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Taking (A0, 0) as a reference state for our variables (A0, ū) we can integrate the above relation-
ships obtaining

W1 = ū+

∫ A

A0

c1(ε)

ε
dε, W2 = ū−

∫ A

A0

c1(ε)

ε
dε (B.41)

Introducing the expression B.4 for c1 we have

W1,2 =
Q

A
± 4

(√
β1

2ρA0
A

1
4 − c0

)
(B.42)

with c0 is the wave speed related to the reference state. We finally can write the variables (A,Q)
in terms of the characteristic ones,

A =

(
2ρA0

β1

)2(
W1 −W2

8

)4

, Q = A
W1 +W2

2
(B.43)

allowing in particular, the implementation of boundary and compatibility conditions, that we will
discuss in the next section.

B.6 Boundary conditions

By the characteristic analysis of the one-dimensional model we pointed out the hyperbolic nature
of the one-dimensional system of blood flow in arteries; consequently the solution is given by the
superimposition of two waves whose eigenvalues λ1,2 represent the propagation speeds of such
waves. As we have seen previously, they always have opposite sign and so blood flow is sub-
critical; under this condition, we need an initial condition along all the spatial domain and two
boundary conditions to close the governing system: one at the inlet section z = 0 and the other at
the outlet z = L (see Figure B4).

Figure B4: Boundary and initial conditions of the hyperbolic system.

Figure B5: One-dimensional model with absorbing conditions.

Different type of boundary conditions can be imposed. An important class of boundary condi-
tions is represented by the so-called non-reflecting or absorbing boundary conditions [96], which
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allows the simple wave associated with the characteristics to enter or leave the domain without
spurious reflections (see Figure B5). Absorbing boundary conditions can be imposed by defining
values for the wave entering the domain; in our case we have λ1 > 0 and λ2 < 0 so W1 is the
entering characteristic in z = 0 and W2 the inlet characteristic in Z = L. In Hedstrom [36],
non-reflecting boundary conditions for an hyperbolic problem are written as

l1 ·

[
∂U

∂t
−B(U)

]
x=0

= 0, l2 ·

[
∂U

∂t
−B(U)

]
x=L

= 0

When there is an explicit formulation of the characteristic variables, it is possible impose the
boundary conditions directly in terms of incoming characteristics, for example

W1(t) = g1(t), in z = 0, t > 0

being g1(t) a given function. However, the problem rarely have boundary data in terms of variable
characteristics, they are normally expressed in terms of physical variables.

In addition to absorbing boundary conditions based on characteristic variables, it may impose
a function that describes the temporal trend on the edge of one of the unknown functions of the
problem, then the flux flow Q (or the speed u) or the area A. Conditions of this type are typically
used on the proximal node z = 0 and can be expressed as follows:

Q(0, t) = gq(t), t > 0

A(0, t) = ga(t), t > 0

The boundary conditions imposed by the knowledge of the physical variables are reflective. There-
fore, if we impose such a condition in the proximal node, the incoming characteristic variable, that
we denoted by W2, will be partially reflected in the computational domain. This is a real physical
phenomenon.

The initial conditions are the conditions to be imposed by defining the value of A(z, t) and
Q(z, t) along the spatial domain z ∈ (0, L) at the initial time t = 0. For instance if we require the
area at the initial time, the initial condition is expressed as

A(z, t) = A0(z), z ∈ (0, L)

B.6.1 Terminals lumped parameter

The assumptions made for the 1-D model become less appropriate with decreasing the size of
the arteries; for example, the blood flow in the larger arteries is pulsatile and is dominated by
inertia while in the capillaries is almost stable and dominant by the viscosity. Consequently,
the 1-D model should be limited until at the distal section of the domain (z = L). We have
seen a first approach which imposes not reflective boundary conditions in the vessels terminals
B.6, but this solution is not adherent to reality. We then introduce the lumped parameter models
(0-D) who consider the fact that the pressure waves are physically in part reflected and partly
absorbed. These models coupled with the one-dimensional constitutive equation B.27 leads to a
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multiscale framework 1-D/0-D. Therefore, the hemodynamic effects of the blood vessels after the
distal section limit are generally simulated using a lumped parameter model governed by ordinary
differential equations that relate the pressure with the flow at the outlet of the 1-D model [61].

Expressing the system B.30 in terms of (A,P,Q) with Q = Aū and linearising around the
state of reference (A0, 0, 0), with β an A0 be constant along z, is obtained.

