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Figure 5.11: Armadillo100K intersecting Horse100K (left). Intersection boundary
surfaces (top-right) and reduced contact point normals (bottom-right)

Total BVH FindITP MergeIC FindCP RayCDG

All 30 1 17 1 9 1.8
No b-DOP-T 1753 1 1705 1 9 32

Tint = 1 33 1 20 1 9 1.8
No P Flood 34 1 17 1 13 1.8

Table 5.2: Columns: Timings in milliseconds for the phases of the CD algorithm.
Rows: Effect of the various optimizations in the configuration shown in Figure 5.11.
The CD algorithm finds in a single intersection curve formed by 1296 ITP that bounds a
total of 20062 triangles in 44 internal patches and 12 intersecting patches, and generates
56 reduced contact points. BVH column includes coarse BVH refit, intersection and
raycast. The first row includes all optimizations. No b-DOP-T performs brute-force
intersection and raycast tests on all CDG triangles in all elements overlapped in the
coarse BVH. Tint = 1 disables the dynamic “leaf” strategy in b-DOP-Tree intersection
tests. No P Flood disables CDG patch-level navigation during flood that forces it to
consider 7483 additional triangles individually and avoids O(1) transformation of patch
centroids and vector areas.

the simulation benchmarks in Figure 5.10, that peak at 16ms for the same level of

detail.
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The overall results are qualitatively and quantitatively satisfactory. Moderately

intersecting models with up to 100K visualization triangles can be processed in less

than 1/60s in our modest test hardware (Intel Core i5-2500K at 3.3 GHz), with an

output-sensitive computational cost that grows with the geometric complexity of the

intersection region. Our single-core C++11 implementation is reasonably fast but

still leaves much room for low level optimization, such as avoiding all dynamic memory

allocation (std::vector, std::unordered map) and using SIMD for math-heavy geometric

transformations and tests. Our basic coarse BVH refit would benefit from a more

efficient alternative. Different phases of the algorithm could be performed in parallel

on both objects, and aligned raycasts along the global normal could be optimized.

For highly detailed surfaces the results justify the increased geometric feature count

caused by triangle mesh partitioning along tetrahedron boundaries. This increased

complexity could be reduced if the CD geometry is allowed to diverge from the vi-

sualization geometry, using per-patch mesh simplification while keeping inter-patch

boundary edges unmodified. In a production environment this process could be artist-

guided in order to ensure optimal accuracy in the most relevant parts of a model.

5.7 Discussion

We proposed the use of a specific collision detection geometry with a partitioned surface

representation decoupled from the visualization geometry and barycentrically embed-

ded in a coarse simulation tetrahedral mesh. The partitioned representation enables

several algorithmic and low level optimizations that yield an efficient scheme for highly

detailed collision geometry.

Our contact determination approach uses an averaged definition of the contact

normal that is robust in presence of high frequency surface detail and severe inter-

penetrations, both source of problems in other methods, and can be considered global

for topologically simple intersection regions. The proposed scheme can be used in

isolation if objects are allowed to interpenetrate, or, more efficiently, in conjunction

with an exterior proximity-based approach, acting as a robust fallback method in case

of unavoidable intersection. The optimized CDG representation could be used for

proximity-based detection in non-intersecting areas in close proximity to implement a

hybrid proximity/intersection contact determination method.

As a limitation, our approach requires surface intersection and cannot detect com-

pletely contained objects. We will address this issue using the internal tetrahedron

volume. Additionally, we cannot reliably solve general, topologically complex intersec-

tions, a limitation shared by previous works. This is an avenue for future research.

We also plan to deal with self-collision using the CDG acceleration structures and the

O(1) deformed patch vector area normals.
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Conclusions and Future Work

6.1 Summary

This thesis is the result of our work on the interactive simulation of elastically de-

formable solids for videogames and related application areas defined by strict robust-

ness and efficiency requirements but weak physical accuracy demands. Our research

focused on the solution of practical problems encountered during the development of a

state-of-the-art corotational linear FEM simulation library, and resulted in new meth-

ods to solve them. Our main contributions are summarized next

• In Chapter 3 we described a fast and robust simulation scheme for deformable

solids modelled using corotational linear FEM, and analyzed the multiple trade-

offs between accuracy and computational cost. We proposed a new stress differ-

ential approximation that improves the accuracy of inexact implicit integration

for large deformations and closely matches the fully-implicit solution with minor

computational overhead.

