
Research Report LSI-98-31-R, Software Department (LSI), Technical University of

Catalonia (UPC), June 1998. A shorter version of this paper has been presented

at DEXA'98 (Conf. on Databases and Expert Systems Applications).

De�ning and Translating Visual Schemas for Deductive Databases

Jordi Puigsegur

1; 2

Joan A. Pastor

3

Jaume Agust

�

�

1

fjpf,agustig@iiia.csic.es, pastor@lsi.upc.es

1 Arti�cial Intelligence Research Institute { CSIC

Campus UAB, 08193 Bellaterra, Catalonia, European Union

2 Visual Inference Laboratory { Indiana University

Lindley Hall 215, Bloomington IN 47405, USA

3 Software Department { Technical University of Catalonia

Campus Nord UPC, 08034 Barcelona, Catalonia, European Union

June 8th 1998

Abstract

We present a visual language expressive enough to capture an important subset of First

Order Predicate Logic as well as its straightforward translation to the logic-based paradigm of

deductive databases. We use the diagrams of our language to represent all the components of a

deductive database schema: base predicates, derived predicates with their deductive rules, and

integrity constraints. Our diagrams are grounded on two powerful visual metaphors: Venn/Euler

diagrams and graphs, familiar to most designers; they are formal and independent of the appli-

cation domain; they emphasize basic forms of logic description, the diagrammatic syntax being

closer to the semantics; and they have a simple translation to Horn clauses. Thus, we aim at a

situation where the generality of deductive databases would be fostered by the expected greater

usability of visual schema languages in the hands of a wider group of practitioners.

1 Introduction

Deductive databases, also known as logic databases, result from decades of research in the areas of

logic, databases, logic programming and arti�cial intelligence (see [19]). Fortunately, they seem to

be evolving from a research concept into a practical tool. Indeed, the large amount of theoretical

research devoted to this �eld has not only penetrated current relational DBMSs, but is also inspiring

several of their future extensions. Furthermore, this research is now materializing in some deductive

DBMS prototypes and commercial products (see [29]). Deductive databases extend relational

databases by allowing for the representation and management of more general forms of `application

semantics'. Besides data explicitly stored in base predicates, comprehensive views permit the

handling of additional forms of derived data, and more powerful integrity constraints can be used

to care for overall data consistency. This generality of deductive databases is a consequence of their

underlying theory: First Order Predicate Logic.

However, it is precisely for this same reason that deductive databases share with other areas,

such as logic programming, an important problem: the inherent di�culty that many practitioners

encounter when working directly with logical expressions. In fact, we believe that this may have

1

been one of the main reasons for their slow di�usion. Certainly, few people in industry enjoy

working directly with logic and, hence, we need more natural forms of communication which can

be translated (sometimes automatically) into logic. In this way, both generality and usability may

be obtained. This paper aims to be a �rst step towards this goal within the context of deductive

databases, where we explore the visual de�nition of their schemas. In doing so, we draw from our

prior results |here adapted and extended| regarding the de�nition of a visual logic programming

language [23, 1, 24, 22].

The increasing power of computers and specially the improvement of their graphical capabilities

has fostered in the last years the study of new forms of expression within formal languages: visual

languages. These languages o�er a completely new way to interact with computers that may now

also be applied to existing paradigms like logic programming and deductive databases. In particular,

we believe that it is possible to construct diagrammatic languages that bene�t from the generality

of these paradigms. We aim at languages that are independent from any particular application

domain and which emphasize visually some semantic and pragmatic features of logic instead of

its mathematical syntax patterned after Boolean algebra. Hopefully, their exploration will help us

agree in the future on some standard ways to use logic, that is, the pragmatics of logic.

So far, by the hand of information systems design methodologies (sometimes with their associ-

ated CASE tool), some few visual formalisms have made their way through wide industrial software

practise; entity-relationship and data-ow diagrams (in many versions) being among the most pop-

ular ones [30]. On the other hand, there are plenty of research proposals o�ering various forms

of visual languages for representing software systems and their application domain, from concep-

tual modeling [6] to business requirements engineering [14] and enterprise modeling [7]. Given the

nature of the above tasks, their proposed visual languages are mostly special-purpose and mainly

centered in visually modeling the static dimension of the modeled system; dynamic aspects are

either left out or operationally modeled. Other more declarative approaches with visual systems

representation, such as [15, 31], usually limit themselves to textual de�nitions for some behavioral

aspects of the system such as derived information and general consistency conditions. In all the

above cases, translating visual representations to logic is not always obvious and is often partial.

This fact complicates the use of logic-based paradigms and tools, such as logic programming and

deductive databases, for purposes like automated system validation, veri�cation, implementation

and execution.

Without pretending to o�er a visual language suited to all the above high-level tasks, in this

paper we propose a visual language expressive enough to capture an important subset of First

Order Predicate Logic as well as its straightforward translation to the logic-based paradigm of

deductive databases. We use the diagrams of our language to represent all the components of a

deductive database schema: base predicates, derived predicates with their deductive rules, and

integrity constraints. These diagrams possess the following characteristics:

� They are grounded on two powerful visual metaphors: Venn/Euler diagrams and graphs,

familiar to most designers.

� They are formal, that is, unambiguously de�ned and interpreted, and independent of the

application domain.

� They emphasize basic forms of logic description, like recursion, and have a simple translation

to Horn clauses.

Among other graphical metaphors that are being proposed to represent logic, a whole commu-

nity is growing from the seminal work of [26] to form the new research area of Conceptual Graphs.