C1D
∂p

∂t
+
∂q

∂z
= 0

L1D
∂q

∂t
+
∂p

∂z
= −R1Dq

p =
a

C1D

(B.44)

where a,p and q are the perturbation variables for area, pressure and volume flux, respectively
(A0 + a, p, q) and

R1D =
ρc0

A0
, C1D =

A0

ρc2
0

, L1D =
ρ

A0
(B.45)

are the viscous resistance to flow, wall compliance and blood inertia, respectively, per unit of
length of vessel l. Integrating system B.44 over the length l yields the lumped parameter model,
where the variables are R0D = R1Dl, C0D = C1Dl, L0D = L1Dl and p̂ = 1

l

∫ l
0 pdz, q̂ = 1

l

∫ l
0 qdz

are the mean pressure and flow over the whole domain. In physiological conditions pulsatile waves
travel at a speed greater compared to that of the blood, then p̂ = pin and q̂ = qout. Therefore, the
final 0-D model is the following:

C0D
∂pin
∂t

+ qout − qin = 0

L0D
∂qout
∂t

+R0Dqout + pout − pin = 0
(B.46)

where qin = q(0, t), qout = q(L, t), pin = p(0, t) and pout = p(L, t) are the flows and pressures
at the inlet and outlet of the 0-D domain. As it is represented in Figure B6 ,the system B.46
is analogous to an electric circuit, in which the role of the flow and pressure are played by the
current and potential, R0D corresponds to an electric resistance, C0D to a capacitance and L0D to
an inductance.

Figure B6: 1-D arterial vessel domain (left) and the equivalent 0-D system discretises at first order in space
(right).



B. 1D MATHEMATICAL MODEL 129

Hydraulic Physiological variables Electric
Pressure P [Pa] Blood pressure [mmHg] Voltage V

Flow rate Q[m3/s] Blood flow rate [L/s] Current I
Volume V [m3] Blood volume [L] Charge q[C]

Viscosity η Blood viscosity µ[Pa · s] Electrical resistance R
Elastic coefficient Vessel’s wall compliance Capacitance C

Inertance Blood inertia Inductance L

Table B1: Analogy between hydraulic and electrical network [46].

B.7 Implementation

The nonlinear hyperbolic system B.27 has been discretized using a Taylor-Galerkin scheme [24],
which is the finite element equivalent of Lax-Wendroff (based on the expansion in Taylor series)
stabilisation for the finite difference method. This method may result in short computational times,
and is second order accurate in both time and space.

Considering the equation B.27 and having H =
∂F

∂U
we may write

∂U

∂t
= S− ∂F

∂z

∂2U

∂t2
=
∂S

∂U

∂U

∂t
− ∂

∂z

(
H
∂U

∂t

)

=
∂S

∂U

(
S− ∂F

∂z

)
− ∂HB

∂z
+

∂

∂z

(
H
∂F

∂z

) (B.47)

For simplicity the dependence of S and F from U is dropped. Starting from the above equations,
we now consider the time intervals (tn, tn+1), for n = 0, 1, . . . , T ; then we discretize the equation
in time using a Taylor series which includes first and second order derivatives if U. Therefore we
obtain the following semi-discrete schemes for the approximation Un+1 of U(tn+1):

• Taylor-Galerkin scheme:

un+1 = un + ∆tunt +
∆t2

2
untt (B.48)

Un+1 =Un −∆t
∂

∂z

(
Fn +

∆t

2
HnSn

)
+

∆t2

2

[
SnU

∂Fn

∂z
− ∂

∂z

(
Hn∂Fn

∂z

)]

+ ∆t

(
Sn +

∆t

2
SnUSn

)
, n = 0, 1, . . .

(B.49)
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where SnU =
∂Sn

∂U
and Fn, stands for F(Un), just as Hn, Sn and SnU; the value U0 is given by

the initial conditions.
For each time interval (tn, tn+1) we apply a spatial discretization carried out using the Galerkin

finite element method. To this purpose we subdivide the domain Ω = {z : z ∈ (0, L)}, which
is the 1-D counterpart of the 3-D domain Ωt, into a finite number Nel of linear elements length l
(Figure B7).

Figure B7: One-dimensional mesh representing a vessel.

Moreover we introduce a trial function space, T , and a weighting function space, W . These
spaces are both defined to consist of all suitably smooth functions and to be such that

T =
{

U(z, t)|U(z, 0) = U0(z) on Ωt at t = t0
}
, W =

{
W(z)

}
Considering the scheme, we multiply the equation B.49 for the weight function W and we

integrate it over the domain Ωt obtaining, for ∀t > 0t0

∫
Ω

(
Un+1 −Un

)
dΩ =−∆t

[∫
Ω

∂W

∂z
Fn
LWdΩ−

∫
Ω

SnLWWdΩ

]
−

− ∆t2

2

[∫
Ω

∂W

∂z
SU

nFn −
∫

Ω

∂W

∂z

∂Fn

∂z
Hn

]
−

−∆t

[
NiF̄

n
r |z=L −NiF̄

n
l |z=0

] (B.50)

where we have assumed

Fn
LW (Uj) = Fn +

∆t

2
HnSn

and

SnLW (Uj) = Sn +
∆t

2
SU

nSn

Starting from the weak form of the problem B.50 we build the subspaces T h andWh for the
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trial and weighting function spaces T andW defining them as

T h =

{
Û(z, t)|Û(z, t) =

N∑
j=1

Uj(t)Nj(z); U(t0) = Ū(zj) = U0
j

}

Wh =

{
W(z, t)|W(z) =

N∑
j=1

Wj(t)Nj(z)

} (B.51)

where Nj is the standard linear finite element shape function (Figure B8) associated to the j − th
node, located at z = zj , and Uj and Û at the node j. Since we are using the Galerkin method, the
base shape functions defined above are used as weighting. Adopting the following notation

Figure B8: Sketch of a 1D linear shape function.

