A syntactic characterization of bounded-rank decision trees in
terms of decision lists

Nicola Galesi
Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
Pau Gargallo, 5 E-08028 Barcelona

e-mail: galesi@goliat.upc.es

February 28, 1996

Abstract

Decision lists and decision trees are two models of computation for boolean func-
tions. Blum has shown in [Bl] (Information Processing Letters 42 (1992), 183-185)
that rank-k decision trees are a subclass of decision lists. Here we 1dentify precisely, by
giving a syntactical characterization, the subclass of decision lists which correspond
exactly to the class of bounded rank decision trees. Furthermore we give a more
general algorithm to recover reduced decision trees from decision lists.

1 Introduction

Decision lists have been introduced in [R] as a representation of Boolean functions. Here
we define a subclass of decision lists: the class of tree-like decision lists. For the elements of
this class we define a measure that, because its analogy with the rank measure for decision
trees (see [EH]), we call, abusing the term, rank for tree-like decision lists. Blum in [BI]
showed that rank-k decision trees are a subclass of k-D L (decision lists in which any term
has at most k variables). Work by [R] and [BI] is finalized to give learning algorithms for
the class of objects they introduce. In particular in [R] it is showed that k-DL

e are a generalization of k-C' N F, k-DN F and depth-k decision trees;
e are polynomially learnable under PAC model;

and [BI] give a characterization of decision trees in tems of k-D L, improving the work of
[EH] in terms of learning. On the other hand work by Blum left open the question of what
kind of syntactical relation there could be between decision lists and decision trees, seen

as computational model for boolean functions. Our work moves in this direction: indeed
here we show that the class 7; of rank-£ decision trees is equivalent to the class L of
rank-k tree-like decision lists. To this end we

¢ show that Blum’s polynomial algorithm always defines a list in Ly;

e give a polynomial time algorithm that, on a list in Ly, builds an equivalent tree in

7.

Furthermore we give an algorithm, Rec-Tree, that, in input a decision list, outputs a
decision tree. We show that if L is a decision list obtained from Blum’s algorithm applied
on a reduced decision tree T, then:

o Rec-tree(L) =T; and

e its time complexity, being linear in the size of L, is better than the one of the previous
algorithm applied on lists obtained from reduced decision trees.

2 Preliminaries

2.1 Definitions

Let V,, be a set of n boolean variables vy, vq,...,v,. A literal [; denotes a variable v; or its
negation v; in such a way that if [; is the variable v; then l; is v; and viceversa. Boolean
constants are elements of the set {0, 1} and will be denoted by a,b,... A term or monomial
t is a conjunction of literals and will be represented by the string of literals building up
the term; its lenght |¢| is the number of literals.

2.2 Boolean functions, decision lists and decision trees

B,, denotes the set of boolean functions f : {0,1}" — {0,1}. Examples of boolean
functions in By are the logical conjunction A that on inputs ¢ and b computes 1 if and
only if « = b = 1 and the logical disjunction V that computes 0 if and only if @ = b = 0.
A boolean function can be computed using different models of computation (boolean
circuits, branching programs, etc.). Two of these are decision lists and decision trees.

A decision list I on a family of boolean functions {F;} € B, is a sequence of the form
(F1,01), (F2,b2), .o, (Fue1,b—1), (1, b,,) with m > 0 that on input & (a vector in {0, 1}
assigning boolean values to the variables of Fy,..., F,,_1) computes the boolean function
fr. according to the following algorithm:

if Fl(f) =1 then bl
else if /'5(#) = 1 then b,

else if }'5(#) = 1 then b3

else if /', (&) =1 then b,
else b,,

Here we limit the boolean functions F; to monomial on V,, as in [R], so that a decision list
will always be of the form (#1,61),(t2,02), ..., (tm-1,bm-1),(1,b,). Terms are strings of
literals here, not sets of literals: their order in the terms of a decision list will be relevant.
We can refer to a prefiz of lenght k of a term ¢; as the term built from the conjunction of the
first (from left to right) k literals of ¢; if |¢;| > k. So, for example, if t = v1A v2A .. A v
then by t=' and ¢! we denote respectively the variable »; and the term vaA v3A ... A vg.
In particular L is a k-decision list if for each monomial ¢;, |t;| < k. The lenght |L| of a
decision list L is the number of monomials.

A decision tree T is a binary tree (in which each internal node has degree 2) such that
the internal nodes are labelled with a variable of V,, , the leaves are labelled with boolean
constants and each right (respectively left) arc is labelled with 1 (respectively 0). Note
that the same variable can appear as label of more than one internal node in the same
path; if there is no such repetition, then the tree is said to be reduced, but we consider also
not-reduced trees. The boolean function fr computed by T is defined in the following way:
if T'is a costant a then fr = a, otherwise if T' = (v;, R, 5) i.e. R and S are respectively the
right and left subtrees of a node labelled with variable v;, then fr = (v;A fr)V (%A fs).

The depth dt(T) of a decision tree T"is the lenght of the longest path from the root to a
leaf and it is defined by:

0 ftT=ua
di(T) = { max(dt(R),dt(S))+1 if T = (v;, R, S5)

The rank r(T') of a decision tree T is the height of the largest complete binary tree
that can be embedded in T. It is defined by

0 ifT=ua
r(T) = { r(To) ® r(Ty) if T = (v;, To, T})

where @ : N2 — N is a function such that for all 2,y € N, x Dy =2 + 1if 2 = y and
max(z,y) otherwise. We refer to 7, as the class of rank k decision trees.

