coordinates xxxx, xxxy, xxxy, xxyx, xyxx, xxyz. It is clear that
this submatrix has nonvanishing determinant if π is positive.

Let T be a binary tree on [n], n ≥ 4, and assume that leaves n and n− 1 form a cherry c. Let
u be the interior node of this cherry, and let e be the edge adjacent to u and not to n, n− 1. Let
T ′ be the subtree T − {en, en−1}.We denote by Fc the set of full subforests of T that contain a
tree with the cherry c = {en, en−1}. For any leaf l we let Fl be the set of full subforests of T that
contain l as a singleton and we call Tl the tree obtained by replacing the two edges adjacent to
el by a single edge. Then FT is the disjoint union of Fc and Fn−1 ∪ Fn.

Lemma 20. For a binary tree on n ≥ 4 leaves we have isomorphisms of vector spaces:

〈~qF | F ∈ Fl〉 ∼= 〈~qG| G ∈ FTl
〉 , 〈~qF | F ∈ Fc〉 ∼= 〈~qG| G ∈ FT ′〉.

Proof. We start with the first isomorphism. For simplicity we assume l = n (and for this
isomorphism n is not necessarily a leaf in a cherry). Let Vn be the vector space 〈~qF | F ∈ Fn〉. For
any state s ∈ S we denote by f s the projection map from R

κn

to the subspace Rs corresponding
to coordinates coordinates xχ1...χn−1s, so that we can view R

κn

as the direct sum Rs1 ⊕· · ·⊕Rsκ .

For a vector v ∈ R
κn

we denote by (f s1(v), . . . , f sκ(v)) the decomposition of v according to
this direct sum. Note that if F ∈ Fn, then PT (χ1 . . . χn|ΘF ) = πχn

PT ′(χ1 . . . χn−1|ΘF |Tn
). In

particular, we have f s(~qF ) = πs~qF |T ′ for any s ∈ S and ~qF = (πs1~qF |Tn
, . . . , πsκ~qF |Tn

).
We prove here that (for any s ∈ S) the linear map f s is an isomorphism between Vn and the

target vector space. First of all, the linear map f s
|Vn

is injective. Indeed, if f s
|Vn

(v) = 0 for a

certain v =
∑

F∈Fn
λF ~qF , then 0 =

∑

F∈Fn
λF f

s(~qF ) =
∑

F∈Fn
λFπs~qF |Tn

and hence (assuming

πs 6= 0)
∑

F∈Fn
λF ~qF |T ′ = 0. This implies that v = (0, . . . , 0) in Rs1 ⊕ · · · ⊕ Rsκ and so f s

|Vn
is

an injective linear map.
We prove that the image of f s

|Vn
is 〈~qG| G ∈ FTn

〉. From the above, one can easily see that

Imf s
|Vn

is contained in 〈~qG| G ∈ FTn
〉. Now for any G ∈ FTn

we shall find G̃ ∈ FT such that

G̃|Tn
= G. If n does not belong to a cherry, we consider G̃ to be the full subforest of T defined



PHYLOGENETIC MIXTURES AND LINEAR INVARIANTS FOR EQUAL INPUT MODELS 17

by the singleton {n}, and the trees in G (thinking of Tn as a subtree of T ). If n belongs to a
cherry, we can think of Tn as the tree T ′ described above. Now for any G ∈ FT ′ , we consider
G̃ the full subforest of T defined by: the singleton {n}, t for any t ∈ G not containing e nor u,
t∪ en−1 if there is t ∈ G containing e, and the singleton {n− 1} if G contains the singleton {u}.

In this way we have G̃|T ′ = G and ~qG = 1
πs
f s
|Vn

~qG̃ ∈ Imf s
|Vn

, so the other inclusion is proved.

As far as the second isomorphism is concerned, we consider the subspace L ⊂ R
κn

given by
coordinates of type xχ1...χn−2ss for any χ1, . . . , χn−2, s in S. We have R

κn

= L ⊕ L⊥ and if f
denotes the projection to L, then any vector v can be decomposed as (f(v), v− f(v)). If F ∈ Fc,
then PT (χ1 . . . χn−1χn|ΘF ) is zero if χn−1 6= χn and is equal to PT ′(χ1 . . . χn−2|ΘF |T ′) if χn−1 =
χn = s. Hence, if F ∈ Fc we have ~qF = (f(~q), 0) = (~qF |T ′ , 0). Now we prove that f|Vc

is injective.
Let v =

∑

F∈Fc
λF ~qF and suppose that f(v) = 0. Then 0 =

∑

F∈Fc
λF f(~qF ) =

∑

F∈Fc
λF ~qF |T ′

and

v =
∑

F∈Fc

λF ~qF =
∑

F∈Fc

λF (~qF |T ′ , 0) = (
∑

F∈Fc

λF ~qF |T ′ , 0) = 0.

