
A syntactic characterization of bounded�rank decision trees in

terms of decision lists

Nicola Galesi

Departament de Llenguatges i Sistemes Informatics

Universitat Politecnica de Catalunya

Pau Gargallo� � E������ Barcelona

e�mail� galesi	goliat
upc
es

February ��� ���

Abstract

Decision lists and decision trees are two models of computation for boolean func�
tions� Blum has shown in �Bl� �Information Processing Letters �� ����	
� ��
����

that rank�k decision trees are a subclass of decision lists� Here we identify precisely� by
giving a syntactical characterization� the subclass of decision lists which correspond
exactly to the class of bounded rank decision trees� Furthermore we give a more
general algorithm to recover reduced decision trees from decision lists�

� Introduction

Decision lists have been introduced in �R� as a representation of Boolean functions� Here
we de�ne a subclass of decision lists� the class of tree�like decision lists� For the elements of
this class we de�ne a measure that� because its analogy with the rank measure for decision
trees �see �EH�	� we call� abusing the term� rank for tree
like decision lists� Blum in �Bl�
showed that rank
k decision trees are a subclass of k
DL �decision lists in which any term
has at most k variables	� Work by �R� and �Bl� is �nalized to give learning algorithms for
the class of objects they introduce� In particular in �R� it is showed that k
DL

� are a generalization of k
CNF � k
DNF and depth
k decision trees�

� are polynomially learnable under PAC model�

and �Bl� give a characterization of decision trees in tems of k
DL� improving the work of
�EH� in terms of learning� On the other hand work by Blum left open the question of what
kind of syntactical relation there could be between decision lists and decision trees� seen

�

as computational model for boolean functions� Our work moves in this direction� indeed
here we show that the class Tk of rank
k decision trees is equivalent to the class Lk of
rank
k tree
like decision lists� To this end we

� show that Blum
s polynomial algorithm always de�nes a list in Lk �

� give a polynomial time algorithm that� on a list in Lk � builds an equivalent tree in
Tk�

Furthermore we give an algorithm� Rec
Tree� that� in input a decision list� outputs a
decision tree� We show that if L is a decision list obtained from Blum
s algorithm applied
on a reduced decision tree T � then�

� Rec�tree�L	 � T � and

� its time complexity� being linear in the size of L� is better than the one of the previous
algorithm applied on lists obtained from reduced decision trees�

� Preliminaries

��� De�nitions

Let Vn be a set of n boolean variables v�� v�� � � � � vn� A literal li denotes a variable vi or its
negation �vi in such a way that if li is the variable vi then �li is �vi and viceversa� Boolean
constants are elements of the set f�� �g and will be denoted by a� b� � � �A term or monomial
t is a conjunction of literals and will be represented by the string of literals building up
the term� its lenght jtj is the number of literals�

��� Boolean functions� decision lists and decision trees

Bn denotes the set of boolean functions f � f�� �gn �� f�� �g� Examples of boolean
functions in B� are the logical conjunction � that on inputs a and b computes � if and
only if a � b � � and the logical disjunction � that computes � if and only if a � b � ��
A boolean function can be computed using di�erent models of computation �boolean
circuits� branching programs� etc�	� Two of these are decision lists and decision trees�
A decision list L on a family of boolean functions fFig � Bn is a sequence of the form
�F�� b�	� �F�� b�	� � � � � �Fm��� bm��	� ��� bm	 with m � � that on input �x � a vector in f�� �gn

assigning boolean values to the variables of F�� � � � � Fm��	 computes the boolean function
fL according to the following algorithm�

if F���x	 � � then b�
else if F���x	 � � then b�

�

else if F���x	 � � then b�
� � �

else if Fm����x	 � � then bm��

else bm

Here we limit the boolean functions Fi to monomial on Vn as in �R�� so that a decision list
will always be of the form �t�� b�	� �t�� b�	� � � � � �tm��� bm��	� ��� bm	� Terms are strings of
literals here� not sets of literals� their order in the terms of a decision list will be relevant�
We can refer to a pre�x of lenght k of a term ti as the term built from the conjunction of the
�rst �from left to right	 k literals of ti if jtij � k� So� for example� if t � v�� v�� � � �� vk
then by t�� and t�� we denote respectively the variable v� and the term v�� v�� � � �� vk�
In particular L is a k
decision list if for each monomial ti� jtij � k� The lenght jLj of a
decision list L is the number of monomials�
A decision tree T is a binary tree �in which each internal node has degree �	 such that
the internal nodes are labelled with a variable of Vn � the leaves are labelled with boolean
constants and each right �respectively left	 arc is labelled with � �respectively �	� Note
that the same variable can appear as label of more than one internal node in the same
path� if there is no such repetition� then the tree is said to be reduced� but we consider also
not
reduced trees� The boolean function fT computed by T is de�ned in the following way�
if T is a costant a then fT � a� otherwise if T � �vi� R� S	 i�e� R and S are respectively the
right and left subtrees of a node labelled with variable vi� then fT � �vi� fR	� ��vi� fS	�
The depth dt�T 	 of a decision tree T is the lenght of the longest path from the root to a
leaf and it is de�ned by�

dt�T 	 �

�
� if T � a

max�dt�R	� dt�S		� � if T � �vi� R� S	

The rank r�T 	 of a decision tree T is the height of the largest complete binary tree
that can be embedded in T � It is de�ned by

r�T 	 �

�
� if T � a

r�T�		 r�T�	 if T � �vi� T�� T�	

where 	 � N� � N is a function such that for all x� y � N � x 	 y � x � � if x � y and
max�x� y	 otherwise� We refer to Tk as the class of rank k decision trees�

� Tree�like decision lists

Let vi be a variable in Vn and let L � �t�� b�	� �t�� b�	� � � � � �tm� bm	� ��� a	� By the notation
vi � L we denote the boolean list L� � �vi � t�� b�	� �vi � t�� b�	� � � � � �vi � tm� bm	� �vi� a	�

�

Let L� � �t�� b�	� �t�� b�	� � � � � �tm� bm	 be a decision list without �nal true term and with
only one term tm of lenght �� and L� � �s�� c�	� �s�� c�	� � � � � �sl� cl	 be a decision list
without �nal true term and such that all terms have lenght strictly greater than �� By
L�
 L� we denote a new list L � �p�� d�	� �p�� d�	� � � � � �pm�l��� dm�l��	� �tm� bm	 union
of the two lists in which we respect the order of the items of L� and L�� More formally
L � �p�� d�	� �p�� d�	� � � � � �pm�l��� dm�l��	� �tm� bm	 is such that

� for all � � k � m� if tk � pj for some j � m � n � �� then for all � � i � k� ti must
occur among p�� � � � � pj���

� for all � � k � n� if sk � pj for some j � m� n � �� then for all � � i � k� si must
occur among p�� � � � � pj���

� if pj � tk �respectively sk	� then dj � bk �respectively dj � ck	�

We decide that� operating on a list� the
 operator has priority over the �comma
 operator
in such a way that if L � L�
L�� L�� then �rst we perform the operation between L� and
L� and then we append L� to this list�
Examples
Let L� � �v�v�v�� a	� �v�v�� b	� �v�v�v�� c	� �v�� d	 and L� � �v�v	� e	� �v
v�� b	� which verify
the required conditions� Then the lists

�v�v�v�� a	� �v�v	� e	� �v
v�� b	� �v�v�� b	� �v�v�v�� c	� �v�� d	

and
�v�v	� e	� �v�v�v�� a	� �v�v�� b	� �v
v�� b	� �v�v�v�� c	� �v�� d	

are correct examples of L�
 L�� but the list

L � �v�v�� b	� �v�v�v�� a	� �v�v	� e	� �v
v�� b	� �v�v�v�� c	� �v�� d	

is not correct since �v�v�� b	 appears before �v�v�v�� a	 in L but not in L�� and the list

L � �v�v�v�� a	� �v�v�� b	� �v�v�v�� c	� �v�v	� e	� �v�� d	� �v
v�� b	

is not correct since� even if the order of L� and L� is respected� the one variable term of
L� is not in the last position of L�

De�nition ��� �Tree�like decision lists� A tree�like decision list is built by induction
in the following way�

Basis	 For any costant a � f�� �g the decision list ��� a	 is a tree�like decision list�

�

Step	 Let r and s be two tree�like decision lists� for any literal li� the list

�li� r	
 ��li� s�	� s��

such that s � s�� s�� and s�� �� �� is a tree�like decision list�

We will use frequently the shorthand �tree list� for �tree
like decision list�� Observe
that de�nition ��� is well
founded �i�e� the lists L� � �li� r	 and L� � ��li� s�	 are com

patible with
 de�nition	 since condition s�� �� � assures that a tree list will always be a
decision list with �nal true term� and so�

� L� is a list without �nal true term and with one term of lenght ��

� L� is a list without �nal true term and all its terms have lenght strictly greater than
� since s�� at least must contain the �nal true term of s�

Note moreover that a tree list is never empty� and in particular the r part of �li� r	

��li� s�	� s�� is never empty�

Although
� in a sense� is a non deterministic operation� a tree list L identi�es univo

cally its component lists� Indeed�

Proposition ��� Given a tree list L with jLj � �� there exist a unique decomposition of L
in L�� L� and L� such that L � L�
L�� L� and L� � �lk� r	� L� � ��lk� s�	 and L� � s���
with r and s � s�� s�� tree lists�

Proof� Let L be a tree decision list with jLj � �� Note that if L � �lj� a	� ��� b	 it is easily
seen that this list can be obtained in a unique way in L� � �lj� a	� L� � �� L� � ��� b	�
Let L � �li� r	
 ��li� s�	� s��� The decomposition of L in L�� L� and L� is obtained by the
folowing algorithm�

� Starting from the �rst term of L search for the �rst term t� in L such that jt�j � �
�this must be exist by de�nition ���	�

� De�ne L� as the list obtained by taking all the terms following t� in L �in the same
order	�

� De�ne L� as the list obtained by taking all the terms from the beginning up to t�
which have as �rst variable li �taken in the same order of appearance	�

� De�ne L� as the list obtained by taking all the terms from the beginning up to t�
which have as �rst variable �li �taken in the same order of appearance	�

Now we show that the decomposition is unique� Supose to have L � L��
L
�
�� L

�
�� Observe

that�

�

�� By de�nition of
 there is only one term t in L��
 L�� such that jtj � �� since t� is
the �rst term in L with jt�j � � this means that t� � t � li and so� by de�nition of

� t � L���

�� since� by de�nition of
� all terms in L�� and L�� must appear before t� in L� then
L�� � L��

�� It is obvious that if L��
 L�� �� L�
 L� then L �� L��
 L��� L
�
�� Moreover L�� must

be of the form �lk� r�	 for some lk and r�� and L�� must be of the form ��lk� s��	 for
some s��� Since t� � li � L��� we have that lk � li and so �lk � �li and this means that
r� � r and s�� � s�

�

Examples of tree list

�� Each list of the form �vk� a	� ��� b	 �respectively ��vk� a	� ��� b	 	 is a tree list with
li � vk �respectively li � �vk	� r � ��� a	� s� � �� s�� � ��� b	�

�� the list

�v�v�v�� a	� �v�v�� b	� �v�v�� c	� �v�� d	� �v�v�� e	� �v�� f	� �v	� g	� ��� h	

is a tree list with li � v�� r � �v�v�� a	� �v�� b	� �v�� c	� ��� d	� s
� � � and s�� �

�v�v�� e	� �v�� f	� �v	� g	� ��� h	 where

�a	 r is a tree list with li � v�� r � �v�� a	� ��� b	� s� � � and s�� � �v�� c	� ��� d	� and

�b	 s is a tree list with li � v�� r � �v�� e	� ��� f	� s
� � � and s�� � �v	� g	� ��� h	

�� The list
�v�v�� a	� ��v�v�� f	� ��v�� g	� �v�v�� b	� �v�� c	� �v�� d	� ��� e	

is a tree list too� Indeed it can be obtained by setting li � �v�� r � �v�� f	� ��� g	�
s� � �v�� a	 and s�� � �v�v�� b	� �v�� c	� �v�� d	� ��� e	� Moreover s � s�� s�� is a tree list
too with li � v��r � ��� a	 and s�� � �v�v�� b	� �v�� c	� �v�� d	� ��� e	�

Intuitively the idea relating tree lists to decision trees is that we can build a list
associated to a decision tree T from the lists r and s associated to its right and left
subtrees� So we can give an analogous de�nition of rank for tree list�

De�nition ��
 The rank ��L	 of a tree�like decision list L is de�ned by�

��L	 �

�
� if L � ��� a	
��r		 ��s	 if L � �li� r	
 ��li� s�	� s�� and s � s�� s��

�

We refer to Lk as the class of rank k tree
like decision lists� Tree lists are decision lists
de�ned inductively� but there are terms that� added at the head of a tree list� preserve the
property to be a tree list� We associate to each tree list L a set of compatible terms CTL�

De�nition ��� Let L be a tree list�

Basis	 L � ��� a	 then CTL � ft � jtj � �g�

Step	 L � �li� r	
 ��li� s�	� s�� then

CTL � ft � �jtj � �	� �t�� � li� t�� � CTr	� �t�� � �li� t�� � CTs	g

The use of these sets is justi�ed by the following Lemma�

Lemma ��� If L is a tree list� then for all t � CTL and for any b � f�� �g� �t� b	� L is a
tree list�

Proof� By induction on L�

Basis	 L � ��� a	 and let t be a term in CTL� So� by de�nition ���� t � lj for some j�
�t� b	� ��� a	 is a tree list with li � lj � r � ��� b	� s� � �� s�� � ��� a	�

Step	 L � �lj� r	
 ��lj� s�	� s�� and let t be a term in CTL� If jtj � � then t � lk for some
k and �t� b	� L is a tree list with li � lj � r � ��� b	� s� � �� s�� � L� Otherwise� if
jtj � � then� by de�nition ���� either t�� � lj or t�� � �lj � In the �rst case we have
that t�� � CTr and� by inductive hypothesis� �t��� b	� r is a tree list� So we have
that �t� b	� L is a tree list because can be obtained as �lj� ��t��� b	� r		
 ��lj� s�	� s���
In the other case we have� by inductive hypothesis� that �t��� b	� s is a tree list and
that �t� b	� L can be obtained as �lj� r	
 ��lj� ��t��� b	� s�		� s���

�

We show that the boolean function computed by a tree list can be de�ned equivalently in
terms of the tree structure�

De�nition ��� The boolean function �L associated to a tree list L is de�ned inductively
by�

� �L � a if L � ��� a	

� �L � �li� �r	� ��li� �s	 if L � �li� r	
 ��li� s�	� s�� and s � s�� s��

The next Lemma shows that the boolean function computed by a tree list L is �L�

Lemma ��
 For any tree list L� fL � �L

�

Proof� By induction on L�

Basis	 If L � ��� a	 then fL � a � �L�

Step	 L � �li� r	
 ��li� s�	� s�� and s � s�� s��� Let �r and �s the boolean functions
associated to r and s� If we look at L as a standard decision list then L �
�t�� a�	� � � � � �tk� ak	� ��� b	� Let j be the minimum value less or equal than k such
that� for all h � j� t��h � li or t��h � �li and moreover tj � li �and we know� by
de�nition ���� that j exists	� If we �x li � t��j � � � then we can compute fL looking
at the boolean function computed by the list that can be obtained from L after the
following steps�

�� Eliminate all the terms up to tj having as �rst variable �li�

�� Eliminate the �rst variable in the terms up to tj beginning with li� and replace
tj with ��

�� Eliminate all the terms after tj �

��	 and ��	 are obvious consequence of �xing li � �� Moreover in this case we are
not interested in computing the boolean function associated to the list of terms
following tj in L because tj � li � � and this means that the boolean function
computed after we have �xed li has �by de�nition of boolean function computed by
a decision list	 the true case exactly in tj � But this new list is r and we know by
inductive hypothesis that fr � �r� Otherwise �i�e� if the value of li is �xed to �	 we
can compute fL looking at the value of the boolean function computed by the list
that can be obtained from L after the following steps�

�� Eliminate all the terms up to tj having as �rst variable li�

�� Eliminate the �rst variable in the terms up to tj beginning with �li�

But this list is s and we know by inductive hypothesis that fs � �s� So the boolean
function computed by L is �li� �r	� ��li� �s	 that is �L�

�

� Some remarks on decision trees

We begin by recalling the following Lemma showed in �Bl��

Lemma ��� ��Bl
� A rank�r decision tree has some leaf at distance at most r from the
root�

�

xk+1

T1

T

a

x2

1

T0

S

xk

x3

x

R

x2

1

T0

S

xk

x3

x

R

T1

T

Figure �� Blum
s �by
pass� procedure and the new contracted tree

Given a decision tree T we can associate a term to any possible path �from the root to a
leaf	 in T as the conjunction of all variables in the path in the same order of occurrence
�starting from the root	 in such a way that any variable in the term has positive sign if�
after that variable� the path follows the arc labelled with �� and has negative sign if the
path follows the arc labelled with �� We denote by hang�T 	 the set of all terms associated
with paths in T verifying Lemma ��� �so for all t � hang�T 	� jtj � r�T 		� and denote
by path�T 	 the set of all terms associated with paths in T beggining from the root and
ending in a leaf� If t � hang�T 	 then the path labelled by variables of t in T is ended by
a leaf� so hang�T 	 � path�T 	� For a term t � hang�T 	 we denote by �T � T � t the new
contracted tree obtained after by�passing �as in �Bl�	 the �nal leaf of t in T �see Figure �	�
The following is easily seen�

Lemma ��
 Let T be a decision tree of depth dt�T 	 � � of the form �vi� R� S	� and let
t � path�T 	 be a term such that jtj � �� Then either t�� � vi and t�� � path�R	 or
t�� � �vi and t�� � path�S	�

Observe that the same Lemma does not hold for terms in hang�T 	� because t �
hang�T 	 and t�� � vi does not imply t�� � hang�R	� On the other hand we have
that path�T 	 is a more general class than hang�T 	� So if we prove a property for all
terms in path�T 	 it holds also for all terms in hang�T 	� Moreover� note that the by
pass
procedure of Blum can be applied to any term in path�T 	 and so we can consider the
by
pass operation on T not only for terms in hang�T 	� but also for terms in path�T 	� The

�

relations between terms in path�T 	 and subtrees of T is given by the next Lemma telling
us how a term is propagated down to subtrees of T �

Lemma ��� Let T be a decision tree of depth dt�T 	 � �� of the form �vi� R� S	� let t �
path�T 	 be a term such that jtj � �� let �T � T � t be the tree of the form �vj � �R� �S	� then

� vj � vi�

� either t�� � vi and �R � R� t�� and �S � S or t�� � �vi and �S � S� t�� and �R � R�

Proof� Observe that by previous Lemma either t�� � vi or t
�� � �vi� By assumption that

jtj � � we deduce that the node by
passed in T is di�erent from the root� This means that
the contracted tree �T obtained from T must have the root labelled by the same variable�
So vi � vj � Supose� now� that t�� � vi� Because jtj � � we by
pass a node in the subtree
R of T � So the contraction of T is really a contraction of R� while the subtree S remains
unmodi�ed� So S � �S� To show that �R � R � t�� note that� as in previous Lemma� if
�R �� R � t�� then �T �� T � t giving a contradiction with hypothesis� The case t�� � �vi
follows in the same way� �

� Main Result

��� Blum�s algorithm outputs tree�like decision lists

In this section we will show that Blum
s algorithm on a decision tree in Tk� always outputs
a list in Lk � To this end we proceed �as in �Bl�	 by induction on the number of leaves of
the decision tree�

Theorem � Let T a rank k decision tree� then Blum	s algorithm de�nes a rank k tree�like
decision list L such that�

� if T � a then L � ��� a	

� if T � �vj � R� S	 then L � �lj� r	
 ��lj� s�	� s��� here r
respectively s� is a tree
decision list for R
respectively S� with ��r	 � r�R	
respectively ��s	 � r�S	��

Proof� By induction on the number m of leaves of T �

m � �	 T � a for some a � f�� �g and r�T 	 � �� The list associated to this tree is ��� a	
which is a tree list with rank ��

m � �	 T � �vj � a� b	 for some j and a� b � f�� �g and r�T 	 � �� The two possible
lists we can associate to T are L� � �vj � a	� ��� b	 and L� � ��vj � b	� ��� a	� both
being tree list �see Examples of tree lists	� The claim on the rank holds because
��L�	 � ����� a			 ����� b		 � ��L�	 � � 	 � � � � r�T 	� Also� R � a and S � b

holds as for case m � ��

��

jvjv

v k jv

v k

jv

v k

v k

jv

v k

jv

v k

654

1 2 3

a b

c

a b

c

a c

b

c a

b a

b c

a

c b

1

1

1

1 1

1

1

1

1

1

1

1

0

0 0

0 0

0

0

00

00

0

Figure �� Six possible cases for T given �T � �vj � a� b	

m � �	 Let T � �vj � R� S	� let t � hang�T 	 � path�T 	� let c the constant leaf in T hanging
from the last variable of t� let �T � T � t � �vk� �R� �S	� Having �T less many leaves
respect to T we have by inductive hypothesis that Blum
s algorithm associates to �T
a tree list �L � �lk� �r	
��lk� �s�	� �s�� with ���L	 � r� �T	� with �r a tree list for �R� �s � �s��s��

a tree list for �S and ���r	 � r� �R	 and ���s	 � r� �S	� We show that the decision list
�t� c	� �L� which� by Blum
s algorithm� is a list for T � is a tree list �lj� r	
 ��lj� s�	� s��

with rank r�T 	 and such that r is a tree list for R� s is a tree list for S and ��r	 � r�R	
and ��s	 � r�S	� We begin by showing that for all t � path�T 	 it holds t � CT
L

Claim � t � path�T 	� then t � CT
L and ���t� c	� �L	 � r�T 	�

Proof� By induction on �T �

Basis	 The base case is �T � �vj � a� b	 for some a� b � f�� �g� because the number
of leaves of T is greater than �� Observe that� if after a by
pass operation� we
remain with a one variable decision tree �T � then the tree T from which this new
contracted tree is originated can be in one of the six possible ways showed in
Figure �� Observe� furthermore� that� because t � path�T 	� we must consider
also the cases �
�� Indeed if we restrict to t � hang�T 	 then� because condition
on rank� only the case � and � are possible� First we show that in these six
cases t � CT
L�

��

�� �	 in these two cases the term t such that �T � T � t is respectively vk and
�vk� Its lenght is always � and so� by de�nition ���� t � CT
L�

� � � ��	 in these cases the item originated from t can be one of vj�vk � vjvk� �vj �vk�
�vjvk� Observe that �L can be �vj � a	� ��� b	 or ��vj � b	� ��� a	� t�� is a one
variable term and so t�� � CT
r � CT
s� Moreover t�� is vj or �vj and so we
obtain that t � CT
L from de�nition ����

To show that ���t� c	� �L	 � r�T 	 is matter of checking a lot of cases arising from
all possible tree lists that can be formed from the six possible choices of Figure
�� We must show that all possible tree lists ��t� c	� �L	 can be formed by the six
cases are such that ���t� c	� �L	 � r�T 	 � �� First observe that the two possible
tree lists associate to �T are

� �vj � a	� ��� b	�

� ��vj � b	� ��� a	�

both being tree list �see Examples of tree lists	� We analyze the rank ���t� c	� �L	
in the six cases�

�� t � vk and �t� c	� �L can be

�a	 �vk� c	� �vj� a	� ��� b	 or

�b	 �vk� c	� ��vj� b	� ��� a	

The �rst can be obtained as tree list taking�

li � vk � r � ��� c	� s� � �� s�� � �vj � a	� ��� b	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � ��
The second can be obtained taking

li � vk � r � ��� c	� s� � �� s�� � ��vj � b	� ��� a	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � �

�� t � �vk and �t� c	� �L can be

�a	 ��vk� c	� �vj� a	� ��� b	 or

�b	 ��vk� c	� ��vj� b	� ��� a	

The �rst can be obtained as tree list taking�

li � �vk � r � ��� c	� s� � �� s�� � �vj � a	� ��� b	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � ��
The second can be obtained taking

li � �vk � r � ��� c	� s� � �� s�� � ��vj � b	� ��� a	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � �

�� t � vj�vk and �t� c	� �L can be

�a	 �vj�vk� c	� �vj� a	� ��� b	 or

�b	 �vj�vk� c	� ��vj� b	� ��� a	

��

The �rst can be obtained as tree list taking�

li � vj � r � ��vk� c	� ��� a	� s
� � �� s�� � ��� b	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � ��
The second can be obtained taking

li � �vj � r � ��� b	� s� � ��vk� c	� s�� � ��� a	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � �

�� t � vjvk and �t� c	� �L can be

�a	 �vjvk� c	� �vj� a	� ��� b	 or

�b	 �vjvk� c	� ��vj� b	� ��� a	

The �rst can be obtained as tree list taking�

li � vj � r � �vk� c	� ��� a	� s
� � �� s�� � ��� b	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � ��
The second can be obtained taking

li � �vj � r � ��� b	� s� � �vk� c	� s
�� � ��� a	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � �

�� t � �vj�vk and �t� c	� �L can be

�a	 ��vj�vk� c	� �vj� a	� ��� b	 or

�b	 ��vj�vk� c	� ��vj� b	� ��� a	

The �rst can be obtained as tree list taking�

li � vj � r � ��� a	� s� � ��vk� c	� s
�� � ��� b	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � ��
The second can be obtained taking

li � �vj � r � ��vk� c	� ��� b	� s� � �� s�� � ��� a	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � �

�� t � �vjvk and �t� c	� �L can be

�a	 ��vjvk� c	� �vj� a	� ��� b	 or

�b	 ��vjvk� c	� ��vj� b	� ��� a	

The �rst can be obtained as tree list taking�

li � vj � r � ��� a	� s� � �vk� c	� s�� � ��� b	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � ��
The second can be obtained taking

li � vj � r � �vk� c	� ��� b	� s
� � �� s�� � ��� a	

and ���t� c	� �L	 � ��r		 ��s	 � �	 � � �

Step	 Let �T � T�t � �vk� �R� �S	� If jtj � � then t � CT
L� For the discussion on rank
in this case we observe that r�T 	 � r� �T	 �because jtj � � and r� �T 	 � �	 and
that ���t� c	� �L	 � ���L	 �because jtj � � and ���L	 � �	� Moreover by inductive

��

hypothesis we have that r� �T	 � ���L	 and so ���t� c	� �L	 � r�T 	� If jtj � � then
vj � vk �by Lemma ���	 and either t�� � vj or t�� � �vj � Supose the �rst case�
this means that t�� � path�R	 �by Lemma ���	 and �R � R � t�� and �S � S

�by Lemma ���	� By inductive hypothesis on �R �a subtree of �T 	 we can say
that�

�� t�� � CT
r�

�� ���t��� c	� �r	 � r�R	�

By ��	 we have that t � CT
L� by de�nition ���� and by ��	 we have that�

���t��� c	� �L	 � ���t��� c	� �r		 ���s	

� r�R		 ��s	

� r�R		 r�S	

� r�T 	

The case t�� � �vj is analogous on �S instead of �R�

�

To conclude the proof of the theorem we have only to observe that if t � hang�T 	
then t � path�T 	 and that once a term in hang�T 	 is choosen � ending with leaf c in
T � the list that Blum
s algorithm associates to T is �t� c	� �L� But by the Claim and
by Lemma ��� this list is a tree list and its rank is r�T 	� Observe moreover that by
the claim ��t��� c	� �r	 is a tree list for R and its rank is r�R	� and that �s is a tree list
for S because S � �S and its rank is r�S	 by inductive hypothesis on m�

�

��� Rank k tree lists de�ne rank k decision trees

The inverse inclusion will be showed by giving a quadratic time algorithm to build from a
tree list with rank k an equivalent k
rank decision tree�

Consider the following algorithm�

Build�tree�L � Lk	� T � Tk
begin

if L � ��� a	 then return�a	
else fL � �li� r	
 ��li� s�	� s�� g

if li � vi then return��vi�Build�tree�r	�Build�tree�s			
else return��vi�Build�tree�s	�Build�tree�r			

end

��

It is easy to verify that the rank of the tree in output has the same value of the rank
of the tree list in input� Indeed