3 Tree-like decision lists

Let v; be a variable in V,, and let L = (#1,b1), (f2,02), ..., (tm,bm),(1,a). By the notation
v; A L we denote the boolean list L' = (v; A t1,b1), (v; A t2,b2), ..., (v A i, b)), (04, a).

Let Ly = (t1,b1),(t2,b2), ..., (tm,bs) be a decision list without final true term and with
only one term t, of lenght 1, and Ly = (s1,¢1),(s2,¢2),...,(s1,¢;) be a decision list
without final true term and such that all terms have lenght strictly greater than 1. By
L1 W Ly we denote a new list L = (p1,d1),(p2,d2), .-, (Pmti—1,dmti-1), (tm, by) union
of the two lists in which we respect the order of the items of Ly and L;. More formally
L= (p1,d1),(p2,da), -y (Prmti-1, dmti=1), (tm, by) is such that

o forall 1 <k <m,if t;, = p; for some j < m 4 n — 1, then for all 1 <14 <k, ¢; must
occur among pi, ..., Pj—1;

o forall 1 <k <mn,if sy =p; for some j <m+n —1, then for all 1 <7 <k, 5; must
occur among pi, ..., Pj—1;

o if p; = 1 (respectively sj), then d; = by (respectively d; = ¢y).

We decide that, operating on a list, the & operator has priority over the ‘comma’ operator
in such a way that if I = L1 W Lo, L3, then first we perform the operation between I, and
Lo and then we append Lz to this list.

Eramples

Let L1 = (vnvav4,a), (v102,b), (v10406, ¢), (v1,d) and Ly = (vev7,€), (vsv9,b), which verify
the required conditions. Then the lists

(7]17]27]47 a)v (UGU% 6)7 (?Jg?]g, b)v (vlv% b)v (7]17147]67 C)v (vlv d)

and
(716?177 6)7 (711?127147 a)v (711?127 b)7 (718?197 b)7 (711?147167 C)v (7117 d)

are correct examples of Ly W Ly, but the list
L = (v1v2,b), (v10204, @), (vev7, €), (vsv9, b), (10406,), (v1, d)

is not correct since (vyv2,b) appears before (v1v9v4,a) in L but not in Lp; and the list

L= (7]17]27]47 a)v (vlv% b)v (7]17147]67 C)v (UGU% 6)7 (vlv d)v (7187]97 b)

is not correct since, even if the order of Ly and Lo is respected, the one variable term of
L1 is not in the last position of L.

Definition 3.1 (Tree-like decision lists) A tree-like decision list is built by induction
in the following way:

Basis: For any costant a € {0, 1} the decision list (1,a) is a tree-like decision list.

Step: Let r and s be two tree-like decision lists; for any literal l;, the list
(LA YW (LA sy, s
such that s = s',s" and 8" £ 0, is a tree-like decision list.

We will use frequently the shorthand “tree list” for “tree-like decision list”. Observe
that definition 3.1 is well-founded (i.e. the lists Ly = (I;A r) and Ly = (I;A s') are com-
patible with ¥ definition) since condition s” # () assures that a tree list will always be a
decision list with final true term, and so:

e [is a list without final true term and with one term of lenght 1;

o [, is alist without final true term and all its terms have lenght strictly greater than
1 since s at least must contain the final true term of s.

Note moreover that a tree list is never empty, and in particular the r part of ([;A r) W
(I;A 8'),s" is never empty.

Although W, in a sense, is a non deterministic operation, a tree list L identifies univo-
cally its component lists. Indeed:

Proposition 3.1 Given a tree list L with |L| > 1, there exist a unique decomposition of L
in Ly, Ly and Ls such that L = L1 W Ly, Ly and Ly = (IzA r), Ly = (IxA $') and Ly = §",
with v and s = §', 8" tree lists.

Proof. Let L be a tree decision list with |L| > 1. Note that if L = ({;,a),(1,b) it is easily
seen that this list can be obtained in a unique way in Ly = (Ij,a), Ly = 0, Lz = (1,b).
Let I = (A7) W (LA 8'),s". The decomposition of L in Ly, L, and L3 is obtained by the
folowing algorithm:

e Starting from the first term of L search for the first term ¢, in L such that [t.| =1
(this must be exist by definition 3.1);

o Define L3 as the list obtained by taking all the terms following ¢. in L (in the same
order);

o Define Ly as the list obtained by taking all the terms from the beginning up to i,
which have as first variable /; (taken in the same order of appearance);

e Define L as the list obtained by taking all the terms from the beginning up to .
which have as first variable /; (taken in the same order of appearance);

Now we show that the decomposition is unique. Supose to have L = L{ W L}, L%. Observe
that:

1. By definition of ¥ there is only one term ¢ in L} U LY such that |¢| = 1; since ¢, is
the first term in L with |t.| = 1 this means that ¢, = t = [; and so, by definition of
W, t e Li;

2. since, by definition of @, all terms in L} and L} must appear before t, in L, then
Ly = Ls;

3. It is obvious that if Lj U L} # Ly U Ly then L # L} W Ly, LL. Moreover L] must
be of the form (I;A 1) for some [, and ry, and L} must be of the form (IxA s}) for
some . Since t, = I; € L}, we have that [= [; and so [, = [; and this means that
rp=rand s] =&

a

Eramples of tree list

1. Each list of the form (v, a),(1,b) (respectively (v, a),(1,b)) is a tree list with
l; = v (respectively I; = o), r = (1,a), & =0, s = (1,b);

2. the list

(7]17]27]47 a)v (vlv% b)v (?Jl?]5, C)v (vlv d)v (v37167 6)7 (?]3, f)v (717,9), (17 h)

is a tree list with I; = vy, r = (vav4,0a),(v2,0),(vs,¢),(1,d), & = 0 and s’ =
(03116, 6)7 (7]37 f)v (717,9), (17 h) where