(W,U)Ωe =

∫
Ωe

W · UdΩ,

and considering the sum of each element contribution∫
Ω
· · · =

∑
el

∫
Ωe

. . . ,

the equation B.50 becomes∑
el

(Ni, Nj)Ωe(U
n+1
j −Un

j ) = ∆t
∑
el

[(Ni,z, Nj)ΩeF
n
LW (Uj) +Ni, Nj)ΩeS

n
LW (Uj)]−

− ∆t2

2

∑
el

(
(Ni, Nj)ΩeSU

n(Uj)
∂Fn

j

∂z

)
−

− ∆t2

2

∑
el

(
(Ni,z, Nj)ΩeH

n
j (Uj)

∂Fn
j

∂z

)
−

−∆t

[
NiF̄

n
r |z=L −NiF̄

n
l |z=0

]
(B.52)
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For what concerns the border nodes, we have to consider the boundaries condition. Starting
from the equation B.52, we have the term of boundary conditions represented by

∆t

[
NiF̄

n
r |z=L −NiF̄

n
l |z=0

]
, i = 1, 2

which implies the knowledge of the flux terms depending from the values of A and Q at inlet
and outlet sections of the domain. To extract them from the characteristic information W1(0, t)
and W2(L, t) we need an additional expression for the other characteristic variables W2(0, t) and
W1(L, t) to recover U(A,Q) using the equation B.43. To this purpose we adopted a technique
based on the extrapolation of the outgoing characteristics. Having the friction parameter Kr small
with respect to the other equation terms in B.27, we assume that at the boundary points z = 0
and z = L the flow is generated by the characteristic system B.36. At a generic time step n we
have Un known and we linearise the eigenvalues λ1,2 of B.27 by taking their values at respective
boundary for t = tn. The solution corresponding to this linearised problem at time tn+1 gives

Wn+1
2 (0) = Wn

2 (−λn2 (0)∆t)

Wn+1
1 (L) = Wn

1 (−λn1 (L)∆t)

which is a first-order approximation of the outgoing characteristic variables from the previous step.
By using these information together with the values of Wn+1

1 (0) and Wn+1
2 (L) , we are able to

compute, through B.43, the required boundary data.
We choose to use, for time integration, both a second and fourth order explicit Runge-Kutta

scheme; such methods are diffused in computational fluid dynamics, and show good properties,
e.g ease of programming, simple treatment of boundary conditions and good stability. Regarding
the stability, the second order Taylor-Galerkin scheme entails a time step limitations. A linear
stability analysis [75] indicates that the following Courant-Friedrichs-Lewy condition should be
satisfied

∆t ≤
√

3

3
min

0≤i≤N

[
hi

max(λ1,i, λ1,i+1)

]
(B.53)

where λ1,i here indicates the value of λ1 at mesh node zi. This condition, which is necessary to
obtain the stability of a method explicitly imposes a constraint on the choice of the discretization
time and space of the method used; it corresponds to a CFL number of

√
3

3 .

B.7.1 Branching

The vascular system is characterized by the presence of branching. The flow in a bifurcation is
intrinsically 3-D, however may be still described by means of a 1-D model. In order to manage
a branching zone, when using a 1-D formulation, we follow a technique called domain decom-
position [78]. The numerical solver accounts for the treatment of two types of bifurcation: the
bifurcation 2-1 typical of the arterial system and the bifurcation 1-1 which represents two vessel
linked together with different mechanical properties.



B. 1D MATHEMATICAL MODEL 133

Bifurcation 1-2 The bifurcation 1-2 represents the typical branching of the arterial system. As
we have introduced we have used the domain decomposition method to solve this problem. We
divide the domain Ω into three partitions Ω1,Ω2 and Ω3 as is showed at Figure B9; doing this we
have 3 sub-problems which must be coupled imposing adequate boundary conditions. Then we
have to evaluate 6 variables, (Ai, Qi) with i = 1, 2, 3, corresponding to the problem unknowns,
area and flow rate for each one of the vessels composing the branching. From the decomposition

Figure B9: Domain decomposition of a bifurcation 1-2.

of the governing system into characteristic variables we know that the system can be interpreted in
terms of a forward and backward travelling waves. Considering the model of a splitting bifurcation
shown in Figure B9, we denote the parent vessel by an index 1 and its two daughter vessels by the
indices 2 and 3, respectively.