• In Chapter 4 we dealt with degenerate element treatment, a critical problem

in FEM-based simulation. Building on our previously published work [CFS14],

we presented an improved degeneration-aware polar decomposition method that

guarantees the smothness of extracted rotations and benefits numerical solver

convergence.

• In Chapter 5 contact determination for intersecting deformable solids was consid-

ered, and we presented an end-to-end solution that includes efficient automatic

101
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tetrahedralization, precomputation of a dedicated geometry representation with

an embedded memory-efficient BVH, and a flood-based contact determination

algorithm that uses a new definition of contact normals. A long paper describing

this work has been accepted at Motion in Games 2015.

6.2 Conclusions

Simulation of deformable solids in videogames has been very limited so far. Our hy-

pothesis is that computational cost and robustness issues stop its widespread use.

The current trend in the field focuses on Position Based Dynamics (PBD) meth-

ods. This model is very popular for cloth and hair simulation in videogames for its

simplicity, efficiency and stability, and can be applied to deformable solids using ei-

ther a geometrically motivated shape-matching constitutive model [BMOT13], or a

strain-based approach that uses elastic energy as an energy constraint to be minimized

[BKCW14, MCKM14]. Neither option is consistently derived from continuum mechan-

ics, and both use unphysical material parameters and yield discretization-dependent

results. The recently introduced projective dynamics approach [BML+14] combines

the simplicity and efficiency of PBD with a continuum mechanics foundation that re-

duces discretization-dependence of the simulation results, but still relies on unphysical

material parameters. On the other hand, the Finite Element Method applied to con-

tinuum mechanics is generally considered too expensive, specially in case of higher

order elements and nonlinear materials. Consistent approximations are possible within

the FEM framework, and the corotational linear constitutive model offers a suitable

compromise between accuracy, efficiency and robustness. We hope that our contribu-

tions will help physically-consistent FEM schemes close the gap with more pragmatic

alternatives like PBD.

The decision to use coarse simplex meshes for simulation and barycentrically embed-

ded detailed geometry for visualization and contact allowed us to achieve fast update

rates with moderate CPU cost while preserving visual detail. Non-conforming, strictly

bounding tetrahedral meshes have proved to be an efficient choice for CPU-limited in-

teractive simulation. This approach allows fast GPU-based surface deformation for

visualization, and is directly compatible with the standard approach for character

rendering using kinematic skeletal animation with linear-blend skinning available in

virtually all videogame engines.

Contact determination is an essential part of interactive simulation, and repre-

sents a large fraction of the computational effort required. Proximity-based methods

are generally preferred, but cannot strictly avoid solid geometry intersection. Robust

and efficient treatment of intersecting contact for highly-detailed geometry is a problem

scarcely addressed in interactive simulation research. The state-of-the-art is dominated
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by GPU-based volumetric methods using LDI or sphere-based geometry representa-

tions that lead to uniform brute-force computations, but are limited in both geometric

resolution and topologic complexity. Flood-based methods are better suited to CPU

execution due to their complex combinatorial nature, but allow higher-level reason-

ing on contact regions, essential for global contact determination and treatment. Our

proposed flood-based method is fast for shallow interpenetrations and offers improved

robustness for moderately deep intersections.

6.3 Future work

Corotational linear FEM with implicit Euler integration has numerous limitations that

we’d like to overcome in future work:

• Energy dissipation: Implicit Euler integration provided us with very good sta-

bility for large timesteps at the cost of energy dissipation. In future work we’ll

experiment with more accurate methods.

• Stiff materials and strain limiting: At present we’re limited to soft, moder-

ately compressible materials, it would be interesting to incorporate ideas from

constraint-based elasticity [SLM06, TNGF15] to support stiff materials and com-

pliant strain limits.

• Nonlinear materials: Linear materials offer very limited realism in presence of

large stretches and extreme compression. We performed some tests using the non-

linear Corrected Corotated Model (CCM) that includes incompressibility terms

and can also benefit from DAPD rotations. The results were satisfactory but

impractical for real-time purposes, requiring several Newton-Raphson iterations

to converge robustly. We plan to experiment with CCM approximations that

allow for faster, unconditional convergence.