This proves that f|Vc
is injective. Moreover the image of this map is included in the subspace

〈~qG| G ∈ FT ′〉. For any G ∈ FT ′ we consider the full subforest Ḡ of T defined by: the trees in
G that do not contain e, t ∪ c if t contains e, and the cherry c if G contains the singleton {u}.
Therefore we have Ḡ|T ′ = G and ~qG = f|Vc

~qG̃ ∈ Imf s
|Vc

. �

Theorem 21. Let T a phylogenetic tree on n leaves, n ≥ 3, evolving under the EI/RC model
for any distribution π on κ ≥ 3 states. Then, {qF | F ∈ FT } are affine independent points that
span the space of phylogenetic mixtures on T , Dπ

T . In particular, the dimension of Dπ
T is |FT |−1

and when T is binary this dimension is equal to the Fibonacci number F2n−1 minus 1.

Proof. We proceed by induction on n. The statement of the theorem is equivalent to dimEπ
T =

|FT |.
The cases n = 3 and n = 4 are handled by Examples 18 and 19.
For n ≥ 5, suppose first that T is a binary tree. We may assume that the statement is true

for trees with strictly less than n leaves. We suppose that n and n− 1 form a cherry and adopt
the notation fixed above. Then we have that

Eπ
T = 〈~qF | F ∈ FT 〉 = 〈~qF | F ∈ Fn−1 ∪ Fn〉+ 〈~qF | F ∈ Fc〉.

Note that 〈~qF | F ∈ Fn−1 ∪Fn〉 equals 〈~qF | F ∈ Fn−1〉+ 〈~qF | F ∈ Fn〉. We know that 〈~qF | F ∈
Fn−1〉 and 〈~qF | F ∈ Fn〉 have dimension |FT ′ | by Lemma 20 and the induction hypothesis. These
subspaces intersect in 〈~qF | F ∈ Fn−1 ∩ Fn〉. By Lemma 20 (applied twice) and the induction
hypothesis, this linear space has dimension |FT ′′ | where T ′′ is a tree on n− 2 leaves. Therefore,
using Grassmann’s formula (dim(U +W ) = dimU +dimW −dim(U ∩W ) for subspaces U,W of
a vector space) we have that dim(〈~qF | F ∈ Fn−1〉 + 〈~qF | F ∈ Fn〉) = |FT ′ |+ |FT ′ | − |FT ′′ |. As
all of these trees are binary, this dimension equals the Fibonacci number F2n−2 since F2n−2 =
F2n−3 + F2n−3 − F2n−5.

On the other hand, by Lemma 20 and the induction hypothesis, 〈~qF | F ∈ Fc〉 has dimension
|FT ′ | = F2n−3. Let us prove now that 〈~qF | F ∈ Fc〉 and 〈~qF | F ∈ Fn−1 ∪ Fn〉 only intersect in
the zero vector. Let v be a vector in the intersection,

v =
∑

F∈Fn−1∪Fn

λF ~qF =
∑

G∈Fc

µG~qG.

Looking at the right-hand side we see that all the coordinates of v of type xχ1...χn−2ss′ for s 6= s′

are zero. Let us fix χ1, . . . , χn−2, s ∈ S and we shall prove that the coordinate xχ1...χn−2ss

of v, xχ1...χn−2ss(v), is 0. Let us split the sum
∑

F∈Fn−1∪Fn
into two terms (although this
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decomposition may not be unique):
∑

F∈Fn−1
λF ~qF +

∑

H∈Fn
λH~qH . We denote by F ′ the

restriction of a forest F to T ′. Note that

xχ1...χn−2ss(v) = πsxχ1...χn−2s





∑

F∈Fn−1

λF ~qF ′



+ πsxχ1...χn−2s

(

∑

H∈Fn

λH~qH′

)

.

For each α ∈ S we denote by a(α) the value of the coordinate xχ1...χn−2α of
∑

F∈Fn−1
λF ~qF ′

and by b(α) the value of this coordinate at
∑

H∈Fn
λH~qH′ . We want to prove that a(s)+b(s) = 0.