2

From the visual language point of view, the main di�erence between our approach and theirs con-

sists in our option to represent relations (sets of tuples) by set operations (membership, inclusion,

union, intersection) instead of their explicit representation of the corresponding logical connectives

(implication, disjunction and conjunction). We believe our option to be more designer friendly |-

our syntax by means of boxes resembles the corresponding semantics of relations (sets of tuples)|

while still very easy to translate to textual logic. However, despite the appealing features of visual

languages in general, including ours, more empirical research is needed in order to compare their

usability, usefulness and adequacy, both between the various existing proposals and between them

and textual representations. We do not address this issue here.

The paper is organized as follows. After this introduction, Section 2 de�nes the kind of deductive

database schemas that we address with the visual schema language presented in Section 3. Section 4

is devoted to the translation of visual into textual schemas. Section 5 describes our implemented

environment for editing and translating visual schemas. While Section 6 discuses other research

work that may be related to our approach, in Section 7 we present both our conclusions as well as

our ideas for further work.

2 Deductive Databases Schemas Considered

We de�ne here the kind of deductive database schemas addressed in this paper. For this purpose,

we review the basic concepts of deductive databases [12, 17]. Since we concentrate on the visual

representation of the database schema, irrespective of any particular database contents, we �nd

convenient to clearly separate the de�nitions of database contents and database schema.

We use �rst-order logic as the main convention. Thus, we consider a �rst-order language with

a set of constants, a set of variables, a set of predicate names and no function symbols. In formal

de�nitions we will use names beginning with a capital letter for predicate symbols, and names

beginning with lower-case letters for variables.

A term is a variable symbol or a constant symbol. We assume that the possible values for

terms range over �nite domains. If P is an m-ary predicate symbol and t

1

; :::; t

m

are terms, then

P (t

1

; :::; t

m

) is an atom. The atom is ground if every t

i

(i = 1; :::;m) is a constant. A literal is

de�ned as either an atom or a negated atom, in other words, a positive or a negative atom. A fact

is a formula of the form P (t

1

; :::; t

m

) , where P (t1; :::; tm) is a ground atom. In the propositional

case of m = 0, a fact is regarded as an untermed atom, ground by de�nition. Facts are considered

to be explicitly stored in the database, and they are said to form its extensional part, or database

extension.

2.1 Base predicates

Every fact is modeled in the database schema through some base predicate (scheme). Since base

predicates schemes describe the extensional database, they take the form of:

B(t

1

; :::; t

m

) with m � 0

where every term t

1

; :::; t

m

is interpreted as a distinct variable, modeling the possible extensional

term instances. A base predicate syntactically coincides with its modeled fact in the propositional

case of m = 0. A base predicate scheme appears only in its own de�nition, and possibly as a

condition atom in the body of deductive and integrity rules (see below). A base predicate is

present in the extensional database, as a fact of the corresponding scheme.

3

Before providing further de�nitions, let us introduce the base predicate schemes corresponding

to the database schema example that we will be using throughout the paper. They are shown in

Fig. 1, together with their intended meaning.

Our example is (part of) a database for the Human Resources Unit of a hierarchically-structured

organization. Besides enforcing such an organizational structure, the database is to keep track of

the employees and managers assigned to the di�erent units, and of arranged interviews between job

applicants and units. Furthermore, for legal reasons, it also keeps track of residential status and the

existence of criminal records for the people administered by them. Rather than to represent a real

application domain, we regard this database schema as a representative example of the situations

that we are able to represent with our visual schema language.

Notice that the syntax of base predicates tells us nothing of its intended meaning: a set of

tuples. The standard syntax of symbolic logic was set by mathematicians in linear form, patterned

after Boolean algebra. This syntax favors the interpretation of predicates as truth functions and

nothing suggest their more usual interpretation as sets of tuples. Even the terms do not distinguish

syntactically the di�erent role of variables and constants. To deal with these and other similar

issues by visual means is the main goal of this paper.

Base pred. Base predicate meaning

Unit(u) `u' is a unit in the organization

Reports(u; u1) Unit `u' directly reports to unit 'u1'

Works(p;u) `p' works for unit `u', i.e. `p' is employee of `u'

Mng(p) `p' is a manager

App(p) `p' is a job applicant

Intw(p; u) `p' has a job interview with unit `u'

Cit(p) `p' is a citizen

Ra(p) `p' is a registered alien

Cr(p) `p' has some criminal record

Figure 1: Base predicates: textual de�nition

2.2 Derived predicates and deductive rules

A derived predicate (or view) is a scheme representing information which is not stored in the

database but can be derived using deductive rules. It takes the form of:

D(t

1

; :::; t

m

) with m � 0

where terms t

1

; :::; t

m

are interpreted as distinct variables. A derived predicate appears as the head

of deductive rules, and possibly also in the bodies of deductive and integrity rules. Formally, a

deductive rule is a formula of the form:

D(t

1

; :::; t

m

) L

1

^ ::: ^ L

n

with m � 0 ^ n � 1

D(t

1

; :::; t

m

) is the conclusion (i.e. the derived predicate being de�ned) and L

1

; :::; L

n

are

literals representing de�ning conditions, which can be base, derived or evaluable predicates, possibly

negated. D(t

1

; :::; t

m

) is also called the head of the rule while L

1

^ ::: ^ L

n

is the body of the

rule. Evaluable predicates are system predicates, such as the comparison or arithmetic predicates,

operating on terms from other conditions, that can be evaluated without accessing the database.

Variables in the conclusion or in the conditions of a rule are assumed to be universally quanti�ed

over the whole formula. While the terms in the conclusion must be distinct variables, the terms

4

in the conditions may be variables or constants. Variables not appearing in the conclusion are

existential variables, also called local variables. The de�nition of a derived predicate D(t

1

; :::; t

m

)

is the set of all deductive rules having D(t

1

; :::; t

m

) as their conclusion.