• Nondegeneration constraints and DAPD drift-control: We performed some pre-

liminary experiments on degeneration prevention through reaction constraints

embedded in the linear system solver using the continuous-time DAPD degen-

eration direction d̂c as the constraint gradient, and DAPD forces for constraint

stabilization. This prevented inversion even for extreme gravity, but required

several Newton-Raphson iterations to become stable, and eventually diverged.

Further research could help reduce computational cost and ensure convergence.

• Fracture: Our partitioned surface representation is suitable for fast pre-scored

fracture along element boundaries, that will be considered in the near future.

• Plasticity: Although not reported in this document, we have implemented basic

plasticity using additive strain decomposition. It would be interesting to study
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the interplay between plasticity and element degeneration, and compare the be-

haviour of additive and multiplicative strain decompositions on degeneration.

Regarding geometry representation and contact determination, several avenues for

future work are worth exploring:

• Tetrahedralization: Our simplistic mesh-generation method in Section 5.3.1 could

be improved with additional optimization criteria, apart from the ODT energy,

and a more complex global optimization scheme based in random node pertur-

bation, at a higher precomputation cost.

• Hybrid proximity/intersection contact determination: The application of our

dedicated contact geometry representation (CDG) for proximity-based contact

determination will hopefully result in a hybrid scheme that combines the best of

both approaches, and will be also used for self-collision detection.

• Parallelization and GPU-acceleration: Flood-based contact determination could

be accelerated by parallelization and delegation of specific subtasks to the GPU,

such as massive aligned raytracing.

• Solid object untangling: Solving topologically complex intersection configurations

is an open problem. We plan to address it by extending our efficient flood-based

scheme using global topologic analysis of the intersection regions.
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Appendix

A.1 Derivation of PD and δPD

In this appendix we discuss the exact derivation of PD and δPD from the degeneration-

aware corotational stiffness tensor εD = 1
2 (ŜT + Ŝ) − I. The matrix Ŝ = R̄TF is

asymmetric in general, and results from the rotation R̄ obtained by polar decompo-

sition of a modified deformation F̄ = D̄sD−1
m , where D̄s is computed as described in

Section 4.4.2. The computation can be simply stated as:

D̄s = Ds + Ū (A.1)

F̄ = F + ŪD−1
m (A.2)

δF̄ = δF + δŪD−1
m (A.3)

where Ū is results from the case-dependent displacements applied by the DAPD scheme

and is 0 for undegenerate configurations. We define the intermediate matrix A and its

differential

A = ŜT + Ŝ, δA = δŜT + δŜ (A.4)

and rewrite the strain tensor and its differential as

εD =
1

2
A− I, δεD =

1

2
δA (A.5)

105
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We will use the following properties of the trace

tr(αA) = α tr(A)

tr(A) = tr(AT )

tr(AB) = tr(BA)

tr(ATB) = tr(ABT )

tr(A+AT ) = 2 tr(A)

tr(A(B + BT )) = 2 tr(AB) if A = AT

tr(ATA) = ‖A‖2F
tr(AB) = AT : B

and rewrite the elastic energy ΨD as

ΨD = µ‖εD‖2F +
λ

2
tr2(εD) (A.6)

= µ tr(εTDεD)︸ ︷︷ ︸
Ψµ

+
λ

2
tr2(εD)︸ ︷︷ ︸

Ψλ

(A.7)

with

Ψµ = µ tr

[
(
1

2
A− I)T (

1

2
A− I)

]
(A.8)

= µ tr

[
1

4
ATA− 1

2
ATI − 1

2
ITA+ ITI

]
(A.9)

= µ

[
1

4
tr(ATA)− tr(A) + tr(I)

]
(A.10)

In order to compute PD = ∂ΨD
∂F we follow a derivation similar to the Technical

Notes in [MZS+11a]. We begin with

δΨD =
∂ΨD

∂F
: δF (A.11)

= (
∂Ψµ

∂F
+
∂Ψλ

∂F
) : δF (A.12)

= δΨµ + δΨλ (A.13)

and compute each differential separatedly

δΨλ = 2
λ

2
tr(εD) tr(δεD) (A.14)

=
λ

2
tr(εD) tr(δA) (A.15)
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and

δΨµ = µ

[
1

4
tr(δATA+AT δA)− tr(δA)

]
(A.16)

= µ

[
1

2
tr(AT δA)− tr(δA)

