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Abstract

' Fluid Neural Networks (FNN) are a mathematical framework where the phe-
cnomenon of self-synchronization in ant colonies can be explained, predicting the
model a critical density, i.e. a density where oscillations appear, observed in real
ant colonies. However, up to now all results have been solely numerical.* In this
paper we put forward a simpler FNN with the same phenomenology as the original
one, but an analytical approximation can be performed in such a way that critical

densities can be computed, offering a good approximation to the numerical ones.
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1 Introduction

Collective behavior in ant colonies is undoubtedly a fascinating subject. Hundreds or
thousands of small simple insects display coordinated collective patterns of complex be-
haviors, such as raid patterns, food foraging, brood care, task allocation or nest building,
showing how, generally speaking, simple interacting individuals can behave as a whole
in unexpected ways. Nuisance of reductionists, swarm behavior has attracted the atten-
tion of physicists working on critical phase transitions or dynamical systems. It has been
shox;vn that behind some phenomena such as trail patterns (1] or self-synchronization of
activity [2] there are mechanisms well known to physicists, where noise-induced transi-
tions [3] or marginal stability (4] are but a few examples. Beyond the classical interest in
swarm behaviour from biologists [5], Complexity sciences have taken ant colonies as one
of the main subjects of study in their quest for laws behind complex phenomena [6].

The mechanisms underlying swarm intelligence, as is also called, are certainly not
few in number though we will be interested mainly in mechanisms by which the global
performance of the colony goes beyond that of individuals, such as interactions by means
of laying pheromones or by physical contact among individuals. These different ways
of interaction may generate striking behaviors, such as stigmery (a stigmergic process,
following Wilson [7], is a process by which it is the work already accomplished that
induces the insects to perform additional labor) or the one we will focus on in this paper:
Self-synchronization.

Some experiments with Leptothoraz acervorum ants by N. Franks [8] and Leptotho-
raz allardycei by B. J. Cole [2] revealed the existence of short-term rhythms of activity.
This synchronization in activity seems to be specially apparent in nurse workers, where
cycles of approximately 20 min. (15 min. of quiescence plus 2-5 min. of activity) have

been measured. There exist some mathematical models of this behavior in very different






frameworks: Differential equations [9], probabilistic process algebra [10] or Fluid Neural
Networks (FNN) [11], though up to now is far from clear which one is best fitted to the
phenomenon under study. The interest in self-synchronization is not solely a biological
one, since this phenomenon has been shown to be related to mutual exclusion in brood
care [12] and task allocation [13]. Thus, the possible usefulness of self-synchronization in
ant colonies makes it also interesting for distributed asynchronous algorithm designers.
In this paper we offer an analytical approximation to FN Ns, one of the mathematical
models of self-synchronization in ant colonies [14]. After reviewing the original FNN in
section 2, in section 3 we introduce and justify a simpler FNN , with the same phenomenol-
ogy as the original one, where analytical approximations can be made in order to obtain
critical densities near to the ones computed numerically. This reveals and explains some
curious results already obtained in the original FNN, such as lattice size dependence of
critical density. Finally, we discuss in section 4 the approximations we have performed

and suggest possible ways of improving analytical results.

2  Fluid Neural Networks

FNNs are defined as formal neurons [15] moving on a lattice. Fach “neuron-ant” has a
continuous state S;(t) € R, at each time step ¢. Interaction with nearest{ individuals,
located in the neighborhood B(i) defined by the eight nearest lattice sites, is defined by
Sit+1)= @ [ g {JiiSi(t) + > JiySit) — @i}}
i#7€B(5)
where Ji; # 0. For simplicity we use the threshold ©; = 0, and we take ®(z) = tanh(gz)
where g is a gain parameter. Each automaton can be either active or inactive, depending
on the state S;(t) and, if active, it moves randomly to one of the eight nearest cells (if no
space is available, no movement takes place). In FNN a given automaton will be active if

it is above some threshold 0,., Si(t) > 0uc, and inactive otherwise. Once an automaton






becomes inactive, it can return to the active state (with a spontaneous activity level Sa)
with some probability p,. The coupling matrix J is not fixed. Connections are local and
changing over time as a consequence of movement. They are also state-dependent i.e. Jij
will be a simple function of the states of the actually interacting pair (3, j) of automata,
Le. Ji; = f(a},a}), where af = O [S;(t) — fact]. In our case, where two basic states are

defined the connection matrix reduces to the following 2 x 2 table

_ M )\10]
A‘[Am Ao

At a given time step, the interaction Ji;j between the i-th and the j-th elements is equal
to )\a‘ga; € A by depending on the activity states of the given elements. More precisely,
Ji; will be equal to: A;; when both ants are active, to Ao, Ao; when one is active and the
other inactive and to \gg if both automata are Inactive.

This model is able to account for the oscillations observed in the experiments (see
Fig.1). The model also allows one to define a critical density of active elements, i.e.
a density where oscillations appear, that is approximately the same density observed
usually in ant colonies [14]: p, ~ 0.2. Furthermore, recent work has shown that noise is a
determinant in the mechanism of oscillations, through spontaneous activation, suggesting
that oscillations appear at a noise induced transition [16] (see [3] for a description of noise
induced transitions). An order parameter for FNNs was also found in [16]: Assuming the
transition to be noise-induced we can define an order parameter by using the stationary
density of active elements P(p*) (computed by means of histograms). If we define ot
such that

+y +
P(pr) = Jmax P(pT)

the order parameter will be defined by:

L(p,pa) =1~ p},







As seen in Fig.2 the value of I' is zero after the transition and non-zero before the
transition and, as was shown in [16], the critical density p. is the same as the one that
was formerly determined in [14] by means of the Shannon-Kolmogorov Entropy.

There has been experimental work measuring some parameters of FNN, such as Jij
(interaction between “neuron-ants”, assumed to be 1 in theoretical simulations) and g
(the gain parameter of the non-linear interaction among individuals, assumed to be 0.1

in the model) [17].

3 Simple Fluid Neural Networks

Some features of the original FNN, as defined in sect. 2, can be considerably simplified.
We will define the Simple FNN (SFNN) in the following way: We have N individuals
Si(t) € R that change their state according to:

Si(t+1) = gSit) + 9 3 Jije Siz (2) + Sa®8ace — Si(D)]I} (1)

EM

where If € {0,1} with probability P(I = 1) = p, and we have made a first order
approximation of tanh: tanh(z) ~ z removing one of the nonlinearities of the original
FNN. The meaning of Jij, S,, p. and g is the same as in the original FNN (section 2).
Active states will be defined by af = O[Si(t) — 8.

What does it mean j}'?, it is the neighborhood. At a given time step ¢, the local field
hi(t) = ;2 Jij» Sis(t) will be computed for all i before the change of state Si(t+1) is
performed. In order to do so, for each individual S;(t), K random connections to some
~individuals will be established (these individuals will be called the neighbours). K is

chosen randomly from the distribution

P =1 = (3 )oH - )

This has the same effect as if we threw, at each time step and for each element S;(2),

all the N elements upon a L x L lattice (then p = & will be the density of elements), in
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order to compute the corresponding local field A;(t). Thus, we get some kind of “annealed”
movement. This is similar to the mean field approximation made in spatially distributed
epidemic models [18], where movement was dependent on a parameter m such that the
limit m — oco was in fact the same as throwing randomly all the elements upon the lattice
-at each time step. In our case we do so to compute each local field hi(t), so our system
is, in this sense, more disordered.

Considering the density of active individuals at time ¢

1 N
= }_;1 O[Si(t) — bact] 3)
we can see in Fig.3 that pf in SFNN has the same temporal behavior as pt in FNN:
Irregular behavior at low densities and more ordered oscillatory behavior for growing p.
This allows one to apply the FNN order parameter in this case too. We can see I'(p, pa),
as defined in Section 2, in Fig.4, computed for a SFNN.

To sum up, we have a simple FNN, where some nonlinearities have been removed
and where each individual, at each time step, establishes connections randomly, as if
we had some kind of “annealed” movement. This has simplified considerably the model
without loss of interesting behavior because both, FNN and SFNN are phenomenologically
identical. In the rest of the paper we will explore the relation between the ciitical density
pe and activation probability p, in SFNN (as we did numerically with FNN in (16]).
Throughout the paper, the values of the parameters will be g=01,V=45,=01,
Ji; = 1for all 7,5 and 6, = 1071,

4 Analytic approximation of p,

The analysis will be performed for p > p., that is, in the region of well developed os-
cillations. There the behavior of activity spreading is quite well defined: As we see in

Fig.5 the role of spontaneous activation is rﬁerely that of starting the process of activ-




ity propagation, process that continues by means of interaction among individuals until
activity reaches the whole system (pf = 1). This would allow us to analyze separately
activity propagation and inactivation, assuming in both cases that there is no spontaneous
activation.

First of all we will find a condition on V and g to assure the decay of the system to
a state where all N elements are inactive. With the above mentioned assumption the
evolution for S;(t) will be

Si(t+1) = g5i() + 93 5 (1)
i

To see the global evolution of the N individuals we can derive a discrete equation for

the state average < S(t) >= % "N, S;(¢) if we approximate the term 35 Six(t) by the

mean field version Vp < S(t) > so that
< S(t) >=(g(1 + Vp)) < S(0) >

and we can assure activation decay if g(1 + Vp) < 1. If we assume that p is as largest as
possible (p = 1), we get the condition

1
I<Tyv

that is satisfied in our case, because g = 0.1 and V = 4. Of course, if < S(t) > tends to
0, pf will tend to 0 too. Let us remark that, though < S(t) > tends to zero exponentially
but smoothly, pf goes to 0 in very few time steps (as can be seen in Fig.3 when p > 0.2).

Now let us study the propagation of activation through the system. In [16] we put
forward the hypothesis that only two factors were important in order to understand
FNN oscillations: the average time 7/(p, p,) one individual is active between two inactive
states and activity propagation Y|n,,|(p,pa), that is, the average number of time steps
necessaries to reach the state of pf = 1 from an initial state where | Np, | individuals are

active, i.e. the mean (integer) number of individuals that would activate spontaneously

7



with probability p, in a system with all N elements inactive. These are precisely the
factors we will analyze in order to compute analitically p.. Intuitively, if Y(Npa) (P, Pa) is
less than 7/(p, p,) the state of maximum activation will be reached before individuals start

the process of inactivation, then we will observe oscillations. So then, p. will be such that

Yinpaj(Pes Pa) = 7'(pe; pa) (4)

Activity spreading can be treated as a branching process if when considering activity
by interaction we take into account only the state af of each individual. In this way, we will
say that an inactive individual is activated by its neighbours if there is at least one of them
active (it is obvious that this is not the eract mechanism by which individuals activate
each other, since an individual with all neighbours active, each one with a very small
3i(t), might not be activated). The probability of having at least an active individual as a
neighbour is easy to compute, because of the “annealed movement” we have introduced.

If we have ¢ active individuals, the above mentioned probability is
i |4
n=1-(1-2) (5)

As we are only considering activity spreading in the oscillations phase, there will be
no activity decay, allowing us to compute the probability of ;j active individuals having ¢

individuals active in the previous time step

(];’:i‘)y{_i(l -V i<

Pj=PAm1=jA=1)= (6)

0 otherwise

where A; is the number of active individuals at time ¢. This defines a branching process
that will finish when A = N. We will treat this process as a Markov chain [19] with

stochastic matrix



P, P, Py
— 0 P P
P=| [ 7 ?N (7)
0 0 Pyn

with which we can compute the mean number of steps before being absorbed by the

unique clossed class of our system, the one element set {N}. In order to perform the

calculations, the P matrix has to be rearranged to get the canonical form

Pnn 0 ... 0
P 0 Pin Pipo-- Pyney
o[ h | P 0 - Pyy.
P ( R Q ) ' 2N . . 2(N-1) (8)
Pn_yn |0 Pn-1y(v-1)

so that the fundamental matriz M = [I — Q]=! of the Markov chain can be found. The
matrix M plays a central role in transient analysis of Markov chains [19]. M gives im-
mediately the quantity we want to compute. It is easy to verify that the ij — th element
of QF, q,(;c ) is the probability of a transition from the state A = 7 to the state A = Jin
exactly k steps. The average number of times that starting in state A = ¢ the process

reaches state A = j before it leaves transient states and enters the clossed class is
D+ P4+
that is precisely M;;, since the identity
M=[I-Q'=I4+Q+Q*+...+Q%+...

follows from the fact that @ has all the eigenvalues strictly inside the unit circle (the
eigenvalues of Q are \; = Pjjfor 1 <j < N-—1and )\; <1 since P is a stochastic
matrix). If 1 is a column vector whose components are all equal to 1, the mean number

of steps before reaching the state of all individuals active, taking as a departure point a
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state A = 1, is the ¢ — th component of the vector M1. So, if Y; = (M1);, solving the
linear system

MY =(I-Q)Y=1

we can compute any Y; with the recurrence
N-1
Y = (1 - ) (1 > ij) )
i=j+1
Now that we have Y] y,, 1(p, pa) we need to compute 7/(p, Po). This is a rather difficult
calculation and we have approximated 7'(p, pa) by the inactivation time 7;,4 of a solitary
individual
Si(t +1) = ¢'S:(0)
with S5;(0) = S,, the spontaneous activity level. Making g"4 S, = 6,,; we get

log(,c¢/S.)
log(g)

Tind =
which is 7,4 = 15 for the set of parameters given at the end of section 3. Of course this
is just a first approximation, since if we compute numerically the mean number of steps
<1 >=1'(p,p,) in the SFNN (see Fig.6) we see that it is density dependent.