(a) ris a tree list with ; = vy, r = (v4,a),(1,b), s = 0 and s” = (vs,¢),(1,d), and
(b) sis a tree list with I; = v3, r = (vs, €), (1, f), s =0 and s” = (v7,9),(1,h)

3. The list
(vlv% a)v (7717]37 f)v (6179)7 (?]4?]5, b)v (?]4, C)v (v67 d)v (17 6)

is a tree list too. Indeed it can be obtained by setting l; = vy, r = (vs, f),(1,9),
s = (vg,a) and s” = (v4v5,b), (v4,¢), (ve,d), (1,€). Moreover s = s, 5" is a tree list

too with I; = va,r = (1,a) and s" = (v4v5,b), (v4,¢), (ve, d), (1, ¢€).

Intuitively the idea relating tree lists to decision trees is that we can build a list
associated to a decision tree T from the lists r and s associated to its right and left
subtrees. So we can give an analogous definition of rank for tree list.

Definition 3.2 The rank p(L) of a tree-like decision list L is defined by:

{0 if L=(1,a)
P { p(r) & p(s) if L=(LAr)e(Lns),s" and s = s, "

We refer to L) as the class of rank k tree-like decision lists. Tree lists are decision lists
defined inductively, but there are terms that, added at the head of a tree list, preserve the
property to be a tree list. We associate to each tree list L a set of compatible terms CTT,.

Definition 3.3 Let L be a tree list:
Basis: L = (1,a) then CT, ={t:|t| = 1};
Step: L = (LA 7T)W (LA s'),s" then

CTp={t:(Jt|=)V (T =LAt € CT v (T = LA 21 € CTy)}
The use of these sets is justified by the following Lemma:

Lemma 3.1 If L is a tree list, then for allt € CTy, and for any b € {0,1}, (¢,b),L is a
tree list.

Proof. By induction on L.

Basis: L = (1,a) and let ¢ be a term in CT7,. So, by definition 3.3, ¢t = [; for some j.
(t,0),(1,a)is a tree list with {; = 1;, r = (1,b), s’ =0, s = (1,a).

Step: L = (l;A)W (l;As"),s" and let ¢ be a term in C'Ty. If [t| = 1 then ¢ = [}, for some
k and (t,b), L is a tree list with [; = I;, » = (1,b), s’ = 0, s” = L. Otherwise, if
[t| > 1 then, by definition 3.3, either t=' =, or 7! = l}. In the first case we have
that t>! € C'T, and, by inductive hypothesis, (>1,b),r is a tree list. So we have
that (¢,b), L is a tree list because can be obtained as ([;A ((t71,b), 7)) W (LA 8'),s".
In the other case we have, by inductive hypothesis, that (¢>1,0),s is a tree list and
that (¢,b), L can be obtained as (I;A r) W (I;A ((t71,0), ")), s".

O
We show that the boolean function computed by a tree list can be defined equivalently in
terms of the tree structure.

Definition 3.4 The boolean function ¢y associated to a tree list L is defined inductively
by:

e o =aif L=(1,a)
o ¢ = (LA &)V (LA ¢s) if L= (LAnT)W (LA S),s" and s = &', 8"
The next Lemma shows that the boolean function computed by a tree list L is ¢y.

Lemma 3.2 For any tree list L, fr, = ¢r,

Proof. By induction on L.
Basis: If L = (1,a) then f, = a = ¢r.

Step: L = (A7) W (LA s'),s" and s = s',s". Let ¢, and ¢, the boolean functions
associated to r and s. If we look at L as a standard decision list then L =
(t1,a1),...,(tg,ar),(1,b). Let j be the minimum value less or equal than k such
that, for all h < j, ;7' = l; or ¢7' = [; and moreover t; = l; (and we know, by
definition 3.1, that j exists). If we fix [; = tjzl =1, then we can compute fr, looking
at the boolean function computed by the list that can be obtained from L after the
following steps:

1. Eliminate all the terms up to ¢; having as first variable l;;
2. Eliminate the first variable in the terms up to ¢; beginning with /;, and replace
t; with 1;

3. Eliminate all the terms after ¢;.
(1) and (2) are obvious consequence of fixing [; = 1. Moreover in this case we are
not interested in computing the boolean function associated to the list of terms
following ¢; in L because ¢; = [; = 1 and this means that the boolean function
computed after we have fixed [; has (by definition of boolean function computed by
a decision list) the true case exactly in ¢;. But this new list is r and we know by
inductive hypothesis that f, = ¢,. Otherwise (i.e. if the value of [; is fixed to 0) we
can compute fr looking at the value of the boolean function computed by the list
that can be obtained from L after the following steps:

1. Eliminate all the terms up to ¢; having as first variable /;;

2. Eliminate the first variable in the terms up to ¢; beginning with ;.

But this list is s and we know by inductive hypothesis that f; = ¢,. So the boolean
function computed by L is (I;A ¢,)V (A ¢,) that is ¢r.

4 Some remarks on decision trees

We begin by recalling the following Lemma showed in [BI].

Lemma 4.1 ([Bl]) A rank-r decision tree has some leaf at distance at most v from the
root.