Consider s′ and s′′ states in S different from s (this is possible because κ ≥ 3). As

0 = xχ1...χn−2ss′(v) = πs′a(s) + πsb(s
′),

0 = xχ1...χn−2s′s(v) = πsa(s
′) + πs′b(s),

0 = xχ1...χn−2s′s′′(v) = πs′′a(s
′) + πs′b(s

′′), and

0 = xχ1...χn−2s′′s′(v) = πs′a(s
′′) + πs′′b(s

′),

we have

a(s) + b(s) = −
πs

πs′
(b(s′) + a(s′)) =

π′
s

πs′′

πs

πs′
(a(s′′) + b(s′′)).

But now we use the analogous relations between a(s), a(s′′), b(s), b(s′′):

0 = xχ1...χn−2ss′′ (v) = πs′′a(s) + πsb(s
′′) and

0 = xχ1...χn−2s′′s(v) = πsa(s
′′) + πs′′b(s),

in order to obtain that a(s) + b(s) = − πs

πs′′
(b(s′′) + a(s′′)). Therefore, a(s) + b(s) = −a(s)− b(s)

and this quantity vanishes.
Applying Grassmann’s formula again, we have 〈~qF | F ∈ Fn−1 ∪ Fn〉 ∩ 〈~qF | F ∈ Fc〉 = 0 and

dimEπ
T = dim(〈~qF | F ∈ Fn−1〉+ 〈~qF | F ∈ Fn〉) + dim〈~qF | F ∈ Fc〉.

We have already seen that the first term is equal to F2n−2. The second term is equal to F2n−3

by Lemma 20 and the induction hypothesis. Therefore dimEπ
T = F2n−1 = |FT |.

Let us assume now that T is not binary. We already know that Eπ
T = 〈~qF | F ∈ FT 〉 and we

only need to check that the vectors ~qF , F ∈ FT , are linearly independent. As the forests in T
are also subforests of any binary tree that refines T , these vectors are linearly independent by
the binary tree case proved above. This finishes the proof.

�

Recall that Lπ = (Eπ)⊥ and Lπ
T = (Eπ

T )
⊥ and therefore the quotient space Lπ

T /L
π of linear

topology invariants is isomorphic to Eπ/Eπ
T . As an immediate consequence of Theorems 15 and

21 we have:

Corollary 22. The dimension of the space of linear topology invariants is |Σk| − |co(T )| if π
is either a generic distribution or the uniform distribution, or κ ≥ n (and in this last case the
dimension equals |Inc(T )|).

As a consequence of Theorem 21, we are able to provide an algorithm to obtain a basis of
the space of linear topology invariants for any tree T , Lπ

T /L
π. To do so, note that if proj is the

orthogonal projection from Eπ to the subspace Lπ
T = (Eπ

T )
⊥, then proj provides an isomorphism

between Eπ/Eπ
T and Lπ

T /L
π and therefore we have:

Algorithm.

(1) For each F ∈ FT compute the coordinates of the vector ~qF ∈ Eπ
T .

(2) Complete the basis {~qF | F ∈ FT } by vectors v1, . . . , vd from Eπ in order to obtain a
basis of Eπ.
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(3) Then the classes of proj(v1), . . . , proj(vd) form a basis of the space of linear topology
invariants Lπ

T /L
π.

Note that step 2 can be done using the Steinitz exchange lemma and the spanning set of vectors
of Eπ provided in Theorem 15.

We prove now that Lake–type invariants suffice to define the space of linear topology invariants
of a tree when κ ≥ n and π is the uniform distribution. We first need a combinatorial lemma.

Lemma 23. For any phylogenetic tree T on [n] and any partition σ that is incompatible with T
there exist two blocks B,B′ of σ and leaves x ∈ B, x′ ∈ B′ and an interior vertex v of T in the
path connecting x and x′ for which the following holds:

For each leaf l of T in the same connected component of T − v as x, l ∈ B or {l} ∈ σ.
For each leaf l of T in the same connected component of T − v as x′, l ∈ B′ or {l} ∈ σ.

Proof. First suppose that σ has no singleton blocks. Let us say that an edge e = {u, v} of T is
terminating if:

(i) all the leaves of T that are in the subtree te of T − v containing u are contained in a
single block of σ (say, Bi), and

(ii) at least two of the other subtrees of T − v contain elements of [n] not in Bi.