]
(A.17)

= µ tr
(
(
1

2
AT − I)δA

)
(A.18)

= µ tr(εDδA) (A.19)

At this point, for undegenerate configurations with R̄ = R, F̄ = F and Ŝ = S = ST

it can be shown that

tr(δA) = 2 tr(δS) = 2 tr(RT δF + δRTF) = 2 tr(RT δF) (A.20)

thanks to the cancellation

tr(δRTF) = tr(δRTRS) = 0 (A.21)

because δRTR is skew-symmetric and S is symmetric (see [MZS+11a] and its accom-

paining Technical Notes). Therefore, the undegenerate energy differential would be

δΨ′D = 2µ tr(εDδS) + λ tr(εD) tr(δS) (A.22)

= 2µ tr(εDRT δF) + λ tr(εD) tr(RT δF) (A.23)

= R
[
2µεD + λ tr(εD)I

]
: δF (A.24)

and result in the stress

P ′D = R
[
2µεD + λ tr(εD)I

]
(A.25)

However, in degenerate configurations with R̄ 6= R and F̄ 6= F the matrix Ŝ 6= S is

not symmetric, and Equation (A.20) does not hold. Instead, we need to consider all

terms in Equation (A.4)

δŜ = δR̄TF + R̄T δF (A.26)

δA = δŜT + δŜ (A.27)

= (FT δR̄+ δFT R̄) + (δR̄TF + R̄TF) (A.28)

= R̄T δF + δFT R̄︸ ︷︷ ︸
δAF

+FT δR̄+ δR̄TF︸ ︷︷ ︸
δAR̄

(A.29)
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We can now split δΨ into δF and δR̄ parts:

δΨ = δΨµ + δΨλ (A.30)

= µ tr(εDδA) +
λ

2
tr(εD) tr(δA) (A.31)

= µ tr(εD(δAF + δAR̄)) +
λ

2
tr(εD) tr(δAF + δAR̄) (A.32)

= µ tr(εDδAF ) +
λ

2
tr(εD) tr(δAF )︸ ︷︷ ︸

δΨF

+µ tr(εDδAR̄) +
λ

2
tr(εD) tr(δAR̄)︸ ︷︷ ︸

δΨR̄

(A.33)

the first part is analogous to the undegenerate case Ψ′D.

δΨF = µ tr(εD(R̄T δF + δFT R̄)) +
λ

2
tr(εD) tr(R̄T δF + δFT R̄) (A.34)

= 2µ tr(εDR̄T δF) + λ tr(εD) tr(R̄T δF) (A.35)

= R̄
[
2µεD + λ tr(εD)I

]
: δF (A.36)

= P̂D : δF (A.37)

the second part does not vanish for degenerate configurations, and becomes

δΨR̄ = µ tr(εD(δR̄TF + FT δR̄)) +
λ

2
tr(εD) tr(δR̄TF + FT δR̄) (A.38)

= 2µ tr(εDFT δR̄) + λ tr(εD) tr(FT δR̄) (A.39)

= F
[
2µεD + λ tr(εD)I

]
: δR̄ (A.40)

...

= P̌D : δF (A.41)

where the modified rotation differential δR̄ can be computed from the polar decomposi-

tion F̄ = R̄S̄ using Equation (3.13), that requires the evaluation of δF̄ = δF+δŪD−1
m .

The term δŪ involves the DAPD magnitudes d̂c and λ(w, h) and their differentials, de-

tailed in Section 4.4.2, which ultimately depend on the persistent collapse feature pair

(A,B) and the instantaneous F and δF . Unfortunately, due to this highly complex

functional dependency we were unable to find a compact expression for P̌D similar to

the one obtained for P̂D. However, we can still reason about Equation (A.40) and

conclude that (i) the computational cost of evaluating P̌D is necessarily higher than

P̂D due to the complexity of the R̄ term and that (ii) P̌D vanishes if we truncate the

rotation differentials δR̄ = 0.

Finally, the total energy differential

δΨD = δΨF + δΨR̄ (A.42)

= (P̂D + P̌D) : δF (A.43)
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yields the exact stress and stress differential

PD = P̂D + P̌D (A.44)

δPD = δP̂D + δP̌D (A.45)

where the first summands are analogous to the undegenerate case

P̂D = R̄
[
2µεD + λ tr(εD)I

]
(A.46)

δP̂D = 2µδF̄ + λ tr(R̄T δF̄)R̄+ [λ tr(εD)− 2µ]δR̄ (A.47)

and P̌D, δP̌D have no known compact expression, but vanish simultaneously if we

assume δR̄ = 0.