Figure 1: Blum’s “by-pass” procedure and the new contracted tree

Given a decision tree T' we can associate a term to any possible path (from the root to a
leaf) in T' as the conjunction of all variables in the path in the same order of occurrence
(starting from the root) in such a way that any variable in the term has positive sign if,
after that variable, the path follows the arc labelled with 1, and has negative sign if the
path follows the arc labelled with 0. We denote by hang(T') the set of all terms associated
with paths in T verifying Lemma 4.1 (so for all ¢t € hang(T), |t| < (7)), and denote
by path(T') the set of all terms associated with paths in 7" beggining from the root and
ending in a leaf. If t € hang(T') then the path labelled by variables of ¢ in T is ended by
a leaf, so hang(T) C path(T). For a term t € hang(T) we denote by T =T — ¢ the new
contracted tree obtained after by-passing (as in [Bl]) the final leaf of ¢ in T (see Figure 1).
The following is easily seen:

Lemma 4.2 Let T be a decision tree of depth dt(T) > 1 of the form (v;, R,S), and let
t € path(T) be a term such that |t| > 1. Then either t=' = v; and t>' € path(R) or
=t = v; and t>! € path(S).

Observe that the same Lemma does not hold for terms in hang(1'), because t €
hang(T) and t=' = v; does not imply ¢! € hang(R). On the other hand we have
that path(T) is a more general class than hang(T). So if we prove a property for all
terms in path(T') it holds also for all terms in hang(1'). Moreover, note that the by-pass
procedure of Blum can be applied to any term in path(7) and so we can consider the
by-pass operation on 7" not only for terms in hang(1'), but also for terms in path(1'). The

relations between terms in path(1') and subtrees of T is given by the next Lemma telling
us how a term is propagated down to subtrees of T.

Lemma 4.3 Let T be a decision tree of depth dt(T) > 1, of the form (v;, R,S5), let t €
path(T) be a term such that |t| > 1, let T =T —t be the tree of the form (vj, R, S); then

L] ?]]‘ = v;;
o cithert=! =v; and R=R—t>Y and S = S ort=' =%, and S = S —t>! and R = R.

Proof. Observe that by previous Lemma either t=! = v; or =1 = #;. By assumption that
|t| > 1 we deduce that the node by-passed in 7" is different from the root. This means that
the contracted tree T obtained from T must have the root labelled by the same variable.
So v; = v;. Supose, now, that =! = v;. Because |{| > 1 we by-pass a node in the subtree
R of T. So the contraction of T is really a contraction of R, while the subtree S remains
unmodified. So § = 5. To show that R = R — ! note that, as in previous Lemma, if
R # R— 1> then T # T — t giving a contradiction with hypothesis. The case (<! = o;
follows in the same way. O

5 Main Result

5.1 Blum’s algorithm outputs tree-like decision lists

In this section we will show that Blum’s algorithm on a decision tree in 7, always outputs
a list in L. To this end we proceed (as in [Bl]) by induction on the number of leaves of
the decision tree.

Theorem 1 LetT a rank k decision tree, then Blum’s algorithm defines a rank k tree-like
decision list I such that:

o ifT"=a then L = (1,a)
o if T = (v;,R,S) then L = (I;A7r) W ([;As),s"; here r (respectively s) is a tree
decision list for R (respectively S) with p(r) = r(R) (respectively p(s) = r(5)).
Proof. By induction on the number m of leaves of T.

m = 1: T = a for some a € {0,1} and 7(T") = 0. The list associated to this tree is (1, a)
which is a tree list with rank 0.

m=2:T = (v;,a,b) for some j and a,b € {0,1} and r(7') = 1. The two possible
lists we can associate to 1" are Ly = (v;,a),(1,b) and L, = (9;,b),(1,a), both
being tree list (see Fzamples of tree lists). The claim on the rank holds because
p(L1) = p((1,a))® p((1,0)) = p(L2) =060 =1=1r(T). Also, R=aand S =0

holds as for case m = 1.

10

Figure 2: Six possible cases for T given T' = (v;,a, b)

m>2: Let T = (v;,R,5),let t € hang(T') C path(T'), let ¢ the constant leaf in T hanging
from the last variable of ¢, let T = T —t = (vg, R, S). Having T less many leaves
respect to T we have by inductive hypothesis that Blum’s algorithm associates to T
atreelist L = (I[zA 7)W(IgA &), 58" with p(L) = r(T), with 7 a tree list for R, 5 = &'5"
a tree list for S and p(7) = r(R) and p(5) = r(5). We show that the decision list
(t,¢), L, which, by Blum’s algorithm, is a list for T, is a tree list ([;A r)& ([;A s'),s"
with rank 7(7") and such that r is a tree list for R, sis a tree list for S and p(r) = r(R)
and p(s) = r(5). We begin by showing that for all ¢ € path(T) it holds t € C'T},

Claim 1 ¢ € path(T), then t € CT}, and p((t,c), L) = r(T).
Proof. By induction on 7.

Basis: The base case is T' = (v;,a,b) for some a,b € {0,1}, because the number
of leaves of T is greater than 2. Observe that, if after a by-pass operation, we
remain with a one variable decision tree 7', then the tree T’ from which this new
contracted tree is originated can be in one of the six possible ways showed in
Figure 2. Observe, furthermore, that, because ¢t € path(1'), we must consider
also the cases 3-6. Indeed if we restrict to ¢ € hang(1') then, because condition
on rank, only the case 1 and 2 are possible. First we show that in these six
cases t € C'Ty:

11

1,2: in these two cases the term ¢ such that 7' = T — ¢ is respectively vy and
v;. Its lenght is always 1 and so, by definition 3.3, ¢t € C'T%;

3...6: in these cases the item originated from ¢ can be one of v;vy, v;vy, v;0,
v;vr. Observe that L can be (v;,a),(1,b) or (;,b),(1,a). t>! is a one
variable term and so t>! € CT, N CTs. Moreover t=! is v; or v; and so we
obtain that ¢t € CT; from definition 3.3.