For each such terminating edge e delete the pendant subtree te from T and label u by Bi. Let
T ′ be the resulting tree. This tree T ′ has at least four leaves (since σ is incompatible with T )
and so T ′ has a cherry (two leaves that are adjacent to a shared vertex v). This vertex v and
the label sets of the incident leaves (B and B′) then satisfies the property claimed in the lemma.
The extension to allow σ to have singleton blocks is now straightforward – we can simply delete
them first, repeat the argument above, and add them in afterwards. �

Corollary 24. If πU is the uniform distribution and κ ≥ n, then the Lake–type invariants of
Proposition 7 and model invariants generate the space of linear phylogenetic invariants for T .

Proof. We omit the superscript πU for the spaces of linear invariants in this proof. By Lemma
16(b) the space of model invariants L is spanned by the polynomials xχ − xχ′ for σ(χ) = σ(χ′)
and has dimension κn − |Σn| (because κ ≥ n). We also have that dimLT = κn − dimEπU

T =
κn − |FT | = κn − (|Σn| − |Inc(T )|) and dimL = κn − dimEπU = κn − |Σn|. Hence, we have
dimLT /L = dimLT − dimL = |Inc(T )|. So we need to prove that Lake’s invariants give a set of
|Inc(T )| linearly independent vectors in LT /L.

Note that in LT /L we can work with polynomials in indeterminates xσ, σ ∈ Σn.
Let us prove that, if σ is an incompatible partition on T , then xσ is a linear combination of xσ′

for compatible partitions σ′ of size > |σ|. To this end, we proceed by induction on m = n− |σ|.
If m = 0 or 1, then σ is convex on T and there is nothing to prove. Let m ≥ 2 and assume

that we have proved the statement when n−|σ| is smaller than m. Let σ = {B1, . . . , Br} and we
call s1, . . . , sr the states associated to σ. Assume first that σ has no singletons. Then, according
to Lemma 23 we can find two blocks of σ, say B1, B2, and an interior vertex v for which all
leaves in one of the subtrees T ′

1 of T − v are in B1, and all leaves in one of the other subtrees
T ′
2 of T − v are in B2. We write l′i for the set of leaves in T ′

i so that Bi is the disjoint union of
l′i and another set li. We let E be the event that leaves Bi are in state si for i ≥ 3, leaves in l1
are in state s1 and leaves in l2 are in state s2. As the fully symmetric model satisfies the partial
separability property (PS) and as |σ| ≤ n − 2 ≤ κ − 2, we can consider two new states s′1, s

′
2

to apply Proposition 7 (with t = T ′
1 and t′ = T ′

2). Thus we obtain the following linear invariant
(written in terms of partitions because the states do not matter, as soon as they are different):

xσ + xl1|l′1|l2|l
′
2|B3|...|Br

− xl1|l′1|B2|B3|...|Br
− xB1|l2|l′2|B3|...|Br

.



20 MARTA CASANELLAS AND MIKE STEEL

Note that all partitions involved in this expression, except for σ, have size larger than |σ| and
we can apply the induction hypothesis to any xσ′ appearing here with σ′ incompatible, to write
xσ as a linear combination of x′σ′s using only compatible σ′.

If σ has singletons, we remove these singletons in T and σ obtaining a tree T0 and a partition
σ0 without singletons on T0. We apply the previous argument to σ0 and T0 to obtain a linear
invariant. Then we apply the Extension Lemma 13(a) recursively to add singletons and we end
up also with a linear polynomial that involves σ and partitions of larger size. Hence, we can
apply the induction hypothesis again.

The linear invariants obtained in this way for each incompatible partition σ are of Lake–type
and form a set of linearly independent vectors in LT /L because they involve partitions of larger
size. �

Remark 25. Case κ = 2. For κ = 2, Theorem 21 and Corollary 24 do not apply. In this case
it is already known (see Matsen et al. (2008)) that there are no linear topology invariants for
the uniform distribution πU and hence DπU

T = DπU for any tree T (see Matsen et al. (2008)).
One can actually prove that this also holds for any generic distribution π and this space has
dimension |Σ2| = 2n−1 − 1, see Matsen et al. (2008).

Remark 26. Case κ = 3. For κ = 3 and n = 4, we cannot apply Corollary 24 either. But in
this case we can provide another topology invariant. We describe it in the following lemma for
n = 4 but can be easily generalized for the uniform distribution to any tree by using a similar
argument as in Proposition 7. Moreover, it is not difficult to see that for κ ≥ 4 it can be derived
form Lake–type invariants.