A.2 Computing the potential of a vector field

Given a vector field ~g(x, y) we want to recover the scalar potential field h(x, y) that

generated it, if it exists. To do so, we will solve the partial differential equation

~g(x, y) = ∇h(x, y)

that requires a boundary condition to yield a fully determinate solution. In our case,

the boundary condition will be h(x0, y0) = h0.

For our purposes, the input vector field gi,j and the solution scalar field hi,j are

sampled on an axis-aligned regular grid [1..Nx] × [1..Ny] formed by rectangular cells

with sizes ∆x × ∆y. In this specific circumstances we can easily solve the partial

differential equation at the grid cells using finite differences

hi+1,j − hi,j
∆x

=
fxi+1,j + fxi,j

2

hi,j+1 − hi,j
∆y

=
fyi,j+1 + fyi,j

2

Assuming that a solution exists, any discrete integration path in a conservative vec-

tor field derived from a scalar potential must yield approximately the same results.

Therefore, we can (i) first propagate the boundary value hi0,j0 = h0, both forward and

backwards, along one axis (eg. X) using the first equation to obtain a 1-dimensional

solution for h1...i0...Nx,j0 , and, (ii) afterwards use the solutions hi,j0 as the boundary

conditions for Ny 1-dimensional problems hi,1...j0...Ny in the orthogonal axis Y , solved

with the second equation.

If the vector field gi,j is actually the gradient of a scalar field, repeating the previous

process using two different axis orderings, X → Y and Y → X, must yield the same

approximate solution. Therefore, if the scalar fields recovered for a given vector field

are different we can effectively discard that the vector field is conservative. This result

is used in Section 4.4.6. Figure A.1 shows the identical scalar fields recovered from an

actually conservative force field.
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Figure A.1: Energy fields recovered from a force field using X → Y (left) and Y → X
(middle) paths. Notice the negligible relative error below 0.001 (right).

A.3 Exact V-F and E-E vector area contact normals

We prove that for the basic vertex-face and edge-edge contact cases between a pair

of triangulated surfaces, the vector area contact normal n̂V is exactly the same that

would be computed by the proximity-based approach

• V-F: A vertex vA with degree k on ΓA pierces a triangular face TB on ΓB ,

resulting in a flat k-sided polygonal intersection curve completely included in

TB . The vector area returns the polygon area times the triangle unit normal, as

expected.

• E-E: A pair of edges pierce each other’s adjacent faces in 4 intersection points

q0 . . . q3 that define a tetrahedron-shaped intersection volume ΩiAB . The tetra-

hedron is bound by 2 triangle faces on each ΓiA,Γ
i
B , adjacent to their contributed

triangle edge segments eA = q1 − q0 and eB = q3 − q2. The proximity-based

contact normal direction would be aligned with eB × eA. The vector area com-

puted on ΓiA as the sum the area weighted triangle normals of its contributed

faces T012 and T031 adjacent to eA yields the same result

NV = (q1 − q0)× (q2 − q0) + (q3 − q0)× (q1 − q0)

= (q1 − q0)× (q2 − q0)− (q1 − q0)× (q3 − q0)

= (q1 − q0)×
(
(q2 − q0)− (q3 − q0)

)
= (q1 − q0)× (q2 − q3)

= eA ×−eB
= eB × eA

A.4 Vector area transformation

Given the affine deformation F = DsD−1
m that relates reference Dm and deformed

Ds configurations of a simplex in 2D or 3D, we show how to compute the required
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summation over all triangles of an embedded geometry patch from its precomputed

vector area in reference configuration in O(1), regardless of the patch triangle count.

The undeformed vector area is:

Nm
V =

1

2

∑
(u× v)

When the patch deforms, we use the cross-product affine transformation Fu × Fv =

det(F)F−T (u×v) from [Bar84], where det(F)F−T is the transposed adjugate adj(F)T

to obtain:

N s
V =

1

2

∑
adj(F)T (u× v) =

1

2
adj(F)TNm

V

that can be computed in O(1) if Nm
V is available.
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