To show that p((t,c), L) = r(T) is matter of checking a lot of cases arising from
all possible tree lists that can be formed from the six possible choices of Figure
2. We must show that all possible tree lists ((¢,c), L) can be formed by the six
cases are such that p((t,¢), L) = r(T) = 1. First observe that the two possible
tree lists associate to T’ are

o (vj,a),(1,b);
o (v;,b),(1,a).
both being tree list (see Ezamples of tree lists). We analyze the rank p((¢,c), L)
in the six cases:
1. t = v and (t,¢), L can be
(a) (vg,c¢),(vj,a),(1,b)or
(b) (vkv C)v (ﬁjv b)v (17 a)
The first can be obtained as tree list taking:
Li=v,r=(1,¢),5=0,s = (v;,a),(1,b)
and p((t,¢), L) = p(r) D p(s) =0@ 1 = 1.
The second can be obtained taking
Li=v,r=(1,¢),5=0,s" = (v;,b),(1,a)
and p((t,¢), L) = p(r) @ p(s) =01 =1
2. t = vy and (¢, ¢), L can be
(a) (Og,¢),(vj,a),(1,b)or
(b) (ﬁkv C)v (ﬁjv b)v (17 a)
The first can be obtained as tree list taking:
Li=v,r=(1,¢),s=0,s =(v;,a),(1,b)
and p((t,¢), L) = p(r) D p(s) =0@ 1 = 1.
The second can be obtained taking
Li=v,r=(1,¢),s=0,s" = (v;,b),(1,a)
and p((t,¢), 1) = p(r) & p(s) =08 1 = 1
3. t = v;vg and (¢,¢), L can be
() (?J]?Jk,),(?J]‘,a),(l b) or
(b) (g, ¢), (v5,0), (1,)

s\ Y7

12

The first can be obtained as tree list taking:
li=v;,r=(v,0),(l,a),s =0, s" =(1,b)
and p((t,c),L) = p(r) B p(s) =16 0= 1.
The second can be obtained taking
l; =v;, r=(1,b), s = (vg,¢), s = (1,a)
and p((t,c), L) =p(r)@p(s)=0p1=1
4. t = vjvg and (t,¢), L can be
(a) (vjvk, €), (v,a),(1,b) or
(b) (wjon,), (v5,0), (1,)
The first can be obtained as tree list taking:
li=vj,r=(vy,0),(l,a),s" =0, s" =(1,b)
and p((t,¢), L) = p(r) D p(s) =1@ 0= 1.
The second can be obtained taking
li =05, r=(1,b),s = (vg,¢), s" =(1,a)
and p((t,¢), L) = p(r) @ p(s) =01 =1
5. t = v;v and (t,¢), L can be
(a) (vjvk, €), (vj,a),(1,b) or
(b) (g, ¢), (v5,0), (1,)
The first can be obtained as tree list taking:
li=vj,r=(1,a), s = (vg,¢), s =(1,b)
and p((t,c),L) = p(r) B p(s) =041 =1.
The second can be obtained taking
li=v;,r=(v,0),(1,0),s =0,s" =(1,a)
and p((t,c), L) =p(r)@p(s)=140=1
6. t = vjvr and (¢,¢), L can be
(a) (vjvk, €), (v,a),(1,b) or
(b) (jon,), (v5,0), (1,)
The first can be obtained as tree list taking:
Li=v;,r=(1,a),s = (v, ¢),s" =(1,b)
and p((t,¢), L) = p(r) D p(s) =0@ 1 = 1.
The second can be obtained taking
li=v;,r=(v,0),(1,0),s=0,s" =(1,a)
and p((t,¢), L) = p(r) @ p(s)=1H0=1
Step: Let T'=T—t = (vg, R, S). If |t| = 1 then ¢t € CT}. For the discussion on rank
in this case we observe that r(T) = r(T) (because |t| = 1 and r(T [y > 1) and
that p((¢,¢), L) = p(L) (because [t| = 1 and p(L) > 1). Moreover by inductive

13

hypothesis we have that 7(T) = p(L) and so p((t,¢), L) = 7(T). If |t| > 1 then
v; = v (by Lemma 4.3) and either t=! = v; or t=! = v;. Supose the first case,
this means that >! € path(R) (by Lemma 4.2) and R = R — ¢! and § = §
(by Lemma 4.3). By inductive hypothesis on R (a subtree of T') we can say
that:

1. t>1 € CYJ—;T7
2. p((P1),7) = H(R).
By (1) we have that ¢t € CT, by definition 3.3. and by (2) we have that:

p((t>170)7i) = p(t>1,c),f @ p(3)

The case t=! = v; is analogous on S instead of R.

a

To conclude the proof of the theorem we have only to observe that if ¢ € hang(T)
then t € path(T') and that once a term in hang(T') is choosen , ending with leaf ¢ in
T, the list that Blum’s algorithm associates to T is (¢,¢), L. But by the Claim and
by Lemma 3.3 this list is a tree list and its rank is »(7). Observe moreover that by
the claim ((¢>',¢),7) is a tree list for R and its rank is r(R), and that 5 is a tree list
for S because S = S and its rank is 7(.9) by inductive hypothesis on m.

a

5.2 Rank % tree lists define rank & decision trees

The inverse inclusion will be showed by giving a quadratic time algorithm to build from a
tree list with rank k£ an equivalent k-rank decision tree.
Consider the following algorithm:

Build-tree(L € Ly): T € Ty,
begin
if L = (1,a) then return(a)
else {L = (LA)W (LA s'),s"}
if [; = v; then return((v;, Build-tree(r),Build-tree(s)))
else return((v;,Build-tree(s),Build-tree(r)))
end

14

It is easy to verify that the rank of the tree in output has the same value of the rank
of the tree list in input. Indeed

Lemma 5.1 For any tree list L, p(L) = r(Build-tree(L)).