Fig. 2 below shows the six derived predicates of our example with their corresponding deductive

rules. Employees are those people working for some unit, and are de�ned with a single rule having

an existential variable. Two derived predicates, each one with a rule, are used to know those units

having some manager and those ones with some employee who is not a manager. Subordination

among organizational units is modeled with a derived predicate recursively de�ned with two rules,

respectively dealing with direct and indirect reporting. The right-of-residence status of a person is

de�ned using two deductive rules without any existential variable. A single rule with an existential

variable is used to de�ne job candidates.

Again, nothing in the textual syntax enforces neither the meaning of the deductive rules nor their

pragmatics. By making explicit diagrammatically the membership relations of tuples to predicates

and variable sharing inside rules we will make the rules more intuitive and �t for its operational

interpretation [22].

Derived pred. + Deductive rules Derived predicate meaning

Emp(p) Works(p;u) `p' is an employee because s/he works for some unit `u'

HasMng(u) Works(p;u) ^Mng(p) Unit `u' has some manager because at least its employee `p' is a manager

HasEmp(u) Works(p;u) ^ :Mng(p) Unit `u' has some non-manager employee because at least its employee `p'

is not manager

Subordinate(u; u1) Reports(u; u1)

Subordinate(u; u1) Reports(u; u2)

^Subordinate(u2; u1)

Unit `u' is subordinate to unit 'u1' because it either directly reports to

'u1' or it reports to some unit 'u2' which is subordinate to 'u1'

Cand(p) Intw(p; u) ^ Unit(u) `p' is considered a job candidate when s/he has an interview with some

unit `u'

Rr(p) Ra(p) ^ :Cr(p) `p' has right-of-residence if s/he is either a registered alien with no

Rr(p) Cit(p) criminal record or a citizen

Figure 2: Derived predicates and deductive rules: textual de�nition

2.3 Integrity Constraints and Integrity Rules

Integrity constraints are general conditions that the database is required to satisfy at all times.

They are used to specify unwanted database states and forbidden database changes. Accordingly,

integrity constraints are either state (or static), when they must be satis�ed in any state of the

database, or dynamic, when they involve the evolution between two or more database states.

Dynamic integrity constraints compelling only one transition between two successive states are

further called transition integrity constraints. In this paper we only represent visually state integrity

constraints and, thus, we restrict our de�nitions and examples to this case.

State integrity constraints can be de�ned in terms of base and/or derived predicates. Formally,

a (state) integrity constraint is a closed �rst-order formula that the database is required to satisfy.

We deal with constraints that have the form of a denial:

 L

1

^ ::: ^ L

n

with n � 1

where the L

i

are literals (i.e. positive or negative base, derived or evaluable predicates) and

variables are assumed to be universally quanti�ed over the whole formula. More general constraints

can be transformed into this form by �rst applying the range form transformation [11], and then

using the procedure described in [18].

5

We associate with all integrity constraints an inconsistency (derived) predicate Ic

n

, with or

without terms, and, thus, they take the same form as deductive rules. We call them integrity rules.

In our example we use the seven state integrity constraints shown in Fig. 3. The set of employees is

a subset of the set of legal residents (Ic

1

), and is disjoint with the set of applicants (Ic

2

), which is a

superset of candidates (Ic

3

). While employees must only work for units (Ic

4

), units with employees

must have some manager (Ic

5

). Finally, the organizational structure must be hierarchical (Ic

6

and

Ic

7

).

Integrity rule Integrity constraint meaning

Ic

1

(p) Emp(p) ^ :Rr(p) Every employee must have right-of-residence,

i.e. it is inconsistent to have an employee without right-of-residence

Ic

2

(p) Emp(p) ^ App(p) No employee may also be applicant,

i.e. it is inconsistent to have someone being both employee and applicant

Ic

3

(p) Cand(p) ^ :App(p) Every candidate must be applicant,

i.e. it is inconsistent to have a candidate who is not an applicant

Ic

4

(p; u) Works(p;u) ^ :Unit(u) Employees must work for units,

i.e. it is inconsistent to have someone working for some area which is not

considered an organizational unit

Ic

5

(u) Hasemp(u) ^ :Hasmng(u) Every unit with some employee must have some manager,

i.e. it is inconsistent that a unit with assigned employees does not have some

manager

Ic

6

(u) Reports(u; u1)^ No unit may report to two di�erent units,

Reports(u; u2) ^ u1 6= u2 i.e. it is inconsistent that a unit directly reports to more than one unit

Ic

7

(u) Subordinate(u; u) No unit may be subordinate to itself,

i.e. it is inconsistent that a unit directly or indirectly subordinates to itself

Figure 3: Integrity Constraints: textual de�nition

2.4 Deductive database schemes considered

A deductive database schema consists of three �nite sets: a set B of base predicates, a set D of

derived predicates with their corresponding deductive rules, and a set I of integrity constraints with

their respective integrity rules.

We assume that database predicates are either base or derived predicates, but not both. Every

deductive database can be de�ned in this form [4, 9]. While facts are said to form the extensional

part of the database, the deductive database schema is also referred to as its intensional part.

In this paper we require, as usual, that the database schema is allowed and strati�ed [17, 3].

Rather than due to limitations of our visual schema language, these requirements are usually

imposed on deductive schemas in order to avoid computational problems when processing queries

and updates.

In the rest of this paper, exceptions apart, we will use the example deductive database schema

resulting from the union of the above Figs. 1, 2 and 3, our goal being to visually represent the

intensional part of a deductive database, i.e. its schema. We will focus on the two components

that usually have more complex de�nitions: derived predicates and integrity constraints. We try

to obtain visual representations of these components that are more visually compelling than their

textual equivalents, while still completely formal.