The simplest condition we can impose to require the mass conservation through the bifurcation
and therefore the flow rate balance can be written

Q1 = Q2 +Q3

remembering that the flow moves from the sub-domain Ω1 to the sub-domain Ω2 and Ω3. Other
two assumptions can be obtained from the requirement of continuity of the momentum flux at the
bifurcation. This lead to consider the total pressure term continuous at the boundary. So we may
write

P1 +
1

2
ρ

(
Q1

A1

)2

= P2 +
1

2
ρ

(
Q2

A2

)2

P1 +
1

2
ρ

(
Q1

A1

)2

= P3 +
1

2
ρ

(
Q3

A3

)2
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The remaining three relationship can be derived using the characteristic variables. The parent
vessel can only reach the junction by a forward travelling wave. This wave is denoted as W 1

1 ,
where the superscript is the vessel number while the subscript stands for the forward direction.
Similarly, the characteristics variables of daughter vessels, which can reach the bifurcation only
by backwards travelling wave, are represent by W 2

2 and W 3
2 .

W 1
1 =

Q1

A1
+ 4

√
β1

2ρA01
A

1/4
1 = u1 + 4(c1 − c1

0)

W 1
2 =

Q2

A2
− 4

√
β2

2ρA02
A

1/4
2 = u2 + 4(c2 − c2

0)

W 2
2 =

Q3

A3
− 4

√
β3

2ρA03
A

1/4
3 = u3 + 4(c3 − c3

0)

where c1
0,c2

0and c3
0 are the values of the wave speed evaluated using the area A0 in the vessels

1,2 and 3. In summary, the resulting system which determines the values (A1, Q1),(A2, Q2) and
(A3, Q3) at the bifurcation is the following



W 1
1 =

Q1

A1
+ 4

√
β1

2ρA01
A

1/4
1

W 1
2 =

Q2

A2
− 4

√
β2

2ρA02
A

1/4
2

W 2
2 =

Q3

A3
− 4

√
β3

2ρA03
A

1/4
3

Q1 = Q2 +Q3

P1 +
1

2
ρ

(
Q1

A1

)2

= P2 +
1

2
ρ

(
Q2

A2

)2

P1 +
1

2
ρ

(
Q1

A1

)2

= P3 +
1

2
ρ

(
Q3

A3

)2

(B.54)

We can solve it through the Newton-Raphson technique for differential systems of non-linear
equations.This type of modelling does not consider the geometry of the junctions. For instance,
the angle between the various vessels are not take into account.

Bifurcation 1-1 The discontinuity at the interface between arteries with different materials(mechanical
behaviour) or geometrical properties is solved with a similar process used in the treatment of the
bifurcations 2-1. Following the domain decomposition method adopted before, we proceed by
splitting the problem in two sub-domains Ω1 and Ω2, and solving the following non-linear system
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for the interface variables, namely

W1 =
Q1

A1
+ 4

√
β1

2ρA01
A

1/4
1

W2 =
Q2

A2
− 4

√
β2

2ρA02
A

1/4
2

Q1 = Q2

P1 +
1

2
ρ

(
Q1

A1

)2

= P2 +
1

2
ρ

(
Q2

A2

)2

(B.55)

Again, We solve the non-linear system obtained through the Newton-Raphson method. In both
systems B.54 and B.55, it has been verified that the determinant of the Jacobian is different from
zero for all allowable values of the parameters, thus guaranteeing that the Newton iteration is
well-posed [28].

Figure B10: Domain decomposition of a bifurcation 1-1.

B.7.2 Coupling 1-D and 3D-reduced model

In order to consider into the 1D model an external pressure drop, we need to modify the total
pressure term (B.55) adding the function f3D(k1,k2):

Pi +
1

2
ρ
Qi

2

Ai
2 = Pj +

1

2
ρ
Qj

2

Aj
2 + f3D

j(k1, k2) (B.56)

where indexes i and j denote the parent and the daughter vessels respectively and the function
f3D(k1,k2) denotes the external pressure drop (or energy losses). In our case f3D is the pressure
drop of the 3D model.

f3D
j(k1, k2) = k1Qj + k2 | Qj | Qj (B.57)

k1 and k2 are the viscous and turbulent coefficients that should be adjusted according to the
pressure drop between the inlet/outlet planes defined in the 3D model.
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B.7.2.1 Personalized 3D reduced order model In our particular case, firstly we need to solve
the 3D problem (real case). To estimate the coefficients k1 and k2 of the equation (B.57), at each
time step tn, we calculate and store the mean values of the flow and the pressure at the inlet and
the outlet of our 3D domain. Using these values we choose k1 and k2 that minimizes the sum
of squared pressure drop by least squares method. In this way we are able to capture the energy
losses provoked by the geometry of our 3D model, and take into account in the 1D model.