Proof. By induction on L.
Basis: L = (1,a) and p(L) = 0. Build-tree(L) = a and r(a) =0

Step: L = (inr)W (LA s'),s". Let T = Build-tree(L), R = Build-tree(r) and § =
Build-tree(s) where = &', 5",

r(S) by def. of Build-tree
p(s) by inductive hypothesis
)

O
Also it is easy to verify that L and Build-tree(L) compute the same boolean function.

Lemma 5.2 For any tree list L, f; = fBuild-tree(L)

Proof. By Lemma 3.2 we have that f; = ¢. So we can show that ¢ = fBuild—tree(L)'
By induction on L

Basis: L = (1,a) then ¢ 4 = a= fa.

Step: L = (inr)W (LA s'),s". Let T = Build-tree(L), R = Build-tree(r) and § =
Build-tree(s) where s = §', 5",

(LA fR)V (LA fs) by def. of Build-tree
= (LA ¢)V (A ¢5) by inductive hypothesis
= ¢r by definition of L and ¢,

Ir

O
So the following theorem is easy from the two previous Lemmas.

Theorem 2 For any list I € L}, Build-tree defines a decision tree T € T}, that computes
the same boolean function.

15

To conclude this section we give a quadratic (on the lenght of tree list) upper bound for
the time needed to Build-tree to build the associated decision tree. First observe that for
any decision list (and so for any tree list) L = (I,A)W(LA 8'), 8", |[L] > Land |L| > |r], |s|.
Suposing that we need one step to build a leaf and a node of the tree, we can express the
time T, of the algorithm on input I by following recurrence equation:

T 1 if L=(1,a) B
EZY 1o+ T, 41 i L=(Lar)w (LA S), s

We have shown that if L € £ then Build-tree(L) € 7} for fixed k. By this we can
consider the size of each term in L bounded by a constant. So a good parameter with
respect to which we have to study the time complexity of an algorithm working on a list
in Ly is the size of that list. The following Lemma shows an upper bound for the time of
Build-tree with respect to the size of the tree list.

Lemma 5.3 Let L be a tree list with |L| = n, then Tr(n) < n?

Proof. By induction on n

Basis: n = 1, this means that L = (1,a). The result follows because T7(1) = 1 and
|L|* =12 = 1.

Step:
Tr(n) =T.(|r])+ Ts(|s|) +1 def. of T},
<|rfP+ s+ 1 by inductive hypothesis on |r|, |s| < ||
<P+ Isl? +20rlls) Irllsl > 1

= (Ir| + |s)?
= |LJ?

6 Recovering bounded rank reduced decision trees in lin-
ear time

In this section we present an algorithm to recover a reduced decision tree T' (i.e. a tree in
which the same variable cannot appear as label of more than one node in any path from
the root to a leaf) from the decision list L7 outputs of Blum’s algorithm on 7. We are
able to show a linear upper bound (in the size of Lt) for the time it needs, so improving,
for the class of reduced decision tree in 7, the previous one.

16

6.1 The algorithm

Let us introduce some notations to simplify proofs. Let T be a reduced decision tree,
and let ¢t € hang(T') be a term [y,...,[; representing a path in 7" and ending with leaf
a € {0,1}.

Figure 3: The decision tree T" with respect to t = ly,...,l; with ¢ € hang(T)
Being interested in the position of variables vy,..., v, in T we can see T as in Figure

3, where

0 ifl; =7

__Jo if l; = v
o 1 ifl; =7
Given a decision tree 7' = (v;, R, 5) we denote R by T and S by T'~ (whith + and

— submitted to the restrictions above). By 7797, for instance, we denote (7°7)/". The
following remark establishes a simple relation between T and T' =T —t.

{1 if 1 = o
+ =

and

Remark 1 Let T a decision tree as in Figure 3 and let t € hang(T) be a term Iy ...l
with 1 < k < r(T) ending with leaf a:

o iflt|=1, then Ty =T;

o if |t| > 1, then

T, = TV 2 (=0% forang 1 <i<k—1
T, = prtet (k=2)t (k-1)*

17

Figure 4: The decision tree 7' = T — t with respect to ¢ when |t| > 1

Proof. This follows in a very easy way by noting that 7 can be seen as the tree in Figure
4.

O

Before implementing the algorithm we give the idea to understand it. Given the list L
obtained by Blum’s algorithm we build inductively the tree, starting from the last true
term by performing the following steps:

Figure 5: First step of the algorithm: build a path with respect to t = vyvav3v4v5 With
(t,a) € L

e build a path from the variables of the current considered term ¢, according to sign
of v;’s in t and put a (the constant associates to ¢ in L) as leaf of this path, leaving
undefined (for the moment) the unesed arc of any node (see Figure 5);

¢ attach the tree defined to inductive step to all undefined arcs (see Figure 6);

18

Figure 6: Second step of the algorithm: attach the tree T defined at inductive step to all
undefined arcs

Figure 7: Third step of the algorithm: example of reduction

19

o reduce these trees (i.e. simplify them if the boolean values of some variables occurring
in them is known: Figure 7). For instance, in the example of Figure 5 the trees
attached to the unused arc of vs must be reduced considering these values: vy = 0,
U221,U3:0,U421,?}521.