3 Our Visual Schema Language

The visual representation used is based on a set metaphor: we use Venn/Euler-like diagrams,

representing sets as square boxes, and then using the graphical inclusion relation to represent set

6

membership and set inclusion. A predicate (either base, derived or an inconsistency predicate) can

be seen extensionally as a set, i.e. a set of n-tuples where n is the arity of the predicate. We use

this property to visually represent predicates as boxes and then de�ne them by means of graphical

tuples included in them.

We consider a visual language semantically equivalent to the textual one de�ned in Section 2.

Terms are either variables or constants. A variable is always represented as a circle (without

any name). In a diagram |as we will see| there is no need to give names to variables, which

distinguishes their role from that of constants.

Constants are represented as rounded boxes with a constant symbol inside, its name.

a

We follow the same convention as in Section 2: we use names beginning with lower case letters for

constant symbols and names beginning with upper case letters for predicate symbols.

A visual positive literal is thus a square box with a predicate symbol P in one of its corners

(inside the box) and one or several n-ary tuple included in the box, where n is the arity of the

predicate symbol P . Variables and constants can be included in the box on their own when the

arity of the predicate symbol is 1. A tuple is represented as a partitioned rounded box, where each

partition contains a label and a term (i.e. a variable or a constant). An important di�erence with

textual literals is that visual terms are labeled and therefore the order in which they appear in the

tuple is irrelevant. This makes the syntax clearer and more exible.

P
l1 l2 ...

Q
l1 l2 ... l1 l2 ...’ ’ ’ ’

A visual negative literal is de�ned as a visual positive literal where the box is shadowed.

P
l1 l2 ...

A negative literal represents the membership of the tuple to the complementary set of the predicate

intension, which is equivalent to the negation of the membership.

Finally we need to de�ne another type of literals, visual evaluable literals. They are used to

indicate a relationship between two terms, like equality, inequality, comparison, etc. For example

to represent variable equality (resp. inequality) we use a straight line (resp. a crossed straight line)

joining both variables:

Other evaluable literals such as comparison are de�ned similarly.

7

3.1 Visual Base Predicates

Visual base predicates are represented using a visual literal with one tuple included, where all terms

are variables. The following are examples of the visual predicate schemes corresponding to some of

the base predicates introduced in Fig. 1:

Works
up

ReportsUnit
from

Intw
upto

Mng
...

For instance, the visual predicate schema corresponding toWorks indicates that its arity is two and

its two terms are labeled `p' and `u' (referring to `person' and `unit'). The rest of base predicates

are visually represented in the same straightforward way.

3.2 Visual Derived Predicates and Visual Deductive Rules

Visual derived predicates are de�ned using visual deductive rules (diagrams). A visual deductive

rule (like its textual counterpart) contains one and only one conclusion visual predicate, and one or

more condition visual literals. The conclusion literal is always a box (no evaluable literals), which

contains one and only one tuple and it is distinguished from the others by drawing it using thick

lines. Furthermore, each diagram (visual deductive rule) is graphically enclosed in a square box to

delimit its syntactical scope.

In Fig. 4 we �nd the derived predicates of our example deductive database schema. We would

like to note some properties of the visual language. First, the fact that variables do not need to

have names assigned and that variable equality is expressed using connecting lines simpli�es the

task of reading the rules. For instance, comparing the textual rules de�ning Subordinate with

their visual counterparts: the textual ones are di�cult to understand at �rst sight because it is

necessary to follow the di�erent variables, while in the visual ones these relations are more evident.

Other features of deductive rules like existential variables are also clearly visualized using these

diagrams. For instance: in the de�nition of HasMng or HasEmp in Fig. 4 one can see that the

existential variables are the ones not attached to any variable included in the box corresponding to

the conclusion.

3.3 Integrity Constraints

As we said in Section 2, in this paper we restrict ourselves to state integrity constraints expressed

as denials. An integrity constraint in our visual language is a diagram (a visual deductive rule)

de�ning an inconsistency predicate (Ic

n

). Whenever a Ic

n

predicate holds then the consistency

of the deductive database has been violated. The box corresponding to the conclusion literal of a

visual integrity constraint rule represents the set of elements that violate that integrity constraint.

The database is consistent when all Ic

n

boxes represent empty sets.

In Fig. 5 we �nd the visual integrity constraints equivalent to those de�ned textually in Fig. 3.

Notice how negations are expressed using the notion of complementary set in Ic

1

, Ic

3

, Ic

4

and

Ic

5

. Notice also the Ic

6

de�nition: we refer to two instances of the Reports predicate and then use

inequality to indicate that they must be di�erent instances.

However, the main strength of our approach to visualize database schemas comes from the set

metaphor we use, i.e. from representing predicates as sets of tuples. Di�cult rules with various

literals corresponding to the same predicate, like the one de�ning Ic

6

, are clearly represented using

sets. In other more complicated real-world schemas these advantages would be even more apparent.

8

1.

p u
Emp Works

A person is an employee if s/he works for some unit.

2.

Works MngHasMng
u p

Units that have a manager employee.

3.

Works MngHasEmp
pu

Units that have some non-manager employee.

4.

Subordinate
tois

Reports
from

tois

Subordinate

to

Subordinate

Reports
tofrom

tois

Structural unit dependence:

� If unit x reports to unit y then unit x is subordinate of unit y.

� If unit x reports to unit z and unit z is subordinate of unit y then

unit x is subordinate of unit y.

5.

up
Cand Intw Unit

p is a candidate when s/he has some interview with a unit u.

6.