Lemma ��� For any tree list L� ��L	 � r�Build�tree�L		�

Proof� By induction on L�

Basis	 L � ��� a	 and ��L	 � �� Build
tree�L	 � a and r�a	 � �

Step	 L � �li� r	
 ��li� s�	� s��� Let T � Build
tree�L	� R � Build
tree�r	 and S �
Build
tree�s	 where � s�� s���

r�T 	 � r�R		 r�S	 by def� of Build�tree

� ��r		 ��s	 by inductive hypothesis

� ��L	

�

Also it is easy to verify that L and Build
tree�L	 compute the same boolean function�

Lemma ��
 For any tree list L� fL � fBuild�tree�L�

Proof� By Lemma ��� we have that fl � �L� So we can show that �L � fBuild
tree�L��
By induction on L

Basis	 L � ��� a	 then ����a� � a � fa�

Step	 L � �li� r	
 ��li� s�	� s��� Let T � Build
tree�L	� R � Build
tree�r	 and S �
Build
tree�s	 where s � s�� s���

fT � �li� fR	� ��li� fS	 by def� of Build�tree

� �li� �r	� ��li� �s	 by inductive hypothesis

� �L by de�nition of L and �L

�

So the following theorem is easy from the two previous Lemmas�

Theorem
 For any list L � Lk Build�tree de�nes a decision tree T � Tk that computes
the same boolean function�

��

To conclude this section we give a quadratic �on the lenght of tree list	 upper bound for
the time needed to Build�tree to build the associated decision tree� First observe that for
any decision list �and so for any tree list	 L � �li� r	
��li� s�	� s��� jLj � � and jLj � jrj� jsj�
Suposing that we need one step to build a leaf and a node of the tree� we can express the
time TL of the algorithm on input L by following recurrence equation�

TL �

�
� if L � ��� a	
Tr � Ts � � if L � �li� r	
 ��li� s�	� s��

We have shown that if L � Lk then Build
tree�L	 � Tk for �xed k� By this we can
consider the size of each term in L bounded by a constant� So a good parameter with
respect to which we have to study the time complexity of an algorithm working on a list
in Lk is the size of that list� The following Lemma shows an upper bound for the time of
Build�tree with respect to the size of the tree list�

Lemma ��� Let L be a tree list with jLj � n� then TL�n	 � n�

Proof� By induction on n

Basis	 n � �� this means that L � ��� a	� The result follows because TL��	 � � and
jLj� � �� � ��

Step	

TL�n	 � Tr�jrj	 � Ts�jsj	 � � def� of TL

� jrj� � jsj� � � by inductive hypothesis on jrj� jsj� jLj

� jrj� � jsj� � �jrjjsj jrj� jsj � �

� �jrj� jsj	�

� jLj�

�

� Recovering bounded rank reduced decision trees in lin�

ear time

In this section we present an algorithm to recover a reduced decision tree T �i�e� a tree in
which the same variable cannot appear as label of more than one node in any path from
the root to a leaf	 from the decision list LT outputs of Blum
s algorithm on T � We are
able to show a linear upper bound �in the size of LT 	 for the time it needs� so improving�
for the class of reduced decision tree in Tk� the previous one�

��

	�� The algorithm

Let us introduce some notations to simplify proofs� Let T be a reduced decision tree�
and let t � hang�T 	 be a term l�� � � � � lk representing a path in T and ending with leaf
a � f�� �g�

T3

Tk

T
1

T2+

a

-

-

-

-+

+

k

+

2

1

v

v

v

Figure �� The decision tree T with respect to t � l�� � � � � lk with t � hang�T 	

Being interested in the position of variables v�� � � � � vk in T we can see T as in Figure
�� where

� �

�
� if li � vi
� if li � �vi

and

� �

�
� if li � vi
� if li � �vi

Given a decision tree T � �vi� R� S	 we denote R by T i� and S by T i� �whith � and
� submitted to the restrictions above	� By T i�j� � for instance� we denote �T i�	j

�

� The
following remark establishes a simple relation between T and �T � T � t�

Remark � Let T a decision tree as in Figure
 and let t � hang�T 	 be a term l� � � � lk
with � � k � r�T 	 ending with leaf a�

� if jtj � �� then T� � �T �

� if jtj � �� then

�
Ti � �T ��������i����i� for any � � i � k � �

Tk � �T ��������k�����k����

��

T3

Tk
Tk-1

T
1

T2+

-

-

-

-+

+

+

k-1

2

1

v

v

v

Figure �� The decision tree �T � T � t with respect to t when jtj � �

Proof� This follows in a very easy way by noting that �T can be seen as the tree in Figure
��
�

Before implementing the algorithm we give the idea to understand it� Given the list L
obtained by Blum
s algorithm we build inductively the tree� starting from the last true
term by performing the following steps�

1 v

5v

2v

3v

4v

1

1

1

1

0

0

0

0

?

?

?

?

?a

Figure �� First step of the algorithm� build a path with respect to t � �v�v��v�v�v� with
�t� a	 � L

� build a path from the variables of the current considered term t� according to sign
of vi
s in t and put a �the constant associates to t in L	 as leaf of this path� leaving
unde�ned �for the moment	 the unesed arc of any node �see Figure �	�

� attach the tree de�ned to inductive step to all unde�ned arcs �see Figure �	�

��

T

T

T

T

T

1

1

1

1

0

0

0

0

a

1

3

2

4

5

0

v

v

v

v

v

Figure �� Second step of the algorithm� attach the tree �T de�ned at inductive step to all
unde�ned arcs

1

0

0

1 0

1 0

1

1

0

0

a

b

c d

e
f

g h

i

1

0

0

a

h

i

1 0

g

1

1

0

0

c d

e

0
1

1

2

1

4

5

1

1

0

0

4

5

5

1

2

4

5

v

v

v

v

v

v

v

v

v

v

v

v

v4

v

1

Figure �� Third step of the algorithm� example of reduction

��

� reduce these trees �i�e� simplify them if the boolean values of some variables occurring
in them is known� Figure �	� For instance� in the example of Figure � the trees
attached to the unused arc of v� must be reduced considering these values� v� � ��
v� � �� v� � �� v� � �� v� � ��

Let T be a decision tree in Tk � let LT be the decision list �t�� a�	� � � � � �tm� am	� ��� a	 in
k � DL that Blum
s proof associates to T � let DT be the class of decision trees� ITEM
the class of couples of the form �t� a	� TERM the class of terms in Vn and sgn and nsgn

two functions computing respectively the sign and the negated sign of the literal li in t�
The following algorithms implement the idea described above�

�� Procedure Rec�Tree� takes recursively� starting from the last� the terms of the input
list�

Rec
tree �L � k �DL	� T � Tk
if jLj � �
then T � ajLj
else T � Build
path��t�� a�	�Rec
tree�L� �t�� a�				

return�T 	

�� Procedure Build�path� build the path associated with the current term analyzed by
Rec�tree�

Build
path��t� a	 � ITEM �T � DT 	�T � � DT

T � � a

if jtj � �
then if t � vl

then T � � �vl� T
�� T 	

else T � � �vl� T� T �	

else if t�jtj � vl
then T � � �vl� T

�� Build
last
node�t�jtj�T 		

else T � � �vl� Build
last
node�t�jtj�T 	� T �	
for i � jtj � � downto � do

if t�i � vl
then T � � �vl� T

�� Build
node�t�i�T 		
else T � � �vl� Build
node�t�i�T 	� T �	

endfor

return�T �	

��

�� Procedures Build�node and Build�last�node� for each node in the current path Build�
node modify the tree obtained at inductive step by Rec�tree� reducing it according
to the the sign of the variables of the path� up to the processed variable� Build�last�
node do the same work for the last variable in the path� this is necessary because
the observation on last variable in Remark ��

Build
node�t � TERM � T � DT 	�T� � DT

T� � T

for k � � to jtj � � do
if t�k � vl
then T� � Red
tree�vl� sgn�t

�k	�T�	
else T� � Red
tree�vl�T�� sgn�t�k		

endfor

if t�jtj � vl
then T� � Red
tree�vl�nsgn�t

�jtj	�T�	

else T� � Red
tree�vl�T
��nsgn�t�jtj		

return�T�	

Build
last
node�t � TERM � T � DT 	�T� � DT

T� � T

for k � � to jtj do
if t�k � vl
then T� � Red
tree�vl� sgn�t�k	�T�	
else T� � Red
tree�vl�T

�� sgn�t�k		
endfor

return�T�	

�� Procedure Red�tree� is a standard recursive procedure to reduce a tree with respect
to a variable�

Red
tree�vl � Vn�sg � f�� �g�T � DT 	�T� � DT

if T � a

then T� � a

else �� T � �vk� R� S	 �	
if vl � vk
then if sg � �

then T� � Red
tree�vl� sg� �R	
else T� � Red
tree�vl� sg�S	

��

else �� vl �� vk �	 T� � �vk�Red
tree�vl� sg� �R	�Red
tree�vl� sg�S		
return�T�	

Theorem � For any reduced T � Th� Rec�tree�LT 	 � T

Proof� By induction on the number m of leaves of T �

m � �	 In this case T � a for some a � f�� �g�LT � a and jLT j � �� So by de�nition of
Rec�tree we have that the Rec�tree�LT 	 � a�

m � �	 Let t � hang�T 	 be the term l� � � � lk with � � k � r�T 	 representing the path
of lenght at most r�T 	 choosed� Let a be the costant hanging from t in T and let
�T be the tree T � t� �T has less many leaves than T � so� by inductive hypothesis�
given the decision list L
T associated to �T � we have that Rec� Tree�L
T 	 �

�T � The
list that Blum
s algorithm associates to T is �t� a	� L
T � We will show that Rec�
Tree��t� a	� L
T	 � T � Indeed�

Rec
tree��t� a	� L
T	 � Build
Path��t� a	�Rec
tree�L
T 		

� Build
Path��t� a	� �T	

Theorem holds by following Claim�

Claim
 If �T � T � t where T is reduced� then Build�Path��t� a	� �T	 � T �

Proof� If jtj � �� let t � lk� This means that vk does not occur as label of any node
of �T since �T � T � t� since vk is the root label of T and since T is a reduced tree�
So the tree that Build�Path��t� a	� �T	 yields is� by de�nition of Build�Path� �vk� a� �T	
if lk � vk �respectively �vk� �T� a	 if lk � �vk	 which by Remark � is T �

If jtj � �� let t � l�� � � � � lk� k � �� Observe that by its de�nition Build�path yields
the tree of Figure �� So by Remark � it is su�cient to show that�

� Build�last�node�l�� � � � � lk� �T 	 � �T ��������k�����k���� � and

� Build�node�l�� � � � � li� �T	 � �T ��������i����i� for any � � i � k � ��

�

Claim � Build�last�node�l�� � � � � lk� �T	 � �T ��������k�����k����

��

-+

T

v1 T

v1 v2

v1 v2 vk-1............ T

v1 v2 vk-1............ vk T

+

-

-

-

+

+

a Build-last-node(

k

2

1

-+

k-1

v

v

v

v

Build-node(

;

Build-node(;)

)Build-node(

;)

;)

Figure �� The tree built by Build�Path with respect to t

Proof� Observe that �T is as in Figure � and since �T is a reduced tree there are
no occurrences of v�� � � � � vk�� in Tk� Moreover� since T is a reduced tree� vk cannot
occur as labels of any node in Tk and the same variable cannot occur two times
among l�� � � � � lk� Observe moreover that Red�tree�vj� sgn�lj	�T 	 simply reduces the
tree T by eliminating in it all the nodes labelled with variable vj and substituting
them with the subtree of that node choosed according to sgn�lj	 �i�e� chooses always
the subtree hanging from the arc labelled with �	� So� by previous observation� for
any li� � � i � k� Red�tree�li� sgn�t