Let T be a decision tree in 7, let Ly be the decision list (t1,a1),...,(tm,am),(1,a)in
k — DL that Blum’s proof associates to T'; let DT be the class of decision trees, IT FEM
the class of couples of the form (¢,a), TERM the class of terms in V,, and sgn and nsgn
two functions computing respectively the sign and the negated sign of the literal I; in t.
The following algorithms implement the idea described above:

1. Procedure Rec-Tree: takes recursively, starting from the last, the terms of the input
list:

Rec-tree (Lek—DL): T €Ty,

if |[L| =1

then T = q

else T' = Build-path((t1, a1); Rec-tree(L — (11,a1))))
return(7)

2. Procedure Build-path: build the path associated with the current term analyzed by
Rec-tree:

Build-path((t,a) € ITEM:T € DT):1T* € DT
" =a
if [t| =1
then if ¢t = vy
then 7% = (v, 1%, T)
else T = (v, T,7T%)
else if =t = v,
then T = (v, T, Build-last-node(t<1; T))
else T* = (v;, Build-last-node(t<I4; T, T*)
for i = |t| — 1 downto 1 do
if =t = ol
then 7 = (v, T*, Build-node(t<; T))
else T* = (v, Build-node(t<%; T), T*)
endfor
return(7™)

20

3. Procedures Build-node and Build-last-node: for each node in the current path Build-
node modify the tree obtained at inductive step by Rec-tree, reducing it according
to the the sign of the variables of the path, up to the processed variable. Build-last-
node do the same work for the last variable in the path: this is necessary because
the observation on last variable in Remark 1.

Build-node(t e TERM; T € DT):T+ € DT
TH=T
for k =1to|t| — 1 do
if =F = ol
then T = Red-tree(v;; sgn(t=F); TT)
else TT = Red-tree(v; TT; sgn(t=F))
endfor
if =1t = ol
then T+ = Red-tree(vy; nsgn(t=I"); T+)
else Tt = Red-tree(v; Tt; nsgn(t=1"))
return(7)

Build-last-node(t e TERM; T € DT):T+ € DT
T =T
for k =1 to |t| do
if =F = ol
then T+ = Red-tree(vy; sgn(t=%); T+)
else Tt = Red-tree(v;; T; sgn(t=F))
endfor
return(7)

4. Procedure Red-tree: is a standard recursive procedure to reduce a tree with respect
to a variable:

Red-tree(v; € V389 € {0,1};T € DT):T% € DT

ifT =a
then 7% = a
else (*1T'= (v, R, 5) *)
if v = vy
then if sg = 1

then 7% = Red-tree(v;, sg,; R)
else T% = Red-tree(vy; sg;)

21

else (* vy # vy *) T'% = (vy; Red-tree(vy, sg,; R); Red-tree(v;; sg; §))
return(79)

Theorem 3 For any reduced T' € Ty, Rec-tree(Lr) =T

Proof. By induction on the number m of leaves of T.

m = 1: In this case T' = a for some a € {0,1},L7 = a and |Ly| = 1. So by definition of
Rec-tree we have that the Rec-tree(Ly) = a;

m > 1: Let t € hang(T') be the term [y ...l with 1 < k < r(T') representing the path
of lenght at most r(7") choosed. Let a be the costant hanging from ¢ in 7" and let
T be the tree T — t. T has less many leaves than 7', so, by inductive hypothesis,
given the decision list L associated to T, we have that Rec — Tree(Ly) = T. The
list that Blum’s algorithm associates to T is (¢,a), Ly. We will show that Rec-
Tree((t,a), Ly) = T. Indeed:

Rec-tree((t,a), Ly) = Build-Path((t,a); Rec-tree(Ly))
= Build-Path((t,a);T)

Theorem holds by following Claim:
Claim 2 IfT =T —t where T is reduced, then Build-Path((t,a);T)=T.

Proof. If |tJ =1, let t = ;. This means that v; does not occur as label of any node

of T since T = T —t, since v is the root label of 7" and since 7' is a reduced tree.
So the tree that Build-Path((t,a); T) yields is, by definition of Build-Path, (vg,a,T)
if I, = vy (respectively (v, T, a) if I = v) which by Remark 1is 7.

If [¢] > 1,let t = ly,...,lk, k > 1. Observe that by its definition Build-path yields
the tree of Figure 8. So by Remark 1 it is sufficient to show that:

e Build-last-node(ly, ..., 1y, T) = T1+2+"'(k_2)+(k_1)+; and
e Build-node(ly,...,1;,T) = 725 (=DM for any 1 < i <k — 1.

a
Claim 3 Build-last-node(ly, . .., 1y, T) = TV 2" (k=T (k=17

22

Build-node(y ; T)

Build-node(4\, ; T)

/\ Build-node({ Y g T)

Build-last-node(¥\, Mg W ST)

Figure 8: The tree built by Build-Path with respect to ¢

Proof. Observe that 7 is as in Figure 4 and since T is a reduced tree there are
no occurrences of vq,...,vp_1 in Tx. Moreover, since T is a reduced tree, vy cannot
occur as labels of any node in T} and the same variable cannot occur two times
among lq,...,l;. Observe moreover that Red-tree(v;; sgn(l;); T) simply reduces the
tree T' by eliminating in it all the nodes labelled with variable v; and substituting
them with the subtree of that node choosed according to sgn(l;) (i.e. chooses always
the subtree hanging from the arc labelled with +). So, by previous observation, for
any l;, 1 < i < k, Red-tree(l;; sgn(t=*); T) gives the subtree of 17" hanging from the
node labelled with variable v; according to sign of /; in ¢. So it is easy to see that
Build-last-node(ly, . . ., 1, T) yelds the subtree Tj, of T which is Tttt (k-1)F
O