RaRr

Cr

CitRr

A person has right of residence if s/he is either a registered alien with

no criminal record or a citizen.

Figure 4: Derived Predicates: visual de�nition

9

�

Ic1 Emp

Rr

Employees must be legal resi-

dents.

�

Ic2 Emp

App

Employees and Applicants are

disjoint.

�

Ic3

App

Cand

Candidates must also be appli-

cants.

�

p u

p u
Ic4

Works

Unit

Employees work in units.

�

Ic5 HasEmp

HasMng

Non-Empty Units must have some

manager.

�

tofrom

tofrom

Ic6
Reports

Hierarchical organizational structure:

no unit can report to two di�erent

units.

�

Ic7 Subordinate
tois

Hierarchical organizational structure:

there cannot be cycles.

Figure 5: Integrity Constraints: visual de�nition

10

3.4 Other Features

There are other expressive potentialities of our diagrams|not used in the example used up to now|

which can be useful in other situations. The most obvious of these visual constructs is graphical

inclusion of boxes (sets) representing the logical implication. The unrestricted use of inclusion in

our diagrams correspond to the unrestricted use of the corresponding connective (implication) and

it would lead us outside the limits of deductive database schemas. Then to keep the simplicity of

the computational interpretation of our diagrams we have to restrict the use of this visual construct

(see [1]). In this section we show its utility by means of a di�erent example. First we introduce

a functional-like representation of predicates, alternative to the one de�ned up to now and then

exemplify the use of inclusion.

The alternative visual representation of predicates is based on the observation that some predi-

cates are better understood as nondeterministic functions (each input can have one or more outputs)

than as relations without any preferred directionality (input / output). For instance, given a ge-

nealogical database, some predicates, like Ancestor, are easier to see as a function that gives us

the ancestors (output) of any given person (input). In the inverse case the predicate even has a

di�erent name, that is, Descendant. Then it seems natural in these cases to distinguish the set of

outputs (results) named by the predicate from the inputs. Compare the alternative representations

of the predicate scheme Ancestor in the two following visual representations.

Ancestor

of

Ancestor
is of

The left box is supposed to represent the set of ancestors of a person represented by a variable

united to the box by an arrow. The right box represents the set of tuples constituted by descendant-

ancestor pairs.

The functional representation favors the use of box (set) inclusion. For instance, the deductive

rules representing that the parents of someone are his/her father and mother:

Parent(x; y) Father(x; y)

Parent(x; y) Mother(x; y)

can be represented by box inclusion as follows:

Parent
Father

of of

Parent
Mother

of of

where the box inclusion corresponds to the implication: every element of the Father / Mother

boxes (sets) must belong to the Parent box. As it was explained before, other boxes corresponding

to condition visual literals can be added to the diagrams, but no box inclusion between these boxes

is allowed in order to keep the visual language expressive power within computational tractable

limits.

11

This functional representation also allows to make more evident the recursivity of some predi-

cates and predicate composition in some de�nitions. For instance, the deductive rules for ancestor

can be visualized as follows:

Ancestor
Parent

of of

Ancestor
Ancestor

Parent
of

of

of

where the recursivity is shown by including ancestor inside itself. The composition of Parent and

Ancestor (ancestors of parents are ancestors) is made evident by the graphical structure of the

diagram itself.

Finally, in databases it is also usual to have aggregation functions which allow to perform

operations over selections of given relations. In this visual language we represent them as a function

whose argument is a box. Graphically they are like constants (i.e. round boxes with the name of

the function inside) and its argument is indicated using an arrow going from the visual literal to the

aggregate function rounded box. Let us see an example, from the Human Resources Unit example:

suppose we want to calculate for each unit the number of employees of that unit, de�ning a new

derived predicate NumEmpUnit, with rule:

NumEmpUnit(x; y) Unit(x) ^ Count(fwjWorks(x;w)g; y)

We use the Count aggregation function, obtaining the following diagram:

Count

Works

NumEmpUnit

u
u

4 Translating Visual into Textual Schemas

4.1 Translation Algorithm

First of all, for each predicate with arity greater than one we need to supply an extra piece of

information: the correspondence between term labels (visual literals) and term ordering (textual

literals), so that the visual-to-textual translation can be performed correctly. In our example we

only have three predicates with more than one term and this correspondence is de�ned as follows:

Reports(from : x; to : y) 7�! Reports(x; y)

Works(p : x;u : y) 7�! Works(x; y)

Subordinate(is : x; of : y) 7�! Subordinate(x; y)

12

Since we are using a syntax-directed diagram editor (see Section 5) we can assume that the

input to the translation algorithm is always a syntactically correct visual database schema. Each

visual deductive rule corresponds to one textual deductive rule, and is translated performing the

following steps:

1. Box inclusion elimination: if there is a box inclusion the diagram is transformed into an

equivalent one using only variables and no box inclusion:

Ancestor
Parent

of of

�����!

trans. to

Ancestor Parent

of of

2. Each constant is translated into the symbol contained inside the round box.

a
�����!

trans. to

a

3. Each variable is translated into a fresh variable name (i.e. a new variable name).

�����!

trans. to

x; y; :::

4. Aggregation functions are translated into their textual equivalent expression.

u Count
Works

x
{w|Works(x,w)}

�����!

trans. to

Count(fwjWorks(x;w)g)

5. Visual Literals: Each tuple included in a box is translated into a textual literal such that:

� Its predicate symbol is the symbol indicated inside the box corresponding to the visual

literal being translated.

� The arity of the predicate symbol is the arity of the tuple included in the box plus

the number of incoming arrows. When a variable or a constant is included in the box

corresponding to the visual literal then the predicate symbol has arity one plus the

number of incoming arrows. (i.e. for translation purposes constants and variables are

seen as singleton tuples).