B.8 Coupling 1-D and 0-D models

The existence and uniqueness of the solution of a coupled problem between the 0-D model system
B.46 and the hyperbolic 1-D system B.35, has been proven by Formaggia [27] for a sufficiently
small time so that the characteristic curve leaving the 1-D/0-D interface does not intersect with
incoming characteristic curves. Numerically, the coupling problem between a 1-D domain and a
0-D model is established through the solution of a Riemann problem at the interface (Figure B11).
An intermediate state (A∗, U∗) originates at time t + ∆t from the states (AL, UL) and (AR, UR)
at time t. The state (AL, UL) corresponds to the end point of the 1-D domain, and (AR, UR)
is a virtual state selected so that (A∗, U∗) satisfies the relation between A∗ and U∗ dictated by
system B.46. The 1-D and 0-D variables at the interface are related through qin = A∗U∗ and
pin = β

A0
(
√
A∗−

√
A0), and pout is prescribed as a constant parameter that represents the pressure

at which flow to the venous system ceases.

Figure B11: Coupling 1-D/0-D model.

According to the method of characteristics, if G = 0 equation B.35 leads to

W1(A∗, U∗) = W1(AL, UL) (B.58)

W2(A∗, U∗) = W2(AR, UR) (B.59)
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Solving B.58 for A∗ and U∗ yields

A∗ =

[√
2ρA0

β

W1(AL, UL)−W2(AR, UR)

8
+A

1
4
0

]4

(B.60)

U∗ =
W1(AL, UL) +W2(AR, UR)

2
(B.61)

The 1-D outflow boundary condition is imposed by enforcing that either UR = UL, which reduces
Eq. B.60 to

AR =

[
2(A∗)

1
4 − (AL)

1
4

]4

(B.62)

or AR = AL, which reduces Eq. B.61 to

UR = 2U∗ − UL (B.63)

B.8.1 Terminal resistance (R) model

This model simulates the peripheral circulation as a purely resistive load Rp, (R0D=Rp, L0D=0,
C0D= 0) (Figure B6) and in which the state (A∗, U∗) satisfies

A∗U∗ =
P (A∗)− pout

Rp
(B.64)

Combining with B.46 we leads to a non-linear equation

F(A∗) = Rp

[[
UL + 4c(AL)

]
A∗ − 4c(A∗)A∗

]
− β

A0

(
√
A∗ −

√
A0

)
+ pout = 0 (B.65)

which is solved using Newton-Raphson method, with the initial value of A∗ = AL. Once A∗ has
been obtained, U∗ is calculated from Eq. B.61. If we consider both C and L equal to zero, we
lead to the single terminal resistance model.

B.9 Validation

A validation against in-vivo data is very difficult because some of the geometrical and elastic
properties of the biological system are very complicated to measure. This is the reason because
experimental replicas of the cardiovascular system to assess numerical tool are commonly used. To
validate the 1D formulation implemented, the experimental model developed by Matthys et al. has
been used [61] (1:1 silicone human arterial network). The silicone network is connected proximal
to a pulsatile pump providing for a periodic input flow with the following settings: 70 bpm and
a stroke volume of 70 ml, creating a mean pressure of approximately 100 mmHg at the aortic
root, these are typical values of a normal healthy person. Outflow boundary conditions were set of
terminal resistance tubes connected to overflow reservoirs, creating a closed loop hydraulic system



138 APPENDIX B. NUMERICAL MODEL

which induces a back pressure of 3.2 mmHg. A 65−35% water−glycerol mixture, with density
ρ = 1050 kg ·m3 and viscosity µ =5 mPa · s, was used to simulate the blood. The elastic wall
properties of the silicone sample have a constant Young’s modulus of 1.2 MPa. The properties of
the silicone network are summarize in table B2, as we can see the measurement report an interval
of confidence, which unfortunately will affect the comparison between the experimental data and
our results. For the simulations we have used the mean values show in the table[61].

Figure B12: a) Plan view schematic of the hydraulic model. 1: Pump (left heart); 2: catheter access;
3: aortic valve; 4: peripheral resistance tube; 5: stiff plastic tubing (veins); 6: venous overflow; 7: venous
return conduit; 8: buffering reservoir; 9: pulmonary veins. (b) Topology and references labels of the arteries
simulated, whose properties are given in table B2. (c) Detail of the pump and the aorta [61].



B. 1D MATHEMATICAL MODEL 139

Although the experimental set-up is only an approximation to the human systemic circulation,
it is able to reproduce pulse waveforms with significant physiological features in the aortic vessels.
Figure B13 shows some of the main physiological features of pulse pressure, velocity and flow
rate described previously. We observe that the numerical solver is able to describe the peaking and
steepening pulse pressure as we move away from the heart, and a reduction in amplitude of the
flow with the distance from the heart.