Claim 4 For any 1 < i<k — 1, Build-node(ly, .. .,l“T) — prreto(i-ntis

Proof. The proof is analogous to that of previous Claim with the only difference
that on the last variable v; of ¢ the subtree in T is choosen according to the negated
sign of [; in ¢, that give us the right subtree Tt (i-nh

a

6.2 Complexity

By the proof of Claim 3 we have that Red-tree is a more powerful algorithm of what we
really need. Indeed, by its definition, Red-tree explore always the whole tree even if at
each call it eliminates at most the root node, substituting the tree with one of its two
subtrees, since we are sure, by hypothesis of reduction of the tree, that in its subtrees
there are no occurrences of the considered variable as labels of any node. So in studying

23

the complexity of Rec-tree we can consider, without losing nothing in the proof of Claim
3, the new subroutine Red-tree-mod defined as follows:

Red-tree-mod(v; € V389 € {0,111 € DT):T% € DT

ifT=a
then 7% = a
else (* 1T = (vy, R,5)*)
if v; = vy
then if sg = 1
then 7% = R
else T% = §
else (Y vy £ v,) TY =T
return(79)

Time complexity of Red-tree-mod is now very simple because it needs only one step
to output the result, independently to the size of the input tree. We use the following
abbreviations for the names of the subroutines considered in the algorithm: RT for Rec-
tree, BP for Build-path, BLN for Build-last-node, BN for Build-node and rt for Red-
tree-mod. As in subsection 5.2 we can consider constant the rank of the tree in 7;. By
Blum’s algorithm k is an upper bound to the lenght of each item in Lp. If n = |V,]| is
the cardinality of V,, then the size (i.e. the number of internal nodes) of the greatest
reduced tree T, we can obtain is 2" — 1 (indeed 3%, 271 = 2" — 1 see Figure 9). Fix

V/\/2
A"
\ v
3/\ 3 3/\\/3

Figure 9: The greatest size reduced decision tree on variables in V,

m = 2"t 427 1 the size of T, plus the number of its leaves. We are looking for Trr(|L7|)
the time of Rec-tree on L7.The following equations give us the time dependencies among
the subroutines:

24

1 if | L] =1
T L) < i
rr(|L7]) < { Tp(k,m) + Trr(|Lr| - 1) if |L7| > 1

where k and m in Tgp(k, m) are an upper bound respectively to the lenght of the current
considered term and to the size of the tree built to inductive step.

TR ith=1
BPA\R, M) = 1+ TBLN(kam) +k—-1+ Zfz_ll TBN(i,m) ifk>1

TBLN(kam) = { Trt(m) + TBLN(k — 17m) ifk>1

Ten(k,m)=TgrNn(k, m)
By the previous observation we have that the time T,; of Red-tree-mod is such that
Tﬁ(m) = 1. By this we have that:Tsy(k,m) = Tern(k,m) = k, and Tgp(k,m) =
k48 0= k4 B and so Tre(|Lr|) < |Drl(k + ZEE)) = O(|Ly))

7 Comparing the algorithms and conclusions

Comparing the two algorithms to recover a decision tree we note that:

e The first one give us a way to recover decision trees in 7 for any kind of tree (also
not reduced), but we have been able to show for the time it needs, only a quadratic
upper bound. Moreover it is very close to definition of tree decision lists in the sense
that it works correctly only of this kind of decision list;

e the second one is a more intuitive algorithm, more near to Blum’s algorithm than
the other (informally we implement a backward process). Its advantages are :

— that it allows to recover the tree in linear time;

— and that it is a very general algorithm that can be applied to all kind of decision
lists and not only on lists coming from Blum’s algorithm.

Its disadvantages are that:

— it works well, when used on decision list coming from Blum’s algorithm applied
only on reduced decision trees. Indeed if the same variable appears as label
of two or more nodes in the same path from the root to a leaf, then we must
use the subroutine Red-tree instead of Red-tree-mod, but during the process of
Red-tree we lose informations about more internal nodes labelled with the same
variable;

25

— we are forced to preserve the order (that Blum’s algorithm defines) of the
variable in each term of the output list, since otherwise we could make not
well defined manipulations on the tree that we are recovering.

These comments leave open some problems that could be interesting to study:

1. isit possible to recover also not reduced decision tree saving some informations about
the list?

2. How the order of variables can affect the output of Rec-tree?

3. When Rec-tree is used on a standard decision list L, what kind of relation are there
between L and the tree generated from Rec-tree(L)?

Aknoweldgement

I am greatly indebted to José Luis Balcazar for many reasons. He put my attention, during
the Boolean Complexity course, on problems about recovering decision trees arising from
Blum’s paper, he always encouraged me to pursue my ideas holding with me some useful
discussions and has revised partial versions of this work during the time. In particular
I would underline that the idea of the algorithm of Section 6 to recover decision trees,
come up to him during one of our discussions. Finally I would thank my mother, Claudia
Bichelli, whose financial support has partially helped me in my permanence in Barcelona
at the Department from October 95 to January ’96.

References

[BI] A.Blum. Rank-r decision trees are a subclass of r-decision list. Information Processing
Letters 42 (1992), 183-185.

[EH] A. Ehrenfeucht, D. Haussler. Learning decision trees from random examples. Infor-
mation and Computation 82 (1989), 231-246.

[R] R.L. Rivest Learning decision lists. Machine Learning 2, (1987), 223-246.

26