� The literal will be a negated atom i� the box is shadowed.

� The terms of the predicate are the textual translations of the visual terms of the tuple

and those of the incoming arrows, as obtained in steps num. 2 and num. 3.

13

Unit

�����!

trans. to

Unit(x)

Reports
tofrom

�����!

trans. to

:Reports(x; y)

Parent

of
x

�����!

trans. to

Parent(x; y)

6. Visual evaluable literals: each visual evaluable literal is translated into an equivalent textual

literal. For example, variable equality/inequality evaluable literals are translated into textual

evaluable literals of the form `x = y' or `x 6= y' where `x' and `y' are the textual translations

of the two variables as obtained in step num. 2.

�����!

trans. to

x = y

�����!

trans. to

x 6= y

7. Visual deductive rules (diagrams): each visual deductive rule is translated into an equivalent

textual deductive rule such that:

� The conclusion of the rule is the translation corresponding to the conclusion box (drawn

with thick lines) as obtained in step num. 5.

� The conditions of the rule are the translations of all condition boxes (as obtained in step

num. 5) plus the translations of visual evaluable literals (as obtained in step num. 6).

p u
Emp Works

Emp(x) Works(y,z)x=y

�����!

trans. to

Emp(x) Works(y; z) ^ x = y

Notice that visual integrity constraints rules are treated as normal visual deductive rules

de�ning an inconsistency predicate Ic

n

.

8. (optional) Textual variable equality literals can be eliminated by substituting along the new

deductive rule the two variable names appearing in a literal `x = y' by a unique new name.

Emp(x) Works(y; z) ^ x = y �����!

trans. to

Emp(w) Works(w; z)

14

4.2 Example Visual-to-Textual Translations

First we translate a deductive rule: the one de�ning the HasEmp predicate as the units that have

some non-manager employee.

Works MngHasEmp
pu

z=wx=y Works(z,y) Mng(w)HasEmp(x)

�����!

trans. to

HasEmp(x) Works(y; z) ^ :Mng(w) ^ x = y ^ z = w �����!

trans. to

HasEmp(u) Works(t; u) ^ :Mng(t)

And now we translate an integrity constraint rule: a unit cannot report to two di�erent units.

from to

from

z=t

to

Ic6(x) x=y

Ic6
Reports

Reports(y,z)
Reports(w,t)

y=w

�����!

trans. to

Ic

6

(x) Reports(y; z) ^Reports(w; t) ^ x = y ^ y = w ^ z 6= t �����!

trans. to

Ic

6

(v) Reports(v; z) ^Reports(v; t) ^ z 6= t

Notice that in this example, the Reports box has two tuples included in it and therefore two

di�erent textual literals are produced as translation.

Now we translate the recursive case of the ancestor de�nition as de�ned in Section 3.4. Since

there is a box inclusion step 1 above is performed to eliminate this box inclusion.

Ancestor
Ancestor

Parent
of

of

of

�����!

trans. to

Parent
of

of

AncestorAncestor

of
Parent(x,t)

Ancestor(x,y) Ancestor(t,z)y=z

�����!

trans. to

Ancestor(x; y) Parent(x; t) ^Ancestor(t; z) ^ y = z �����!

trans. to

Ancestor(x;w) Parent(x; t) ^Ancestor(t; w)

Finally we translate the example where an aggregation function is used:

15

Count

Works

NumEmpUnit

u
u

Unit

Unit(x)

NumEmpUnit(x,Count({w|Works(x,w)}))

Count({w|Works(x,w)})

�����!

trans. to

NumEmpUnit(x; y) Unit(x) ^ Count(fwjWorks(x;w)g; y)

5 Our Visual Environment Prototype

We outline here the environment prototype in which the concepts explained have been experimented,

and which could be added as a front-end to an existing deductive database system. In Figure 6 we

sketch the structure of this system. The idea is simple: the visual module is inserted in between the

database designer interface and the existing deductive database system. Thus the database designer

works with the visual tool, writing visual schemas, while the input to the deductive database system

is conveniently translated to a conventional textual language as the one de�ned in Section 2.

visual-to-textual
translation

Syntax-directed
diagram editor

Database
Designer

DDB
System

visual module

Figure 6: Schema of the Prototype

The visual module contains two parts: a syntax-directed editor and a visual-to-textual translator.

The syntax-directed editor is a diagram editor that produces a syntactic graph of the diagram that

is fed into the translator. The translator is just an implementation of the algorithm explained in

section 4 which takes as input that syntactic graph and produces a textual equivalent suitable to

the deductive database system. Let us now focus on the syntax-directed editor.

5.1 Syntax-Directed Diagram Editing

The syntax-directed editor provides the user with high-level operations to draw diagrams that

conform to the syntactic rules of our given language. But why do we propose a syntax-directed

editor? While editing and parsing in textual languages is a well studied �eld, visual languages

present new di�culties. On the one hand, general purpose graphical editors are more di�cult,

16

Figure 7: Snapshot of the Diagram Editor

and sometimes tedious to use. On the other hand, parsing techniques for visual languages are still

much underdeveloped. Furthermore it seems that the intrinsic complexity of visual languages is

also higher than that of textual languages, which may complicate parsing. Our goal using syntax-

directed editing techniques is to make the environment simpler, eliminating the need for a parser,

and facilitating the edition process. The editor that we have implemented produces directly a

syntactic graph of the diagram in a form that it can be directly translated to predicate-logic based

language.

In Fig. 7 we give a snapshot of the syntax-directed editor screen we are using. The editor is been

implemented using Tcl/Tk and Sicstus Prolog, and we are currently implementing a new improved

version using Java. It was originally implemented having in mind a visual logic programming

language as described in [1], and was designed to be easily customizable to edit other similar

languages, like the one described in this paper. We do not want to enter into much detail about

the syntax-directed editor. The main goal of this Section is to show that we have skipped one

of the main problems of implementing a visual language, the construction of a parser, by using a

syntax-directed editor. Since our language has a limited number of constructs this editor is not

di�cult to construct, and apart from obviating the need of a parser it helps the user to follow the

syntactic rules of the language during diagram editing.

6 Related Work

Previous work of our group has focused on the area of visual declarative programming. We designed

a visual logic programming [23, 1] and more recently we have devised a visual operational semantics

17

for this language [24, 22], the visual inference conducting to query solutions. The starting point of

the work of our research group in the visual languages area was diagrammatic reasoning as presented

by Jon Barwise's group (see [5, 2]). However our goals di�er from those of the diagrammatic

reasoning community. Our use of Venn/Euler diagrams is centered on their computational aspects.

We want to focus on simple diagrams with a clear computational interpretation, avoiding as many

logical symbols as possible. There exist other visual declarative programming languages like CUBE

[20, 21], VEX [10] and SPARCL [28], but none of them uses sets, Venn/Euler diagrams and graphical

inclusion as its foundations. In the Database �eld, most visual formalisms are applied to what is

known as visual query languages and we do not know of any other formal visual language devoted

to the task of deductive database schemas representation. Visual Query languages are languages

designed to be similar to the contents of the database. An interesting example is NQS [16], a

graphical system for binary models.

The graphical schemes representing conceptual models in [6] do not attempt a formal and

systematic visual representation of deductive rules. However they are an inspiration for our future

work. The existential graphs of Charles S. Peirce (see [25, 13]), a full First-Order-Predicate-Logic

diagrammatic reasoning system, are of great interest and a source of inspiration of our research;

together with John Sowa's conceptual graphs (see [26, 27]) modeled after Peirce's diagrammatic

approaches to predicate logic. As we already pointed out in the Introduction, our approach di�ers

from that of conceptual graphs mainly on the type of visual representations used.

7 Conclusions and Further Work

The visual language we have presented here is a complementary alternative (although not empir-

ically tested) to conventional textual languages. While being completely formal, we believe that

it allows to visually de�ne deductive database schemas in a simple, concise and elegant way. The

graphical metaphor of representing predicates as sets of tuples |the key-point of this work| is, we

claim, easy to understand. Venn/Euler diagrams are one of the most used visual notations in math-

ematics, specially at elementary school when learning the basic facts about set theory. Moreover,

as we have pointed out before, using a visual syntax allows us not to give names to variables, using

instead a graph-like mechanism to express variable relationships, simplifying the comprehension of

the rule.

Using this visual language users are able to introduce much more secondary notation in their

descriptions, than using a textual language. Secondary notation is the set of syntactic properties

and items of a language that, while in its formal description are not taken into account they are

very useful to facilitate its understanding. For instance, indentation in C++ or box distribution

in our visual language are elements of secondary notation. It is known that small simple rules are

commonly preferred over long and complicated ones. We believe that using our visual notation one

tends to write more compact and smaller deductive rules: a diagram with too many boxes is not

visually appealing while in a textual rule it is not so clear when to stop adding literals.

Recent studies stress the fact that, well used, visual languages might give better empirical

results than textual ones. For instance in [8] an empirical study shows that the performance of

a visual query language based on the well known Entity-Relationship model is better than SQL.

However, our implementation of the language is still on its early stages and we have performed only

limited tests with subjects outside the development group. A full empirical study of the language

is planned once a full Java version of the environment is available.

Up to now we have concentrated our e�orts on studying the basic problems of deductive database

schema visual de�nition. However, we have not addressed the question of how to visually de�ne

18

transition integrity constraints, nor updates. Both are goals to be pursued in the future. Our work

in visual logic programming languages, and specially that of [24], gives us the bases to think that it

is possible to visually de�ne queries and to visualize their answers using our visual language. We

have found that our visual syntax allows us to represent query answers showing di�erent alternative

solutions in a single diagram together with their trace (i.e. how the solutions have been obtained).

We also want to study how di�erent properties of deductive database schemas (like being allowed

or strati�ed) can be represented or even de�ned in a visual way. A drawback of deductive databases

presented by means of a set of deductive rules is its at character, the lack of explicit connections

between the same predicates in di�erent rules. This has been addressed by representation of

dependency graphs in some environments (i.e. LPA MacProlog). We are considering similar ways

of reecting the global structure of the intensional component of the database. It is also interesting

to study how to combine our formalism with other existing ones, like for instance the Entity-

Relationship model for base predicates. An ongoing research project deals with the design of a

heterogeneous environment that allows to combine our visual language with other visual formalisms

or textual languages. Another important work, complementary to the one explained in Section 4, is

to study how to visualize existing textual schemas. Actually, the translation algorithm has already

been devised. The main challenge is to draw the diagram, i.e. to provide the layout of the diagram.

Much work has been done designing graph layout algorithms, but it is still an interesting open

problem in the general case.

Acknowledgments

Part of the work has been done while the �rst author was visiting the Visual Inference Laboratory of

the Indiana University supported by a doctoral grant of theDirecci�o General de Recerca (Generalitat

de Catalunya). The �rst and third authors have been partially supported by the MODELOGOS

project TIC97-0579-C02-01, and the second author has been partially supported by the PRONTIC

program project TIC97-1157.

References

[1] Jaume Agust��, Jordi Puigsegur, and Dave Robertson. A Visual Syntax for Logic and Logic

Programming. Journal of Visual Languages and Computing, 1997. To appear.