Lemma 27. For the tree 12|34 and any positive distribution π on a set S of κ ≥ 3 states, the
polynomial

(6) x̃xyxy + x̃xyyz + x̃xyzx − x̃xyyx − x̃xyxz − x̃xyzy,

for any three different states x, y, z ∈ S, is a topology invariant if T evolves under the EI/RC
model.

Proof. According to Lemma 9 we need to prove that (6) vanishes when we evaluate it at the
points qF , F ∈ FT . If F is a forest such that σ(F ) does not refine any of the partitions
{{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}, then the coordinates that appear in (6) are all zero. If σ(F )
refines {{1, 3}, {2, 4}}, then σ(F ) is either {{1, 3}, {2}, {4}}, or {{2, 4}, {1}, {3}} or the trivial
forest. In the first two cases (6) evaluated at qF vanishes. As the evaluation of any coordinate
x̃ at the point associated to the trivial forest is one, it also vanishes in this case. The remaining
cases follow from the symmetry of leaves 3 and 4 in (6). �

Remark 28. Case κ = 4. For n = 5 not all linear topology invariants are of Lake–type. In Fu
(1995) a complete list of 17 (= |Σ4|− |co(T )| = 61− 34) linear invariants that generate the space
of linear topology invariants is given. For example, for the fully symmetric model on the set of
states {x, y, z, w} (i.e. Jukes-Cantor model),

xxyyxy + xxyzwz − xxyyzy − xxyzxz

is a topology linear invariant that cannot be described by Proposition 7.

7. Explicit linear invariants for quartet trees

In this section we assume that κ ≥ 4 and we shall deal with quartet trees and the star
tree on four leaves. Note that in the previous section we gave an explicit description of linear
phylogenetic invariants only when the distribution was uniform. For a generic distribution π we
managed to compute the dimension of the space of linear phylogenetic invariants, but we did not



PHYLOGENETIC MIXTURES AND LINEAR INVARIANTS FOR EQUAL INPUT MODELS 21

provide a explicit set of generators. We do it in this section for the case n = 4, κ ≥ 4, and any
distribution π.

Remark 29. In the case of quartet trees on the set of taxa X = [4], the possible tree topologies
are 12|34, 13|24, 14|23, and the star tree T∗. As the star tree is a subtree of the others, the vector
space of phylogenetic mixtures is

Eπ = 〈~qF | F ∈ F12|34〉+ 〈~qF | F ∈ F12|34〉+ 〈~qF | F ∈ F13|24〉+ 〈qF | F ∈ F14|23〉.

By Theorem 21 we know that the vectors ~qF are linearly independent if we let F move in the
set of full subforests of the tree A|B. As F12|34,F13|24 and F14|23 intersect at the set of forests
for the star tree T∗, in order to check whether a homogeneous linear polynomial vanishes at the
vectors of Eπ one needs to check whether it vanishes at the 15 vectors of Tables 1, 2 and 3 that
correspond to 12 subforests of T∗ and one forest ~qA|B for each refined quartet).

Proposition 30. Let x, y, z, w be four different states and define

βx,y = π2
xx̃xxxy + πxπy[x̃xxyy + x̃xyxy + x̃yxxy] + πxπy[x̃zwxx + x̃zxwx + x̃xzwx] + π2

yx̃xyzw,

δx,y = π2
x[πxx̃xxxx + πy x̃xxxy + πz x̃xxxz + πwx̃xxxw]+

+ πxπy[πxx̃xxyx + πy x̃xxyy + πzx̃xxyz + πwx̃xxyw]+

+ πxπy[πxx̃xyxx + πy x̃xyxy + πzx̃xyxz + πwx̃xyxw]+

+ πxπy[πxx̃yxxx + πy x̃yxxy + πzx̃yxxz + πwx̃yxxw]+

+ π2
y [πxx̃xyzx + πyx̃xyzy + πz x̃xyzz + πwx̃xyzw].

Then following are linear model invariants for quartet trees evolving under the EI/RC model:

πyx̃xxyy + πzx̃xxyz − πyx̃xxzy + πz x̃xxzz(7)

πxx̃xxyz + πwx̃xwyz − πwx̃wwyz + πxx̃wxyz(8)

βx,y − βy,x(9)

δx,y − δy,x(10)

One obtains analogous linear model invariants by considering any permutation of the set of leaves.