Figure B13: Simulated physiological(blank line) versus numerical results(red line) features of pressure and
flow rate in difference section of the cardiovascular system.
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n Arterial segment l [cm] ± 2.0% r [cm] ± 3.5% h [mm] ± 2.5% c[ms−1] Rp[GPa · s ·m−3]

1. Ascending Aorta 3.6 1.440 0.51 5.21 -
2. Innonimate 2.8 1.100 0.35 4.89 -
3. R. Carotid 14.5 0.537 0.28 6.35 2.67
4. R. Subclavian I 21.8 0.436 0.27 6.87 -
5. R. Subclavian II 16.5 0.334 0.16 6.00 -
6. R. radial 23.5 0.207 0.15 6.78 3.92
7. R. ulnar 17.7 0.210 0.21 8.81 3.24
8. Aortic arch I 2.1 1.300 0.50 5.41 -
9. L. Carotid 17.8 0.558 0.31 6.55 3.11
10. Aortic arch II 2.9 1.250 0.41 4.98 -
11. L. Subclavian I 22.7 0.442 0.22 6.21 -
12. L. Subclavian II 17.5 0.339 0.17 6.26 -
13. L. radial 24.5 0.207 0.21 8.84 3.74
14. L. ulnar 1.91 0.207 0.16 7.77 3.77
15. Thoracic Aorta I 5.6 1.180 0.43 5.29 -
16. Intercostals 19.5 0.412 0.27 7.07 2.59
17. Thoracic Aorta II 7.2 1.100 0.34 4.84 -
18. Celiac I 3.8 0.397 0.20 6.20 -
19. Celiac II 1.3 0.431 1.25 14.9 -
20. Splenic 19.1 0.183 0.13 7.24 3.54
21. Gastric 19.8 0.192 0.11 6.73 4.24
22. Hepatic 18.6 0.331 0.21 6.95 3.75
23. Abdominal Aorta I 6.2 0.926 0.33 5.19 -
24. L. renal 12.0 0.259 0.19 7.39 3.46
25. Abdominal Aorta II 7.0 0.790 0.35 5.83 -
26. R. renal 11.8 0.255 0.16 6.95 3.45
27. Abdominal Aorta III 10.4 0.780 0.30 5.41 -
28. R. iliac-femoral I 20.5 0.390 0.21 6.47 -
29. R. iliac-femoral II 21.6 0.338 0.15 5.89 -
30. R. iliac-femoral III 20.6 0.231 0.20 8.04 -
31. L. iliac-femoral I 20.1 0.402 0.20 6.19 -
32. L. iliac-femoral II 19.5 0.334 0.16 6.11 -
33. L. iliac-femoral III 20.7 0.226 0.13 6.67 -
34. R. anterior tibial 16.3 0.155 0.15 8.47 5.16
35. R. posterior tibial 15.1 0.153 0.12 7.73 5.65
36. L. posterior tibial 14.9 0.158 0.11 7.23 4.59
37. L. anterior tibial 12.6 0.156 0.10 7.01 3.16

Table B2: Properties of the 37 silicon vessels used in the in-vitro model [61]. The interval of confidence of
the geometrical measurements is indicated in the heading.
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Python Script

C1 Phyton Script

# ------------------------------------------------------------------------------
# SHEAR FORCE SECTION
# ------------------------------------------------------------------------------
# Ok. For this routine, Shear Stress components is NOT GIVEN, and therefore
# calculated with the velocity gradient, fluid dynamic viscosity, and fluid
# shear routine therefore, we will have to do some pre-operations.
#
# version 2 calculated an intermediate variable from velocity components to pass
# into Grad calc function
# version 3 includes variables for viscosity, part nums, and velocity
# ------------------------------------------------------------------------------
# NOTE:
# Using Solution (FAQ) "Fluid Forces, Drag Calculations in EnSight" (#3),
# under "II. Shear Forces" steps a-i we have:
#
##################################################
#Procedure:
# a. in the fluid domain surrounding the surface, define vx, vy, vx, the
# velocity components, as three new scalars
# b. using the Grad operator in the variable calculator, compute the gradient of
# each of these components in the fluid, resulting in new gradient vectors
# of these components, i.e. grad_vx, grad_vy, grad_vz
# c. these gradients must be mapped from the fluid onto the surface. This is
# done either by using the Case Map feature in EnSight, or creating an
# isosurface (velocity = 0.) or a clip plane that corresponds to the surface
# of interest.
# d. Compute the fluid shear stress components using the FluidShear function
# in the variable calculator and the mapped velocity gradients.
# A value for the fluid’s dynamic viscosity must be provided. This may
# also be a scalar variable.
# e. Create a fluid shear stress vector from these components using the MakeVect
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# function in the variable calculator.
# f. We need the tangential component of the fluid shear stress vector in
# order to integrate the shear stress forces and moments.
# The tangential component may be displayed by projecting this from the
# Feature Detail Editor (Vector Arrows)
# g. Compute the tangential component of the shear stress. This is done
# using vector algebra.
# First, create a surface normal vector variable using the Normal function
# in the variable calculator.
# Next, dot this with the shear stress vector, and multiply this product
# by the surface normal vector.
# This produces the normal component of the shear stress vector.
# The tangential component is now computed by subtracting this normal
# component from the shear stress vector, or Vt = V - Vn, where V
# represents the shear stress vector.
# h. We now use the tangential component of the surface shear stress, itself
# a vector, to compute a shear stress force vector,
# simple by multiplying the x/y/z components of the tangential component
# of the shear stress by the incremental surface area.

# Part #1 is Fluid Domain
# Part #2 is the Wall of interest.
# vel_name is velocity vector
#
# Begin
vel_name = "_VelocityVEC"
fluid_part_num = 2
surface_part_num = 1
viscosity = 3.5
tbegin=0
tend=4
#unit=1000
num_steps = tend-tbegin+1 #added 1 for total num timesteps if start from 0
#
ensight.part.select_begin(fluid_part_num)
ensight.variables.activate(vel_name)
#
# b. With ONLY fluid part(s) selected...
# Calculate a gradient vector from each component these velocity components
ensight.part.select_begin(fluid_part_num)
# Note gradient function requires additional step of extracting
# vector components of velocity prior to calling it. You cannot,
# for example, directly reference Velocity[X], and etc.
ensight.variables.evaluate("VelX = "+vel_name+"[X]")
ensight.variables.evaluate("VelY = "+vel_name+"[Y]")
ensight.variables.evaluate("VelZ = "+vel_name+"[Z]")
ensight.variables.evaluate("GradU = Grad(plist,VelX)")
ensight.variables.evaluate("GradV = Grad(plist,VelY)")
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ensight.variables.evaluate("GradW = Grad(plist,VelZ)")
# c. Now select boundary part(s).
# Map the 3 component gradient vectors from the fluid part(s)
# to the surface part(s) via CaseMap using 1 case on itself.
# Case Map CaseMap (2D or 3D part(s), case to map from,
# scalar/vector/tensor). Finds the specified scalar, vector, or tensor
# variable values for the specified part(s) from the indicated case.
ensight.part.select_begin(surface_part_num)
ensight.variables.evaluate("CaseMap_GradU = CaseMap(plist,1,GradU,1)")
ensight.variables.evaluate("CaseMap_GradV = CaseMap(plist,1,GradV,1)")
ensight.variables.evaluate("CaseMap_GradW = CaseMap(plist,1,GradW,1)")
#
# d. With boundary part(s) selected...
# Compute the Fluid Shear stress (Tau) components
# Compute the fluid shear stress components using the FluidShear function in
# the variable calculator and the mapped velocity gradients.
# A value for the fluid’s dynamic viscosity must be provided. This may also
# be a scalar variable.
ensight.variables.evaluate("TauU = FluidShear(plist,CaseMap_GradU," +
str(viscosity) + ")")
ensight.variables.evaluate("TauV = FluidShear(plist,CaseMap_GradV," +
str(viscosity) + ")")
ensight.variables.evaluate("TauW = FluidShear(plist,CaseMap_GradW," +
str(viscosity) + ")")
#
# e. With boundary part(s) selected...
# Create the fluid shear stress vector
# Create a fluid shear stress vector from these components using the MakeVect
# function in the variable calculator.
ensight.variables.evaluate("Tau = MakeVect(plist,TauU,TauV,TauW)")
#
# f. With boundary part(s) selected...
# You can visually inspect the vector arrows of Tau on the boundary part
# by creating these vector arrows and displaying the tangential component
#
# g. With boundary part(s) selected...
# Compute the decomposed tangential vector component of the Tau vector by
# 1. Computing the surface Normal vector on the boundary part(s)
ensight.variables.evaluate("Normal = Normal(plist)")
# 2. Creating the decomposed normal vector component of the Tau vector
# by dotting Tau with the surface Normal and multiplying this scalar
# by the surface Normal again.
ensight.variables.evaluate("TauN = DOT(Tau,Normal)*Normal")
# 3. Creating the decomponed tangential vector component of the Tau vector
# by subtracting, i.e. TauT = Tau - TauN
ensight.variables.evaluate("TauT = Tau-TauN")
#
# h. With boundary part(s) selected...
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# Compute the element shear-stress force
# 1. Extract the 3 component scalars from TauT
ensight.variables.evaluate("TauTx = TauT[X]")
ensight.variables.evaluate("TauTy = TauT[Y]")
ensight.variables.evaluate("TauTz = TauT[Z]")
# 2. Compute the element area scalar
ensight.variables.evaluate("EleSize = EleSize(plist)")
# 3. Compute the tangential shear-stress component forces
ensight.variables.evaluate("FtauTx = TauTx*EleSize")
ensight.variables.evaluate("FtauTy = TauTy*EleSize")
ensight.variables.evaluate("FtauTz = TauTz*EleSize")
#
# i. With boundary part(s) selected...
# Now, sum up each shear-stress force component into constant values
ensight.variables.evaluate("sumFSX = StatMoment(plist,FtauTx,0)")
ensight.variables.evaluate("sumFSY = StatMoment(plist,FtauTy,0)")
ensight.variables.evaluate("sumFSZ = StatMoment(plist,FtauTz,0)")
# These three constant variables should contain the components of the shear
# stress. Grab the variables from EnSight to be able to store in a python
# register or print
sumFX=ensight.ensvariable("sumFX")
sumFY=ensight.ensvariable("sumFY")
sumFZ=ensight.ensvariable("sumFZ")
sumFSX=ensight.ensvariable("sumFSX")
sumFSY=ensight.ensvariable("sumFSY")
sumFSZ=ensight.ensvariable("sumFSZ")
# place these variables into storage array for printing
print "---------------- Force Summary --------------------"
print " Fx Fy Fz"
print "Shear Force : ",sumFSX[0], sumFSY[0], sumFSZ[0]
ensight.part.select_begin(surface_part_num)
# WSS = TauU,TauV,TauW
#|WSS| =Mod_Tau
ensight.variables.evaluate("Mod_Tau=SQRT(TauU^2+TauV^2+TauW^2)")
ensight.variables.evaluate("I_Mod_WSS = TempMean(plist,Mod_Tau, "
+ str(tbegin) + " , " + str(tend) + ")")
ensight.variables.evaluate("I_WSS = TempMean(plist,Tau, "
+ str(tbegin) + " , " + str(tend) + ")")
ensight.variables.evaluate("Mod_I_WSS=SQRT(I_WSS[X]^2+I_WSS[Y]^2+
I_WSS[Z]^2)")
ensight.variables.evaluate("OSI=0.5*(1-(Mod_I_WSS/I_Mod_WSS))")
ensight.variables.evaluate("RRT = 1/((1-2*OSI)*Mod_I_WSS)")
ensight.variables.evaluate("ECAP = OSI/Mod_I_WSS")
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[43] Allen Jeremias, Steven D Filardo, Robert J Whitbourn, Robert S Kernoff, Alan C Yeung,
Peter J Fitzgerald, and Paul G Yock, Effects of intravenous and intracoronary adenosine
5?-triphosphate as compared with adenosine on coronary flow and pressure dynamics, Cir-
culation 101 (2000), no. 3, 318–323.

[44] John F. Jr. LaDisa, Ronak J. Dholakia, C. Alberto Figueroa, Irene E. Vignon-Clementel,
Frandics P. Chan, Margaret M. Samyn, Joseph R. Cava, Charles A. Taylor, and Jeffrey A.
Feinstein, Computational simulations demonstrate altered wall shear stress in aortic coarc-
tation patients treated by resection with end-to-end anastomosis, Congenital Heart Disease
6 (2011), no. 5, 432–443.

[45] HJ Kim, IE Vignon-Clementel, JS Coogan, CA Figueroa, KE Jansen, and CA Taylor,
Patient-specific modeling of blood flow and pressure in human coronary arteries, Annals of
biomedical engineering 38 (2010), no. 10, 3195–3209.

[46] I. Kokalari, T. Karaja, and M. Guerrisi, Review on lumped parameter method for modeling
the blood flow in systemic arteries, Journal Biomedical Science and Engineering, 2013.



REFERENCES 157

[47] Bon-Kwon Koo, Andrejs Erglis, Joon-Hyung Doh, David V Daniels, Sanda Jegere, Hyo-
Soo Kim, Allison Dunning, Tony DeFrance, Alexandra Lansky, Jonathan Leipsic, et al.,
Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve
computed from coronary computed tomographic angiograms: results from the prospective
multicenter discover-flow (diagnosis of ischemia-causing stenoses obtained via noninvasive
fractional flow reserve) study, Journal of the American College of Cardiology 58 (2011),
no. 19, 1989–1997.

[48] Bon-Kwon Koo, Hyun-Jai Kang, Tae-Jin Youn, In-Ho Chae, Dong-Joo Choi, Hyo-Soo
Kim, Dae-Won Sohn, Byung-Hee Oh, Myoung-Mook Lee, Young-Bae Park, et al., Physio-
logic assessment of jailed side branch lesions using fractional flow reserve, Journal of the
American College of Cardiology 46 (2005), no. 4, 633–637.

[49] Vignon-Clementel IE Kim HJ Xiao N Ellwein LM Chan FP Feinstein JA Taylor CA LaDisa
JF Jr, Alberto Figueroa C, Computational simulations for aortic coarctation: representative
results from a sampling of patients., J Biomech Eng 133 (2011), no. 9.

[50] J. Lantz, J. Renner, and M. Karlsson, Wall shear stress in a subject specific human aorta.
influence of fluid-structure interaction, Internal Journal of Applied Mechanics 4 (2011),
no. 3, 759–778.

[51] Engvall J Karlsson M Lantz J, Ebbers T, Numerical and experimental assessment of turbu-
lent kinetic energy in an aortic coarctation., J Biomech 46 (2013), no. 11, 1851–1858.

[52] Kevin D. Lau and Alberto Figueroa Alvarez, Simulation of short-term pressure regulation
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