[2] Gerard Alwein and Jon Barwise, editors. Logical Reasoning with Diagrams. Oxford University

Press, New York, 1996.

[3] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,

editor, Foundations of deductive databases and logic programming, pages 89{148. Morgan Kauf-

mann Publ., 1988.

[4] F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive query processing

strategies. In Proc. of ACM Int. Conf. on Management of Data, pages 16{52, Washington

D.C., 1986.

[5] Jon Barwise and John Etchemendy. Hyperproo�. CSLI Publications, Stanford, 1993.

[6] M. Borman, J.A. Bubenko, P. Johannensson, and B. Wangler. Conceptual Modelling. Prentice

Hall, 1997.

19

[7] J. A. Bubenko. Extending the scope of information modelling. In Proc. Fourth Int. Work-

shop on the Deductive Approach to Information Systems and Databases, pages 73{98, Lloret,

Catalonia, 1993.

[8] T. Catarci and G. Santucci. Diagrammatic vs Textual Query Languages: A Comparative

Experiment. In Stefano Spaccapietra and Ramesh Jain, editors, Proc. of the 3rd IFIP 2.6

Working Conference on Visual Database Systems, 1995.

[9] U.S. Chakravarthy, J. Grant, and J. Minker. Foundations of semantic query optimization

for deductive databases. In J. Minker, editor, Foundations of deductive databases and logic

programming, pages 243{273. Morgan Kaufmann Publ., 1988.

[10] Wayne Citrin, Richard Hall, and Benjamin Zorn. Programming with Visual Expressions. In

Proceedings of the 11th IEEE Symposium on Visual Languages, Darmstadt, Germany, Septem-

ber 1995. IEEE Computer Society Press.

[11] Hendrik Decker. The range form of databases or: How to avoid oundering. In Proc. of 5th.

GAI, Innsbruk, 1989.

[12] H. Gallaire, J. Minker, and J.M. Nicolas. Logic and databases: A deductive approach. ACM

Computing Surveys, 16(2):153{185, 1984.

[13] Eric Hammer. Logic and Visual Information. Studies in Logic, Language and Computation.

CSLI and FoLLI, Stanford, CA, 1995.

[14] IBM Business Systems Development Method Technical Description. Technical Report Tech.

Reps. GE19-5387, SC19-53(09,10,12,13), International Business Machines Corporation, 1992.

[15] M. Jarke, R. Gallersdorfer, M.A. Jeusfeld, M. Staudt, and S. Eherer. Conceptbase { a deductive

object base for meta data management. Journal of Intelligent Information Systems, special

issue on Advances in Deductive Object-Oriented Databases, 4(2):167{192, 1995.

[16] H. J. Klein and D. Kr�amer. NQS { A Graphical Query System for Data Models with Binary

Relationship Types. In Stefano Spaccapietra and Ramesh Jain, editors, Proc. of the 3rd IFIP

2.6 Working Conference on Visual Database, 1995.

[17] J.W. Lloyd. Foundations on Logic Programming, 2nd. ed. Springer, 1987.

[18] J.W. Lloyd and R.W. Topor. Making prolog more expressive. Journal of Logic Programming,

(3):225{240, 1984.

[19] J. Minker. Logic and databases: A 20 year retrospective. In Proc. of Int. Workshop on Logic

in Databases. San Miniato, Pisa, 1996.

[20] Mark Alexander Najork. Programming in Three Dimensions. PhD thesis, University of Illinois

at Urbana-Champaign, Urbana, Illinois, 1994.

[21] Mark Alexander Najork. Programming in Three Dimensions. Journal of Visual Languages

and Computing, 7:219{242, 1996.

[22] J. Puigsegur and J. Agust��. Visual Logic Programming by means of Diagram Transformations.

In Proc. of APPIA-GULP-PRODE Joint Conference in Declarative Programming, La Coru~na,

Spain, July 1998.

20

[23] Jordi Puigsegur, Jaume Agust��, and Dave Robertson. A Visual Logic Programming Language.

In Proc. of the 12th IEEE Symposium on Visual Languages, Boulder, Colorado, September

1996.

[24] Jordi Puigsegur, W. Marco Schorlemmer, and Jaume Agust��. From Queries to Answers in

Visual Logic Programming. In Proc. of the 13th IEEE Symposium on Visual Languages,

Capri, Italy, September 1997.

[25] Don D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton and co., The Hague,

1973.

[26] John F. Sowa. Conceptual Structures. Information Processing in Mind and Machine. Addison

Wesley, 1984.

[27] John F. Sowa. Relating Diagrams to Logic. In Guy W. Mineau, Bernard Moulin, and John F.

Sowa, editors, Conceptual Graphs for Knowledge Representation, Proc. of the First Int. Conf.

on Conceptual Structures, ICCS'93, Quebec City, Canada, Lecture Notes in Arti�cial Intelli-

gence (699). Springer Verlag, Berlin, 1993.

[28] Lindsey Spratt and Allen Ambler. A Visual Logic Programming languages based on Sets and

Partitioning constraints. In Proceedings of the 9th IEEE Symposium on Visual Languages,

Bergen, Norway, September 1993. IEEE Computer Society Press.

[29] Special issue on prototypes of deductive database systems. Journal of Very Large Databases,

3(2), 1994.

[30] R.J. Wieringa. Requirements Engineering: Frameworks for Understanding. Willey Publ., 1995.

[31] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice. Kluwer,

Deventer, The Netherlands, 1990.

Papers [1, 22, 23, 24] are available at the following URL:

http://www.iiia.csic.es/~jpf/publications.html

21