Proof. From the extension Lemma 13(b) it follows that (7) and (8) are model invariants. Indeed,
if we consider the star tree T2 on two leaves, then it is easy to check that

πy x̃yy + πz x̃yz − πyx̃zy − πz x̃zz

is a linear phylogenetic invariant. By identifying T2 with the star tree T3,4 on leaves 3, 4 we can
apply Lemma 13(b) with µ = xx to obtain (7) for the quartet tree T = 12|34 (because T can be
obtained by attaching the tripod tree T1,2,l to the edge leading to leaf 3 of T2). In particular, (7)
vanishes for the star tree T∗ on four leaves. Similarly, in order to see that (8) is a phylogenetic
invariant for the star tree T∗, we use the phylogenetic invariant

πxx̃xx + πwx̃xw − πwx̃ww − πxx̃wx

for the tree T2 = T1,2 and apply Lemma 13(b) with µ = yz. By Lemma 13(c) we see that (8) is
a phylogenetic invariant for the quartet tree 12|34 (and hence also for the star tree T∗).

In order to prove that (7) and (8) are model invariants, it only remains to check that these
expression vanish when evaluated at ~q13|24 and ~q14|23, which is straight forward because all
coordinates involved in the expressions are 0 for these vectors.

We check now that (9) and (10) are model invariants having Remark 29 in mind. Looking
at Table 1, we observe that βx,y (respectively δx,y) evaluated at ~q• is π2

x + 6πxπy + π2
y (resp.
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π2
x + 3πxπy + π2

y(πx + πy + πz + πw)). As these expressions are symmetric for x and y, (9) and
(10) vanish in this case.

Now we consider the other vectors in Table 1, ~qB, where B is a block of m leaves, m ≥ 2, and
the partition associated to this point is B and singleton blocks.
We start with m = 2. Using the equalities of lemma 10, we can see that βx,y and δx,y are
symmetric under the permutation of leaves 1,2, and 3. Thus we only need to consider that B is
formed either by {1, 2} or by {3, 4}. In the first case, βx,y evaluated at ~qB is πx + πy and δx,y
is (πx + πy)(πx + πy + πz + πw). As these expressions are symmetric in x and y, (9) and (10)
also vanish in this case. If B = {3, 4}, then the evaluation of βx,y at ~qB equals πx + πy and the
evaluation of (10) gives π2

x+3πxπy+π2
y. Again, these are symmetric in x, y and (9), (10) vanish.

Now we consider m = 3. Let us assume first that B = {1, 2, 3}. In this case, the evaluation
of βx,y at ~qB equals 1 and the evaluation of δx, y is πx + πy + πz + πw. Therefore (9) and (10)
vanish at ~qB . If B contains the leaf 4, then all terms in the evaluation of βx,y at ~qB are zero and
the evaluation of δx, y at ~qB is πx + πy. Therefore (9) and (10) also hold for these vectors.

If m = 4, then (9) vanishes trivially because all its terms are 0. Moreover δx, y is equal to 1
when evaluated at ~q1234 and there fore both equations hold for this vector.

The only remaining cases to check correspond to the vectors ~q12|34, ~q13|24 and ~q14|23 of Tables
2 and 3. As βx,y is equal to 1 and δx,y is equal to πx + πy when these expressions are evaluated
at these vectors, both equations (9) and (10) vanish on these vectors.

Note that when we apply a permutation of the set of leaves, the resulting polynomials are
phylogenetic invariants because we have just proven that the original ones are linear model
invariants. �

Theorem 31. For any distribution π, the space of linear model invariants Lπ for n = 4 and
κ ≥ 4 is generated by the phylogenetic invariants of Proposition 30 together with x̃χ− x̃χ′ for any
χ ≡ χ′ and has dimension κ4 −B4 = κ4 − 15.

For the fully symmetric model we have already seen in Remark 11 that xχ − xχ′ are linear
phylogenetic invariants if σ(χ) = σ(χ′). In this case this set of invariants defines the same vector
space as the phylogenetic invariants in Theorem 31.

Remark 32. Although one could replace (9) by other phylogenetic invariants obtained from
marginalization from a phylogenetic invariant relating x̃xxy and x̃yyx on the tripod, this expres-
sion would have less symmetries than (9) and therefore we decided to use (9) instead (similarly
for (10)).

Proof. We let Fπ be the space of vectors where all the linear polynomials in the statement vanish.
Then we shall prove that for the vectors in Fπ, any coordinate x̃χ can be expressed as a linear
combination of the following 15 coordinates:

x̃xxxx

x̃xxxy, x̃xxyx, x̃xyxx, x̃yxxx

x̃xxyy, x̃xyxy, x̃xyyx

x̃xxyz, x̃xyxz, x̃xyzx, x̃yxzx, x̃yxxz, x̃yzxx

x̃xyzw

This will prove that Fπ is a vector space of dimension 15 or lower. By Lemma 16 we know
that dimDπ is ≥ |Σκ| − 1, which is B4 − 1 = 14 for n = 4. As we have the inclusion Dπ =
Eπ ∩H ⊆ Fπ ∩H this will finish the proof.

First note that by Lemma 10 we have x̃xxxy′ = x̃xxxy, x̃xxy′z′ = x̃xxyz, x̃x′y′z′w′ = x̃xyzw for
any y′ 6= x, x′, z′ 6= y, y′, x, x′, w′ 6= x, y, z, x′, y′, z′.
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Using the equation (8)=0 one can write x̃x′x′y′z′ as a linear combination of x̃xxyz and x̃xyzw.
The equation (7)=0 allows us to put x̃xxy′y′ as a linear combination of x̃xxyy if y′ 6= y. In order
to write x̃yyxx (or similarly x̃yxxy) in terms of the allowed coordinates we need to do two steps.
We use expression (7) three times to put first x̃yyxx in terms of x̃yyzz first, then x̃yyzz in terms
of x̃xxzz and finally x̃xxzz in terms of x̃xxyy. Interchanging the role of leaves 1,2 with 3,4 we
also obtain x̃x′x′yy as a linear combination of x̃xxyy if x′ 6= x. In the same way, we can use the
equation (9)=0 to put x̃x′x′x′y′ as a linear combination of x̃xxxy and other coordinates which we
now know that are linear combinations of the allowed coordinates. Finally, we use the equation
(10)=0 to put x̃x′x′x′x′ for x′ 6= x as a linear combination of x̃xxxx and other allowed coordinates.

By considering these relations above and all permutations of the leaves, we end up with every
coordinate written as a linear combination of the allowed list of 15 coordinates. �

We now consider the two linear topology invariants that we obtained in Example 8: in terms
of the x̃

′s above, the corresponding equations for the quartet tree 12|34 these are

H1 : x̃xyxy + x̃xyzw = x̃xyzy + x̃xyxw

H2 : x̃xyyx + x̃xywz = x̃xyyz + x̃xywx.

Equations H1 and H2 are linearly independent and drop the dimension by two. In total, we
have that Dπ

12|34 is contained in an affine space Eπ ∩ H ∩ H1 ∩ H2 of dimension 12. As the

dimension of Dπ
12|34 is 12 and for the star tree dimDπ

T∗
= 11 we have:

Corollary 33. For n = 4 and any distribution π one has

Dπ = Eπ ∩H

Dπ
12|34 = Eπ ∩H ∩H1 ∩H2

Dπ
T∗

= Eπ ∩H ∩H1 ∩H2 ∩H3

where H3 : x̃xxyy + x̃xzyw = x̃xzyy + x̃xxyw and T∗ denotes the star tree on four leaves. In
particular, Lake–type invariants generate all linear topology invariants for quartet trees evolving
under the EI model.

8. The infinite-state random cluster model RC∞

Recall that in the random cluster model, each edge of T is cut with some probability θe to
obtain a resulting partition σ of the leaf set X . Each block is then assigned a state independently
according to the distribution π. However, we could just consider the partition σ itself as the
output of this process (rather than assigning states, which has the effect of combining some
blocks together when they receive the same state). We call this the infinite state RC model
RC∞ since it has a natural interpretation as the limiting distribution on partitions induced by
the EI/RC model as the number of states κ in S tends to infinity when states have at least
roughly similar probabilities.

More precisely, under the RC model, the probability that two blocks of σ are assigned a same
state in the equal input model is at most n

∑

α∈S π2
α, by Boole’s inequality (note that there are

at most n blocks in σ). Suppose that πα ∈ [a/k, b/k] for some fixed a, b then as k = |S| → ∞
all blocks of σ receive distinct states with probability converging to 1 (this restriction on π can
be weakened a little further). The RC∞ model is sometimes referred to as the ‘Kimura’s infinite
alleles’ model in phylogenetics, and it was studied mathematically in Mossel and Steel (2004).
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8.1. Linear invariants for RC∞. The linear phylogenetic invariants for the infinite-state ran-
dom cluster model are particularly easy to describe.

Let pσ = PT (σ|Θ) be the probability of generating partition σ on T under the RC∞ model with
edge cut probabilities Θ = (θe), and recall the definitions of co(T ) and Inc(T ) from Section 4.1.

Proposition 34. Under the RC∞ model:

(i) PT (σ|Θ) = 0 for all Θ if and only if σ ∈ Inc(T ).
(ii) {xσ : σ ∈ Inc(T )} forms a basis for the vector space LT of linear phylogenetic invari-

ants for T and of the space of linear topology invariants. Consequently, this space has
dimension |Inc(T )| = Bn − |co(T )|.

(iii) The space of all phylogenetic mixtures on T has dimension | co(T )| − 1.
(iv) The space of all phylogenetic mixtures on all n–leaf trees under the RC∞ model has

dimension Bn − 1.

Proof. (i) Suppose that σ ∈ Inc(T ). Then there exists two blocks B,B′ of σ and leaves x, y ∈ B
and x′, y′ ∈ B′ for which the paths P (T ;x, y) and P (T ;x′, y′) share at least one vertex. Now
since x, y ∈ B and x′, y′ ∈ B′ the only way to generate σ under RC∞ is if none of the edges
in the two paths P (T ;x, y) and P (T ;x′, y′) is cut. Since these paths intersect on a vertex this
implies that x and x′ must be the same block, i.e. that B = B′. Thus σ cannot be generated
with positive probability under the RC∞ model. Conversely, suppose that σ is convex on T .
Then set θe = 0 for all edges in {T [B] : B ∈ σ} and set θe = 1 for all other edges. Then pσ = 1.
(ii) If

∑

λσxσ is a linear phylogenetic invariant, then for any σ convex on T we can choose a
set of parameters Θ such that pσ = 1 (see above). This implies that λσ = 0 for any σ ∈ co(T ).
This and (i) show that the set spans the space of all linear phylogenetic invariants, and linear
independence follows immediately from the observation that each polynomial involves a variable
not present in any other polynomial in this set. Note that all these polynomials are topology
invariants.
(iii) The space of phylogenetic mixtures DT on T is equal to ET ∩H where ET is the space of
vectors on which the linear phylogenetic invariants vanish and H is the hyperplane defined by
the trivial equation

∑

σ xσ = 1 (the sum is over all partitions of [n]). By (ii), ET has dimension
Bn − Inc(T ) = |co(T )| and we are done.
(iv) Note that in the basis {xσ : σ ∈ Inc(T )} of (ii) there are no model invariants. Therefore,
the set D of phylogenetic mixtures on all trees coincides with the trivial hyperplane H and has
dimension Bn − 1. �

The construction of certain quadratic phylogenetic invariants for RC∞ is also quite easy. Let
x ∼ y denote the event that x and y are in the same block of the partition generated by a
phylogeny under the RC∞ model, and let p(x, y) denote the probability of that event. Note
that p(x, y) is a sum of pσ values over all σ for which x and y are in the same block. Then
p(x, y) =

∏

e∈P (T ;x,y)(1−θe), where P (T ;x, y) is the path in T between x and y. It follows (from

the four point condition) that if the quartet tree obtained by restricting T to x, y, w, z is either
xy|wz or the star tree, then

p(x,w)p(y, z)− p(x, z)p(y, w) = 0.

9. Future work

It would be interesting to generalize Lake–type invariants in such a way that they generate
the space of linear topology invariants for κ < n (cf. Corollary 24). On the other hand, it
also would be useful to give explicit linear model invariants (with many symmetries) for any
number of leaves, as was done in Section 4 for n = 3, 4. These model invariants could be
used for model selection as it was done in Kedzierska et al. (2012) for the uniform distribution.
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Extending the work of Section 4 to other models is also of interest because this would increase
the range of models that can be considered in certain model selection software such as SPIn
(http://genome.crg.es/cgi-bin/phylo mod sel/AlgModelSelection.pl).
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MS: Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand


	ADPB.tmp
	Casanellas, M., Steel, M. (2016) Phylogenetic mixtures and linear invariants for equal input models
	Doi: 10.1007/s00285-016-1055-8