Once we have Y\npaj(p,pa) and 7'(p,p,) & Ting we can find a density p. such that
Y|Npa) X Ting. This analytically computed p2" is compared with numericalll\.‘y determined
pc* in Fig.7T. p2" and p™ have both a linear dependence on log(p,) but our analytical

approximation gives a critical density above the one computed numerically with the order

parameter I'(p, p, ).

5 Discussion

In this paper we have explored the emergence of oscillatory behaviour in a mean-field
model of FNNs. FNN have been successfully used as models of collective behavior, from

oscillations [11,14] to the problem of universal computation {20]. The introduction of

10




mobility by simple units enables us to go beyond the classical models based on excitable
systems [21] though also makes difficult to reach analytic results. Here, following a mean
field approach to the original FNN with sigmoidal response, we have derived a simple
analytic result that provides a good understanding for the origin of oscillatory behavior
and the existence of noise-induced transitions.

Some simplifications on the FNN model have allowed us to define the SFNN, with
identical phenomenology but with the possibility of performing analytical work. Working
on the p > p. phase we have assumed no spontaneous activation and we have analyzed
separately the inactivation process and the activation process, that is, the two parts that
compose one oscillation in the p} curve. We have derived a relation between ¢ and V in
order to assure inactivation and we have checked an hypothesis put forward in [16] in order
to approximate p.. This hypothesis and approximations of Y|, 1(p,pa) and 7'(p, p,) =~
Tind Provide a p2™ value that reproduces the linear dependence on log(p, ) but overestimates
pc* (obtained from I'(p, Pa))- The approximations we have done are obviously not exact,
but the coarser one 7’ (P, Pa) R Tina is the responsible for the inaccuracy of p?". Work in
progress is focusing on a better analytical approximation of 7/(p, p,).

The suggested mechanism of activity propagation (eqns (5), (6) and (7)) provides
an explanation of a phenomenon observed in both FNN and SFNN [16]: Critical density
dependence on lattice linear size L. As we can see in eqns. (5) and (6) activity propagation
depends on N and L separately, in such a way that 7/(p, Pa) > Y{Np,j(p, pa) for a certain p
(we have oscillations) and, for the same p but greater L, 7'(p, p.) < Y|np, 1(p, pa) loosing

oscillatory behaviour.
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Figures

[1] Temporal behavior of pi, with parameters [ = 90, 52 = 0.1, g = 0.1, 6,y = 10716,
Pa = 0.01 and (A) p = 0.10; (B) p = 0.15; (C) p =0.20; (D) p = 0.25; (E) p = 0.30; (F)
p = 0.35;

[2] Order Parameter I'(p, p,) with parameters I = 50, S, = 0.1, g = 0.1, 0,,; = 10~ and
(A) pa = 0.01, (B) p, = 0.001.

[3] ‘Tempora,l behavior of pf in SFNN, with parameters L = 100, S, = 0.1, ¢ = 0.1,
Oact = 10716, p, = 0.01 and V = 4.

[4] Order Parameter I'(p,pa) in SFNN with parameters I = 100, S, = 0.1, ¢ = 0.1,
Oact = 1078, p, = 0.01 and V = 4. Each point has been computed with 10 time steps

after 2 x 103 transitories.

[5] Temporal behaviour of the number of new active individuals due to interactions and
spontaneous activations. Values in the spontaneous activation curve are multiplied by 10.

Parameters L = 100, S, = 0.1, 9 =01, 05 =107, p, = 0.01, V = 4 and p = 0.25,

[6] The mean time an individual is active between two inactivations. We ‘can see that
< 7 > is density dependent with a clear change in the shape of the curve around Pe
(pe & 0.212 in this case). Parameters [ = 100, S, =0.1, g = 0.1, Ooct = 10718, p, = 0.01

and V =4. < 7 > is computed from 10° time steps after 10® transitories.

[7] 7 (empty dots) and pe™ (filled dots) as a function of log(p.) Parameters L = 100,
Sa=01,9=0.1, 0, = 107*%, and V = 4. p?* is computed from I'(p, pa) with 10* time

steps after 2 x 103 transitories, averaged over 10 samples.
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and Helmut Prodinger.

“On the Epipolar Geometry and Stereo Vision”, Blanca Garcia de Diego.

“Solving Incidence and Tangency Constraints in 2D”, Niiria Mata.

“Designer: A Tool to Design and Model Workflows”, Camilo Ocampo, Pere Botella.
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Daniel Riu.

“ Shortcuts: Abstract “Pointers””, J. Marco and X. Franch.
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