�i	�T 	 gives the subtree of T hanging from the
node labelled with variable vi according to sign of li in t� So it is easy to see that
Build�last�node�l�� � � � � lk� �T 	 yelds the subtree Tk of �T which is �T ��������k�����k���� �
�

Claim � For any � � i � k � �� Build�node�l�� � � � � li� �T	 � �T ��������i����i� �

Proof� The proof is analogous to that of previous Claim with the only di�erence
that on the last variable vi of t the subtree in �T is choosen according to the negated
sign of li in t� that give us the right subtree �T ��������i����i� �

�

	�� Complexity

By the proof of Claim � we have that Red�tree is a more powerful algorithm of what we
really need� Indeed� by its de�nition� Red�tree explore always the whole tree even if at
each call it eliminates at most the root node� substituting the tree with one of its two
subtrees� since we are sure� by hypothesis of reduction of the tree� that in its subtrees
there are no occurrences of the considered variable as labels of any node� So in studying

��

the complexity of Rec�tree we can consider� without losing nothing in the proof of Claim
�� the new subroutine Red�tree�mod de�ned as follows�

Red
tree
mod�vl � Vn�sg � f�� �g�T � DT 	�T� � DT

if T � a

then T� � a

else �� T � �vk� R� S	 �	
if vl � vk
then if sg � �

then T� � R

else T� � S

else �� vl �� vk �	 T� � T

return�T�	

Time complexity of Red�tree�mod is now very simple because it needs only one step
to output the result� independently to the size of the input tree� We use the following
abbreviations for the names of the subroutines considered in the algorithm� RT for Rec�
tree� BP for Build�path� BLN for Build�last�node� BN for Build�node and rt for Red�
tree�mod� As in subsection ��� we can consider constant the rank of the tree in Tk� By
Blum
s algorithm k is an upper bound to the lenght of each item in LT � If n � jVnj is
the cardinality of Vn� then the size �i�e� the number of internal nodes	 of the greatest
reduced tree Tg we can obtain is �n � � �indeed

Pn
i�� �

i�� � �n � � see Figure �	� Fix

3

2

1

3 3

2

3
v

v

v

v

vvv

Figure �� The greatest size reduced decision tree on variables in Vn

m � �n����n�� the size of Tg plus the number of its leaves� We are looking for TRT �jLT j	
the time of Rec�tree on LT �The following equations give us the time dependencies among
the subroutines�

��

TRT �jLT j	 �

�
� if jLT j � �
TBP �k�m	 � TRT �jLT j � �	 if jLT j � �

where k and m in TBP �k�m	 are an upper bound respectively to the lenght of the current
considered term and to the size of the tree built to inductive step�

TBP �k�m	 �

�
� if k � �

� � TBLN�k�m	 � k � � �
Pk��

i�� TBN�i�m	 if k � �

TBLN�k�m	 �

�
Trt�m	 if k � �
Trt�m	 � TBLN�k� �� m	 if k � �

TBN�k�m	 � TBLN�k�m	

By the previous observation we have that the time Trt of Red�tree�mod is such that
Trt�m	 � �� By this we have that�TBN�k�m	 � TBLN�k�m	 � k� and TBP �k�m	 �

k �
Pk

i�� i � k � k�k���
� and so TRT�jLT j	 � jLT j�k � �k�k���

� 	 � O�jLT j	

� Comparing the algorithms and conclusions

Comparing the two algorithms to recover a decision tree we note that�

� The �rst one give us a way to recover decision trees in Tk for any kind of tree �also
not reduced	� but we have been able to show for the time it needs� only a quadratic
upper bound� Moreover it is very close to de�nition of tree decision lists in the sense
that it works correctly only of this kind of decision list�

� the second one is a more intuitive algorithm� more near to Blum
s algorithm than
the other �informally we implement a backward process	� Its advantages are �

� that it allows to recover the tree in linear time�

� and that it is a very general algorithm that can be applied to all kind of decision
lists and not only on lists coming from Blum
s algorithm�

Its disadvantages are that�

� it works well� when used on decision list coming from Blum
s algorithm applied
only on reduced decision trees� Indeed if the same variable appears as label
of two or more nodes in the same path from the root to a leaf� then we must
use the subroutine Red�tree instead of Red�tree�mod� but during the process of
Red�tree we lose informations about more internal nodes labelled with the same
variable�

��

� we are forced to preserve the order �that Blum
s algorithm de�nes	 of the
variable in each term of the output list� since otherwise we could make not
well de�ned manipulations on the tree that we are recovering�

These comments leave open some problems that could be interesting to study�

�� is it possible to recover also not reduced decision tree saving some informations about
the list

�� How the order of variables can a�ect the output of Rec�tree

�� When Rec�tree is used on a standard decision list L� what kind of relation are there
between L and the tree generated from Rec�tree�L	

Aknoweldgement

I am greatly indebted to Jos!e Luis Balc!azar for many reasons� He put my attention� during
the Boolean Complexity course� on problems about recovering decision trees arising from
Blum
s paper� he always encouraged me to pursue my ideas holding with me some useful
discussions and has revised partial versions of this work during the time� In particular
I would underline that the idea of the algorithm of Section � to recover decision trees�
come up to him during one of our discussions� Finally I would thank my mother� Claudia
Bichelli� whose �nancial support has partially helped me in my permanence in Barcelona
at the Department from October
�� to January
���

References

�Bl� A� Blum� Rank�r decision trees are a subclass of r�decision list� Information Processing
Letters �
 �����	� ���
����

�EH� A� Ehrenfeucht� D� Haussler� Learning decision trees from random examples� Infor

mation and Computation �
 �����	� ���
����

�R� R�L� Rivest Learning decision lists� Machine Learning
� �����	� ���
����

��

