
Universiteit Gent
Faculteit Ingenieurswetenschappen

en Architectuur
Vakgroep Elektronica en Informatiesystemen

Automated Design of Domain-SpeciVc Custom
Instructions

Geautomatiseerd ontwerp van domeinspeciVeke gespecialiseerde
instructies

Cecilia González-Álvarez

Promotoren: Prof. Dr. Ir. Lieven Eeckhout
Prof. Dr. Daniel Jiménez-González
Prof. Dr. Carlos Álvarez

Proefschrift tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen
Academiejaar 2015-2016

Departament d’Arquitectura de Computadors

Automated Design of Domain-SpeciVc Custom
Instructions

Diseño automatizado de instrucciones especializadas para un
dominio especíVco

Cecilia González-Álvarez

Directores: Prof. Dr. Lieven Eeckhout
Prof. Dr. Daniel Jiménez-González
Prof. Dr. Carlos Álvarez

Tesis presentada para obtener el título de
Doctora por la Universitat Politècnica de Catalunya
Programa de Doctorado: Arquitectura de Computadores
Año académico 2015-2016

Acknowledgements

I would like to express my sincere gratitude to my advisors: Daniel
Jiménez-González and Carlos Álvarez at UPC, and Lieven Eeckhout at UGent.
They have guided me with expertise and understanding, and without their
support this thesis would have never been possible.

I would also like to thank people I met at each step of my PhD jour-
ney. First, I thank my supervisor at BSC, Xavier Martorell for his guidance
and support, and my colleagues at BSC and UPC for all the great moments
shared. Also, a very special thanks goes to Hironori Kasahara, professor at
Waseda University, for all the encouragement during the year and a half
that I spent in Japan. At last, I also would like to thank my colleagues at
UGent, with special thanks to Jennifer Sartor for her help and support.

Of course, I would like to thank my family and friends for all the best
moments shared that lighted up the darkest times. Special thanks go to my
parents and Klaas for their loving encouragement.

Finally, this research would not have been possible without the Vnan-
cial assistance of the Severo Ochoa program (SEV-2011-00067), the Span-
ish Ministry of Science and Technology (TIN2012-34557), the Generalitat
de Catalunya (MPEXPAR, 2009-SGR-980), HiPEAC3 Network of Excellence
(FP7/ICT 287759), the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) / ERCGrant agree-
ment no. 259295, the Xilinx University Program, and the Japanese Ministry
of Education. I express my gratitude to those agencies.

Ghent, 24/09/2015
Cecilia González Álvarez

Summary

In the last years, hardware specialization has received renewed atten-
tion as chips approach a utilization wall. Specialized accelerators can take
advantage of underutilized transistors implementing custom hardware that
complements the main processor. However, specialization adds complexity
to the design process and limits reutilization. Application-SpeciVc Instruc-
tion Processors (ASIPs) balance performance and reusability, extending a
general-purpose processor with custom instructions (CIs) speciVc for an
application, implemented in Specialized Functional Units (SFUs). Still, time-
to-market is a major issue with application-speciVc designs because, if CIs
are not frequently executed, the acceleration beneVts will not compensate
for the overall design cost. Domain-speciVc acceleration increases the ap-
plicability of ASIPs, as it targets several applications that run on the same
hardware. Also, reconVgurable SFUs and the automation of the CIs design
can solve the aforementioned problems. In this dissertation, we explore
diUerent automated approaches to the design of CIs that extend a baseline
processor for domain-speciVc acceleration to improve both performance and
energy eXciency.

First, we develop automated techniques to identify code sequences within
a domain to create CI candidates. Due to the disparity among coding styles
of diUerent programs, it is diXcult to Vnd patterns that are represented by
a unique CI across applications. Therefore, we propose an analysis at the
basic block level that identiVes equivalent CIs within and across diUerent
programs. We use the Taylor Expansion Diagram (TED) canonical repre-
sentation to Vnd not only structurally equivalent CIs, but also functionally
similar ones, as opposed to the commonly applied directed acyclic graph
(DAG) isomorphism detection. We combine both methods into a new Hy-
brid DAG/TED technique to identify more patterns across applications that
map to the same CI. Then, we select a subset of the CI candidates that Vts
in the available SFU area. Because of the complexity of the problem, we
propose four scoring heuristics to reduce the design space and smooth the
potential performance speedup across applications. We include these me-

iv Summary

thods in the FuSInG framework, and we estimate performance with hard-
ware models on a set of media benchmarks. Results show that, when lim-
iting core area devoted to specialization, the SFU customization with the
largest speedups includes a mix of application and domain-speciVc custom
instructions.

If we target larger CIs to obtain higher speedups, reusability across
applications becomes critical; without enough equivalences, CIs cannot be
generalized for a domain. We aim to share partially common operations
among CIs to accelerate more code, especially across basic blocks, and to
reduce the hardware area needed for specialization. Hence, we create a
new canonical representation across basic blocks, the Merging Diagram, to
facilitate similarity detection and improve code coverage. We also intro-
duce clustering-based partial matching to identify partially-similar domain-
speciVc CIs, which generally leads to better performance than application-
speciVc ones. Yet, at small areas, merging two CIs induces a high additional
overhead that might penalize energy-eXciency. Thus, we also detect frag-
ments of CIs and we join them with the existing merged clusters resulting
in minimal extra overhead. Also, using speedup as the deciding factor for
CI selection may not be optimal for devices with limited power budgets. For
that reason, we propose a linear programming-based selection that balances
performance and energy consumption. We implement these techniques in
theMInGLE framework and evaluate themwith media benchmarks. The se-
lected CIs signiVcantly improve the energy-delay product and performance,
demonstrating that we can accelerate a domain covering more code while
reducing the needed area for the CI implementation.

Resumen

La especialización de hardware ha recibido renovado interés debido
al utilization wall, ya que transistores infrautilizados pueden implementar
hardware a medida que complemente el procesador principal. Sin embargo,
el proceso de diseño se complica y se limita la reutilización. Procesadores de
instrucciones para aplicaciones especíVcas (ASIPs) equilibran rendimiento
y reuso, extendiendo un procesador con instruciones especializadas (custom
instructions – CIs) para una aplicación, implementadas en unidades fun-
cionales especializadas (SFUs). No obstante, los plazos de comercialización
suponen un obstáculo en diseños especíVcos ya que, si las CIs no se ejecu-
tan con frecuencia, los beneVcios de la aceleración no compensan los costes
de diseño. La aceleración de un dominio especíVco incrementa la aplicabili-
dad de los ASIPs,acelerando diferentes aplicaciones en el mismo hardware,
mientras que una SFU reconVgurable y un diseño automatizado pueden re-
solver los problemas mencionados. En esta tesis, exploramos diferentes al-
ternativas al diseño de CIs que extienden un procesador para acelerar un
dominio, mejorando el rendimiento y la eVciencia energética.

Proponemos primero técnicas automatizadas para identiVcar código ace-
lerable en un dominio. Sin embargo, la identiVcación se ve diVcultada por
la diversidad de estilos entre diferentes programas. Por tanto, proponemos
identiVcar en el bloque básico CIs equivalentes utilizando la representación
canónica Taylor Expansion Diagram (TED). Con TEDs encontramos no só-
lo código estructuralmente equivalente, sino también con similitud fun-
cional, en contraposición a la detección isomórVca de grafos acíclicos di-
rigidos (DAG). Combinamos ambos métodos en una nueva técnica híbrida
DAG/TED, que identiVca en varias aplicaciones más secuencias represen-
tadas por la misma CI. Tras esto, seleccionamos un subconjunto de CIs que
puede ser contenido en el área de la SFU. Por la complejidad del proble-
ma, proponemos cuatro heurísticas de selección para reducir el espacio de
búsqueda y homogeneizar el rendimiento de las aplicaciones. Incluimos es-
tas técnicas en la infraestructura FuSInG y estimamos el rendimiento para
un conjunto de benchmarks multimedia. Los resultados muestran que, al

vi Resumen

limitar el área de especialización, la conVguración de la SFU con las mayores
ganancias incluye una mezcla de CIs especíVcas tanto para una aplicación
como para todo el dominio.

Si nos centramos en CIs más grandes para obtener mayores ganancias,
la reutilización se vuelve crítica; sin suVcientes equivalencias las CIs no
pueden ser generalizadas. Nuestro objetivo es que las CIs compartan par-
cialmente operaciones, especialmente a través de bloques básicos, y reducir
el área de especialización. Por ello, creamos una representación canónica
de CIs que cubre varios bloques básicos, Merging Diagram, para mejorar
el alcance de la aceleración y facilitar la detección de similitud. Además,
proponemos una búsqueda de coincidencias parciales basadas en clustering
para identiVcar CIs de dominio especíVco parcialmente similares, las cuales
derivan generalmente mejor rendimiento. Pero en áreas reducidas, la fusión
de CIs induce un coste adicional que penalizaría la eVciencia energética.
Así, detectamos fragmentos de CIs y los unimos con grupos de CIs previa-
mente fusionadas con un coste extra mínimo. Usar el rendimiento como
el factor decisivo en la selección puede no ser óptimo para disposivos con
consumo de energía limitado. Por eso, proponemos un mecanismo de selec-
ción basado en programación lineal que equilibra rendimiento y consumo
energético. Implementamos estas técnicas en la infraestructura MInGLE y
las evaluamos con benchmarks multimedia. Las CIs seleccionadas mejoran
notablemente la eVciencia energética y el rendimiento, demostrando que
podemos acelerar un dominio cubriendo más código a la vez que reducimos
el área de implementación.

Samenvatting

In de afgelopen jaren heeft hardwarespecialisatie opnieuw aandacht ge-
kregen omdat chips de utilization wall naderen, door de vertraging van het
schalen van de voedingsspanning. Gespecialiseerde acceleratoren kunnen
proVteren van onderbenutte energiezuinige transistors door de implemen-
tatie van aangepaste hardware die de hoofdprocessor aanvullen. Echter,
specialisatie verhoogt de complexiteit van het ontwerpproces en beperkt
de Wexibiliteit wat betreft circuit hergebruik. Applicatie-SpeciVeke Instruc-
tieset Processors (ASIPs) houden rekening met zowel prestaties als Wexi-
biliteit. Ze breiden een “general-purpose processor” uit met aangepaste ins-
tructies voor speciVeke toepassingen, geïmplementeerd in Specialized Func-
tional Units (SFUs). Het ontwerpproces kan vereenvoudigd worden met
geautomatiseerde technieken die gespecialiseerde instructies (Eng: Custom
Instructions – CIs) identiVceren, selecteren en implementeren. De “time-
to-market” is echter een groot probleem bij applicatie-speciVeke ontwer-
pen. Indien CIs niet vaak worden uitgevoerd wegen de voordelen van
versnelling niet op tegen de totale ontwerpkosten. DomeinspeciVeke ver-
snelling verhoogt de toepasbaarheid van ASIPs, als ze zich kunnen richten
op verscheidene toepassingen die op dezelfde hardware in dezelfde tijdspe-
riode uitgevoerd worden. In dit proefschrift onderzoeken we verschillende
benaderingen wat betreft het ontwerp van de CIs die een baseline proce-
ssor voor domeinspeciVeke acceleratie uitbreiden om de herbruikbaarheid
te verhogen en om zowel de prestatie als energie-eXciëntie te verbeteren.

Allereerst ontwikkelen we geautomatiseerde technieken om codesequen-
ties die versneld kunnen worden tussen verschillende toepassingen binnen
een domein te identiVceren. Iedere onafhankelijke sequentie is en nieuwe
CI kandidaat die op een SFU kan uitgevoerd worden. CIs die zich richten op
een volledig domein zijn een veelbelovende optie. Het verschil in codeerstij-
len van verschillende programma’s maakt het echter moeilijk om patronen
in code te identiVceren die door een unieke CI kunnen worden vervangen.
Bijgevolg stellen we een analyse op het basisblok voor die gelijkwaardige
CIs binnen hetzelfde programma en over de verschillende programma’s

viii Samenvatting

heen herkent. We gebruiken hiervoor het Taylor Expansion Diagram (TED)
om niet alleen structureel maar ook functioneel gelijkwaardige stukken code
te vinden, in tegenstelling tot de vaak toegepaste direct acyclische graVek
(DAG) isomorVsme detectie. We combineren ook beide methodes in een
nieuwe hybride DAG/TED-techniek. Dit helpt ons meer sequenties te iden-
tiVceren uit meerdere toepassingen die op dezelfde CI gemapt kunnen wor-
den. Hierdoor kunnen hogere versnellingen bereikt worden in een kleinere
chip area.

Vervolgens, om grotere versnellingen te verkrijgen, richten we ons op
CIs die grotere codesequenties dan een basisblok versnellen. Maar als de
beschikbare oppervlakte voor de implementatie beperkt is, wordt herbruik-
baarheid van de hardware een kritieke factor. Echter, als we niet genoeg
overeenkomsten over toepassingen vinden, kunnen CIs niet gegeneraliseerd
worden voor een domein. Wij streven ernaar, speciVek tussen basisblokken,
om gedeeltelijk gemeenschappelijke operaties te delen tussen CIs om de
code die versneld kan worden uit te breiden en om de hardware ruimte
die nodig is voor specialisatie te verminderen. Daarom creëren we een
nieuwe canonieke representatie van CIs doorheen basisblokken: het Mer-
ging Diagram. Deze nieuwe representatie verbetert gelijkheidsdetectie en
codedekking ten opzichte van eerdere methoden. Ook introduceren we
clustering-based matching die gecombineerd word in samengevoegde CIs
om oppervlakte voor implementatie te besparen. Deels samengevoegde
domein-speciVeke CIs leiden over het algemeen tot betere prestaties dan
applicatie-speciVeke CIs. Toch zorgt op kleine oppervlaktes het samenvoe-
gen van twee extra CIs voor hoge overheadkosten die energie-eXciëntie
kunnen verminderen. Zodus sporen we ook fragmenten van CIs op die
slechts gedeelten van eerder gegenereerde en/of samengevoegde CIs bevat-
ten. Wij verbinden de fragmenten van CIs met de bestaande samengevoegde
clusters, wat resulteert in minder oppervlakte overhead dan volledige CI
samenvoegen. Deze technieken zorgen voor het uitbreiden van de ver-
snellingsmogelijkheden van CIs, omdat er meer code wordt versneld terwijl
de ruimte die nodig is voor de CI-implementatie verkleind wordt.

Bij de laatste stap van het CI-ontwerp, wordt een selectie gemaakt van
subsets van CIs die passen in de beschikbare SFU-ruimte. De complexiteit
van het probleem en de grote CI ontwerpruimte voor een volledig toepass-
ingsdomein maakt de selectie rekenkundig uitdagend. Wij stellen vier score
heuristieken voor om snel en eXciënt de ontwerpruimte van CI kandidaten
te doorzoeken. De heuristieken rekenen het verwacht gezamenlijk gebruik
van CIs binnen en over verschillende programma’s uit, met als doel de po-

Summary in Dutch ix

tentiële speedup doorheen applicaties te bereiken, waardoor ze geschikt zijn
voor domeinspeciVeke versnelling. Het gebruiken van de versnelling als
de beslissende factor voor CI selectie kan echter niet optimaal zijn voor
toestellen met een beperkte vermogensvoorraad. Daarom introduceren we
ook energie-eXciëntie tot een nieuwe parameter om rekening mee te houden.
We stellen een op geheeltallig programmering gebaseerd selectie mecha-
nisme voor dat streeft naar een evenwicht tussen versnelling en energie-
verbruik om een hoog-performante en energiezuinige CI-conVguratie te se-
lecteren.

Wij bouwen het exploratie raamwerk FuSInG om codesequenties te ex-
traheren en te analyseren met DAG, TED en Hybrid identiVcatiemethoden,
en om hen te ordenen met score heuristieken. De algemene prestatie wordt
geschat op basis van hardware-modellen doorheen het gehele spectrum van
applicatie-speciVeke en domein-speciVeke versnelling in hardware, gebruik
makend van een aantal multimedia benchmarks. We evalueren onze canon-
ieke representaties voor het ontwerp van domein-speciVeke CIs, en we tonen
dat zij essentieel zijn om meer gelijkstellingen dan structurele voorstellin-
gen zoals DAGs over toepassingen te vinden. We onderzoeken ook de trade-
oUs van verschillende SFU conVguraties om de prestatie van het volledige
systeem met beperkt oppervlakte over toepassingen te optimaliseren. Re-
sultaten tonen aan dat, wanneer de beschikbare chip oppervlakte voor spe-
cialisatie beperkt is, de SFU aanpassing met de grootste speedups een mix
bevat van applicatie- en domeinspeciVeke instructies. Daarnaast hebben we
de resultaten cross-valideerd om te tonen dat de geïdentiVceerde CIs eUec-
tief zijn voor ongeziene toepassingen binnen hetzelfde domein, waarmee
specialisatie meer algemeen toepasbaar maakt.

Ook creëren weMInGLE, een geautomatiseerd raamwerk dat voorlopige
CIs herkent, en deze tot Merging Diagrams transformeert. Dit framework
voegt, afhankelijk van hun gelijkaardigheidsscore, CIs samen. Het frame-
work selecteert, op basis van de geheeltallig programmering techniek, CI
conVguraties die eXciënt de beschikbare ruimte voor specialisatie benutten.
Experimentele resultaten met een set van media benchmarks tonen aan dat,
gemiddeld, versnelling over basisblokken betere speedup en energie-delay
product (EDP) verbetering bereikt dan over een enkele basisblok (speedup
van 1.98× versus 1.48×, EDP verbetering van 3.35× versus 1.67×). Ook
over basisblokken, gedeeltelijke matching bereikt betere speedup en EDP
verbetering in vergelijking met exacte matching, gegeven dezelfde opper-
vlakte (bijv., voor 1.8% van de oppervlakte, speedup van 1.88× versus
1.73× en EDP verbetering van 3.04× versus 2.53×). Bovendien, het uit-

x Samenvatting

gebreide MInGLE+ raamwerk identiVceert, extraheert en selecteert frag-
menten van CIs. Matching met fragmenten gebruikt oppervlakte eUectiever
dan de gedeeltelijke matching (bijv. voor 1% van de oppervlakte, 2× ver-
sus 1.63× en EDP verbetering van 3.65× versus 2.35×). De geselecteerde
CIs verbeteren de prestatie en energie-eXciëntie van toepassingen uit het
multimedia domein aanzienlijk. Dit toont aan dat we een applicatiedomein
eXciënt kunnen versnellen met gedeeltelijk gekoppelde CIs.

Table of Contents

English Summary iii

Resumen en Español v

Nederlandse Samenvatting vii

1. Introduction 1

1.1. Motivation and Context . 1

1.2. Custom Instruction Design 3

1.3. Key Challenges . 4

1.4. Key Contributions . 6

1.5. Key Results . 9

1.6. Publications . 11

1.6.1. Other research activities 11

1.7. Overview . 12

2. Background 13

2.1. Introduction . 13

2.2. Custom Instruction Design 14

2.3. Datapath Accelerators . 15

2.3.1. The Case for Domain Acceleration 18

2.3.1.1. DSFU Design 19

2.3.1.2. Base Processor Integration 20

2.4. Intermediate Code Representations 25

2.4.1. Structural Representations 25

2.4.1.1. IR and SelectionDAG in LLVM 25

2.4.2. Canonical Diagrams 26

2.4.2.1. Binary Decision Diagrams 26

2.4.2.2. Taylor Expansion Diagrams 28

xii Table of Contents

3. Functionally Similar Domain-SpeciVc Instructions 33

3.1. Introduction . 33
3.2. Context . 34
3.3. FuSInG Automatic Framework 35
3.4. IdentiVcation of CI Candidates with DFG Exploration 37
3.5. Instruction Clustering to Discover Equivalences 38

3.5.1. Clustering with DAG Isomorphism 38
3.5.2. Clustering with TED isomorphism 40
3.5.3. Hybrid TED-DAG clustering 41

3.6. Heuristic Selection . 42
3.6.1. Application-SpeciVc Scoring 42
3.6.2. Domain-SpeciVc Scoring 43

3.6.2.1. Scoring 1: Normalized Application-SpeciVc 43
3.6.2.2. Scoring 2: Scaled by Sharing 43
3.6.2.3. Scoring 3: Geometric Mean of Sharing . . 44
3.6.2.4. Scoring 4: Random-Scaled Sharing 44

3.7. Estimating Performance and Area 45
3.8. Experimental Setup . 46
3.9. Results . 49

3.9.1. DAG vs TED vs Hybrid 49
3.9.2. Domain-SpeciVc Scoring 53
3.9.3. Application-SpeciVc vs Domain-SpeciVc ConVgu-

rations . 56
3.9.4. Custom Instruction Analysis 59
3.9.5. Cross-Validation . 61

3.10. Summary . 64

4. Partially Similar Domain-SpeciVc Instructions 65

4.1. Introduction . 65
4.2. Context and Motivation . 66
4.3. MInGLE Framework . 68
4.4. Candidates Extraction: From Application Code to Hard-

ware Acceleration . 68
4.5. Canonicalization of Custom Instructions using Merging Di-

agrams . 70
4.5.1. Merging Diagram Construction 71
4.5.2. Global diagram of variants 74

4.6. Generation of Merged Custom Instructions 74
4.6.1. Distance Calculation 74

Table of Contents xiii

4.6.2. Clustering Custom Instruction Variants 74
4.6.3. Merging Estimation and Modeling 76

4.7. Custom Instruction Selection for an Area Constrained Con-
Vguration . 77

4.8. Complexity . 79
4.9. Evaluation . 79

4.9.1. Experimental Setup 79
4.9.2. Results and Discussion 81

4.10. Summary . 84

5. Fragments of Domain-SpeciVc Instructions 87

5.1. Introduction . 87
5.2. Motivation . 88
5.3. MInGLE+ Automatic Framework 90
5.4. Generation of Custom Instruction Fragments 92
5.5. Distance and Matching Calculation 94
5.6. Custom Instruction Selection with Fragments 95
5.7. Evaluation . 96

5.7.1. Experimental Setup 96
5.7.2. Results . 97

5.7.2.1. Speedup and EDP Improvement 97
5.7.2.2. Threshold Analysis 101
5.7.2.3. Sharing Characterization 103

5.8. Summary . 105

6. Conclusion 107

6.1. Overview . 107
6.2. Future work . 110

List of Figures

1.1. Automated process for CI generation and key contributions . 6

2.1. Generic target architecture with SFU 16
2.2. Implementation of a merged CI that executes on a DSFU . . 19
2.3. DSFU with a conVguration manager to reprogram CIs . . . 20
2.4. Intel Atom processor pipeline with a tightly-coupled DSFU . 21
2.5. Chronogram of instructions on a pipeline with a tightly-

coupled DSFU . 24
2.6. Example of a reduced and ordered BDD construction 27
2.7. Example of a canonical TED construction 29

3.1. Schematic overview of the CI selection and evaluation frame-
work FuSInG . 36

3.2. Examples of the usage of TEDs for instruction clustering . . 39
3.3. Results of benchmark speedup versus CI area for DAG, TED

and Hybrid methods with domain-speciVc CIs (part 1/2) . . 50
3.4. Results of benchmark speedup versus CI area for DAG, TED

and Hybrid methods with domain-speciVc CIs (part 2/2) . . 51
3.5. Results of benchmark speedup versus SFU area for scoring

techniques with domain-speciVc CIs (part 1/2) 54
3.6. Results of benchmark speedup versus SFU area for scoring

techniques with domain-speciVc CIs (part 2/2) 55
3.7. Results of benchmark speedup versus SFU area using only

application-speciVc, application and domain-speciVc, or only
domain-speciVc CIs (part 1/2) 57

3.8. Results of benchmark speedup versus SFU area using only
application-speciVc, application and domain-speciVc, or only
domain-speciVc CIs (part 2/2) 58

3.9. Results of benchmark speedup versus SFU area for cross-
validation per application using domain-speciVc CIs (part
1/2) . 62

xvi List of Figures

3.10. Results of benchmark speedup versus SFU area for cross-
validation per application using domain-speciVc CIs (part
2/2) . 63

4.1. MInGLE framework for the implementation and generation
of partially-merged CIs . 69

4.2. Example of Merging Diagram construction 72
4.3. Hierarchical clustering of CIs 75
4.4. Average speedup versus percentage of area occupancy of

the DSFU for exact and partial matching methods 82
4.5. Average EDP improvement versus percentage of area occu-

pancy of the DSFU for exact and partial matching methods . 82
4.6. Speedup for each benchmark at a limited implementation area 83
4.7. EDP improvement for each benchmark at a limited imple-

mentation area . 84

5.1. Example of partial merging without and with CI fragments . 89
5.2. MInGLE+ automated framework for the generation of CIs

with fragments . 91
5.3. Average speedups against increasing area percentages for

exact and partial matching and matching with fragments . . 98
5.4. Average EDP improvements against increasing area percen-

tages for exact and partial matching and matching with
fragments . 99

5.5. EDP improvement for each benchmark with CIs selected
across basic blocks with fragments, partial matching and
exact matching . 100

5.6. Percentage of area versus average EDP improvement for the
matching with fragments for diUerent thresholds 101

5.7. Characterization of shared FPGA hardware for diUerent area
utilizations with partial matching 104

5.8. Characterization of shared FPGA hardware for diUerent area
utilizations with fragments 104

List of Tables

2.1. Extensions to the base ISA to operate the DSFU 23

3.1. Description of the evaluated application benchmarks and
their input Vles . 47

3.2. Number of code sequences and CIs found in each applica-
tion with DAG, TED and Hybrid methods, and the percen-
tage of dynamic instructions covered by them 48

3.3. ClassiVcation of CIs in a full-system conVguration of 5%,
10% and 15% of the SPARC area 60

4.1. Percentages of area occupancy and EDP improvement for
diUerent CI implementations 67

4.2. List of the evaluated applications and benchmarks suites . . 80

5.1. For each application, number of CIs and CI variants con-
sidered, the percentage of dynamic instructions covered by
them, and the number of candidates found 96

5.2. Number of candidates in the selection step and time to solve
the selection problem for diUerent thresholds using mat-
ching with fragments . 102

List of Acronyms

ARM Advanced RISC Machines
ASIP Application-SpeciVc Instruction Processor
ASIC Application-SpeciVc Integrated Circuit

BDD Binary Decision Diagram

CFG Control Flow Graph
CI Custom Instruction
CMOS Complementary Metal-Oxide-Semiconductor

DAG Directed Acyclic Graph
DFG Data Flow Graph
DMA Direct Memory Access
DSFU Domain-SpeciVc Functional Unit

EDP Energy-Delay Product

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HLS High Level Synthesis

INF If-then-else Normal Form
IR Intermediate Representation
ISA Instruction Set Architecture

xx Acronyms

ISEF Instruction Set Extension Fabric
ITE If Then Else (operator)

MILP Mixed Integer Linear Programming
MISO Multiple Input Single Output
MIMO Multiple Input Multiple Output

RISC Reduced Instruction Set Computing
ROBDD Reduced Ordered Binary Decision Diagram

SFU Specialized Functional Unit
SMT Simultaneous Multithreading
SRAM Static Random-Access Memory
SSA Static Single Assignment

TED Taylor Expansion Diagram

VLIW Very Long Instruction Word

1
Introduction

1.1. Motivation and Context

The steady increase of processor speed that Moore’s law had been dic-
tating since 1965 [1] was jeopardized when the limits of dimensional sca-
ling started to raise concern among chip makers. The doubling in number
of transistors per chip every one and a half to two years that Moore fore-
casted, and that yields to higher performing circuits, was conceptualized by
Dennard [2]. His scaling law establishes that, keeping the electrical Veld
constant, if the chip dimensions scale down, the integration density of tran-
sistors on a chip increases, causing circuits to be faster and to reduce power
consumption. The constant Veld scaling paradigm governed the microelec-
tronics industry due to its continuous delivery of higher performance with
lower power consumption at lower costs in each semiconductor process ge-
neration. However, since the beginning of this century, there has been a
slowdown of the energy per transistor switch scaling due to technology
limitations. This has been marked as the end of Dennard scaling: voltage
scaling cannot keep up with transistor scaling. Now, at each new process ge-
neration, integration density increases, but so does the static power leakage.
All the transistors on a chip are not powered at the same time to avoid ther-
mal runaway, resulting in an under-utilization of the chip [3–5], also known
as dark silicon. Seeing that the times of Dennard scaling are over, we can-
not count anymore on power improvements based on traditional technology

2 Introduction

advances.

Meanwhile, nowadays market trends demand, more than ever, low-
power processors that do not sacriVce performance. Societal needs shape
a technological future with energy-eXcient intelligent systems integrated
in any conceivable gadget. Devices will become increasingly sophisticated,
with richer functionalities compared to existing ones, and demanding more
optimized solutions. By way of example, smartphone production overtook
that of client PCs in 2011; in that year, there were 73 million more smart-
phones shipped than PCs and tablets together. Also, in May 2015 Google
announced that searches on mobile devices surpassed PCs in the US for the
Vrst time, and in the UK, mobile handsets now account for 56% of time spent
on the Internet. In view of this unstoppable takeover of size-constrained
machines, we ask whether the market can keep up with the demand of high
functionality with low-power budgets in the advent of dark silicon.

Ultimately, we should look for a down-scaled technology that can be
eXciently used in modern application domains. The beneVts of Moore’s
shrinking rates could continue without Dennard’s rules; with equivalent
scaling [6] we use other means than dimensional scaling to maintain im-
provements in speed and energy. For instance, we can propose new archi-
tectures that provide special-purpose functionalities and that are heteroge-
neously integrated with current processors. Specialized or custom compu-
ters are not novel; since the Vrst specialized computer, over 50 years ago [7],
the implementation of speciVc computing units has been extensively stu-
died. But it is now when their beneVts over traditional, general-purpose
architectures, are becoming more popular. Specialization is seen as a way to
cope with the dark silicon problem, by increasing the energy eXciency that
a low-power budget imposes.

Consequently, custom computing as oU-core accelerators, GPUs or in-
core functional units is a hot topic. Current generation of mobile processors
already integrate heterogeneous chips combined with accelerators, which
are also becoming more common in server and desktops. Even supercom-
puter engineers pay now attention to accelerator-based systems; the Vrst
three supercomputers in the June 2015 Green500 list1 rely on special-purpose
acceleration with their PEZY-SC cores to provide high energy eXciency.
Also, customized computing is in the spotlight of European public funds for
research and innovation. The European Commission, under the Horizon
2020 program2 and the Joint Technology Initiative on Electronic Compo-

1http://www.green500.org/lists/green201506
2http://ec.europa.eu/research/participants/portal/desktop/en/

opportunities/h2020/topics/9080-ict-04-2015.html

Introduction 3

nents and Systems3, has granted more than e100 million in 2015 for the
development of the next generation of CPUs together with customized and
low-power computing. New custom architectures across several application
domains are key targets for the European Commission to reinforce Europe’s
technological competitiveness.

Approaches to custom computing are diverse, therefore accelerating
systems may vary depending on the target application domain. Focusing
on mobile devices, we still Vnd a plethora of diUerent types of applications
that demand performance within constrained power budgets, from com-
mon multimedia tasks to voice or facial recognition. Embedded systems
equipped with specialized hardware can increase performance and reduce
energy consumption, but the implementation details of the customized sec-
tion are nonetheless a hard choice. For instance, we can obtain high perfor-
mance accelerating critical parts of an application with Application-SpeciVc
Integrated Circuits (ASICs); however, their design cost is expensive, as they
lack the Wexibility of being programmable. Options that allow hardware
reutilization, such as reconVgurable technologies, still need a considerable
eUort from the designer, which may compromise the total cost and time-to-
market of the Vnal product.

Ideally, specialization in embedded systems should yield performance
and energy gains close to those of an ASIC, while being Wexible and reusable
with minimum overhead. New micro-architectural approaches that use pre-
built building blocks are our proposal: extensible processors, also known
as Application-SpeciVc Instruction Processors (ASIPs) [8], balance perfor-
mance and Wexibility, and yet maintain the energy eXciency gains of spe-
cialization. As they reuse a pre-veriVed and pre-optimized base processor,
the design process is less complex and time-to-market is shorter. The clas-
sical ASIP design process augments a general-purpose processor with spe-
cialized functional units (SFUs) that execute instructions customized for a
particular application. This design process can be automated to identify, se-
lect and implement those custom instructions (CIs), and the focus of this
dissertation lays, precisely, in those automated methods for CI design.

1.2. Custom Instruction Design

Extending processors with SFUs not only reduces the design costs of
acceleration. Other beneVts of using CIs include the minimization of the
cycles spent in the prediction, fetch, decode, scheduling and commit stages
of a processor. For each data and instruction fetch, they can perform from

3http://www.ecsel-ju.eu/web/index.php

4 Introduction

tens to hundreds of operations, cutting down the processor’s energy waste.
Also, the deployment of CIs is more eUective than specializing a complete
processor as they are easier to program than bigger oU-core accelerators.

SFU customization is the process of discovering new CIs that accelerate
the target applications. Within a small and controlled application domain,
CIs can be manually detected by studying limited benchmark code, combi-
ning frequently executed bundles of operations into one CI. However, with
real applications, manual exploration is not an option; the beneVts of CIs
would not compensate time and eUort in design. Therefore, SFU customiza-
tion is normally an automated process integrated as an alternative path of
an application’s compilation Wow. Automatic CI discovery has attracted ex-
tensive attention as research topic since it is far from being a trivial process.

The design of CIs can be broken down into three diUerent phases: the
discovery or generation of CIs, the implementation of CIs, and the substi-
tution of generic code by CIs. Out of those three, CI generation is the most
important and diXcult phase and hence it is our focus here; it is the focus
as well for most of the related work. CI generation examines the application
code’s data-Wow graph (DFG) and identiVes subgraphs of operations as spe-
cial instructions. Typically within a single basic block, these subgraphs join
tens of operations into a single CI to maximize the overall speedup. Their
reusability is commonly very limited; a CI is found at a concrete point of a
single application, making them essentially application-speciVc. CI genera-
tion is done in two steps: candidate identiVcation and Vnal selection. First,
during candidate identiVcation, subgraphs are identiVed under architectural
constraints. This exploration can take exponential time complexity, thus al-
gorithms to convey this problem are a recurring topic in the literature. Then,
the Vnal selection Vnds the best set of CIs that maximizes the performance
in a limited area. How this problem is attacked is also relevant, since it
is NP-complete. Therefore, the complete CI design process has substantial
research interest, as the acceleration beneVts of SFUs can be hard to obtain.

1.3. Key Challenges

To accelerate a processor with SFUs, we are compelled to provide simple
and fast design methods of CIs that improve performance. However, the
general adoption of such a customizing technology depends on a variety
of factors: how applicable is the CI generation in a broad context, how
energy side-eUects are taken into consideration, or how an eXcient use of
the area is ensured. These points challenge the CI design process and must
be adequately addressed.

First, note that the increasing market demand in consumer electronics

Introduction 5

imposes strict time-to-market constraints. Also, systems with accelerators
are in constant change, since the software that runs on them is regularly
modiVed; therefore, users may want to accelerate applications that were
not considered at design time. ASIPs allow programmability to a certain
extent to amortize chip design costs, but the common trend is to design
CIs for an individual application. As application-speciVc CIs are not highly
reusable, they are sentenced to a short life span at the expense of high in-
vestments. In addition, if CIs are not frequently executed, the acceleration
beneVts will not compensate for the overall energy consumption. Thus, ex-
tending the CIs usage to a whole domain of applications can increase the
suitability of ASIPs for acceleration. We can then Vnd similar CIs in diUe-
rent programs that can be implemented as only one instruction, improving
reusability and economizing hardware resources. But although applications
within the same domain often perform similar computations that require
the same hardware, we are confronted with two issues: Vrst, exploring se-
veral applications at once results in a design space explosion, and second,
non-uniform programming styles of diUerent codes may hide their under-
neath similarities.

Over the past few years, advances in automatic high-level synthesis
(HLS) have enabled rapid prototyping of accelerators, which results into
another important issue: varying the optimization options, we can obtain
many conVgurations of the same CI. We can have again a design space
explosion. Exploration of the diUerent architectural conVgurations then be-
comes a sensible task, and automated ways for curbing the design space
are key to be able to Vnd a conVguration solution that delivers good perfor-
mance.

While performance speedup is the key metric that traditionally drives
CI design, if we only look at performance we may downplay other equally
important aspects. Embedded processors have a constrained power bud-
get to watch; therefore, CI design should attempt to balance performance
gains with energy eXciency. Furthermore, albeit the SFU hardware area
is limited, the expected speedup partially depends on the code coverage of
the CI; bigger CIs may deliver better speedups, but all may not Vt in the
available area. Thus, when several applications are competing for the same
resources, we need to be able to prioritize CIs without penalizing overall
eXciency. Also, code coverage is subject to the kind of operations executed
on the SFU; if branch or predication instructions are left out, as is com-
monly the case, CIs can only span within a basic block. Small CIs can be
counter-productive for performance, but they also have a strong advantage
over bigger ones: their reusing degree across applications may be higher
and, on average, they yield a more balanced global improvement. All these

6 Introduction

Identification of

CI candidates

Selection of

CI candidates

SFU

1A

Functionally
Equivalent CIs

2A

Domain-specific
Heuristic-based

1B

Partially
Similar CIs

2B

Domain-specific
Constraint-based

1C

Fragments of CIs

Automatic Custom Instruction Generation

Contributions Frameworks

ConfigurationApplication

within
basic

blocks

+ across
basic

blocks

+ reuse
& area

efficiency

optimize
performance

+ optimize
energy

FuSInG

MInGLE

MInGLE+

Figure 1.1: The automated process for CI generation and the key contributions of
this dissertation.

trade-oUs have to be carefully weighed to achieve full eXciency in every
sense of the word.

1.4. Key Contributions

In this dissertation, we explore diUerent approaches for CI generation,
focusing on domain-speciVc acceleration. Figure 1.1 shows, on the top, a
high-level schema of the CI generation process; an application is analyzed
to identify CI candidates, and a subset of the best candidates is selected to
conVgure the SFU. The Vgure also shows, on the bottom, our key contri-
butions; we expand and improve the identiVcation in contributions 1-A, B
and C, and we provide alternatives to the candidate selection problem in
contributions 2-A and B. The contributions are implemented within these
frameworks: FuSInG (Functionally Similar Instructions Generator), which
implements 1-A and 2-A;MInGLE (Merged Instructions Generator for Large
EXciency), which implements 1-B and 2-B, and MInGLE+, expanded with
1-C.

Introduction 7

Contribution 1-A:
IdentiVcation of functionally equivalent custom instructions

Limiting ASIPs to application-speciVc acceleration makes them feasi-
ble for only big-volume markets with high returns. Therefore, creating CIs
that target a whole domain is an economically viable solution. However,
the disparity among coding styles of diUerent programs makes it diXcult to
identify code patterns that can be represented by a unique CI across appli-
cations.

We therefore propose an analysis at the basic block level, complemen-
tary to CI candidate identiVcation, that identiVes equivalent CIs within the
same program and across diUerent programs. We use the Taylor Expan-
sion Diagram (TED) canonical representation to identify common sections
of code that can be accelerated by specialized hardware. As TEDs are cano-
nical, we can Vnd not only structurally equivalent pieces of code, but also
functionally similar ones. Functional equivalence reveals if CIs perform
the same mathematical function, which cannot be guessed with a DFG-
based representation. We compare them to a straightforward technique of
directed acyclic graph (DAG) isomorphism detection, which essentially re-
veals whether graphs are similar in shape. We also introduce a new Hybrid
DAG/TED technique that combines the best of the traditional graph iso-
morphism with TEDs. With any of the three techniques, we can identify CI
candidates that are speciVc for either an application or a domain. We Vnd
that, with the canonical representation, we can identify more sequences
across applications that are mapped to the same CI, thus achieving higher
speedups for smaller chip area than the traditionally used DAGs.

Contribution 1-B:
IdentiVcation of partially similar custom instructions

Hardware reusability across applications is a critical factor to achieve
high and balanced speedups with CIs, yet if there are not enough equiva-
lences, CIs cannot be generalized for a domain. This issue arises more fre-
quently when we target larger code sections to obtain higher performance.

Consequently, we introduce a new canonical representation of CIs across
basic blocks, the Merging Diagram, to facilitate similarity detection and im-
prove the code coverage of our CIs. It builds upon the previous Hybrid
DAG/TEG representation to provide a more compact representation with
predication, spanning CIs across basic blocks. We also propose clustering-
based partial matching of code sequences to identify not only those CIs that
are functionally equivalent, but also those with partial similarities. Clus-
tered CIs are merged and we quantify their potential improvement of cove-

8 Introduction

ring more code while reducing the needed area for the CI implementation.
These techniques expand the opportunity for CIs with a limited area budget
inside simple processors to accelerate numerous applications from a domain,
improving the system’s energy eXciency.

Contribution 1-C:
IdentiVcation of custom instruction fragments

We have observed that partially-similar domain-speciVc CIs outperform
application-speciVc ones when the area for implementation is over a given
threshold. However, at small areas, we have to rely on application-speciVc
CIs, since the potential gains of merging two CIs do not compensate for the
involved overhead.

To solve this, we extend CI merging with an analysis step that detects
parts of CIs that can use the existing merged clusters with minimal extra
overhead. We call CI fragments to those parts of CIs, since they do not
include the full original CI as in the partially similar CIs, but only sections
of it. With CI fragments we can improve reutilization of hardware at the
most limited areas, because we partially reuse an already merged CI cluster,
with minimum additional overhead.

Contribution 2-A:
Domain-speciVc heuristic-based selection

At the last step of any CI generation process, the Vnal selection tries
to choose a subset of CIs that Vts within the available area. The objective
of getting an optimal CI group is an NP-complete problem, and thus there
exists no known fast solution for it. Also, the CI design space of a whole
application domain is big enough to make the task computationally challen-
ging. Typically, approximate algorithms or heuristics are used to solve the
selection fast. The main drawback of existing methods is that they target
speedup for individual applications. Therefore, their suitability for a whole
domain is rather limited, since the gains must be balanced to be fair across
applications.

To bridge this gap, we propose four scoring heuristics to quickly and
eUectively cull the huge CI design space. These heuristics rank potential
CIs under the premise that we aim to smoothen the obtained gains across
applications. We evaluate them and give insight about their suitability for
domain-speciVc acceleration.

Introduction 9

Contribution 2-B:
Domain-speciVc energy-eXcient selection

Having proved that the CI selection is appropriate for a domain of appli-
cations, we go a step further by introducing energy eXciency into the equa-
tion. Speedup is an excellent metric to select a set of CIs that accelerate the
applications, hence it has been extensively used in the literature. However,
for devices with limited power budgets, focusing only on performance can
be detrimental for the design, since we may be introducing power-hungry
CIs as well.

This last contribution proposes a constraint-based selection mechanism
that, with a novel objective function, balances speedup and energy con-
sumption to fulVll the goal of a energy-eXcient design with good perfor-
mance. We then solve the problem of choosing an energy-eXcient set of
CIs to Vt in limited area while accelerating a domain harmoniously.

1.5. Key Results

We summarize here the key results obtained with the frameworks that
implement the contributions: FuSInG, MInGLE andMInGLE+.

FuSInG

We combine the techniques for functional equivalence identiVcation
and the scoring heuristics in our automated framework FuSInG, which also
estimates performance and area of new acceleration designs. With the
framework, we explore the trade-oUs between application-speciVc and do-
main-speciVc hardware specialization. Results expose the following in-
sights:

TED and Hybrid DAG/TED representations identify more hardware
acceleration opportunities across applications that are mapped to the
same CI, which results in higher speedups for lower area than the
traditionally used DAGs.

While using only application-speciVc CIs results in the highest possi-
ble speedups at unbounded core areas, it is ineUective at small areas.
Instead, including domain-speciVc CIs in the conVguration produces
the highest possible speedup at small, more realistic core areas, which
underlines the importance of identifying CIs that can be shared across
applications.

10 Introduction

New applications inside a domain can also beneVt from CIs already
designed for that domain. This suggests that processors with domain-
speciVc functional units can extend their lifetime, making specializa-
tion more generally applicable.

MInGLE

Partial matching of Merging Diagrams expands the acceleration oppor-
tunities for domain-speciVc CIs with a limited area budget, improving the
system’s energy eXciency. We implement these techniques in our auto-
mated framework MInGLE, and we evaluate them with applications from
the media domain. We obtain the following key results:

CIs that cover code beyond the basic block level expand the accelera-
tion opportunities, achieving a maximum average speedup of 1.98×
and an energy-delay product (EDP) improvement of 3.35×, a signiV-
cant gain over CIs within a single basic block (speedup of 1.48× and
EDP improvement of 1.67×).

Partial matching and merging of CIs is crucial for achieving larger
speedup and EDP improvement for a limited hardware area. For ins-
tance, for 1.8% of the area, the EDP improvement of partial mat-
ching reaches 3.04×, higher than a exact matching CI conVguration
(2.53×).

MInGLE+

We extend the analysis inMInGLE+ to detect fragments of CIs that can
use the existing merged clusters with minimal area overhead. These are the
outcomes of this extension:

CI fragments increase the share-out of the circuit components on an
SFU at better rate than partial matching, which results in more im-
plementation area available. This means that we achieve a particular
energy eXciency at greatly reduced hardware area.

CI fragments are key to get high performance and energy eXciency
at the smallest areas. For example, for 1% of the area, CIs with frag-
ments achieve, on average, a speedup of 2× and an EDP improvement
of 3.6×, signiVcantly higher than results for partially matched CIs
(speedup of 1.6× and EDP improvement of 3.6×)

Introduction 11

1.6. Publications

The above contributions and results are gathered in several international
journals and conference proceedings.

Contributions 1-A and 2-A, with focus on the identiVcation and selec-
tion of functionally equivalent CIs for an application domain, were publi-
shed in:

C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-González,
and L. Eeckhout. “Accelerating an application domain with specia-
lized functional units”. ACM Transactions on Architecture and Code
Optimization (TACO), Vol 10, No 4, January 2014.

Contributions 1-B and 2-B, that go a step further identifying and select-
ing domain-speciVc partially-similar energy-eXcient CIs, were published
in:

C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-González,
and L. Eeckhout. “Automatic Design of Domain-SpeciVc Instructions
for Low-Power Processors”. Proceedings of the 26th IEEE Interna-
tional Conference on Application-speciVc Systems, Architectures and
Processors (ASAP), 2015. Best student paper award.

Contribution 1-C, that extends previous contributions to allow maxi-
mum eXciency at small hardware areas, will be published in:

C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-González,
and L. Eeckhout. “MInGLE: An EXcient Framework for Domain
Acceleration using Low-Power Specialized Functional Units”. ACM
Transactions on Architecture and Code Optimization (TACO), 2015.
Under review.

1.6.1. Other research activities

In addition to the publications above, we list here other research activi-
ties that are not included in this dissertation. These include studies of auto-
matic parallelization for heterogeneous multicores, as well as automatically
generated accelerators integration in multicore systems, using the OSCAR
source-to-source compiler and runtime. We refer to the original articles for
more information:

C. González-Álvarez, Y. Kanehagi, K. Takemoto, Y. Kishimoto, K.
Muto, H. Mikami, A. Hayashi, K. Kimura, H. Kasahara. “Automatic

12 Introduction

parallelization with OSCAR API Analyzer: a cross-platform perfor-
mance evaluation”. IPSJ SIG Notes, Dec 2012. Information Processing
Society of Japan (IPSJ).

C. González-Álvarez, H. Ishikawa, A. Hayashi, D. Jiménez-González,
C. Álvarez, K. Kimura and H. Kasahara. “Automatic design explo-
ration framework for multicores with reconVgurable accelerators”.
7th HiPEAC Workshop on ReconVgurable Computing (WRC 2013).

K. Kimura, C. González-Álvarez, A. Hayashi, H. Mikami, M. Shi-
maoka, J. Shirako, H. Kasahara, “OSCAR API v2.1: Extensions for an
advanced accelerator control scheme to a low-power multicore API”,
17th Workshop on Compilers for Parallel Computing (CPC2013), Lyon,
France, Jul. 2013.

1.7. Overview

This dissertation is organized as follows.
In Chapter 2, we present the necessary background information on hard-

ware acceleration. We give an overview of relevant design techniques and
accelerator architectures found in the literature, narrowing the research fo-
cus to processors with specialized functional units that execute CIs. We
provide the design details of an extended processor that we use in our expe-
riments, and we close the chapter with additional background information
on code representations.

We present two key contributions in Chapter 3. First, we introduce
the techniques to identify equivalent CIs that can be clustered together.
Then, we explain a set of heuristics developed for domain-speciVc selec-
tion. Lastly, we evaluate the presented methodologies for a concrete appli-
cation domain and present insights on the trade-oU of application-speciVc
and domain-speciVc acceleration.

In Chapter 4, we introduce two more key contributions. We Vrstly des-
cribe the methodology behind the identiVcation of partially-similar CIs, and
secondly, the selection mechanism to choose the most eXcient conVguration
of CIs.

We introduce in Chapter 5 our last contribution. We explain the concept
of fragments of CIs, presenting the techniques to extract and implement
them, and we demonstrate their eUectiveness comparing the results against
previously proposed methods.

Finally, we present the conclusions of this dissertation in Chapter 6 and
we discuss possible future research directions.

2
Background

2.1. Introduction

Hardware acceleration, in its many forms, has emerged as a solution to
the demands of high performance and low power in the embedded market.
A cost-eUective approach is to extend a baseline processor with specialized
hardware and its ISA with new custom instructions. The hardware is aug-
mented as functional units, tightly-coupled to the processor’s datapath, or
coprocessors, intra or outer-core, working as a slave of the main processor.

Datapath specialization can be approached from diUerent perspectives,
depending on the focus of the problem. First, from the top-down point of
view of creating hardware starting from a set of target applications, we can
consider automated design CIs, also known as instruction set extensions.
Generally, methods explore the target applications’ critical code and trans-
late them to hardware under some constraints. We review those exploration
techniques in Section 2.2. From another angle, a bottom-up process involves
creating the conVgurable accelerator design based on architectural exper-
tise. The focus is on creating specialized hardware, possibly conVgurable, in
a less automated way, and then map applications on the hardware to acce-
lerate them. Those architectural proposals are surveyed in Section 2.3, with
a speciVc focus on tightly-coupled accelerators.

Independently from the perspective, hardware acceleration is a complex
process that involves more than exploration and architectural design. Once

14 Background

the design is ready, the actual circuit implementation is a step necessary to
prove the suitability of the accelerator. In the latest years, high level syn-
thesis (HLS) programs, such as Vivado HLS [9], have contributed to speed
up the implementation step. DiUerent compilation phases are also involved,
such as instruction selection once the hardware is created. We do not cover
that step in this dissertation, assuming that we can annotate code to sub-
stitute lines of code by the accelerating CI. However, Section 2.4 includes
background information on compilers’ intermediate representations (IRs)
and other coding models that are relevant for the upcoming chapters.

2.2. Custom Instruction Design

There are many techniques for CI design from the ISA extension pers-
pective that target diUerent objectives and architectures. We provide here a
comprehensive survey of evolution of the Veld through the most important
works found in the literature.

The Vrst work on the topic [10] proposes to partition the main problem
of instruction generation into regularity extraction and template matching,
which we have previously introduced as generation of CIs, and the substi-
tution of generic code by CIs. They do not provide any implementation
of their ideas neither in hardware nor in simulation, but estimate quanti-
tatively the gains depending on the instruction types. In the Vrst descrip-
tion [11] of CI operations types MISO (Multiple Input Single Output) and
MIMO (Multiple Input Multiple Output), the authors discuss architectural
constraints, such as register ports, in their identiVcation of new instructions
within the VLIW compiler Trimaran. Later work [12, 13] formally establish
the analysis using Data Flow Graphs (DFG), and the importance of pre-
serving graph convexity. The research focus shifts to the design process
problem and clearly separates identiVcation and selection phases.

Reducing the algorithmic complexity of the design methods is a priority
to make the program tractable. Some works rely on heuristics [14] to pre-
dict a CI’s gain as a function of the instruction’s frequency of execution and
latency, and on dynamic programming to optimize area usage. Pipelining
techniques [15] allow CIs with more inputs and outputs than ports in the
register Vle. A later work by the same authors [16] couple the identiVcation
and selection phases, which results in relaxing the constraints and opens up
the possibility of approximate techniques and genetic algorithms that are
computationally less expensive. Their CIs have any number of outputs, and
are evaluated with a software latency model using the hardware measure-
ments of CMOS operators. Others [17] assume that the core processor must
be a RISC, which also relaxes constraints. This implies a limited number

Chapter 2 15

of inputs and outputs, which prunes the results, in order to minimize the
number of registers used.

A diUerent work for the application-speciVc embedded market [18] as-
sumes additional storage inside an ARM-based ASIP that allows DMA for
some vectors. They select CIs with a merit function based on a latency
estimation of memory accesses as a model of SRAM. In their experiments
with decoder, Vlter and encryption applications the CIs are simulated in
Simplescalar.

Breaking with the application-speciVc CI design trends, the generation
of domain-speciVc CIs [19] involves a pattern-matching approach on the
data-Wow graph using heuristics. They deVne guide functions for a greedy
search that prune the exploration space, using the criticality of the data-
path, latency and area as metrics. Most notably, they combine instruction
candidates to generalize the accelerators for a simulated VLIW architecture
within Trimaran. Also integrated in Trimaran, ASIP extensions for mul-
timedia and cryptography applications based on identiVcation of maximal
convex subgraphs within a basic block [20], could be adapted for domain-
speciVc acceleration, since they group graphs that can be implemented with
the same hardware and estimate their gain to choose the most promising
one. The concept of maximal convex subgraph, or the maximum code co-
verage that we can get in a basic block without violating any constraint, is
further studied [21]. They propose a fast CI identiVcation algorithm [21]
based on binary search, that we adapt in our domain-speciVc framework
described in Chapter 3.

Other approaches to solve the CI design problem include applying inte-
ger linear programming [22, 23] or constraint programming [24] at only the
CI identiVcation, or at any of the CI design steps. Alternatively, other au-
thors [25] apply a predeVned set of rules, in a speciVc order, to obtain a DAG
representation of code functionality instead of focusing on the structure of
CI subgraphs, which is related to the techniques we see in this dissertation.

2.3. Datapath Accelerators

A common accelerator classiVcation [26] categorizes architectures ac-
cording to their size and proximity to the CPU. On one hand, loosely-
coupled systems, or coprocessors, accelerate coarse-grained tasks with
low interaction with the rest of the program, and imply a manual approach
to hardware/software partitioning. An example of such a loosely-coupled
system is GARP [27], in which a MIPS processor invokes special instruc-
tions that run on a custom coprocessor, outside the main core. On the other
hand, tightly-coupled systems, or specialized functional units (SFUs),

16 Background

D-Cache

Decode

Register

file

Figure 2.1: Target architecture. The specialized functional unit (SFU) is part of the
execution pipeline of an in-order processor core.

accelerate Vner-grained tasks and interact directly with the processor Wow.
Their programming approach is more automated and target a wider range
of applications. Our generic architecture falls in the latter category, as it
executes the CIs on an SFU that is tightly integrated in the datapath of
an in-order general-purpose processor (see Figure 2.1). Our target archi-
tecture is a single-issue in-order processor with a conVgurable pipeline to
execute CIs. Each CI runs inside one specialized execution (SE) pipeline of
the SFU and takes a variable number of cycles (c). The SFU is multi-cycle
and reads and writes data from and to the register Vle of the core. We do not
consider parallel execution of the SFU with the processor’s functional units
because it has been proven that the performance improvement is not signiV-
cant enough [28]. BeneVts of such a design include a system that maintains
precise interrupts, the reduction of instructions in the execution pipeline of
the processor core, and the increment of operational and data-level paralle-
lism in the SFU. Those beneVts have been studied in the literature, and there
are numerous works that implement tightly-coupled accelerating systems.

We Vnd the Vrst proposals of customizable processors with tightly-cou-
pled accelerators [28–30] at the end of the 20th century. PRISC [29] is a RISC
processor extended with a programmable functional unit. In this architec-
ture, the specialized unit is placed as an additional functional unit in the
RISC pipeline and performs combinatorial operations using the processor
register Vle for data transfers. The hardware is responsible for updating the
conVguration of the programmable unit when a CI requests it. CIs are im-
plemented using a preamble of the RISC instruction format. OneChip [28,
30] also proposes an integrated reconVgurable architecture on a MIPS-like

Chapter 2 17

processor. It extends the PRISC concept to allow pipelining in the pro-
grammable functional unit. The Vrst OneChip version [30] is implemented
on a prototyping board to test the feasibility of the design. A later work [28]
extends OneChip as a RISC superscalar processor allowing dynamic sche-
duling and reconVguration, and it is simulated. Chimaera [31] is another
example of a tightly-coupled reconVgurable unit that extends a superscalar
processor. It is able to perform 9-input 1-output integer operations with the
support of a compilation chain that identiVes groups of instructions that
can run in their reconVgurable functional unit. They provide also subword-
parallelism as an attempt to introduce data-level parallelism to their system.

Tensilica’s Xtensa processor [32], based on a single-issue RISC and from
the late 90’s, Vlls the gap of commercial customizable processors. Although
designers could choose diUerent conVgurations adding new instructions,
functional units, register Vles, peripherals and memory interfaces, any cus-
tomization had to be done before manufacturing. Xtensa is used as the
implementation base for other customizable architectures, such as Stretch’s
software-conVgurable processor [33]. It combines a RISC core with an
instruction-set extension fabric (ISEF) that interchanges operands through
the register Vle. To program it, the compiler identiVes functions that are
annotated with pragmas and generates the code to load and execute prede-
Vned bitstreams for the ISEF. Nios II from Altera [34] is another example of
a commercial customizable processor. It is a soft processor that allows up
to 256 custom instructions [35] and virtually unlimited hardware accelera-
tors. While custom instructions are integrated within the processor pipeline,
hardware accelerators work as coprocessors.

XiRisc [26] is a load/store architecture with a pipelined run-time conV-
gurable datapath called PiCoGa. The PiCoGa is integrated in the processor
pipeline, and is connected to the register Vle, with the possibility of 4-input
2-output registers. The conVguration of the PiCoGa can be dynamically
scheduled at run time, and some conVgurations may be already stored in-
side to avoid conVguration overhead times. Another project with a tightly-
coupled RISC-based processor is CUSTARD [36]. It features a customizable
multithreaded processor with diUerent parameterizations beyond CIs, such
as the number of threads, the threading type or the datapath bitwidth. They
provide a cycle-accurate simulator to evaluate the application-speciVc opti-
mizations applied with their compiler CoSy.

DySER [37] accelerates applications by extracting computation that is
then run on an accelerating functional unit network, tightly coupled with
the processor of choice, such as OpenSPARC [38]. They aim to improve
both performance and energy eXciency specializing for concrete applica-
tions, providing basic control Wow inside the special units, and applying

18 Background

vectorization.
Broadening the deVnition of tightly-coupled systems, Beret [39], al-

though not completely integrated in the datapath of an ARM processor,
presents an execution engine that is still inside the core. Their Trimaran-
derived toolchain extracts execution pipelines from small loop bodies based
on application trace analysis. They aim to accelerate wider code sections
than the above works, and focus on reducing energy consumption in general-
purpose computing.

Despite that there exist CIs with memory support [40], the SFU of our
target architecture is connected to the processor’s register Vle to simplify the
design and to not increase energy consumption beyond the processor’s base-
line, as many other works also do [26,29,30,36,38]. In this thesis, we also do
no consider runtime conVguration issues [41,42], since the main problem we
solve is centered in the CI design process for an application domain. We do
not consider other adaptable parts in the microarchitecture [36] except the
SFUs. Instead of annotating the code to be accelerated with pragmas [28,33],
we use, as other works do [29–31, 36, 38], a compilation chain that automa-
tically identiVes the CIs that run on the SFU. In our case, this exploration
is focused on accelerating an application domain, while keeping the power
consumption of the design low. In the rest of this section, we explain the
details of a speciVc implementation of the target architecture that we have
just introduced.

2.3.1. The Case for Domain Acceleration

We have seen that the design of an ASIP involves augmenting a general-
purpose processor with instructions customized for a particular application.
However, if CIs are not frequently executed, the acceleration beneVts will
not compensate the overall cost and energy consumption of adding new
hardware. Domain-speciVc acceleration increases the applicability of ASIPs,
as they can target accelerating several applications that run on the same
hardware close in time. Therefore, we present in this section an accelerator
model that is reusable across a domain to increase its utilization, thereby
improving both performance and energy eXciency.

We focus on the embedded market, where both performance and energy
consumption are important factors. Thus, the baseline processor is in-order
and low-power. The accelerator, or Domain-SpeciVc Functional Unit (DSFU),
is tightly coupled within the general-purpose processor pipeline. This would
be technically feasible with the last generation of FPGAs, connecting a pro-
cessor core to a reconVgurable array seamlessly [42]. We extend the basic
ISAwith CIs, such as in the traditional ASIP design. These instructions acce-

Chapter 2 19

Input
registers

a

b

c
...

config

MUL

ADD
ADDse

l

Output
registers

o1
enable

enable

...

Figure 2.2: Implementation of a merged CI that executes on a DSFU.

lerate the programs by executing a bundle of predicated arithmetic opera-
tions in the DSFU.

The rest of this section presents the speciVcation of the DSFU design
and its integration in an Intel Atom processor’s pipeline.

2.3.1.1. DSFU Design

The DSFU processes CIs that execute intermittently at diUerent points
of varied programs. We consider a loop body, made up of one or several
basic blocks, to be the basic portion of code that deVnes our CIs. They
use few inputs, not necessarily consecutive in memory, to produce few out-
puts. As they access data through the processor’s register Vles, input and
output data is always within some established limits. Typically, CIs are cal-
culation intensive, branch speculative. They exploit sub-word parallelism as
SIMD instructions do, also executing operations of diUerent kinds in parallel
(instruction-level parallelism).

The direct beneVt of a tightly-coupled, loop-body based DSFU is the
performance speedup expected from more parallelism. Additionally, we
can obtain a reduction of resource contention in diUerent pipeline stages,
due to collapsing several instructions into just one, including branch ins-
tructions that may fall into expensive branch mispredictions, or a reduction
of instruction cache misses.

In the context of domain-speciVc acceleration, reusing hardware is cri-
tical for an eXcient design. Of course, we can completely reuse CIs used
in diUerent programs if they are computing exactly the same functionality.
However, in the case of unequal instructions, instead of maintaining sepa-
rate hardware for each one, they can share the common parts of the circuit,
taking up less hardware area. Thus, we introduce partial merges of CIs as in
Figure 2.2. Consider the polynomials F1 = a+b+c and F2 = a ∗b+c. They
can be collapsed into the represented circuit, where a config signal activates

20 Background

custom instruction 1

...

enable / select

Configuration manager

config

Output
registers

custom instruction N

enable / select

Figure 2.3: DSFU with a conVguration manager to assist in the reprogramming of
the implemented CIs.

the non-common part of the circuit and selects the operands of the common
part. The config signal is encoded in the instruction coding.

Figure 2.3 shows the DSFU architecture template with several CIs that
share two arrays of input and output registers, private to the DSFU, that are
disjoint in order to overlap load and store operations. The CIs’ connections
to those registers are also controlled by the config signal. This architecture
template can be adapted to diUerent conVgurations with the conVguration
manager shown in the Vgure. Although we can still have a part of the design
Vxed at design time, such as the size of the input and output registers, we
can reconVgure the CIs’ implementation area at boot-up and/or run time.

Thus, CIs executing on the DSFU and their connections to the input and
output registers are controlled by the config signal, encoded in the instruc-
tion coding. The conVguration manager is connected to memory, where it
can read a new conVguration with a diUerent implementation of CIs and
modify the whole reconVgurable area (shadowed in the Vgure).

2.3.1.2. Base Processor Integration

The DSFU is integrated in an in-order processor pipeline and augments
the processor’s functionality, neither replacing nor duplicating any existing
functional units. A DSFU reads data using the processor’s register Vles, and
writes data back to them, with the premise of writing it always back to
memory. If the number of inputs exceeds the amount of the register Vle’s
outputs, the execution of the CI requires a pre/post execute stage for extra
data transfers. We count on the same data bandwidth as for other processor
instructions using the processor’s memory hierarchy.

We take the Intel Atom processor [43] as a concrete implementation

C
h
a
p
t
e
r
2

2
1

Instruction Fetch Instruction Decode Instruction Issue Data Access Execute Write Back

Branch

prediction

L1
Instruction cache

Instr.

TLB

Prefetch buffers

Microcode

sequencer

2-wide instruction

length decoder

XLAT/FL

XLAT/FL

Instruction

queues

Integer

Register

Files

FP/SIMD

Register

Files

DSFU inst

Memory Execution Cluster

Fault/

Retire

Integer
Execution
Cluster

FP/SIMD
Execution
Cluster

DSFU

Input

Registers

Output

Registers

...

L1 Data

Cache

L2 Cache

Reconfiguration

Manager

Fill + Write

Combining

Buffers

DSFU inst

Front End Cluster

Figure 2.4: Block diagram of a modiVed Intel Atom processor pipeline that includes a DSFU.

22 Background

example for the DSFU integration. The Atom processor is in-order and low-
power, with one or two cores, each one running up to two threads. For sim-
plicity, we do not consider its simultaneous multithreading (SMT) features
at the moment. Although Atom processors implement the x86 instruction
set, some versions support the x86-64 instruction set as well, which we take
as the baseline ISA here.

Microarchitecture details

Figure 2.4 shows a diagram of an Atom processor extended with an em-
bedded DSFU. The pipeline stages are also depicted at the top of the Figure.
Concretely, the pipeline has sixteen stages: three for instruction fetch, three
for decoding, three for issue, three for data access, one for execution and
three for exception handling and write-back.

We modify the instruction decode stage of the baseline processor to sup-
port CIs. The lookup table for the translation of instructions (XLAT) is ex-
tended with the additional instructions needed for the DSFU.

The DSFU’s 16 128-bit input registers are directly connected for reading
from both the integer (64-bit) and SIMD/XMM (128-bit) register Vles. A load
from memory to an integer register (cache read) takes 1 or 3 cycles, while a
load to a XMM register takes 4 cycles. Depending on the situation, we will
read from one or another register Vle to minimize latency. The 32 64-bit
output registers are only connected to the integer register Vle, since a store
always takes 1 cycle, while a XMM store is set in 5 cycles.

DSFU’s input and output registers operate at the same clock frequency
as the main processor. However, the reconVgurable part of the DSFU where
the CIs execute may operate at a diUerent frequency than the main proce-
ssor, depending on the reconVgurable hardware technology. Thus, there is
a DSFU clock that is isochronous to the core clock; in other words, DSFU’s
period is a multiple of the core’s period (for instance, there is a 1:4 ratio
for an Atom core operating at 1.6 GHz and an FPGA set at 400 MHz). To
keep the clocks synchronized, at the beginning of a DSFU execution, the
decoding stage sends a reset signal to the DSFU clock before executing the
requested CI.

The conVguration manager, responsible for reprogramming the DSFU
CIs, is directly connected to main memory to load the conVguration data.

ISA extensions

We extend the x86-64 based ISA with the instructions in Table 2.1,
whose encodings are compatible with those of the Atom processor. The

Chapter 2 23

Instruction Operands Latency Description

RF2DSFU_i dsfu_in, r 1 Moves 64-bit of data from an in-
teger register to a DSFU input
register.

RF2DSFU_x dsfu_in, x 1 Moves 128-bit of data from an
XMM register to a DSFU input
register.

DSFU2RF r, dsfu_out 1 Moves 64-bit of data from a
DSFU output register to an in-
teger register.

DSFU_exec conVg, i/r/x 4×C Resets DSFU internal clock and
starts execution of the CI deter-
mined by conVg. The second
operand may be used to trans-
fer data to a determined input
register.

DSFU_conVg m, i F(i) Reads i number of bytes from
m memory location and recon-
Vgures the CI implementation
space of the DSFU with that
conVguration.

Table 2.1: Extensions to the base ISA to operate the DSFU. Conventions: i =
immediate data, r = integer register, x = 128 bit xmm register, dsfu_in = DSFU’s
input register, dsfu_out = DSFU’s output register, C = number of DSFU internal

cycles. Operands are determined in Intel syntax (destination, source).

Vrst two instructions, RF2DSFU_i and RF2DSFU_x, move data from the re-
gister Vles to the DSFU input registers. When we need a memory access of
at least 128-bit data whose address was recently calculated, it is better to use
an XMM register (4 cycles versus 3×2 cycles to load). In all other cases we
prefer to use the integer registers. The third instruction sends the data from
the output registers to the integer register Vle, ready for write back.

A single instruction DSFU_exec is added to execute CIs. The conVg sig-
nal that chooses the CI conVguration is passed as the Vrst operand, allowing
up to 256 diUerent conVgurations. The second operand is data needed in the

24 Background

0 1 2 3 4 5 6 7 8 9

clk core

decoder inst core RF2DSFU DSFUexec DSFU2RF inst core inst core

FU exec exec

regs move RF>Input Output>RF

DSFU exec

ready

reset

clk DSFU

Figure 2.5: Chronogram of a sequence of instructions executing on a pipeline with
an integrated DSFU.

DSFU execution, saving in the best case one cycle of a transfer instruction.
When we try to execute a non-conVgured CI, an exception is triggered and
the equivalent code in the non-extended ISA will be executed. The latency is
determined for a DSFU that runs 4× slower than the Atom core. Therefore,
the latency of the DSFU_exec instruction is the number of internal cycles C
that the CI takes in the DSFU, scaled to the core clock.

Finally, the DSFU_conVg instruction loads from the speciVed memory
address a whole new conVguration of the speciVed size. The latency of
this instruction depends on the number of bytes to read and the memory
bandwidth.

Chronogram

Figure 2.5 shows an example of the execution of a CI, displayed as a
chronogram with diUerent pipeline stages and signals involved.

We have two clocks: the core clock in the Vrst row, and the DSFU clock
in the last one. Cycles in the upper part are counted as part of the core clock.
After the core clock signal, we show the instructions decoded (decode), exe-
cution in normal functional units (FU), data moves between register Vles
and DSFU registers (regs move), execution on the DSFU (DSFU), and the
ready and reset signals. For simplicity, we assume that the instruction de-
code stage takes 1 cycle, though in Atom it would take 3 cycles. Also, the
gap between decoding and execution would be wider in a real setting.

In cycle 1, the decoder processes a data transfer instruction that results
in a register move in cycle 2. In cycle 2, the instruction that starts the
DSFU execution is decoded, setting the reset signal until the end of the
cycle, which triggers a reset of the DSFU clock. In cycle 3, the execution of
the CI on the DSFU starts, while the decoder processes the instruction that
reads the DSFU output, and then stalls. At the end of the DSFU execution
the ready signal is set, triggering the moves from the output registers to the

Chapter 2 25

register Vle and resuming the stalled pipeline.

2.4. Intermediate Code Representations

In this section, we examine the most relevant intermediate representa-
tions (IR) for this dissertation. These code representations are created for
transforming an application’s high-level code to an abstract description, in
which signiVcant features are highlighted. First, we discuss in Section 2.4.1
those models that represent the code’s structure and Wow, and we then re-
view the canonical representation alternatives in Section 2.4.2.

2.4.1. Structural Representations

A data Wow graph (DFG) is a well-known and widely-used representa-
tion that exposes the data dependences of operations within a basic block.
It is built as a directed acyclic graph (DAG) G(V ,E), with V the nodes
that represent the operations, and E the edges that stand for the data de-
pendencies between nodes. Most of the CI design algorithms in Section 2.2
start from this representation to solve the candidate identiVcation problem.
The main advantage of this representation is that we can expose structural
constraints naturally as the DAG imposes a strict topological order to the
operations. In CI design, not all the operations of a basic block are included
to be accelerated; the most common case is to avoid memory and branch
operations. The resulting subgraph G′ after suppressing those invalid nodes
may contain a structural hazard that make instruction scheduling infeasi-
ble. Therefore, CI design algorithms have to ensure that G′ is convex; that
is, there does not exist any path in G from a node u ∈ G′ to another node
v ∈ G′ which involves a node w < G′ .

Although DFGs have proved their validity for application-speciVc CI
design, we question the use of DAG-formed basic blocks for domain-speciVc
CI generation in Chapter 3.

2.4.1.1. IR and SelectionDAG in LLVM

LLVM [44] is our compiler of choice at several phases of the frameworks
we develop. Thus, we describe brieWy here two representations within
LLVM that are relevant for our tools, LLVM-IR and the SelectionDAG.

LLVM-IR, produced after the Vrst compiler’s frontend passes is the com-
mon code representation used for analysis and optimizations in LLVM. It is
based on Static Single Assignment (SSA) and it is microarchitecture inde-
pendent, though still representing type safety and low-level operations. The

26 Background

IR is distinctly used in three forms: as in-memory C++ classes, as on-disk
bitcode, and as assembly-like human-readable language. The assembly is
a strongly typed RISC instruction set which abstracts away details of the
target, for instance, using unlimited virtual registers. Basic block limits are
clearly marked, as well as control Wow through SSA’s φ (Phi) functions. If
auto-vectorization is activated in the frontend, the IR is also able to repre-
sent vector operations. This last form is the most common used one, and we
work with it at several points of our frameworks: for proVling in FuSInG
(Chapter 3), and for both proVling and HLS in MInGLE (Chapters 4 and 5).

The SelectionDAG is a code abstraction found in several backend phases
of LLVM. It passes through diUerent transformations, starting from an IR-
close form to a more Vnal microarchitecture speciVc representation. This
representation facilitates the compiler’s instruction selection phase that uses
pattern matching techniques, as well as low-level target-independent opti-
mizations. The SelectionDAG is a directed acyclic graph whose nodes are
operation codes – the operation performed and the operands involved. It
has two diUerent kinds of edges: those to represent data Wow dependencies,
and those to represent control Wow ones. We isolate and work on the DFG
of the SelectionDAG of individual basic blocks just before the instruction
selection phase in LLVM’s backend. We use it for the DFG Explorer step
that extracts the CI candidates in the FuSInG framework of Chapter 3.

2.4.2. Canonical Diagrams

A canonical representation presents a unique description for a given
mathematical object, such as a graph, as a mathematical expression. With
a canonical form we can test, for instance, if two graphs are equal. This is
diUerent to the graph isomorphism commonly applied to DFGs where we
check the structural equivalence of two graphs. In the case of canonical
representations, we aim to test the semantic equality of the mathematical
expressions that the graphs represent, or in other words, if they are functio-
nally equivalent.

Although there is vast work in graph-based canonical representations,
here we focus on the relevant ones for this dissertation: Binary Decision
Diagrams (BDDs), that represent binary functions, in Section 2.4.2.1, and
Taylor Expansion Diagrams (TEDs), that can express work-level functions,
in Section 2.4.2.2.

2.4.2.1. Binary Decision Diagrams

A binary decision diagram (BDD) [45] represents a binary function as
a rooted graph, based on a recursive Shannon decomposition, which com-

Chapter 2 27

x1

x2 x2

x3 x3 x3 x3

0 1 0 1 0 1 0 1

x1

x2 x2

x3 x3 x3 x3

10

x1

x2 x2

x3 x3 x3

10

x1

x2 x2

x3

10

x1

x2

x3

10

Recursive

Shannon expansion
Collapse leaf nodes

Remove redundant

tests

Isomorphic

subgraphs

Remove

redundant

ROBDD1. 2. 3. 4.

Figure 2.6: Example of a reduced and ordered BDD construction for Boolean
functions f1 = (x1 ∧ x3)∨ (x2 ∧ x3) and f2 = (x1 ∨ x2)∧ x3, with variable order

[x1,x2,x3].

bined with a set of reduction rules, makes the BDD minimal and canonical
for a given ordering of variables. BDDs have been applied in formal veriV-
cation problems, such as correctness check of circuit implementations.

BDDs represent Boolean functions that determine Boolean values from
logical calculations on Boolean inputs. The representation is a rooted DAG
with several decision and terminal nodes, all connected by decision edges.
The initial node stands for the top Boolean formula. Non-terminal, decision,
or internal nodes are labeled as a Boolean variable w and have one out-edge
0 (then) and one out-edge 1 (else), Each non-terminal node represents the
Boolean function corresponding to its 1 edge if w evaluates to 1, or to its 0
edge if w evaluates to 0, building up the top formula down to the terminals.
Terminal nodes are labeled as 0 or 1, representing the Boolean functions 0
and 1. Figure 2.6 shows and example of BDD construction, explained in
detail later. The rightmost graph is the Vnal BDD of the Boolean function
f1 = (x1∧x3)∨(x2∧x3). Each node represents one of the Boolean variables
〈x1,x2,x3〉, and in this graphical representation, edges labeled with 0 are
dashed and with 1 are solid.

The if-then-else normal form (INF) represents a Boolean function using
the if-then-else (ITE) operator. For inputs {x,y,z}, ITE computes if x then y
else z, which is equivalent to:

ITE(x,y,z) = (x∧ y)∨ (x̄∧ z), (2.1)

with variable x evaluating to 1 or to 0.
Multivariate boolean functions can be expressed by recursive decompo-

sition as a Shannon expansion using the ITE operator:

f (x0, . . . ,xn) = ITE(xn, f1(x0, . . . ,xn−1), f0(x0, . . . ,xn−1). (2.2)

Thus, the BDD is built performing the ITE logical function at each node,
operating in time proportional to the size of the resulting function graph.

28 Background

A BDD composed of INF expressions, with all equal ITE nodes shared,
and with variables appearing in the same order and at most once in any
path from root to leaf, is called reduced ordered binary decision diagram
(ROBDD). Such BDDs are canonical since each derivation of a particular
Boolean function leads to the same representation.

The variables in the ROBDD must have a speciVc order deVnition used
to build the diagram recursively. Therefore, in ordered BDDs diUerent vari-
ables appear in the same order from root to leaf in each expression path. For
an ordered list of variables L = [v1, . . . , vn] without duplicates, a BDD B has
an ordering [v1, . . . , vn] if all the variable labels of B occur in [v1, . . . , vn],
and if vj follows vi on a path in B, then j > i . The orderings of two BDDs B
and B′ are compatible if there are no variables 〈v,w〉 such that v is beforew
in the ordering for B, and w is before v in the ordering for B′ . The example
of Figure 2.6 follows the variable ordering [x1,x2,x3] to apply the required
recursive Shannon expansion in step 1.

To reach a full reduced BDD, reduction operations are applied to sim-
plify the diagram to its maximum. First, duplicated terminals are removed;
if there is more than one 0 terminal nodes, all edges pointing to them are
redirected to just one of the 0 node. The same applies to 1 terminal nodes.
Then, redundant tests are also removed; if the two outgoing edges of a node
v point to the same node w, v is removed and its incoming edges are redi-
rected w. And Vnally, duplicated non-terminals are removed as well; if two
diUerent nodes v and w are the roots of identical sub-BDDs, eliminate v
and redirect its incoming edges to w. In the example of Figure 2.6, dupli-
cated terminals are removed and collapsed in step 2. Then, a redundant test
with variable x3 is also removed in step 3, while step 4 detects and col-
lapses all the identical x3 sub-BDDs. Finally, the reduced and ordered BDD
is obtained removing in the last step redundant tests once again.

The reduced and ordered BDD is a canonical form of a logic func-
tion. This means that two functions with compatible variable orderings
are equivalent if the ROBDD for each function are isomorphic. For ins-
tance, the ROBDD of Figure 2.6 represents not only Boolean function f1 =
(x1∧x3)∨(x2∧x3), but also the function f2 = (x1∨x2)∧x3. This property
makes it useful in functional equivalence checking of Boolean functions, and
we make use of this feature in the MInGLE framework (Chapters 4 and 5).

2.4.2.2. Taylor Expansion Diagrams

A Taylor Expansion Diagram (TED) [46] is a canonical, graph-based
representation like BDDs, but whose decomposition is non-binary. Such a
representation raises the level of abstraction to allow word-level algebraic

Chapter 2 29

x

0 2

First variable

expansion

-y^2

-1

Reduction

x

2

y

-2

Normalization

x

y

ONE

Second variable

expansion

x

0 2y

0 -20

v

f(0) f'(0) f''(0)/2

Node
decomposition
representation

TED3.2.1.

Figure 2.7: Example of a TED construction for the polynomials f1 = (x + y)(x − y)
and f2 = x2 − y2, with variable order [x,y].

symbols with lower memory requirements than binary-based representa-
tions.

TEDs are based on the Taylor series expansion which, for a multivariate
algebraic expression f (x,y, . . .), is represented as follows:

f (x,y, . . .) = f (0, y, z, . . .)+xf ′(0, y, z, . . .)+
1

2
x2f ′′(0, y, z, . . .)+ . . . , (2.3)

where the origin is set in x = 0 and with f ′(x = 0) and f ′′(x = 0) as the
successive derivatives of f (x = 0). The individual terms of the expression
are then decomposed with respect to the remaining variables on which they
depend (y, . . . , etc.),

This decomposition, applied recursively at each algebraic function de-
rived, is stored in a directed acyclic graph, the Taylor Expansion Diagram.
A TED is composed of a root ρ, a set of nodes V , a set of edges E, and ter-
minals T . The root represents the multivariate polynomial φ that the TED
expresses. Each node v ∈ V has an index that identiVes an input variable
and it is related to a speciVc decomposing order. For a node v, the function
it represents is determined by the Taylor series expansion of all variables
with indexes lower than index(v). An edge e is directed E is directed from
v to the derivative of the function with respect to the variable index(v).
Graphically, there are three diUerent types of edges: dashed for the cons-
tant Taylor expansion, plain lined for the expansion on the Vrst derivative,
and double-lined for the expansion on the second derivative. The function
computed at the terminals is an integer constant. On the leftmost diagram
of Figure 2.7 we can Vnd a key of that representation. In step 1 and 2 of the
same Vgure, we show the Taylor expansions of polynomial f1 = (x+y)(x−y)
with respect to variables x and y.

The order in which the variables are expanded aUects the size and shape
of the Vnal canonical representation. Following certain rules to Vnd an ini-
tial variable ordering [47] can help to obtain TEDs optimized in size:

30 Background

1. Variables that never appear in the same monomial on a single-output
TED can be treated as outputs of a temporary multiple output TED.

2. Variables that appear in most terms of the monomial with the same
exponent should be placed at the top of the TED.

3. Variables that appear in most terms of the monomial and have several
exponents should be placed right after any variable identiVed in rule
1.

4. In the case of TEDs with multiple outputs: we place in rule 2 the node
at the bottom instead of the top, and we put in rule 3 the node before
instead of after.

A TED is reduced if it contains no redundant nodes and has no distinct
nodes v and v′ , such that the subgraphs rooted at v and v′ are isomorphic.
A node in a TED is redundant if all of its non-0 edges are connected to
terminal 0. We can reduce redundant nodes by removing them and merging
isomorphic subgraphs. Figure 2.7 shows, in step 3, the reduction of a TED
with redundant nodes and edges removed.

The normalization of a TED consist of propagating the weights at the
terminal edges, or the common factor of all k edges from node v to the ter-
minal node, and storing them as edge weights in the upper edges, enabling
the extraction of common subTEDs. By applying this to all terminal nodes,
only the terminal node 1, also represented as ONE, remains in the graph.
Last step of Figure 2.7 shows a reduced and normalized TED.

For any multivariate polynomial phi with integer coeXcients, there is
a unique ordered, reduced and normalized TED denoting phi , that is, an
ordered, reduced and normalized TED is minimal and canonical.

TEDs can also represent operators for Boolean logic:

not : x′ = (1− x)

and : x∧ y = x · y

or : x∨ y = x + y − x · y

xor : x⊕ y = x + y − 2 · x · y

with x and y Boolean variables represented by binary variables. The resul-
ting functions are 0,1 integer functions.

TEDs are limited to represent only those functions that have a Vnite
Taylor expansion, therefore functions with an inVnite Taylor series such as
ax (a is a constant) are excluded from the representation. Also, TEDs cannot

Chapter 2 31

represent relational operators (such as comparators, A ≥ B) in symbolic
form, since relations are characterized by discontinuities over their domain
and are not diUerentiable. For the same reason, modular arithmetic is also
restricted.

TEDs have been commonly used for circuit veriVcation. We use the re-
presentation for another purpose in this dissertation: to Vnd common parts
of the code that cannot be found with pattern matching techniques using
DAGs. For instance, the example TED from Figure 2.7 represents two diUe-
rent polynomials that perform the same functionality: f1 = (x + y)(x − y)
and f2 = x2 − y2. These ideas are further developed in Chapters 3 to 5.

3
Functionally Similar Domain-SpeciVc

Instructions

3.1. Introduction

In the introduction of this dissertation, hardware specialization was
presented as a promising paradigm to improve performance and energy-
eXciency in the dark silicon times. We discussed how an application-
speciVc processor, while costly to manufacture, is limited to deliver high
performance for a single application. We presented the alternative of cus-
tomized processors that target an entire application domain may deliver
better overall system performance when diUerent applications run on the
device, and may be more economically viable by targeting a larger market.

In this chapter, we focus on designing CIs that extend the ISA of a base
architecture and accelerate a sequence of operations in diUerent applica-
tions. We explore the design space of CIs that are implemented in an SFU in
hardware, from those designed for a particular application versus those tar-
geting many applications within a domain. With this in mind, we introduce
a new technique to extract common sequences of computations from seve-
ral applications within a domain, which become CIs. We use the canonical
representation TED, traditionally used in the areas of compiler optimization
and design veriVcation, to identify common computations, We compare the
eUectiveness of DAG, TED, and a Hybrid technique at Vnding common code

34 Chapter 3

sequences to target for acceleration in hardware. Our study shows that a
canonical representation is key to identifying sequences that are mapped to
the same CI across applications. We also evaluate four new scoring heuris-
tics that prune the huge search space of the potential CIs without a detailed
evaluation, selecting those that maximize the speedup of our application
domain.

We build the exploration framework FuSInG (Functionally Similar Ins-
tructions Generator) to estimate the speedup of new CIs, across the spec-
trum of application-speciVc and domain-speciVc acceleration. We use 9 me-
dia benchmarks, and extend the LLVM compiler framework to identify code
sequences amenable for acceleration. We extract sets of reusable CIs, both
within and across benchmarks, which we subsequently analyze and rank
using our scoring heuristics. We then use the Xilinx design software to syn-
thesize a hardware implementation of a potential CI. Given an instruction’s
hardware datapath, we use estimation models to approximate its core area
and number of cycles, and thus speedup. We show that while DAG, TED
and Hybrid perform similarly when Vnding CIs for a particular application,
using the TED and Hybrid techniques to identify CIs across a domain leads
to much higher speedups than when using the DAG technique alone. Our
analysis reveals that when the SFU occupies a small, realistic core area, it
obtains the highest speedups when including both CIs designed across all
applications in a domain and some speciVc to one application. We study
a few machine design points in detail: given a particular area, we present
the characteristics of the SFU that obtains the highest speedup. Finally, we
study how well CIs identiVed for a set of benchmarks perform for other,
previously unseen workloads.

This chapter is organized as follows. Section 3.2 sets the context and
main challenges. Section 3.3 gives a high-level description of the develo-
ped framework, which details are elaborated in Sections 3.4 to 3.7. The
experimental setup is explained in Section 3.8 and the results presented in
Section 3.9. We close this chapter with the summary in Section 3.10.

3.2. Context

We assume that the CIs execute on an SFU that is tightly integrated
within the datapath of a general-purpose processor, as presented in Chap-
ter 2, Section 2.3. Figure 2.1 shows a high-level diagram of such an architec-
ture. Specialized execution pipelines that execute the CIs can be conVgured
at system boot time. When analyzing code sequences to identify CIs, we
disallow control or memory operations, since the SFU reads and writes data
from and to the processor’s register Vle. Therefore, we do not focus on

Functionally Similar Domain-Specific Instructions 35

creating a new specialized processor, but on accelerating a general-purpose
processor using a small additional amount of chip area.

Previous research has used automated tools to identify repeated pat-
terns of instructions and propose them as extensions to the ISA. Initial de-
velopments established the grounds for the Veld using exhaustive identiVca-
tion of patterns [20] and approximate techniques [16]. Other works [19, 48]
have used pattern matching-based approaches on the data Wow of programs,
represented as directed acyclic graphs (DAG), to identify CIs across a do-
main. However, pattern matching cannot always Vnd similarities between
sequences of code in order to map diUerent functionality to the same CI,
inherently limiting specialized hardware opportunities.

Consequently, in this chapter we explore the trade-oU between appli-
cation-speciVc versus domain-speciVc hardware specialization. Given a de-
Vned set of applications, our main objective is to design the hardware to
maximize the platform’s eXciency. We focus on maximizing speedup, or
boosting system performance and application execution time, given a par-
ticular core area dedicated to the SFU. Exploring the application-speciVc
versus domain-speciVc specialization trade-oU involves a number of cha-
llenges. For one, we need a framework to identify code sequences within
and across applications that are amenable to hardware acceleration. Fin-
ding common code sequences across applications is particularly challenging
because of the huge search space, i.e., one needs to keep track of all code se-
quences of all applications to be able to Vnd commonalities, and one needs
to Vnd the best way to represent these code sequences to maximize the likeli-
hood of Vnding commonalities both within and across applications. Further,
to be able to quickly explore the CI design space and keep exploration time
reasonable, we need heuristics to rank the eUectiveness of potential specia-
lized hardware without relying on detailed evaluation of each possible CI.
We have to use tools to estimate the speedup an application would achieve
when using a particular set of CIs, and optimize not only for speedup across
the domain of applications, but also for minimizing the SFU’s area. In order
to perform this study, we have built an accelerator exploration framework,
which we describe next and which includes several novel contributions over
prior work to identify and rank potential specialized functional units that
accelerate computation.

3.3. FuSInG Automatic Framework

Figure 3.1 shows an outline of our CI selection and evaluation frame-
work FuSInG (Functionally Similar Instructions Generator), which we detail
in the following sections. We Vrst analyze application code to identify po-

3
6

C
h
a
p
t
e
r
3

���������	
��
����

����������������
��������

���������������
������

�����

�
����

		
��
������

		
��
������

		
��
������

���������	
���

���������	�

������

�	����

���

���������	�

�����
�

�����������

��������	

�������

��	
�
����

��������
�

�
����	
�
����

��������
�

������	
�
����
��	
�
�����

�	���������

��������
� !���
���	
�
����

�����������

��������	

"�	#�	$

����%���������

"�	#�	$

�
����	%���������

&���
����	

������

&�'

 ��
(����

�������	�����	

%����

%����	�!��!����

 �)����	���������	

�����������

��������	

���������	

������

&���
��

���������	

�����	%���������

�����	$

��%��������

�����	$

 !���
���������	$

�
��������	�

����*�	$

����������	�

����*�	$

�������	���������	

���������

���	��	

))+,�

�	���������

������������

��������
� !���
���	
�
����

���

���

���

���

���

���

���

���

���

���

���

Figure 3.1: Schematic overview of our CI selection and evaluation framework FuSInG.

Functionally Similar Domain-Specific Instructions 37

tential code sequences for CI design (Step 1). We then take steps to Vnd com-
monalities among these identiVed code sequences, both within and across
applications (Step 2), and then evaluate which CIs are most eUective using
newly proposed scoring heuristics (Step 3). Using these heuristics, we plug
our chosen CIs into a low-level model that estimates both the speedup and
the area of each (Step 4), so we can evaluate the potential of new computer
designs with hardware acceleration.

3.4. IdentiVcation of CI Candidates with DFG Explo-

ration

Step 1 of Figure 3.1 shows how we identify code sequences amenable
for acceleration in hardware. We use the compiler (label 1.1 in the Vgure) to
transform the source code of the application into its IR to expose the DFG
and CFG of the program. We use an IR representation close to the assembly
language to Vnd sequences of code that could be turned into speciVc CIs in
hardware. Because identifying sequences of code to accelerate could blow
up to a huge state space search, we apply certain constraints to lower the
space exploration.

Static program analysis, implemented in the DFG Explorer (label 1.3),
identiVes a list of candidates that could be implemented as CIs. Each can-
didate must be a maximal convex subgraph [20] of a data Wow graph for
a given basic block, that is, the biggest disconnected subgraph of a basic
block that preserves the convexity constraint [12]. These subDFGs exclude
invalid instructions that cannot be executed in the SFU. In this chapter, we
assume that the SFU executes neither memory nor branch instructions to
keep the unit highly integrated in the processor’s pipeline. Instead, they
are executed in the core’s ALU, thus we mark them as invalid in the explo-
ration step. However, to support other kinds of acceleration hardware that
target code beyond the basic block level, and include memory instructions,
we could extend this step of the framework as well as step two, which clus-
ters instructions using TEDs. Therefore, our exploration framework FuSInG
was built to be general and broad enough to study a variety of acceleration
designs.

The DFG exploration is done with a fast implementation of the algo-
rithm presented by [21] using binary structures. The algorithm performs a
binary search for each basic block in the application, Vrst enumerating the
invalid instructions of the graphs, which turn into the cutting nodes of the
subtrees to be explored recursively in the search. The exploration result is
a list of candidate code sequences, represented as subDFGs, that satisfy the

38 Chapter 3

criteria above in non-exponential asymptotic time complexity (bounded by
the number of invalid instructions, as they deVne the amount of recursive
calls).

In order to cut down on the number of candidates, we deVne a few
rules to limit subDFG candidates. Groups of instructions are selected to
preserve the consistency of scheduling, which means that all the inputs of
the set are ready at issue time. In our exploration, we allow unlimited inputs
and outputs to the CI, because more complex CIs will potentially achieve a
higher speedup. We also limit the exploration space by only considering
executed parts of the code, using a previously-gathered execution proVle of
the application (label 1.2 in Figure 3.1). At the end of Step 1, we have a list of
candidates that are then passed to the next step which clusters the potential
code sequences to help select CIs.

3.5. Instruction Clustering to Discover Equivalences

In Step 2 of Figure 3.1, we analyze the code sequences found in Step 1 in
order to group them to propose CIs that apply to several sequences of code.
This clustering step can be performed on code sequences identiVed from the
same application (targeting application-speciVc CIs), and/or sequences from
diUerent applications (targeting domain-speciVc CIs). Clustering serves se-
veral functions: to enhance reusability, to minimize implementation area in
hardware, and to reduce the search space in the selection step.

In the following sections, we describe three methodologies for the clus-
tering: DAG, TED and Hybrid.

3.5.1. Clustering with DAG Isomorphism

The Vrst technique clusters the code sequences using directed acyclic
graphs (DAGs). For each pair of subDFGs obtained in Step 1, we perform
a one-to-one isomorphism detection (label 2.1 in Figure 3.1). Those graphs
that are isomorphically exact are clustered under the same label, to be po-
tentially transformed into a single CI candidate.

Previous works [19, 48] approached the problem by starting from small
graphs, building them up to arrive at relatively large-sized accelerators —
a bottom-up approach. In our work, we employ a top-down approach and
start from maximal subgraphs extracted from a basic block, ideally covering
as large code sequences as possible, and exploit as much instruction-level
parallelism as possible.

Relatively larger CIs are more likely to yield better overall performance,
but the identiVcation of big patterns of functionally identical computation is

F
u
n
c
t
io
n
a
l
l
y
S
im
il
a
r
D
o
m
a
in
-S
p
e
c
if
ic

In
s
t
r
u
c
t
io
n
s

3
9

��������	 ��������
 ���������

���������������	�
	�
	�
�����	�	������	�	�	�����	�	��

������������
���

����
����
������������

���������

������������
���

����
����
������������

���������

������������
����
����������

�����������

���������	���
����
����������

�����������

���������������������������

����� ��
��!���"#

�" ��� ������

��#��" �� �"

�����#��� ��� �"

�

� �

$%&

��

��

�

�� �����

�

�

�

� �

� ��

����
���� �� �"

�

����
� �
���� ��� �"

�

�

��	�
 �� �

�	�
�
��
�� ���
��
��

���
��
��

�

�

	�
 �� �

�

�

�

�� �

�

	

�

�

�� �

�

	

�

���
��
�� ���
��
��
�

�

�

�

�

�� �

���
��
�� ���
��
���

�

�

�

�

� �

���
��
�� ��

	

�

�

�

�

� 	
���

� �

���

��

�

�

�

� �

�

�

�� � �

� 	 �

���

�

� � 	 �

�

����������������������������

������
���'�������
��!���"#

��������������������(�

����� �� �� ��
��!���"#

���������������������(�

�������
����
�

�!���"#

����
������
������
����

��
���	�
�
��
����

���
������
������
����

��
�	�
�
��
	���

��
������
������
����

��
�
�
��

���

����
������
������
����

��
�����
����

��
����

�����
������
������

����
��
���

��
����

����
������
������
����

��
�����
����

��
����

�����
������
������

����
��
���

��
����

����
������
������

���� ���

��
���!�
��!�

��
����

������
� �

�

	

�����	��

�

� �

	

������

� �

�

	

��������

� � 	

�

����	�����
����	����� ���	��

�

��
�
��
��
����

)��#���'��

'�*�+����!���

�������������������

��������������������� ��������������������� ���������������������

���������������� ���������������� ����������������

 ������!�	���� ������!�	���� ������!�	����

�

�

�

	

��

�

�

�
��

��

�

�

�

�

�

�

� �

�

�

�

�

�

��

�

�

�

� � � � � �

��

�

��!��� ��� ��!���

� � "#�

����

$%&
$%&

Figure 3.2: Three examples of the usage of TEDs for instruction clustering. From top to bottom: DAGs, Algebraic expressions, TED
construction process and Vnal normalized TEDs.

40 Chapter 3

a complex problem. Consider the three examples of subDFGs in Figure 3.2,
identiVed in diUerent benchmarks and their equivalent algebraic expres-
sions. Example 1 shows two portions of code of the aacenc application
from diUerent basic blocks in their DAG representations. They diUer in
the number and types of instructions they contain. Simple DAG pattern
matching would not cluster these two DAGs, although their algebraic func-
tions are equivalent. In Example 2, we extend the problem to a domain
of applications. We show DAGs of basic blocks from diUerent benchmarks
(mpeg2dec, aacenc,mpeg2enc and face_detect) that perform the same com-
putation, but with diUerent operators. The DAGs of two of them (mpeg2dec,
mpeg2enc) are isomorphically the same, therefore they could be clustered
with DAG pattern matching. However, DAG pattern matching is not able
to cluster all four of them. In Example 3 we show two DAGs of face_de-
tect and tmndec with multiple outputs. In this case, although we can have
a partial match with DAGs for outputs 2 and 3, the full match for identi-
cal computation cannot be found. Summarizing, in the three motivational
examples, pattern matching using DAGs is missing opportunities to Vnd
commonalities among code sequences.

3.5.2. Clustering with TED isomorphism

Because of the limitations of using DAG pattern matching, we introduce
a second clustering technique based on a canonical representation of por-
tions of the application’s code. We gather insights from works on TEDs (see
Chapter 2, Section 2.4.2.2), adapting them here to Vnd common parts of the
code that cannot be found with a simple pattern matching technique using
DAGs. We match code from applications using TEDs at compile time (at an
intermediate code level), and thus the shape of a TED does not inWuence the
Vnal implementation of a CI at the circuit-level.

Although TEDs were described in Chapter 2 in great detail, we brieWy
introduce here the basics of the representation to understand how the TED
technique works for cases such as the one depicted in the examples of Fi-
gure 3.2. Starting with a multivariate algebraic expression, we apply re-
cursively the Taylor series expansion and we store this decomposition, into
a directed acyclic graph, the Taylor Expansion Diagram (label 2.2 in Fi-
gure 3.1). Each node of the graph represents an input variable, and three
diUerent types of edges can be linked to a node: constant Taylor expan-
sion, the expansion on the Vrst derivative, and the expansion on the second
derivative. Following a set of rules, we obtain a normalized and canonical
representation of the TED from the starting algebraic expression.

We start with the computations expressed as subDFGs or DAGs from

Functionally Similar Domain-Specific Instructions 41

Step 1 in Figure 3.2. Then, in order to build a TED, we execute the following
steps:

1. Convert the subDFG into an algebraic expression. Note that boolean
logic can be expressed as an algebraic expression as well: for example,
the logical ‘or’ operation can be represented as x∨ y = x + y − xy.

2. Establish the order in which the variables are expanded, as it aUects
the size and shape Vnal canonical representation.

3. Recursively calculate the values of the Taylor expansion for the cons-
tant, Vrst and second derivative for every term in the algebraic ex-
pression, following the order from point 2.

4. Apply reduction and normalization rules to ensure that the TED is
canonical.

We explain the TED construction with three examples in Figure 3.2. In
Example 1, the Vrst step converts the DAGs into the algebraic expressions
A and B written under the graphs. Note the expansion of the ‘or’ operation
into its counterpart algebraic expression. In the second step, we decide the
ordering of the variables, which is important to arrive at a canonical repre-
sentation. In this case, the order is x,y. In the third step we construct the
TED, which will be unique for both A and B, as their Taylor series expan-
sions yield the same values. Step (i) in the TED construction builds a partial
TED performing the Taylor series expansion Vrst on variable x. Then, step
(ii) expands on variable y. The resulting TED, after applying normalization
and reduction, leads to the reduced version in the bottom of the example.
For Example 2, the four algebraic expressions are expanded in the same
way, as shown in steps (i) to (v). In Example 3, with multiple output DAGs,
we will have an algebraic expression for each one of the outputs. Each ex-
pression is transformed into the corresponding TED, with as many steps as
input variables. At the end, the generated TEDs, separately, are reduced and
normalized, but also merged into a single normalized TED.

Finally, as TEDs are also directed acyclic graphs, we perform a one-to-
one isomorphism detection with the normalized TED — like the ones at the
bottom of Figure 3.2 – as we do with the DAG representation (label 2.3 in
Figure 3.1).

3.5.3. Hybrid TED-DAG clustering

The Vnal clustering technique is a hybrid TED-DAG technique. Not all
computations in their directed acyclic graphs can be converted to a polyno-
mial expression, and only polynomials with a Vnite Taylor expansion can be

42 Chapter 3

modeled as TEDs. This excludes modular arithmetic, relational operations,
and exponentiation of constants as a base, whereas a DAG can represent
all types of computations as they are expressed structurally in the DFG.
Due to these restrictions, we propose a hybrid technique that uses the TED
representation when it can be created, and otherwise uses the DAG repre-
sentation of subDFGs to cluster computation (label 2.4 in Figure 3.1). Using
this hybrid approach, we should be able to cluster more code sequences to
target the same hardware, identifying the most eXcient CIs for our set of
applications.

3.6. Heuristic Selection

After clustering code sequences, we have many CI candidates. In order
to select the most promising ones for our applications, we introduce four
novel scoring heuristics in Step 3 of Figure 3.1. Our scoring techniques use
dynamic execution data from the applications in order to prioritize CIs, ei-
ther focusing on application-speciVc or domain-speciVc CIs, that maximize
speedup. They score based on the number of regular instructions covered
by each CI, the frequency of execution of the basic blocks that contain the
subDFG that maps to that CI, and (for domain-speciVc) the number of appli-
cations that can use each CI.

3.6.1. Application-SpeciVc Scoring

We Vrst focus on a scoring heuristic that prioritizes CIs targeted at just
one application (label 3.1 in Figure 3.1). Our heuristic ranks CIs based on
the potential speedup they can oUer, using the following terms: K is a CI for
which n code sequences are found in an application, i.e., n code sequences
can be accelerated using CI K . ninsti is the number of regular instructions
and freqi is the frequency of execution of the code sequence amenable to
the CI. The latter is gathered through proVling (label 1.2 in Figure 3.1).

Our application-speciVc scoring heuristic for CI K is then deVned as:

scoringK =

n
∑

i=1

ninsti × freqi, (3.1)

and essentially weights all code sequences with their instruction counts and
execution frequencies to have a measure of the speedup of the application
as a whole.

Functionally Similar Domain-Specific Instructions 43

3.6.2. Domain-SpeciVc Scoring

To identify CIs that are most eXcient across a domain of applications,
we must use diUerent heuristics that take into account the reusability of the
hardware (label 3.2 in Figure 3.1). We still take into account a CI’s execu-
tion frequency, however with a slight change. Because we are considering
diUerent applications, we must normalize the execution frequencies to the
application’s total dynamic instruction count. For any given application, the
normalization is done by scaling the frequency of execution to the percen-
tage of the application’s total number of instructions executed.

We Vrst deVne the following variables:

K is a CI with n code sequences found across all applications (1 ≤ n).

ninst is the number of regular instructions of a given code sequence
amenable to the given CI.

nfreq is the normalized frequency of execution of the given code se-
quence.

napp is the number of applications that can use the CI.

Each of these napp applications can use the CI at m diUerent points
in the code (1 ≤m ≤ n), and thus (n =

∑napp
i=1 mi).

We now detail four new scoring heuristics that each prioritize CIs dif-
ferently, and we compare them later in the experimental results section.

3.6.2.1. Scoring 1: Normalized Application-SpeciVc

scoringK =

n
∑

i=1

ninsti ×nfreqi (3.2)

Equation 3.2 shows the Vrst scoring, which is similar to the application-
speciVc scoring, though it uses normalized frequency values. It maximizes
the ranking of frequently used CIs targeting high numbers of instructions. A
CI’s sharing across applications is not taking into account with this scoring
heuristic.

3.6.2.2. Scoring 2: Scaled by Sharing

scoringK = (

n
∑

i=1

ninsti ×nfreqi)×napp (3.3)

44 Chapter 3

Our second scoring technique, in Equation 3.3, does take into conside-
ration a CI’s ability to be reused or shared across applications. The napp
factor prioritizes CIs that have a high sharing factor, when the scoring has
to discriminate among CIs with similar numbers of normalized dynamic
instructions. Application-speciVc CIs that are very frequently used are still
highly ranked, since nf reqi ≫ napp.

3.6.2.3. Scoring 3: Geometric Mean of Sharing

scoringK = napp

√

√

√napp
∏

i=1

(

mi
∑

j=1

ninstj ×nfreqj) (3.4)

Equation 3.4 shows our third scoring heuristic that calculates the ge-
ometric mean of the mi application-speciVc scores, where i an index that
iterates over the applications involved. Since application-speciVc scores for
a given CI can vary by several orders of magnitude, we propose this scoring
to smooth out the spikes in the scores due to a single application (when
napp > 1). CIs that beneVt many applications but get a high score from
only one application, are penalized. This heuristic thus introduces fairness
for CIs targeting several applications. However, CIs used by one application
are not penalized.

3.6.2.4. Scoring 4: Random-Scaled Sharing

scoringK =

napp−1
∑

i=0

(

mi
∑

j=1

ninstj ×nfreqj)×
napp

napp− i
(3.5)

In the Vnal scoring heuristic, in Equation 3.5, we introduce a random-
ness factor controlled by the number of applications that the CI targets.
The application-speciVc scoring is weighted by napp

napp−i . The assignment of

i is random, but napp still inWuences the Vnal result, thus the higher the
sharing factor, the higher the score. Note that the value of i assigned to a
particular application is non-deterministic, so the applications are weighted
diUerently for each code sequence. The reason for introducing some con-
trolled randomness is to distribute scores in a more Wexible way, since there
are other factors that we do not consider in our current heuristics, such as
the area that a CI occupies.

Functionally Similar Domain-Specific Instructions 45

3.7. Estimating Performance and Area

Finally, in Step 4 from Figure 3.1, we evaluate the eUectiveness of the CIs
identiVed by the previous three steps. Informed by the ranking of CIs pro-
duced by the scoring heuristics in Step 3, we feed top CIs into a hardware
description language conversion tool that creates a preliminary hardware
implementation (label 4.1 in Figure 3.1). This implementation veriVes that
the identiVed sequences of code can be implemented as hardware structures,
and double-checks the scoring techniques. The hardware implementation,
using information from the application proVle, is fed into a model that es-
timates the achievable speedup and area occupied by each CI (label 4.2 in
Figure 3.1). Area estimates are obtained through hardware synthesis as we
will explain in Section 3.8.

We estimate the speedup each CI can achieve for each identiVed se-
quence of code as follows. Consider a CI that would be invoked at n diUe-
rent locations in the code of a particular application, that covers ninst nor-
mal instructions, and is executed nfreq times at a particular location. Fur-
ther, assume that hardware synthesis estimates the CI to take hw_cycles to
execute. Consider also a cost of Cin cycles to move input data from the
register Vle to the SFU before the CI starts and a Cout cost to move outputs
back to the register Vle at the end of the accelerated execution. Both costs
depend on the number of input and output parameters of a particular CI
and the available register ports in the baseline processor. We Vrst estimate
the execution time in cycles of all uses of the CI (on the SFU) as:

Tw/ ci =
n

∑

i=1

nfreqi × (hw_cycles+Cini +Couti), (3.6)

or the number of times the CI is invoked multiplied by its execution time in
cycles. Then, we estimate the number of cycles that the same sequences of
code would take on the non-customized processor (without using the CI):

Tw/o ci =
n

∑

i=1

ninsti ×nfreqi ×CPI, (3.7)

with CPI as the cycles per instruction of the application on the target pro-
cessor.

We deVne T as the total application execution time in cycles on the
target processor (without using the CI). We then can Vnd the diUerence
between the number of cycles our candidate sequences take on the non-
customized processor versus using CIs, and subtract this from T to approxi-
mate the accelerated performance. Formally, the estimated total application

46 Chapter 3

time when using CIs is:

T − (Tw/o ci −Tw/ ci). (3.8)

We then divide T by that estimated time to calculate the SFU’s achie-
vable speedup. This is a conservative estimate since we do not take into
account the potential instruction-level parallelism between regular and CI
execution, which would result in higher speedups.

With this evaluation step, we are able to compare the potential perfor-
mance improvements that a set of CIs, whether including just application-
speciVc CIs, domain-speciVc, or both, can provide to an application or set of
applications.

3.8. Experimental Setup

We describe the implementation details of our specialized functional
unit design exploration framework FuSInG, including the software and hard-
ware tools used, and our benchmarks.

We use the LLVM compiler infrastructure [44] as the front-end to our CI
design exploration framework FuSInG. We modify the LLVM code genera-
tion module to Vnd maximum valid subDFGs for DFG exploration (Step 1 in
FuSInG). Using the NetworkX library [49], we perform graph isomorphism
detection, and construct the TED representations using the symbolic alge-
bra and calculus part of Sage [50]. We obtain an execution proVle for each
of our applications using the LLVM binary interpreter. The proVle indicates
the frequency of execution for each basic block, and is used in Steps 2 to 4
of FuSInG.

We assume that the target architecture has spare core area tightly-cou-
pled to the processor core to implement the conVgurable SFU, as shown in
Figure 2.1 (Chapter 2). We consider a single-core single-thread OpenSPARC
T1 as the baseline architecture, which has been adapted previously for re-
search on embedded applications [51]. The register Vle that both the ALU
and the SFU access consists of 32 64-bit registers with three read, two write
and one transport ports. The instruction encoding allows moving two input
operands to the SFU with no additional cost. Any extra inputs are sent in
groups of three, with a cost of one cycle per transfer, before the CI execution
starts. When the instruction ends, outputs are packed together in groups of
two and moved back to the register Vle, with a cost of one cycle per transfer.

To evaluate the selected CIs, we Vrst translate their functionality to C
code. For a given application, CIs that are functionally equivalent are trans-
lated to one common piece of code. Across applications, for a given set of

Functionally Similar Domain-Specific Instructions 47

Benchmark Description Input

aacenc AAC audio compression encoder 33.9MB WAV

cjpeg JPEG image format compressor 1.2MB PPM (Mediabench)

djpeg JPEG image format decoder 12.8 kB JPEG (Mediabench)

face Face detection on bitmap Vles 734.5 kB bitmap

tmndec H263 video format decoder (TMN) 114 kB H263 (Mediabench)

tmnenc H263 video format encoder (TMN) 5.5MB YUV (Mediabench)

mpeg2dec MPEG2 video format decoder 34.9 kB (Mediabench)

mpeg2enc MPEG2 video format encoder 506.9 kB (Mediabench)

optWow Optical Wow for motion estimation 884 kB images

Table 3.1: Description of the evaluated application benchmarks and their input
Vles.

sections of code identiVed as functionally equivalent, we provide an imple-
mentation of the CI execution path for each application involved. Later, we
choose the best among them for the performance model. We use the Vi-
vado HLS suite to perform C to HDL conversion on those C code segments.
For feasibility reasons, our automated toolchain uses the default optimiza-
tions of Vivado HLS [9]. Any further improvements to the hardware imple-
mentation with speciVcally-set optimizations would result in better overall
speedups. The Xilinx ISE tool performs the synthesis of the design, using the
Virtex 5 FPGA as a target, which estimates the new hardware’s area (per CI)
as a number of look-up tables (LUTs) and slices. We report area estimates
relative to the OpenSPARC T1 core area, which is also mapped onto a Xilinx
Virtex 5 FPGA for apples-to-apples comparison. We also use the Xilinx ISE
reports to estimate the number of cycles per CI, which we use to estimate
performance speedup through acceleration as previously explained.

Table 3.1 shows the list of benchmarks that we use for our experiments,
with their descriptions and input Vles. All the applications belong to the
media domain. The optical Wow kernel and the face detection benchmark
are part of the OpenCV library [52]. The AAC (audio compression) encoder
is based on a program provided by Renesas Technology and Hitachi Ltd.
The rest of the applications and their input Vles belong to the Mediabench
II benchmark suite [53].

4
8

C
h
a
p
t
e
r
3

Benchmark
Num. code sequences Num. CI % dynamic instr.

DAG TED Hybrid DAG TED Hybrid DAG TED Hybrid

aacenc 81 73 72 29 32 27 10.5 6.1 4.9

cjpeg 126 138 140 53 41 41 3.5 10.8 10.9

djpeg 115 119 119 52 43 43 2.0 16.9 16.9

face 165 211 211 45 66 66 0.9 9.3 9.4

tmnenc 89 116 121 29 37 38 0.5 0.9 0.8

tmndec 51 68 70 31 43 45 2.8 6.6 6.6

mpeg2dec 75 83 86 44 40 43 24.1 16.6 21.2

mpeg2enc 106 164 172 51 68 72 2.1 9.0 9.7

optWow 1 7 7 1 6 6 0.0 27.2 27.2

Table 3.2: Number of code sequences and CIs found in each application with DAG, TED and Hybrid methods, and the percentage of
dynamic instructions covered by them. These results use the random-scaled sharing heuristic, and are for unlimited core area.

Functionally Similar Domain-Specific Instructions 49

3.9. Results

In this section we present the experimental results obtained using the
FuSInG framework presented in Section 3.3. We Vrst compare the speedup
that we can achieve using the DAG, TED, and Hybrid clustering techniques
described in Section 3.5, showing in Section 3.9.1 that TED and Hybrid tech-
niques by far out-perform DAG for identifying CIs across a domain. We
then show diUerences between our four new scoring heuristics (from Sec-
tion 3.6) across benchmarks, demonstrating in Section 3.9.2 that on average
the random-scaled sharing heuristic works best for our applications. In con-
trast to Sections 3.9.1 and 3.9.2, focusing only on domain-speciVc CIs, we
then evaluate the diUerences in speedup that can be achieved using only
domain-speciVc, only application-speciVc, or a mix of both kinds of CIs in
Section 3.9.3. With the whole core area at our disposal, application-speciVc
CIs achieve the highest speedup; however, at lower core areas, domain-
speciVc CIs performwell, but always beneVt from the addition of application-
speciVc CIs. Using both kinds of CIs, we achieve the highest speedups. In
Section 3.9.4, we perform a detailed analysis of the CIs included at particular
percentages of core area for application-speciVc, domain-speciVc, and mixed
conVgurations. We reveal insights about the number of small, medium, and
large CIs, the average number of inputs and outputs, and the number of
applications each conVguration can target. Finally, in Section 3.9.5, we eva-
luate a more realistic setting using cross-validation, evaluating how a set
of CIs identiVed as useful for a group of applications perform for another,
previously unseen, application.

3.9.1. DAG vs TED vs Hybrid

We Vrst evaluate the eUectiveness of using a directed-acyclic graph to
guide pattern matching between code sequences (DAG), versus using a ca-
nonical approach to cluster code sequences (TED). We compare their eUec-
tiveness considering all applications from the domain. Table 3.2 compares
the three techniques for each benchmark in the number of code sequences
they identiVed, number of CIs selected, and percent of total dynamic ins-
tructions that can be converted to CIs. These numbers were gathered using
the random-scaled sharing heuristic to rank candidates, and devoting an
unlimited core area to the SFU. We select a CI if it can accelerate two or
more code sequences from diUerent benchmarks. For all but one benchmark
(aacenc), the TED and Hybrid techniques Vnd a larger number of code se-
quences than DAG. For all but two benchmarks (cjpeg and djpeg), TED and
Hybrid also select about the same or a larger number of CIs. Even with cjpeg

50 Chapter 3

0 2 4 6 8 10 12 14
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: aacenc

Hybrid
TED
DAG

0 1 2 3 4 5 6
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: cjpeg

Hybrid
TED
DAG

(a) (b)

0 2 4 6 8 10 12 14
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: djpeg

Hybrid
TED
DAG

0 20 40 60 80 100 120 140
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: face

Hybrid
TED
DAG

(c) (d)

0 5 10 15 20
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: mpeg2dec

Hybrid
TED
DAG

0 20 40 60 80 100 120
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: mpeg2enc

Hybrid
TED
DAG

(e) (f)

Figure 3.3: Results of benchmark speedup versus CI area for DAG, TED and Hybrid
methods, with domain-speciVc CIs using random-scaled sharing scoring (part 1/2).

Functionally Similar Domain-Specific Instructions 51

0.0 0.5 1.0 1.5 2.0
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: optflow

Hybrid
TED
DAG

0 2 4 6 8 10 12 14
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: tmndec

Hybrid
TED
DAG

(g) (h)

0 2 4 6 8 10 12 14 16
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Only domain-specific: tmnenc

Hybrid
TED
DAG

0 20 40 60 80
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

S
p
e
e
d
u
p

Only domain-specific: Average

Hybrid
TED
DAG

(i) (j)

0 20 40 60 80
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

S
p
e
e
d
u
p

Application-specific: Average

DAG
TED
Hybrid

(k)

Figure 3.4: Results of benchmark speedup versus CI area for DAG, TED and Hybrid
methods, with domain-speciVc CIs using random-scaled sharing scoring (part 2/2).

Graphs (j) and (k) show averages.

52 Chapter 3

and djpeg, TED and Hybrid cover signiVcantly more dynamic instructions
than DAG, which is also the case for all other benchmarks except aacenc
andmpeg2dec. As the heuristic discards instructions that might cover more
execution time, TED and Hybrid perform slightly worse for aacenc and
mpeg2dec.

Figures 3.3 and 3.4 present graphs with a range of core areas dedicated
to the SFU on the x-axis, and speedup on the y-axis. Individual benchmarks
are shown from (a) to (i). These results use the best performing scoring
heuristic (random-scaled sharing), which we discuss in detail in the next
section. Each point on the graph represents a group of domain-speciVc CIs
that can be used by that benchmark and that Vt inside that core area (x-axis),
which together can achieve that speedup (y-axis) for a given benchmark.
Note that each benchmark has a diUerent x-axis scale because these are
the area percentages used per benchmark, not for the whole SFU. In all
following sections, we consider the entire SFU design when discussing area.
The average of all applications (using total SFU area) is shown in (j). The
last graph (k) shows the average area and speedup numbers for the three
clustering techniques when we only include application-speciVc CI.

On average, the Hybrid technique, which uses the TED representation
when it is able and otherwise uses DAG, is the most eUective technique at
Vnding domain-speciVc CIs (Figure 3.4 (j)). The Hybrid technique achieves
higher speedups at smaller areas (left hand side on the graphs in Figures 3.3
and 3.4), always increasing the speedup faster than the other two tech-
niques. All but two benchmarks show the best speedups with TED and
Hybrid techniques regardless of area, and for tmnenc (i), DAG performs
best only between 6% and 12% core area. When given unbounded core
area, only one benchmark, mpeg2dec (e), performs better with the DAG
clustering technique than with Hybrid. This happens because the Hybrid
technique Vrst tries to identify CIs using TED, and when it cannot Vnd any
more, it complements with DAG. If part of an application’s code is repre-
sented by TEDs, and creates a less eXcient CI than a DAG design would,
then the Hybrid technique would not be able to take advantage of the better
DAG implementation. We also see that for most benchmarks, Hybrid and
TED techniques perform very similarly. However, for mpeg2dec, which
reveals a large opportunity with the DAG technique, Hybrid can achieve
higher speedups than the TED technique alone because it can beneVt from
the code sequences that can only be represented in a DAG.

Figure 3.4 (j) shows that on average across our benchmarks, TED and
Hybrid achieve around 12% and 13% speedup, respectively, when using
only 20% of the core area for domain-speciVc CIs, while DAG obtains only
4% speedup. We contrast this with Figure 3.4 (k), which shows the ave-

Functionally Similar Domain-Specific Instructions 53

rage when we only include application-speciVc CIs. While TED’s canonical
representation does not make a large diUerence when clustering code se-
quences within the same application, we see that it is very important to
achieve higher speedups when generating domain-speciVc CIs. The key in-
sight here is that individual applications are coded following the same style,
so the beneVt of a canonical representation is not so clear. However, as
we move across applications we Vnd diUerent code styles and a canonical
representation is key to identifying acceleration opportunities.

3.9.2. Domain-SpeciVc Scoring

We next compare the four new scoring heuristics that we explain in
Section 3.6. Figures 3.5 and 3.6 from (a) to (i) present a graph for each
benchmark of the speedup that each heuristic predicts for a given SFU area.
For these graphs, we use the Hybrid clustering technique, and include only
domain-speciVc CIs. Note that in these and all following sections, we con-
sider the entire SFU design and its area, not only those CIs useful per appli-
cation. Thus, area always ranges between 0 and 100% of the core. The
average across all benchmarks is presented in Figure 3.6 (j) for 100% of the
area and on Figure 3.6 (k) we zoom in on smaller, more realistic areas of 0
to 20%.

Across all benchmarks, we see that the fourth scoring technique, or
random-scaled sharing, performs best on average. In Figure 3.6 (j) and (k),
it achieves higher speedups quicker at lower areas, and at unlimited area,
it performs the best. At 20% area, shown in (k), this technique achieves
similar speedups as scaled-by-sharing. There are some variations across
benchmarks in Figures 3.5 and 3.6. For face (d), the geometric mean scoring
takes more area to achieve similar speedups, probably because it dampens
the importance of a domain-speciVc CI that only performs well for one
application. For djpeg (c), the geometric scoring heuristic cannot achieve
the speedups the other three techniques achieve, and for tmndec (h), we see
random-scaled sharing more than doubling the speedup of any other heuris-
tic at any given area. For mpeg2dec (e), and to a lesser extent, mpeg2enc (f)
and tmnenc (i), the geometric mean heuristic that averages the beneVt each
application can receive, does rise to higher speedups at lower areas. Only
for mpeg2dec does the geometric mean technique get larger speedups than
the random-scaled sharing heuristic at high areas. In this particular case, the
geometric mean heuristic ranks a pair of CIs with low re-utilization higher
compared to the other scoring heuristics. The other heuristics did not rank
these CIs as high because of previously identiVed, partially overlapping CIs.
For aacenc (a), random-scaled maximizes the speedup at smaller areas. In

54 Chapter 3

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: aacenc

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: cjpeg

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

(a) (b)

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: djpeg

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: face

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

(c) (d)

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: mpeg2dec

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: mpeg2enc

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

(e) (f)

Figure 3.5: Results of benchmark speedup versus SFU area for scoring techniques,
with domain-speciVc CIs created with the Hybrid technique (part 1/2).

Functionally Similar Domain-Specific Instructions 55

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: optflow

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: tmndec

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

(g) (h)

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: tmnenc

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: Average

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

(i) (j)

0 5 10 15 20
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Domain-specific only: Average

Norm. app-specific
Scaled by sharing
Geom. mean
Random-scaled

(k)

Figure 3.6: Results of benchmark speedup versus SFU area for scoring techniques,
with domain-speciVc CIs created with the Hybrid technique (part 2/2). Graph (j)
shows the average for 100% of the SPARC core area, and (k) zooms the average in

for 20% of the area.

56 Chapter 3

particular, a CI that causes a 6% speedup improvement is selected with
that scoring three positions earlier than with scaled-by-sharing. However,
for cjpeg (b), the scaled-by-sharing heuristic is the one that raises to high
speedup values at lower areas. We Vnd here a counter-example: scaled-by-
sharing selects a CI that contributes 5% to the speedup improvement Vve
positions earlier than random-scaled. A closer look at the groups of code
sequences that are clustered into those CIs tell us that in both cases the
coverage across applications is maximized. However, random-scaled priori-
tizes less aggressively, and CIs with a medium number of applications but
good overall performance will still rank high. Therefore, we use that scoring
as our default in the other experiments reported in the chapter.

3.9.3. Application-SpeciVc vs Domain-SpeciVc ConVgurations

Up until now, we have analyzed the potential of only domain-speciVc
CIs. But our framework allows us to compare the performance of po-
tential application-speciVc CIs as well. In this section, we compare the
speedups that can be achieved using a part of the core area dedicated to only
application-speciVc, only domain-speciVc, or a mixture of both kinds of CIs.
Our goal here is to understand how to best conVgure an SFU to optimize
full-system performance across applications subject to area constraints. Or
in other words, for a given core area, are we better oU choosing application-
speciVc only, domain-speciVc only, or both application- and domain-speciVc
CIs for the SFU?

Figures 3.7 and 3.8 present the speedup for each benchmark across a
range of areas, including only application-speciVc, only domain-speciVc,
and both kinds of CIs. We analyze performance when the SFU takes zero
to 100% of the core area. Figure 3.8 (j) and (k) show the averages across all
benchmarks, using up to 100% of the core’s area, and zooming in on small,
more realistic areas from zero to 20%. For all of these graphs, we use the
Hybrid clustering technique, and we use the application-speciVc scoring for
application-speciVc CIs, and the random-scaled sharing scoring for domain-
speciVc.

Our results reveal that, if given unlimited area, using only application-
speciVc CIs can achieve the maximum speedup (34% on average) for our
benchmarks. However, a potentially surprising result is that using both
application- and domain-speciVc CIs together approaches the performance
of using only application-speciVc CIs (29%), and obtains higher speedups
at lower areas as compared to only application-speciVc. While using only
domain-speciVc CIs limits maximal speedup to around 13%, we see that this
technique is more eUective than application-speciVc at obtaining speedups

Functionally Similar Domain-Specific Instructions 57

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: aacenc

Only App-specific
App-Domain specific
Only Domain specific

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: cjpeg

Only App-specific
App-Domain specific
Only Domain specific

(a) (b)

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: djpeg

Only App-specific
App-Domain specific
Only Domain specific

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: face

Only App-specific
App-Domain specific
Only Domain specific

(c) (d)

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: mpeg2dec

Only App-specific
App-Domain specific
Only Domain specific

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: mpeg2enc

Only App-specific
App-Domain specific
Only Domain specific

(e) (f)

Figure 3.7: Results of benchmark speedup versus SFU area using only
application-speciVc, application and domain-speciVc, or only domain-speciVc CIs

(part 1/2). Results gathered using the Hybrid technique.

58 Chapter 3

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: optflow

Only App-specific
App-Domain specific
Only Domain specific

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: tmndec

Only App-specific
App-Domain specific
Only Domain specific

(g) (h)

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: tmnenc

Only App-specific
App-Domain specific
Only Domain specific

0 20 40 60 80 100
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: Average

Only App-specific
App-Domain specific
Only Domain specific

(i) (j)

0 5 10 15 20
Percentage of Area

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

Full system configuration: Average

Only App-specific
App-Domain specific
Only Domain specific

(k)

Figure 3.8: Results of benchmark speedup versus SFU area using only
application-speciVc, application and domain-speciVc, or only domain-speciVc CIs

(part 2/2). Results gathered using the Hybrid technique. Graph (j) shows the
average for 100% of the SPARC core area, and (k) zooms the average in for 20% of

the area.

Functionally Similar Domain-Specific Instructions 59

at very small areas. Given 20% area, application-speciVc achieves 8% speedup,
while domain-speciVc achieves 10% and both together achieve 23%. Further-
more, for several benchmarks, namely aacenc (a), face (d), mpeg2dec (e),
and optWow (g), using only domain-speciVc CIs performs close to the best
of the other two techniques.

The key insight here is that, while using only application-speciVc CIs
results in the highest possible speedups at large or unbounded core areas,
considering domain-speciVc CIs next to application-speciVc CIs yields the
highest possible speedup at realistic, smaller core areas. The reason is that
the domain-speciVc CIs beneVt several applications, which is more area-
eXcient compared to application-speciVc CIs which beneVt a single applica-
tion only, and therefore have limited contribution to overall system perfor-
mance. A corollary of this Vnding is that, in order for hardware acceleration
to deliver substantial speedups, some notion of application-speciVc hard-
ware acceleration is needed (even at small areas). This requires knowing the
target domain and its applications at SFU conVguration time so that some
application-speciVc CIs can be included. Alternatively, one could devote a
fraction of the SFU die area to domain-speciVc and application-speciVc CIs
that are known to perform well given the applications known at design time.

3.9.4. Custom Instruction Analysis

In order to reveal further insight about how to build future specialized
computing units, and which CIs oUer the most beneVt inside an application
domain, we present an analysis of the CIs identiVed as the most eUective at
a few particular core areas. We compare the details of the SFU for designs
with application-speciVc, domain-speciVc, and a mixture of both kinds of
CIs. We show CI statistics for core area percentages 5, 10 and 15% in
Table 3.3, taking the best conVgurations as shown in Figures 3.7 and 3.8.

Table 3.3 shows three conVgurations: using only application-speciVc CIs
(only AS), using only domain-speciVc CIs (only DS), and using both (AS/DS,
with the speciVc AS and DS portions in parentheses). We deVne three sizes
of CIs, depending on the number of instruction primitives that each CI im-
plements. A small-sized CI has 1 to 5 instructions, a medium-sized one has
6 to 15, and a large-sized one has more than 15. We also present the ave-
rage number of inputs and outputs for each size-class; however, these do
not aUect the size-class (i.e., small CIs could have many inputs or outputs).
Finally, we show the number of applications that each conVguration can
cover in the second-to-last column, and the speedup it achieves.

We can draw a few interesting conclusions from the best-performing
CI conVguration statistics. First, using both application and domain-speciVc

6
0

C
h
a
p
t
e
r
3

%area ConVg
small-sized medium-sized large-sized

#app Speedup

CI in out # CI in out # CI in out

5%

only AS 2 2.5 2 0 − − 2 38 2.5 4 1.07×

AS/DS 6(0/6) 5.3 2.2 2(0/2) 10 5 6(6/0) 26.5 8.2 9 1.22×

only DS 7 4.8 2 1 9 5 0 − − 9 1.07×

10%

only AS 4 2.7 1.5 0 − − 2 38 2.5 6 1.07×

AS/DS 8(0/8) 5.4 2.3 4(2/2) 11.25 5.25 6(6/0) 26.5 8.2 9 1.24×

only DS 11 4.6 1.8 3 11.33 5.33 0 − − 9 1.10×

15%

only AS 15 4.9 2.3 1 9 5 3 31.6 7 9 1.13×

AS/DS 9(0/9) 4.7 1.8 4(2/2) 11.25 5.25 6(6/0) 26.5 8.2 9 1.24×

only DS 13 4.8 2 4 12 6.5 0 − − 9 1.10×

Table 3.3: ClassiVcation of CIs in a full-system conVguration of 5%, 10% and 15% of the SPARC area. (AS = application-speciVc, DS =
domain-speciVc. Small = 1-5 regular instructions; Medium = 6-15 instructions; Large = >15 instructions.)

Functionally Similar Domain-Specific Instructions 61

CIs already achieves speedup of 22% using only 5% of the SPARC core’s area.
At the same area, using only application-speciVc CIs targets only 4 applica-
tions and can get only a speedup of 7%, which raises to 13% when using 15%
of the core (while covering all 9 applications). Interestingly, application-
speciVc CI conVgurations usually include small and large-sized CIs, but few
medium-sized ones; in comparison, domain-speciVc CI conVgurations in-
clude no large-sized CIs, instead prioritizing CIs with fewer than 15 base
ISA instructions. Using both kinds of CIs (AS/DS), we Vnd more domain-
speciVc small-sized CIs, but more application-speciVc ones of the large size.
We also see that, though the average input and output sizes are independent
of the number of regular instructions per CI, in general, the numbers of in-
puts and outputs grow as we go from small to medium to large-sized CIs.
Interestingly, the mixed application and domain conVgurations include CIs
from each size-class, and achieve the highest speedup. This suggests that
the best-performing machine should include both application and domain-
speciVc CIs.

3.9.5. Cross-Validation

In all previous experiments, we generated candidate domain-speciVc CIs
from code sequences using the entire set of benchmarks. In this Vnal sec-
tion, we evaluate a realistic setting where the machine is conVgured with
a set of CIs for a particular application domain, but then an as-yet-unseen
application runs upon it and tries to take advantage of the Wexibility of the
domain-speciVc CIs (generally known as cross-validation). In Step 3 of our
methodology, shown in Figure 3.1, we cluster code sequences from N − 1
of our benchmarks, prioritizing using our random-scaled scoring heuristic,
and then in Step 4, we evaluate the eUectiveness of those CIs on a diUerent,
the N th, application.

Figures 3.9 and 3.10 show our cross-validation results for each bench-
mark from (a) to (i), and the average across benchmarks (j). When given the
total core area, all but two benchmarks can reach the maximal speedup (ob-
tained using domain-speciVc CIs identiVed over all benchmarks, as in Sec-
tion 3.9.3, when given unlimited area). Benchmarks optWow (g) and tmnenc
(h) cannot achieve their maximum speedup using our cross-validation ap-
proach; optWow achieves its speedup when using only one CI; in addition, as
shown in Figure 3.8 (g), optWow does achieve its maximum speedup when
we include domain-speciVc CIs identiVed from all benchmarks, whereas in
Figure 3.8 (h), tmnenc can only beneVt from application-speciVc CIs (achie-
ving very limited speedup overall). The other seven benchmarks can take
advantage of CIs deemed useful for the domain, and especially aacenc in

62 Chapter 3

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: aacenc

Upper bound
Cross-validated result

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: cjpeg

Upper bound
Cross-validated result

(a) (b)

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: djpeg

Upper bound
Cross-validated result

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: face

Upper bound
Cross-validated result

(c) (d)

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: mpeg2dec

Upper bound
Cross-validated result

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: mpeg2enc

Upper bound
Cross-validated result

(e) (f)

Figure 3.9: Results of benchmark speedup versus SFU area for cross-validation per
application using domain-speciVc CIs (part 1/2). Results gathered using the

random-scaled sharing scoring and the Hybrid technique.

Functionally Similar Domain-Specific Instructions 63

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: optflow

Upper bound
Cross-validated result

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: tmndec

Upper bound
Cross-validated result

(g) (h)

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: tmnenc

Upper bound
Cross-validated result

0 20 40 60 80 100
Percentage of Area

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p
e
e
d
u
p

Cross validation: Average

Upper bound
Cross-validated result

(i) (j)

Figure 3.10: Second part of results of benchmark speedup versus SFU area for
cross-validation per application using domain-speciVc CIs (part 2/2). Results

gathered using the Hybrid technique. Graph (j) shows the average for 100% of the
SPARC core area.

Figure 3.9 (a), djpeg (c), face (d), mpeg2dec (e) and tmndec in Figure 3.10
(h) achieve high speedups at very low core area percentages. On average, at
only 20% of the core area shown in Figure 3.10 (j), our applications achieve
over 7% speedup, which is a signiVcant percentage of the maximum of 10%.

64 Chapter 3

3.10. Summary

This chapter explores the trade-oU between application-speciVc versus
domain-speciVc hardware specialization, contributing with new methods
to generate CIs to accelerate an application domain. We propose the use
of Taylor Expansion Diagrams (TED), canonical representations of code, to
identify CI opportunities. TEDs are more eUective at identifying functiona-
lly equivalent code sequences across applications than the commonly used
Directed Acyclic Graph (DAG) representation. We also propose a new hy-
brid representation that combines TEDs with DAGs and results being even
more eUective at Vnding CIs to accelerate the application domain. To be able
to quickly select the potentially best domain-speciVc CIs during exploration,
we propose scoring heuristics that take into account the frequency of CI use
both within and across applications. We use the canonical representations
and our scoring heuristics in our CI design framework FuSInG (Functiona-
lly Similar Instructions Generator), along with performance and area esti-
mations. We Vnd that while application-speciVc CIs result in the highest
possible performance at large or unbounded core areas, including domain-
speciVc CIs yields the highest possible speedup at small, more realistic core
areas. This Vnding underlines the need of domain-speciVc instructions for
practical and Wexible hardware specialization, that we explore further in the
coming chapters. In addition, we demonstrate that the identiVed CIs using
our exploration framework are eUective for previously unseen applications
within the same domain, making specialization more generally applicable.

4
Partially Similar Domain-SpeciVc

Instructions

4.1. Introduction

In the previous chapter, we studied the trade-oUs between application-
speciVc and domain-speciVc CIs. We showed that application-speciVc CIs
had the highest performance at large or unbounded core areas; however, in-
cluding domain-speciVc CIs results in the highest possible speedup at small,
more realistic core areas. But code sequences analyzed in the previous chap-
ter were limited to a single basic block, which leads to moderate speedups.
CI exploration both across applications and beyond the basic block level
is challenged by the diXculty of Vnding exact matches of code sequences.
Therefore, in this chapter, we explore specialization for a domain of applica-
tions in greater depth, still focusing on identifying CIs that are accelerated
in hardware in a domain-specialized functional unit (DSFU) that extends a
general-purpose processor, but also extending the acceleration opportunities
across basic blocks through partial matching of diUerent implementations of
code sequences.

Also, in the previous chapter, CIs are selected using domain-speciVc
heuristics based on performance indicators. While speedup is a well-known
metric used in CI design, a conVguration that extends a low-power processor
must try to balance energy as well. Hence, the selection proposed in this

66 Chapter 4

chapter focus not only on high performance, but also on energy eXciency.
We build the automated framework MInGLE (Merged Instructions Ge-

nerator for Large EXciency) to identify fruitful CIs across a set of appli-
cations from a domain. While this search space can grow exponentially,
we develop steps to tractably generate a set of potential CIs by preferably
merging those with high similarity. We Vrst use proVling to extract hot
loops from the applications, and then we use high-level synthesis to gather
execution time and hardware area measurements for several implementa-
tion versions of the potential CIs. Next, MInGLE transforms the sequences
into a Merging Diagram, a canonical representation to facilitate similarity
identiVcation, and merges CIs that could be executed in the same DSFU
pipeline to reduce specialized area. We cluster CIs to identify not only those
that have exact functional similarity but also those with partial similarities
that could cover more code while reducing the needed area for the DSFU.
Finally, MInGLE selects a set of CIs that Vt into a particular hardware area,
maximizing energy eXciency and performance speedup across the applica-
tions. We demonstrate the eUectiveness of the framework using 11 media
benchmarks in the context of a superscalar in-order processor.

The outline of this chapter follows. Section 4.2 illustrates the context
and motivation of the work behind the framework, which is presented in
Section 4.3. Following sections describe each one of the main parts of the
framework: CI identiVcation and implementation (4.4), Merging Diagram
deVnitions and construction (4.5), partial merging of CIs (4.6), and selection
(4.7). Computational complexity is discussed in Section 4.8, and results on
the evaluation of the framework are in Section 4.9. We close this chapter
with Section 4.10.

4.2. Context and Motivation

The CIs we target in this chapter are executed on a domain-specialized
functional unit (DSFU) to accelerate a domain of applications. The DSFU is
integrated within the low-power processor core’s datapath, as in the model
of Section 2.3.1 in Chapter 2. Figure 2.4 shows a diagram of the proce-
ssor extension. Deployment of DSFUs is more eUective than specializing
a complete processor and they are easier to program than bigger oU-core
accelerators. However, this kind of acceleration presents several challenges
in existing design methodologies.

With a limited hardware area for implementation, we want to maximize
the CIs’ utilization. We can achieve this by targeting regions of code beyond
basic blocks, although we must keep the number of data transfers from and
to the DSFU limited to avoid high transfer overhead. Going beyond the ba-

Partially Similar Domain-Specific Instructions 67

Benchmark ID Implementation % area
% EDP improv.

cjpeg gsmdec

cjpeg
ci1.1 no unroll 0.0020 +5.3 −1.0

ci1.2 unroll 4 0.0080 +7.1 −1.0

gsmdec
ci2.1 unroll 4 0.0013 −1.0 +218.7

ci2.2 unroll 8 0.0027 −1.0 +290.6

cjpeg+gsmdec
mci1 ci1.1 + ci2.1 0.0029 +4.5 +217.0

mci2 ci1.2 + ci2.2 0.0087 +6.2 +227.0

Table 4.1: Percentages of area occupancy and EDP improvement for diUerent CI
implementations.

sic block level is key to improve performance and justify the design eUort of
CIs, especially if the prototyping platform is an FPGA, which is reported to
run a circuit implementation up to 4.6x slower than its ASIC equivalent [54].

IdentiVcation of CIs for a domain is challenging, because we must Vnd
similar code patterns that repeat across applications to improve hardware
reusability. We’ve seen that while commonly used DAGs hold the exact
structure of a program, a canonical diagram represents the program’s func-
tionality, thus exposing common functions across applications that can be-
come the same CI. In this chapter, we also use a canonical representation,
but extending the CI beyond the basic block and adding partial matching to
improve reusability.

We also aim to share common operations of sequences of instructions in
order to take up less hardware area. For instance, the functions F1 = a+b+c
and F2 = a ∗ b + c can be collapsed into a single instruction that shares the
circuit of one addition, and selects between an addition and a multiplication.
This sharing greatly expands the amount of code that can be accelerated,
and greatly reduces the hardware area needed for specialization.

We want to consider several implementations of each CI as part of the
CI exploration as well; i.e., several unrolling factors and vectorization, since
they oUer divergent trade-oUs and beneVts. Consider, for instance, the CIs
listed in Table 4.1. For each CI, we show the benchmark where it was ex-
tracted, the ID, implementation details, the percentage of area it takes on a
Virtex 7 FPGA and the energy-delay product (EDP) improvement (higher is
better) of each application when that CI is implemented in the DSFU. The

68 Chapter 4

Vrst four rows are application-speciVc CIs, while the last two ones merge
the previous CIs into domain-speciVc ones. By exploring diUerent imple-
mentations, we can vary the choice of which one to include depending on
the available area and potential EDP gains. Note that diUerent implemen-
tations present the additional challenge of a bigger search space. We try
to avoid exponential search algorithms, keeping the execution time of the
framework linear with the size of the search space.

4.3. MInGLE Framework

Figure 4.1 shows a high-level diagram of our automated framework
MInGLE, which is throughly explained in the coming sections. Starting
with a set of applications from a domain, we Vrst detect and enumerate
potential CI candidates based on proVle information (Step 1, Candidates Ex-
traction). This chapter’s contributions are implemented in subsequent steps,
with the double objective of generating energy-eXcient CIs across a do-
main of applications, while making the exponential search space tractable.
In the next step (Canonicalization, we transform CI variants expressed in
the compiler’s Intermediate Representation (IR) into a canonical represen-
tation: Merging Diagrams. Then, in Step 3 Merged CIs Generation, we Vrst
calculate the pairwise distances used in the identiVcation of similarities be-
tween CIs. Because we use a canonical representation and create a global
ordering of variables, that step is computed quickly and eXciently. After
this, the clustering allows the framework to do both exact and partial mat-
ching of CI variants, the latter enhancing the CI reutilization across applica-
tions. The Merging Estimation, together with the Performance and Energy
models, quantify the advantages of the generated CIs, estimating the new
area, energy and speedup of each clustered group of variants. Finally, Step
4 (CI Selection) solves the optimization problem of Vtting the best group of
candidates, that save the most energy across the domain, into a limited area.

4.4. Candidates Extraction: From Application Code

to Hardware Acceleration

In the Candidates Extraction step of MInGLE (upper side of Figure 4.1),
we Vrst proVle each of the input applications, identifying their hot loops in
step ProVling (1.1). We extract those hot loops’ bodies as isolated code that
we can execute as new CIs in step Extraction/Slicing (1.2). As our target CIs
operate on data transferred from and to the register Vle, there is a transfer
time before the execution starts and when it ends. Thus, memory operations

P
a
r
t
ia
l
l
y
S
im
il
a
r
D
o
m
a
in
-S
p
e
c
if
ic

In
s
t
r
u
c
t
io
n
s

6
9

Application Domain

 1

Candidates

Extraction

 2

Canonicalization

 3

Merged CIs

Generation

 4

CI Selection Custom instructions

1.1
1.2

1.3 1.4

3.43.33.23.1

Figure 4.1: MInGLE framework for the implementation and generation of partially-merged CIs.

70 Chapter 4

are sliced and placed before and after the loop body computation. In step
Simulation (1.4), we simulate the applications with the identiVed high-level
CIs to measure cycles and energy consumption in the baseline processor. In
step High Level Synthesis (1.3), we implement CIs in hardware, obtaining
their area occupancy, execution cycles and energy, and their Intermediate
Representation used in subsequent steps. We apply diUerent unrolling and
vectorization factors in the HLS transformation. Therefore, besides the im-
plicit instruction-level parallelism of the CIs, we also have potential data-
level parallelism from the HLS optimizations. From now on, we talk about
a CI as the high-level representation of a loop body or inline function that
can be accelerated in hardware, and we talk about CI variants or only vari-
ants to specify distinct implementations of a CI (for example, with diUerent
unrolling factors). Thus, depending on the optimizations applied, we can
obtain several variants of the same CI. The Candidates Extraction step pro-
duces application-speciVc CI variants with their implementation details.

4.5. Canonicalization of Custom Instructions using

Merging Diagrams

Identifying similarities between CI variants in a non-uniVed represen-
tation is diXcult due to the amount of unnecessary information a modern
compiler IR includes. Also, a representation such as a DFG, which expresses
structural relations between operators, does not expose functional similari-
ties, since diUerent coding styles among applications may hide them. There-
fore, in step Canonicalization of Figure 4.1, we transform the codes of the
CI variants expressed initially in a compiler IR, into an abstract, canonical
representation: the Merging Diagram (MD).

The MD represents arithmetic and logic operations (within the basic
block), and predicate information (at the loop level), both with unrestricted
number of inputs and outputs. Its representation is partially based on Bi-
nary Decision Diagrams (BDDs) and Taylor Expansion Diagrams (TEDs),
surveyed in Sections 2.4.2.1 and 2.4.2.2, respectively. We have successfully
used TEDs for CI similarity detection within a basic block in Chapter 3,
but extending CIs beyond the basic block level needs a new representation
that includes predication. Also, the codes we process include operations that
cannot be expressed as polynomial functions, which are the base of the TED
representation. The following deVnitions explain the details of our new re-
presentation, which include both modiVed versions of TEDs and BDDs.

DeVnition 1. An Augmented TED (AugTED), is a directed acyclic graph
based on linearized and reduced TEDs. It is composed of a labeled set of

Partially Similar Domain-Specific Instructions 71

nodes V , a weighted set of edges E, and the terminal node 1. In normal
TEDs, V represents variable names and E are additions/subtractions or mul-
tiplications. AugTEDs expand TED nodes to represent any kind of compu-
tation, using variable renaming. Here, labels in V can be integer, Woat or
special. Integer and Woat labels represent variable types, and special labels
a function that cannot be represented by a Taylor expansion.

DeVnition 2. A Linking BDD (LinBDD) is a directed acyclic graph based
on reduced and ordered BDDs. It consists of a labeled set of nodes V ′ , a
set of edges E′ and terminal nodes 0 and 1. LinBDDs nodes have BDDs’ 0-1
decision edges, and additionally a third edge Link that references an outside
diagram, namely an AugTED. A LinBDD is constructed with the Shannon
expansion of boolean functions created with the if-then-else (ITE) operator:
ITE (I ,T ,E) = I ·T + Ī ·E.

DeVnition 3. A Merging Diagram is a data structure that provides a ca-
nonical representation of a predicated code region. It consists of a set A of
AugTEDs that represent computations and a set L of LinBDDs that repre-
sent control Wow execution. Link edges from the nodes in each member of L
references a member in A.

Figure 4.2 (d) shows an example of an MD for a given code sequence.
The left part of the MD is a LinBDD and its nodes are linked to AugTEDs
on the right by Link edges. There is a special label (SA(slt)) that stands
for a relational operator that cannot be expressed by Taylor expansions.
Details on the construction of the MD, with explanation of the example of
Figure 4.2, follow.

4.5.1. Merging Diagram Construction

To build all the canonical MDs of a group of CI variants, we follow the
steps of Algorithm 1. We start processing in lines 3 − 7 the set of IRs of
all the CI variants’ code regions. Figure 4.2 (a) shows an extract of an IR
example with arithmetic, relational and conditional selection instructions.
For each one of the IRs, we extract the polynomial representation of the
computations (PolyAugTED) and the branch predication (PolyLinBDD) of
the code, as illustrated in Figure 4.2 (b). With those base polynomials, we
establish a precise renaming of variables that uniVes their name space in
lines 8 − 22, which facilitates fast similarity identiVcation in Section 4.6.1.
We decompose each polynomial into its monomials, and we rename each
variable based on the type of monomial where it is found. We Vnd primarily
adding and multiplying types of monomials, but also cover Woating-point

72 Chapter 4

IR

Merging Diagram (MD)

...

 %sub = sub nsw i32 %q11, %q21

 %shl = shl i32 %sub, %c

 %cmp = icmp slt i32 %shl, 0

 %sub1 = sub nsw i32 0, %shl

 %cond = select i1 %cmp, i32 %sub1, i32 %shl

...

PM1

PM2 PM3

0 1 0 1

SA(slt) PM3
M1

M2

M3

1

%cmp

%sub1

%shl

icmp slt

%q11

%q21

2^(%c)

-1
-1

Add edge
Mul edge
Link edge

Variable renaming

PM1

PM2

PM3

SA(slt)

M1

M2

M3

vn vn'

PolyAugTED

%shl = (%q11 - %q21) * 2^%c

%cmp = icmp slt (%shl, 0) // special

%sub1 = 0 - %shl

PolyLinBDD

%cond = %cmp * %sub1 + %cmp * %shl

AllPolynomials

operator

(a) (b)

(c) (d)

Figure 4.2: Example of Merging Diagram construction. For the IR on the top left
(a), polynomials are extracted (b), variables renamed (c), and an MD is created (d).

and predicated types. For instance, in Figure 4.2 (c), variables are renamed
asA (adding) andM (multiplying) preceded by P (predicated) or S (special).

Then, in lines 23 − 25 we deVne a strict variable ordering to perform
the expansions, common to all variables implicated. As we have multiple
polynomials that expand with the same group of variables, we Vrst set vari-
ables in ascending order based on the number of times they occur. This
ensures that we will have a minimum number of expansions, resulting in a
more compacted MD. For the same reason, in the case of a tie in the num-
ber of instances between multiplying and adding variables, we prioritize the
former ones.

Finally, in lines 27 − 31, for each rewritten polynomial, we create an
MD structure with a condensed matrix Diagram that contains all the nodes
and edges from the AugTEDs and LinBDD; it is thus of size s× s, with s the
precomputed size of all the variables involved. Link edges are though kept
apart in a two dimensional array. Following the variable ordering, we build
the MD expanding each term recursively as it is done regularly with TEDs
and BDDs. We show in Figure 4.2 (d) the resulting representation, which
is still canonical for the assumed variable order, as it is the case for regular
TEDs and BDDs.

Partially Similar Domain-Specific Instructions 73

Algorithm 1: Merging Diagram construction

input : Array of CIs’ IR codes AllIRs
output: Merging Diagrams AllMDs

1 Array AllPolynomials,RewrittenPolynomials←− ∅
2 2D array RenamedMap←− ∅
3 for IR ∈ AllIRs do
4 PolyAugTED← ComputationPolynomials(IR)
5 PolyLinBDD← PredicationPolynomials(IR)
6 add (PolyAugTED ∪PolyLinBDD) to AllPolynomials

7 end

8 for p ∈ AllPolynomials do
9 M← GetMonomials(p)
10 for m ∈M do

11 MonomialT ype← GetMonomialT ype(m)

12 VarNames← GetV ariablesNames(m)

13 for vn ∈ VarNames do
14 if vn < RenamedMap then

15 vn′← renameVar(vn,MonomialT ype)
16 add < vn,vn′ > to RenamedMap

17 end

18 end

19 end

20 p′← replaceV ars(p,RenamedMap)
21 add p′ to RewrittenPolynomials

22 end

23 VarsOccurrences←
countOccurrencesV ars(RewrittenPolynomials)

24 OrderedV ars← ascendingOrderV ars(VarsOccurrences)
25 s← size of OrderedV ars +1

26 Array AllMDs←− ∅
27 for p′ ∈ RewrittenPolynomials do
28 MD← < Diagram: s × s array, Link: 2D array>
29 MD.Link← linkT oAugTEDVars(p′ ,RenamedMap)
30 diagramExpansions(p′ ,MD.Diagram,OrderedV ars) add

MD to AllMDs

31 end

32 return AllMDs

74 Chapter 4

4.5.2. Global diagram of variants

In order to cut down computation costs in later steps it is required to
have a diagram that represents the entire design space of CI variants. To do
so, we combine all the AugTED and LinBDD polynomials to obtain a global
MD uniVed representation. For each variant, we locally rename its poly-
nomial variables, saving the naming convention and number of instances
in a global structure. Then, based on that locally collected information, we
produce a global variable ordering that is Vxed for the design space. Finally,
MDs are produced individually for each variant with the global ordering.

4.6. Generation of Merged Custom Instructions

4.6.1. Distance Calculation

In step Distance Calculation of Merged CIs Generation (step 3.1 in Fi-
gure 4.1), we need to establish a concrete metric that measures similarities
among CIs to guide the subsequent clustering step of the MInGLE frame-
work. We therefore develop a new way to measure how diUerent two CI
variants are in terms of their functionality, using the MD.

We perform a distance calculation for pairs of MDs of variants that do
not implement the same loop body, CIX and CIY . We use the previously
built global diagrams to speed up this calculation. If we would not have
the global, uniformed variable space that we obtained in Section 4.5.2, we
would have to build a pair of diagrams for each pair of CIs being compared,
which would be computationally very expensive. Thus, based on the pre-
built global diagrams, we obtain the number of AugTED-operations and
LinBDD-branches that in CIX do not match with those in CIY , namely
nMX , and vice versa, nMY . An MD node vx matches another MD node vy
if their labels and out edges also match. The matching information is kept
for the merging step explained below in Section 4.6.3. We also count the
number of total AugTED and LinBDD nodes that each MD variant has –
TotX and TotY . Then, we compute the distance δ as:

δ (CIX ,CIY) = average

(

nMX

TotX
,
nMY

TotY

)

. (4.1)

One-to-one distances are saved in a condensed distance matrix.

4.6.2. Clustering Custom Instruction Variants

For domain-speciVc acceleration, merging CIs reduces energy consump-
tion because we need less implementation area; to put it another way, it im-

Partially Similar Domain-Specific Instructions 75

exact matching

partial matching

m
o
re

s
im

il
a
ri

ty

le

s
s

CI00_v1, CI00_v2,

CI01_v1, CI01_v2,

CI02_v1

CI00_v1, CI00_v2,

CI01_v1

level 0

level 1

level 2

level 3

Figure 4.3: Hierarchical clustering of CIs. Exact matching instructions are found at
the bottom, while nodes closer to the root group are increasingly less similar CIs.

CIXX_vy: CI with identiVer XX and implementation variant y.

proves performance since we can allocate more CIs in the constrained area.
We have to merge circuits of CIs that have more in common to maximize
area reduction, as well as minimize the implementation overhead due to
circuit multiplexing. However, with the huge set of CI variants that we ob-
tain when we work with multiple applications, it is prohibitive to try all the
possible combinations of CIs that could be grouped together. Therefore, in
step CI variants Clustering, we group CIs based on a hierarchical clustering
that organizes groups by more to less functional similarity, cutting down the
search space to avoid those groups that are not similar enough to be worth
implementing together.

Distances between variants help to quickly decide which ones are better
to merge together to reduce energy consumption. Using the distance ma-
trix computed in the previous step, we create clusters of CI variants. We
perform hierarchical, agglomerative clustering of CI variants, obtaining a
dendrogram, a tree-like structure, as shown in Figure 4.3, where tree leaves
represent exact matches and internal nodes denote partial matches. Star-
ting from the baseline CI variants, we form exact-matching clusters based
on the distance matrix (leaves – level 0 in the Vgure). Then, distances be-
tween the newly formed clusters use the complete method to determine the
agglomerative distance, that is, the maximal distance between any two vari-

76 Chapter 4

ants in the cluster (levels 1 to 3, to the root). From leaves to root, we Vnd
diUerent versions of merged variants, ordered from more to less similar.

Some obtained clusters may include variants that target the same CI. In
Figure 4.3, level 0 includes two variants of the same CI: CI00_v1 and CI00_-
v2; a variant of CI01, and {CI01_v2, CI02_v1}, that is the exact matching of
two diUerent implementations of two diUerent CIs. Level 1 has the cluster
{CI00_v2, CI01_v1}, which has the maximum similarity for partial matching.
Variant CI00_v1 from level 0 is clustered at level 2 with {CI00_v2, CI01_v1}
from level 1. However, as a merged variant cannot implement a concrete
CI more than once, we produce diUerent versions that do not duplicate the
loop body (CI00 or CI01) within the clusters where this problem occurs.
Thus, at level 2 we generate two solutions: {CI00_v1, CI01_v1} and {CI00_-
v2, CI01_v1}. Since the latter already exists at level 1, we will eventually
discard it, although its information is still used to generate the cluster at
level 3. Note that this can induce an explosion in the number of solution
clusters for a given level. In case of many cluster versions, we select a
reduced group chosen heuristically based on an approximation of expected
EDP improvement.

4.6.3. Merging Estimation and Modeling

With the clustering formation, we obtain a bigger set of CI variants,
some of which are merged to save area. In step Merging Estimation, we es-
timate the new hardware area occupancy, performance and energy gains of
merged variants in order to run the selection step with accurate information.

Based on the information from the distance calculation (Section 4.6.1)
of non-common matches between each pair of variants, we obtain the area
consumption of operators that are shared (shared) and of those that are not
(non_shared). For sharing logic, we need to introduce multiplexers that will
induce an extra area cost, overhead.

Therefore, we calculate the area ai of a merged CI variant i as:

ai = overheadi + sharedi +

N
∑

j=1

non_sharedij . (4.2)

Then, in step Performance and Energy Model, we model Vrst the perfor-
mance of an accelerated application. We start obtaining the cycles c_l_SW
that a hot loop iteration takes to execute in the baseline processor, exclu-
ding memory operations, from simulation. We also obtain the number of
iterations N_it of that loop for a given execution of the benchmark. From
hardware synthesis, we get the number of cycles c_HW that a CI variant

Partially Similar Domain-Specific Instructions 77

takes. We calculate the cycles c_T to transfer data to the DSFU local me-
mory as a function of the input data size.

With the previous data we obtain the cycles we save executing a CI
variant as:

c_saved = (c_l_SW − (c_HW + c_T))×N_it. (4.3)

We calculate the new number of application cycles as:

App_cycles = c_total_SW − c_saved, (4.4)

with c_total_SW as the application cycles without CIs.
Finally, the modeled energy consumption of an application that uses CIs

is calculated as:
Eapp = Ebaseline +ECI, (4.5)

with Ebaseline the baseline processor’s energy model and ECI the CI energy
consumption.

The latter is modeled as the sum of its dynamic and static components:

ECI = Pdynamic ×TCI +Pstatic ×Ttotal, (4.6)

where Pdynamic and Pstatic are, respectively, the dynamic and static power of
the hardware components that implement the CI variant, TCI is the time that
the CI is active, and Ttotal is the execution time of the application calculated
from App_cycles.

4.7. Custom Instruction Selection for an Area Cons-

trained ConVguration

Implementation area is an expensive commodity in our low-power tar-
get that largely inWuences the energy consumption of the Vnal design. How-
ever, performance gains also play an important role, because a faster run-
ning application would generally consume less energy. Therefore, in the
last step of the framework (CI Selection), we address the performance and
energy trade-oU when choosing the best Vtting set of CI variants for a given
hardware area. We model this optimization as a Knapsack problem, in
which we try to Vt a subset S of a collection of objects C – each object
oi with an intrinsic value vi and weight wi – within limited mass M so
that the sum of the values of the Vnal subset is maximized and the sum of
the weights does not exceed M . In our case, we try to Vt the n CI vari-
ants, merged and not merged, within a limited hardware area A. Each ci

78 Chapter 4

candidate has a value vi that we describe later, and a hardware occupancy,
hwi . We have an additional requirement in our problem: as each CI can
be selected only once, though it can be implemented by diUerent variants –
with distinct unrolling factors, or merged with other instructions – once we
select one CI variant, all other variants of the same CI are invalidated for
the following selection steps.

Wemodel our problemwith Mixed Integer Linear Programming (MILP).
We deVne the following constraints:

n
∑

i=0

ci × hwi ≤ A, (4.7)

n
∑

i=0

lbi ≤ 1, (4.8)

with lbi a loop body that can be implemented by (n) CI variants. Therefore,
for a given loop body, only one of its CI variants will be selected.

As our main goal is to accelerate execution and save energy, our objec-
tive function tries to maximize the EDP improvement. However, the total
EDP value changes depending on the area occupancy, and thus, it cannot
be deterministically precomputed before the selection starts. Though, for
each potential CI we can calculate an approximated value of the EDP diUe-
rence with respect to the baseline processor without the CI. Also, the static
energy component of the EDP is subject to the known value of the ma-
ximum area A, which is an approximation for the value that we want to
maximize. Therefore, we deVne the objective function as:

n
∑

i=1

ci ×σ_EDPi →max. (4.9)

The metric σ_EDPi of a concrete CI variant is the value vi in the origi-
nal Knapsack problem and we calculate it as:

σ_EDPi =

B
∑

j

‖σ_EDPij‖ × (1 +σ_Ai ×Ai), (4.10)

where B is the number of applications that the current variant targets;
‖σ_EDPij‖ is the original application j’s EDP minus the EDP with the
variant, normalized to the observed maximum for that application; σ_Ai

is applicable only to merged variants, since it is the percentage of area we
save by merging and Ai is the percentage of the total area that the variant

Partially Similar Domain-Specific Instructions 79

takes. We Vnd that this metric selects more medium-sized variants that help
to save area occupancy, and have lower overhead and lower static power
than larger variants. From experimentation, we conVrm that this objective
gives stable results and maximizes EDP fairly among all applications.

4.8. Complexity

While the overall complexity of the framework varies in each step, our
methodology reduces the search space to keep the exploration tractable and
fast. We establish bounds based on the number of total CI variants. Se-
lection is the most critical step and could be exponential in the worst-case.
Therefore, we try to always keep a reduced number of CI variants candi-
dates, while maintaining energy and performance eXciency.

For each input application from the set of B benchmarks we have a num-
ber of CIs C , and each CI is implemented as a variant numVariants times.
The total number of variants CV processed to build MDs by Algorithm 1 is
determined as:

CV =

B
∑

i=1

Ci
∑

j=1

numVariantsj . (4.11)

The complexity Kdis of calculating distances between pairs of MDs (Sec-
tion 4.6.1) is:

Kdis =O(CV × (CV −C − 1)). (4.12)

However, the key design decision here is to have a global MD, which
obviates the need for a new MD to be computed to compare each pair of
variants, speeding up the calculation. Finally, by performing the hierarchi-
cal clustering step explained in Section 4.6.2, and using a heuristic to limit
the number of cluster versions per level, the Vnal number of generated so-
lutions that the selection of Section 4.7 processes is within the bounds of
O(CV). We thus retain the most promising CI candidates, in terms of area,
performance and energy eXciency, while making sure the selection step’s
complexity does not explode exponentially.

4.9. Evaluation

4.9.1. Experimental Setup

We now describe the setup and experimental evaluation of our auto-
mated exploration frameworkMInGLE.

80 Chapter 4

Benchmark Suite Max. bits input Max. bits output

cjpeg MediaBench II 2048 2048

djpeg MediaBench II 1168 192

gsmdec MiBench 176 160

gsmenc MiBench 1312 128

mpeg2enc MediaBench II 256 128

optWow OpenCV 512 128

rawcaudio MiBench 256 192

rawdaudio MiBench 192 256

susan MiBench 192 64

tmndec MediaBench II 368 192

tmnenc MediaBench II 2048 256

Table 4.2: List of the evaluated applications and benchmarks suites, with the
maximum size needed for the DSFU’s input and output registers.

We evaluate the framework with eleven applications from the media
domain, listed in Table 4.2. The applications are extracted from the bench-
mark suites OpenCV [52], Mediabench II [53] and MiBench [55]. The two
rightmost columns list the maximum bits needed for input and output data.

The target architecture is an in-order Intel Atom with a tightly-coupled
DSFU, as described in Section 2.3.1 (Chapter 2). The DSFU accesses both
the integer and SIMD/XMM register Vles with a latency that depends on the
access type and operation. This specialized unit also has private registers:
16 128-bit for input data and 32 64-bit for output. We determine the size
of the register Vles with the maximum size needed among the benchmarks
in Table 4.2, which in this case is 2048 bits for both input and output data.
Before starting any CI computation, data is moved into the input registers
from the core’s register Vles, and once the computation is completed the
results are written back. Note that, for any CI, the extra cycles required to
reading and writing its data are considered as part of the total latency for
calculating speedup values.

In the Candidates Extraction step of the framework, we Vrst identify hot
regions of code with the LLVM proVler [44] and extract the CI functionali-
ties in C code. We synthesize high-level CI descriptions with Vivado HLS

Partially Similar Domain-Specific Instructions 81

2013.3 [9] to obtain the circuit design cycles and area consumption. To
be able to examine the area and speedup trade-oUs illustrated in Table 4.1,
we apply diUerent unrolling factors to the CIs: none, 2, 4, and 8. The tar-
get FPGA is a Xilinx Virtex 7 (XC7VX690T) that runs at 400 MHz. DSFU
power estimations are obtained with the Xilinx Power Estimator (XPE). We
compile the target applications with LLVM-Clang with an unrolling factor
of 8, automatic vectorization, and optimization −O2 as the baseline. Soft-
ware cycles are measured with the Sniper simulator [56], with changes to
accurately simulate an Intel Atom processor running at 1.6 GHz. Thus, the
DSFU runs 4× slower than the baseline processor. Power measurements
on Sniper are obtained with McPAT [57]. We run two diUerent versions of
the code on Sniper: the original application for baseline comparison, and
the application with the code accelerated by the CIs marked in assembler
for functional simulation. Unrolled, non-vectorized code sequences in the
LLVM IR are analyzed in step Canonicalization to generate the polynomials
for the Merging Diagrams, which are built with support of the symbolic al-
gebra and calculus part of Sage [50]. In step Merge CIs Generation, we use
the Fastcluster library [58] for hierarchical clustering, and fed cycles and
power data into the models of Section 4.6.3 to obtain results. The interface
for the CPLEX optimizer [59] in the Selection step is OpenOpt [60].

4.9.2. Results and Discussion

We now present experiments and results to assess how well our frame-
work can identify CIs to be accelerated by a DSFU in hardware, measuring
both speedup and improvement in EDP across various areas.

Figure 4.4 presents a comparison of diUerent conVgurations of our frame-
work, with DSFU area on the x-axis expressed as a percentage of the Vir-
tex 7’s area, and the average performance speedup across the domain on
the y-axis. Figure 4.5 shows the same comparison, but this time with ave-
rage EDP improvement on the y-axis. Dashed lines show improvements
achieved when we use CIs targeting code within basic blocks. At the larger
areas, performance improvement reaches a maximum of 1.48× and EDP
improvement goes up to 1.67× the baseline. We compare this to the solid
lines in the Vgures, which target code regions across basic blocks. In this
case, speedup reaches a maximum of 1.98× and EDP improvement goes up
to 3.35×. Considering regions with multiple basic blocks gives us a signiV-
cant boost in both performance and energy eXciency, because we are able
to accelerate 31% more statically counted body loops than with one basic
block. Also, CIs across basic blocks cover 41% more dynamic instructions
on average. Exploring CIs across basic blocks covers more code, expands

82 Chapter 4

0 1 2 3 4
Percentage of Area

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

Sp
ee

du
p

Exact across BBs Partial across BBs Exact 1 BB Partial 1 BB

Figure 4.4: Average speedup versus percentage of area occupancy of the DSFU for
exact and partial matching methods, targeting one or many basic blocks.

0 1 2 3 4
Percentage of Area

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

ED
P
im

pr
ov

em
en

t

Exact across BBs Partial across BBs Exact 1 BB Partial 1 BB

Figure 4.5: Average EDP improvement versus percentage of area occupancy of the
DSFU for exact and partial matching methods, targeting one or many basic blocks.

Partially Similar Domain-Specific Instructions 83

cjp
eg

djp
eg

gs
md

ec

gs
me

nc

mp
eg
2e
nc

su
sa
n

raw
ca
ud
io

raw
da
ud
io

op
tflo

w

tm
nd
ec

tm
ne
nc

Av
era

ge
1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee
du

p

Region (exact) Region (partial)

Figure 4.6: Speedup for each benchmark at a limited implementation area (1.8%)
across basic blocks.

the acceleration opportunities, and thus achieves higher speedups.

In the same Vgures, we analyze the eXcacy of exact versus partial mat-
ching by comparing blue and orange lines, respectively. Note that partial
matching choices include all those CIs matched with exact, and then addi-
tional CIs that could be partially matched. We start seeing a diUerence
around 0.5% of the area across basic blocks, noting that partial matching
achieves larger speedups and EDP improvements as compared to exact mat-
ching, given the same area. For instance, with a limited area budget (1.8%),
we observe a speedup of 1.88× and an EDP improvement of 3.04× when
using partially matched CIs, while with exact matching we obtain a speedup
of 1.73× and an EDP improvement of 2.53×. At 2.2% of the area, the EDP
improvement diUerence is more noticeable, 2.57× against 3.25×. Alterna-
tively, we see that for a given EDP improvement, partial matching saves
area. For an EDP improvement of 3×, exact matching takes 4% of the area,
whereas partial matching takes only 1.8% of the area: a savings of 55% of
the chip’s reconVgurable area. This is important as the area available for the
reconVgurable DSFU in a low-end processor like the one evaluated would
be much less than the area available in a Virtex 7.

Figures 4.6 and 4.7 show results for speedup and EDP improvement, res-
pectively, for each benchmark at the limited area (1.8%) discussed above,
comparing exact and partial matching across basic blocks. As our selection

84 Chapter 4

cjp
eg

djp
eg

gs
md
ec

gs
me
nc

mp
eg
2e
nc

su
sa
n

raw
ca
ud
io

raw
da
ud
io

op
tflo
w

tm
nd
ec

tm
ne
nc

Av
era
ge

1

2

3

4

5

6

7

8

9

10

ED
P
im

pr
ov

em
en

t

Region (exact) Region (partial)

Figure 4.7: EDP improvement for each benchmark at a limited implementation
area (1.8%) across basic blocks.

optimizes for EDP, we see larger EDP gains than speedup gains, when going
from exact to partial matching. The speedup diUerence is moderate be-
cause of our selection objective; for instance, a power-hungry CI with high
speedup but low energy eXciency will not be selected. Looking at the EDP
of particular benchmarks, only two benchmarks marginally suUer a speedup
and energy eXciency reduction: djpeg and optWow. However, most bench-
marks have a signiVcant improvement in their performance and EDP. For
instance, the energy eXciency of cjpeg improves from 1.06× to 2.38×, for
susan goes from 8.88× to 10.42×, and rawdaudio gets 4.76× with exact
matching and 6.28× with partial ones. The average of all EDP improve-
ments with partial matching is positive and therefore fair to all applications.
Partial similarities contribute to area shrinking, which is key to energy eX-
ciency. For example, with partial matching one of the selected CIs targets
hot regions in seven diUerent benchmarks, which results in an area reduc-
tion of 80% compared to exact matching.

4.10. Summary

This chapter presents a methodology and framework to automatica-
lly extract CIs to accelerate a domain of applications, ultimately selecting

Partially Similar Domain-Specific Instructions 85

those that achieve the highest performance improvements and energy eX-
ciency when accelerated. To do so, our proposal explores the design space of
tightly-integrated conVgurable functional units of limited size that accele-
rate applications across a domain. The presented MInGLE framework con-
verts code sequences at the loop body level into CIs, considering several im-
plementations for each of them. CIs are further transformed into a canonical
representation, the Merging Diagram, which facilitates fast similarity detec-
tion. We then cluster CIs to be able to Vnd partially-matching sequences to
minimize specialized area. Our experimental results with 11 media bench-
marks show that looking across basic blocks achieves a speedup of 1.98×
and an EDP improvement of 3.35×, a signiVcant gain over looking within
a single basic block (speedup of 1.48× and EDP improvement of 1.67×).
Across basic blocks, partial matching compared against exact matching is
crucial for achieving larger performance (1.88× versus 1.73×) and EDP
improvements (3.04× versus 2.53×) for a limited hardware area (1.8%).
At very low areas, however, the gains are not noticeable. We explore new
techniques that deal with that issue in the next chapter.

5
Fragments of Domain-SpeciVc

Instructions

5.1. Introduction

In the last two chapters, we explored the design of CIs that augment a
general-purpose processor to accelerate an application domain. We found
that domain-speciVc CIs deliver higher speedup than application-speciVc
ones at realistic implementation areas. In order to expand the accelera-
ting opportunities and to minimize specialized area, we identiVed partially-
matching CIs across basic blocks, and integrated energy-eXciency in our
methods. However, when the available area to implement the CIs is very
small, domain-specialized CIs gains are limited.

We are interested on exploiting these low areas, since the implementa-
tion space for DSFUs has to be treated as an expensive commodity; it is not
only reusability that drives domain-speciVc specialization, but also the op-
timal use of the available area. With a shrunk circuit we can either decide
to add more functionalities, or to beneVt from a low-power design.

Therefore, in this chapter, we extend previous techniques to expand CIs’
usage and gains with minimal extra overhead. A new analysis step that
detects fragments of CIs from which previously unseen acceleration oppor-
tunities are detected. The technique is critical to improve reutilization of
hardware at the most limited areas, because we partially reuse an already

88 Chapter 5

merged CI cluster, with minimum additional overhead.
We integrate the new CI fragment analysis within the automated frame-

work MInGLE+, to strengthen the design of CIs across applications from a
domain. Our techniques still tractably generate a non-exponential search
space with merging and fragments generation. The framework selects CIs
among exact-matched, partially-matched and matching with fragments that
Vt into a particular hardware area, maximizing energy eXciency and speedup
across the applications. We compare the eUectiveness of all matching con-
Vgurations across and within basic blocks, and we evaluate diUerent design
parameters of the framework and we study the area usage for the exposed
techniques.

The rest of this chapter is organized as follows: Section 5.2 explains
the motivation behind the main contribution of this chapter. Section 5.3
introduces the framework in which the CIs are created. Section 5.4 presents
a new matching technique with CI fragments, Section 5.5 explains the new
distance calculation, and Section 5.6 includes the new selection strategy. For
the evaluation, Section 5.7 presents results with several applications of the
media domain, and Section 5.8 closes this chapter with the summary.

5.2. Motivation

Consider the clustering dendrogram of Figure 5.1 that organizes a hie-
rarchy of CI similarities. Baseline CIs are located at level 0, while merged
CIs start from level 1 and go upwards frommore to less similarity degree. At
each new level, two CIs from lower levels are merged. In the merging pro-
cess, the distance (dist) between CIs is evaluated to determine which is the
next merging pair of CIs. Each one of the merged CIs has an overhead from
multiplexer switches represented asMUX, and a Vgurative saved cycles and
new area placed in adjacent boxes.

Each one of the N baseline CIs is composed of one or several fragments,
that we deVne as computation blocks that can be separated from the CI
without incurring structural problems. Although those computation blocks
can overlap, in this example, the internal CI operations covered by each
fragment are Vxed for illustrative purposes. Also, to simplify the exam-
ple, we consider that each CI has only one variant. For instance, the only
variant of CI_1, at level 0, is composed of fragments F1_A and F1_B. The
partial merging explained in Chapter 4 merges whole CIs, based on increa-
sing distance. With that method, we obtain Vrst a new merged CI_2+3 at
level 1 and then CI_1+2+3 at level 2. With each new merged CI, we obtain a
speedup based on the combined saved cycles, and a new area that includes
non-common operations, merged common computations, and the switching

F
r
a
g
m
e
n
t
s
o
f
D
o
m
a
in
-S
p
e
c
if
ic

In
s
t
r
u
c
t
io
n
s

8
9

m
o
re

 s
im
il
a
ri
ty

 l
e
s
s

. . .

+

CI_1 CI_2 CI_3 CI_N

CI_2+3

F1_A F2_A F3_A FN_A

CI_1+2+3

CI_2+3+F1_B

saved cycles{2,3,1_B}

merged area{2,3,1_B,MUX}

saved cycles{2,3}

merged area{2,3,MUX}

saved cycles{1,2,3}

merged area{1,2,3,MUX}

Merged CI with

fragments

level 2

level 1

level 0

dist = 0.125

dist = 0.325

Merged CIs without fragments

Figure 5.1: Motivational example of partial merging without and with CI fragments.

90 Chapter 5

logic overhead (MUX).

However, consider CI_1+2+3 and its fragments at level 2, product of
merging CI_1 with CI_2+3. Fragment F1_B from CI_1 is completely merged
with CI_2+3, avoiding a signiVcant area increase. In contrast, fragment
F1_A, also from CI_1, is fully incorporated at a substantial area increase.
Consequently, we can argue that if we merge only one of the fragments, we
could obtain savings in cycles at a low area cost. This is the case that CI_-
2+3+F1_B on the right of the Vgure illustrates (Merged CI with fragments).
If we merge only fragment F1_B from CI_1 with CI_2+3, the area increase
from additional switching logic (extra) will be negligible, while performance
will improve due to the additional saved cycles of computation block that
F1_B accelerates.

5.3. MInGLE+ Automatic Framework

We adopt the same baseline processor as in Chapter 4: an in-order Intel
Atom modiVed accordingly to Figure 2.4. CIs execute on a DSFU that reads
and writes data from the processor’s register Vles. Data transfers are there-
fore completely decoupled from CIs’ execution, that is multi-cycle, with
variable latency, and not parallel with the processor’s functional units.

We follow the same naming conventions as in Chapter 4, thus a CI

is the high-level representation of a loop body or inline function that can
be accelerated in hardware, and CI variants or only variants are distinct
implementations of a CI.

Figure 5.2 shows the high-level representation of MInGLE+ automated
framework, composed of Vve steps. The framework follows a similar Wow
as described in Section 4.3. However, a new component is added after the
Merged CIs Generation, which is the main contribution of this chapter. New
Step 4, CI Fragments Generation, implements a new method to obtain larger
improvements in performance and energy eXciency with small hardware
areas available, which we explain in the following section.

To adapt the CIs to the fragment recognition step, we also modiVed the
Distance calculation, step 3.1, that obtains the pairwise distances to mea-
sure similarities between CIs (Section 5.5), and the objective function of the
relabeled Step 5, CI Selection (Section 5.6), to Vt the best CI conVguration
that includes fragments in a limited area to save energy and improve per-
formance across the domain.

F
r
a
g
m
e
n
t
s
o
f
D
o
m
a
in
-S
p
e
c
if
ic

In
s
t
r
u
c
t
io
n
s

9
1

Figure 5.2: MInGLE+ automated framework for the implementation and generation of partially-merged CIs with fragments.

92 Chapter 5

5.4. Generation of Custom Instruction Fragments

We call CI fragments a variation of partially matched CIs that will not
include the full original CI, but parts (fragments) of it. This kind of matching
is aimed to improve reutilization of hardware at the most limited areas.
With CI fragments we can partially reuse an already merged CI cluster for
CIs that were initially not included in that cluster, with minimum additional
overhead. We obtain CI fragments in the CI Fragments Generation step of
the MInGLE+ framework.

There are some conditions to specify how suitable CI fragments are
found:

The size of a CI fragment is at most the same as the CI that matches,
which is generally much bigger. Therefore, for a given merged CI, we
can have several fragments from diUerent applications matching.

Operations included in a fragment do not depend on excluded ones,
to avoid a convexity violation [61], or circular dependency between
operations that could result in wrong scheduling.

CI fragments should not add logic to perform computations, but they
can add some additional overhead for switching circuits. They also
may have extra cycles to transfer data and the total number of saved
cycles are probably less than if the full CI was included. All this addi-
tional overhead and reduced gains are carefully weighed to determine
if a CI fragment is worth including.

We can create CI fragments from the basis of CIs from any level of
the dendrogram, either with exact or with partial similarities.

Starting the fragment search from a basis CI variant, merged or not
merged, that implements a set of CIs C , we will only consider adding
fragments from variants not included in C .

Under those conditions, note that fragments of a given CI diUer depen-
ding on the matching target, therefore their area coverage and saved cycles
vary across solutions.

Algorithm 2 lists the pseudo-code that detects fruitful fragments to aug-
ment the initial set of solutions generated after the hierarchical clustering.
We evaluate against each solution the possible matches of any CI variant,
represented as an MD, that is not yet part of the solution. We start with
the clustering solutions MS, that are the base to the new solution set plus
fragments (MSF). For each MD evaluated, we obtain the fragment matches

Fragments of Domain-Specific Instructions 93

Algorithm 2: Fragment Matching

input : Merged DiagramsMDs, merged clustering solutionsMS ,
threshold

output: SolutionsMSF

1 Array MSF←−MS
2 for Sol ∈MS do

3 Candidates←− ∅
4 for md ∈MDs do
5 if CI(md) < Sol then
6 FM←− ∅
7 forWholeFrag ∈md do

8 FM←
FM ∪GetMatchesOneWay(WholeFrag,Sol)

9 end

10 if matches(FM) > threshold then

11 EDPImprov← GetEDPImprovement(FM)

12 Candidates← Candidates ∪ < FM ,
EDPImprov >

13 end

14 end

15 end

16 BestCandidates← FilterCIV ariant(Candidates)
17 NewSols← CreateSolutions(BestCandidates)
18 MSF←MSF ∪NewSols

19 end

20 return MSF

(FM) evaluating separately the sequence of solutions that lead to each out-
put (lines 6 − 9). Then, we can easily limit the fragmented matches to the
boundaries of a certain output to control the convexity of the selected opera-
tions. With the function GetMatchesOneWay we perform a matching as
explained in Section 5.5. In this case, we are only interested in knowing the
coverage of each valid, whole fragment (WholeFrag) within sol. In lines
10 − 13, we evaluate if the percentage of matches of the fragments found
reach a user-deVned threshold. If they do, an estimation of the expected
EDP improvement is calculated, and the fragments of that CI variant are
considered to be included. As several variants of the same CI could be in
the set of candidates, we Vlter them based on the best estimated EDP im-

94 Chapter 5

provement in line 16. Finally, in the next line, we create a new solution
structure with updated information over the area and the CI fragments that
it includes, applying again the Performance and Energy Model step.

5.5. Distance and Matching Calculation

We modify the Distance Calculation step of Merged CIs Generation (3.1
in Figure 5.2), to measure the similarities among CIs and to use the calcula-
tion also for Vnding CI fragments.

For each pair of MDs of variants that do not implement the same CI,CIX
and CIY , we compare them using the previously built global diagrams 4.5.2
to still compute distances fast. Thus, based on the pre-built global diagrams,
we obtain the number of AugTED-operations and LinBDD-branches in CIX
that do not match with those in CIY , namely nMX , and vice versa, nMY .

However, looking at how fragments could match, we identify now three
diUerent types of matches with MDs: perfect, hidden and with overhead. An
MD subdiagram S with nodes < v1, . . . , vn > and edges < e1, . . . , en > has a
perfect match with another MD subdiagram S ′ with nodes < v′1, . . . , v

′
n >

and edges < e′1, . . . , e
′
n > if their labels and edges types match exactly. Af-

terwards, we identify a hidden match if the types of the outgoing edges of
nodes vz and v′z match and are connected to subdiagrams with a perfect
match. Finally, a match with overhead identiVes only nodes that represent
the same operations, but that do not share the same computational struc-
ture and would need a multiplexer to be shared. MoX and MoY are then
the number of nodes of CIX and CIY , respectively, with the same opera-
tions but with that extra overhead. As those matches with overhead incur
in area costs, we count them also for the dissimilarity metric.

We also count the number of total AugTED and LinBDD nodes that
each MD variant has: TotX and TotY . Then, we compute the distance δ as:

δ (CIX ,CIY) = average













MoX
2 +nMX

TotX
,
MoY
2 +nMY)

TotY













. (5.1)

We use the same methodology for the function GetMatchesOneWay of
Algorithm 2. In this case, we deVne a base MD Sol, and the potential MD
fragment f and we obtain the matching information as described above.
However, the distance value δ′ will be in this case:

δ′ (Sol, f) =

Mof
2 +nMf

Totf
, (5.2)

Fragments of Domain-Specific Instructions 95

withMof matches of f with overhead, nMf the non-matching subdiagram
nodes, and Totf the total nodes of f . Apart from the distance, the matching
information is also passed along to the CI fragments generation.

5.6. Custom Instruction Selection with Fragments

In the last CI Selection step ofMInGLE+, we choose again the best Vtting
CI conVguration for a given hardware area. As explained in 4.7, we model
this step as a Knapsack problem, trying to Vt n CI variants, merged and
not merged, with fragments included and not included, within a limited
hardware area A. Each ci candidate still has a value vi , and a hardware
occupancy hwi .

Using MILP to solve the problem, the area constraint is:

n
∑

i=0

ci × hwi ≤ A. (5.3)

The additional requirement of each CI being selected only once still
holds, but expanding it with fragments. Now we not only have diUerent
variant implementations for each CI due to distinct unrolling factors or to
merging, but we also include CIs with partially added fragments. Thus, we
have to follow the same rule of invalidating a CI for further selection once
a variant or only a fragment of that CI are selected. We do so by deVning
the constraint:

m
∑

i=0

vf i ≤ 1, (5.4)

with vf i the high-level CI that can be implemented by (m) CI variants and
variants with fragments.

The objective function, related to the overall energy-eXciency is:

n
∑

i=1

ci ×σ_EDPi →max. (5.5)

The metric σ_EDPi is computed as:

σ_EDPi =

B
∑

j

‖σ_EDPij‖, (5.6)

where B is the number of applications that the currently considered variant
targets, and ‖σ_EDPij‖ is the original application j’s EDP minus the EDP

96 Chapter 5

Benchmark #CIs #variants % dyn. ins. Partial Fragments

cjpeg 4 16 81.6% 461 2890

djpeg 3 12 45.3% 434 1756

gsmdec 1 4 70.8% 399 2281

gsmenc 2 7 56.5% 406 1788

mpeg2enc 3 6 45.4% 364 2084

optWow 2 7 49.5% 440 2130

rawcaudio 1 4 87.0% 402 2078

rawdaudio 1 4 85.2% 410 2841

susan 1 4 95.4% 427 2825

tmndec 3 4 87.2% 401 2282

tmnenc 2 6 50.6% 385 2632

Table 5.1: For each application, number of CIs and CI variants considered, the
percentage of dynamic instructions covered by them, and the number of candidates
found with partial matching and matching with fragments for regions across basic

blocks.

with the variant, normalized to the observed maximum for that application.
In this new deVnition of σ_EDPi , we have simpliVed the equation with
respect to that in Section 4.7, eliminating the part that involved area savings.
If the area is involved, partially-matched fragments are prioritized because
the area portion is larger, and those with fragments, with less area impact,
are not selected. Thus, with the new metric we aim to select above all CIs
with fragments when it is possible to maximize area savings with a low
overhead.

5.7. Evaluation

5.7.1. Experimental Setup

The setup information ofMInGLE+ is the same as in Chapter 4. We refer
to Section 4.9.1 of that chapter for details about the tools and platforms used.

Fragments of Domain-Specific Instructions 97

We evaluate the framework the eleven applications from the media do-
main listed in Table 5.1. For each one of the benchmarks in the Vrst column,
we show in the second column the number of critical CIs found across ba-
sic blocks. The third column lists the number of CI variants or distinct
implementations, for several unrolling factors; only those implementations
that yield some performance improvement are considered. The fourth co-
lumn shows the percentage of dynamic instructions covered if all the CIs
were selected, with all of them over 45%. Such a large code coverage is key
for performance improvement, and better achieved with CIs that cover re-
gions across basic blocks. Benchmark cjpeg has the highest number of CIs
and variants; however, the highest coverage of dynamic instructions corres-
ponds to susan. The two rightmost columns list the number of merged CIs
generated with partial matching and matching with fragments, respectively.
Note that both numbers include exact matchings, and partial matching is a
subset of matching with fragments. The threshold of similarity matching
with fragments is set at 50%, as we discuss in more detail in Section 5.7.2.2.

5.7.2. Results

We Vrst compare diUerent techniques implemented in the framework to
identify CIs across and inside basic blocks to be accelerated by a DSFU in
hardware, measuring both speedup and improvement in EDP across vari-
ous area settings. We subsequently evaluate the eUect of diUerent threshold
values on fragment matching. Finally, we present results of the shared hard-
ware area characterization when we use diUerent matching techniques.

5.7.2.1. Speedup and EDP Improvement

Figures 5.3 and 5.4 presents a comparison of diUerent conVgurations that
the framework generates for the benchmarks in Table 5.1, with DSFU area
on the x-axis expressed as a percentage of the Virtex 7’s area. Figure 5.3
shows the average performance speedup and Figure 5.4 the average EDP
improvement across the domain on the y-axis. Speedup and EDP improve-
ment are calculated with respect to the baseline processor. Lines marked
with 1 BB show improvements achieved when we use CIs targeting code
within basic blocks. At the largest areas, performance improvement reaches
a maximum of 1.48× and EDP improvement goes up to 1.74× the baseline.
We compare this to the lines marked with Region in the Vgures, which target
code regions across basic blocks. In this case, speedup reaches a maximum
of 2.09× and EDP improvement goes up to 3.84×. Considering regions
with multiple basic blocks gives us a signiVcant boost in both performance
and energy eXciency, because we are able to accelerate 31%more statically

98 Chapter 5

0 1 2 3 4

Percentage of area

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

Sp
ee

du
p

w/Fragments Region
w/Fragments 1 BB

Partial Region
Partial 1 BB

Exact Region
Exact 1 BB

Figure 5.3: Average speedups (y-axis), against increasing area percentages (x-axis),
for exact and partial matching, and matching with fragments, across and within

the basic block level.

counted body loops than with one basic block. Also, CIs across basic blocks
cover 41% more dynamic instructions on average. Exploring CIs across
basic blocks covers more code, expands the acceleration opportunities, and
thus achieves higher energy eXciency and speedup.

In the same Vgures, we analyze the eXcacy of exact matching, partial
matching and matching with fragments by comparing those lines marked
as Region. Note that partial matching choices include all those CIs matched
with exact, and then additional CIs that could be partially matched. The
same case applies for matching with fragments, with partial matching choi-
ces included among newly generated ones. In the case of partial matching,
we start seeing a diUerence around 0.5% of the area across basic blocks,
noting that partial matching achieves larger speedups and EDP improve-
ments as compared to exact matching, given the same area. For instance,
with a limited area budget (1.8%), we observe a speedup of 1.88× and an
EDP improvement of 3.04× when using partially matched CIs, while with
exact matching we obtain a speedup of 1.73× and an EDP improvement
of 2.53×. At 2.2% of the area, the EDP improvement diUerence is more
noticeable, 2.57× against 3.25×. Alternatively, for a given EDP improve-

Fragments of Domain-Specific Instructions 99

0 1 2 3 4

Percentage of area

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

ED
P
im

pr
ov

em
en

t

w/Fragments Region
w/Fragments 1 BB

Partial Region
Partial 1 BB

Exact Region
Exact 1 BB

Figure 5.4: Average EDP improvements (y-axis), against increasing area
percentages (x-axis), for exact and partial matching, and matching with

fragments, across and within the basic block level.

ment, partial matching saves area. For instance, for an EDP improvement
of 3×, exact matching takes 4% of the area, whereas partial matching takes
only 1.8% of the area: a savings of 55% of the chip’s reconVgurable area.
Matching with fragments, though, outperforms previous techniques from
the beginning, at very limited areas. With only 1% of the Virtex 7, we have
a speedup of 2× and EDP improvement of 3.65×, clearly higher than the
same values for partial matching, 1.63× and 2.35×, respectively. Matching
with fragments for CIs across basic blocks helps to reach the best speedup
and energy eXciency at larger areas. However, the most important feature
of matching with fragments is to enable high performance at smaller areas
either within or across basic blocks. Hence, matching with fragments uses
area more eUectively; a speedup of 1.96× is achieved with fragments at
0.75% of the area, in contrast with the 2.5% needed with partial matching.
This is important as the area available for the reconVgurable DSFU in a
low-end processor like the one evaluated would be much less than the area
available in a Virtex 7. As a rule of thumb, an Atom implementation took
about 85% of the Virtex 5 LX330 that has roughly 25% of the capacity of the
Virtex 7.

100 Chapter 5

0 1 2 3 4 5
1.00

1.75

2.50

3.25

4.00

4.75

ED
P

im
pr

ov
em

en
t

Average

0 1 2 3 4 5
1.0

3.5

6.0

8.5

11.0

13.5
cjpeg

0 1 2 3 4 5
1.0

1.5

2.0

2.5

3.0

3.5
djpeg

0 1 2 3 4 5
1

2

3

4

5

6
gsmdec

0 1 2 3 4 5
1

2

3

4

5

6

ED
P

im
pr

ov
em

en
t

gsmenc

0 1 2 3 4 5
1.0

1.5

2.0

2.5

3.0

3.5
mpeg2enc

0 1 2 3 4 5
1.00

1.75

2.50

3.25

4.00

4.75
optflow

0 1 2 3 4 5
1.00

1.25

1.50

1.75

2.00

2.25
rawcaudio

0 1 2 3 4 5
% area

1.0

2.5

4.0

5.5

7.0

8.5

ED
P

im
pr

ov
em

en
t

rawdaudio

0 1 2 3 4 5
% area

1

4

7

10

13

16
susan

0 1 2 3 4 5
% area

1

3

5

7

9

11
tmndec

0 1 2 3 4 5
% area

1.0

1.5

2.0

2.5

3.0

3.5
tmnenc

fragments partial exact

Figure 5.5: EDP improvement for each benchmark, up to the 5% of the area, with
CIs selected across basic blocks with fragments, partial matching and exact

matching.

Figure 5.5 presents a graph for each benchmark with a range of area
percentages dedicated to the CIs on the x-axis, and EDP improvement on
the y-axis. Here, we only include CIs across basic blocks. Results of the
matching with fragments use a threshold of 50%, which we discuss in detail
in the next section. Each point on the graphs represents a group of selected
CIs that uses a particular area. Only some area values are displayed, with
a stride of 0.5%. Note that each benchmark has a diUerent y-axis scale for
readability. The average of all applications is shown in the top left graph.

As we pointed out before, matching with fragments is, on average, the
most eUective technique at Vnding domain-speciVc CIs. This technique
achieves higher EDP improvement at smaller areas, always increasing the
speedup faster than the other two techniques. All but three benchmarks
show the best eXciency with fragments regardless of the area. We can ob-
serve, though, that for djpeg, gsmenc and susan, between 0.5% and 1.5%

Fragments of Domain-Specific Instructions 101

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Percentage of area

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

ED
P
im

pr
ov

em
en

t

90%
80%

70%
60%

50%
40%

30%
20%

10%

Figure 5.6: Percentage of area (x-axis) versus average EDP improvement (y-axis)
for the matching with fragments for diUerent thresholds.

of the area, solutions with fragments yield lower eXciency than with partial
matching. In the case of djpeg, even at higher areas, the EDP improvement
of the three methods overlaps. This is due to a great dependency of the
benchmark on application-speciVc CIs, with very low sharing rates in all
the CIs generated. Regarding gsmenc and susan, although the selected frag-
ments at low area improve the EDP, they cannot reach the gains of CIs that
cover the full body loop, and not only parts of it. However, for the other
eight benchmarks, matching with fragments is clearly the best choice, since
we are able to cover more CIs with less area. For instance, CIs that could
give more than 10× EDP improvement to cjpeg are not selected with par-
tial matching because of unavailable area resources. With fragments, there
is virtually more area available from the low overhead costs of including a
new fragment, hence better performing CI variants can be selected.

5.7.2.2. Threshold Analysis

We recall the user-deVned threshold for fragment matching from Sec-
tion 5.4 as the value that establishes the minimum percentage of matching
operations of a fragment with respect to the evaluated CI, in order to gene-
rate a new CI that includes both the evaluated CI and the fragment. Figure

102 Chapter 5

T
Candidates Time to solve EDP

improvementnum. % inc. secs. % inc.

90 363 – 24.4 – 2.64×

80 390 +7.4 26.5 +8.6 2.94×

70 456 +16.9 27.4 +3.4 2.94×

60 581 +27.4 33.7 +22.9 3.19×

50 633 +8.9 35.9 +6.5 3.64×

40 923 +45.8 52.4 +45.9 3.67×

30 1056 +14.4 59.3 +13.2 3.67×

20 2117 +100.4 125.5 +111.6 3.67×

10 2263 +6.9 135.3 +7.8 3.67×

Table 5.2: Number of candidates in the selection step and time to solve the selection
problem for diUerent thresholds (T) using matching with fragments, for 1% of the

area.

5.6 presents a comparison of solutions with diUerent threshold values, with
area percentage on the x-axis up to 2% and the average EDP improvement
across the domain on the y-axis. The legend shows the thresholds that go
from 90% to 10% of matching. A higher threshold corresponds to a higher
similarity. The CI candidates with a given threshold include all those CIs
from higher thresholds. For instance, a threshold of 70% also includes the
CIs of thresholds 80% and 90%. We observe that up to 0.8% of the area,
10% threshold obtains the highest EDP improvement. However, from that
area onwards, thresholds up to 50% yield the same EDP improvement and,
from 1.3% of the area, thresholds 60% and 70% join the eXciency ceiling.
The EDP improvement with a threshold of 90% at 2% of the area equals
the one achieved with partial matching (no fragments). At larger areas, we
have room to choose bigger variants that provide the full CI acceleration
instead of fragments that do not give the maximum eXciency. Also, frag-
ments with 90% similarity matching are more diXcult to Vnd than those
with lower thresholds and therefore scarcer.

The threshold level has an immediate eUect on the number of CI candi-

Fragments of Domain-Specific Instructions 103

dates in the selection pool and the runtime of the selection process, which
is shown in Table 5.2. Data in the table refer to the selection step for 1% of
the area. For each threshold percentage (T), we list Vrst the number of can-
didates considered for selection with the percentage increase with respect
to the previous row. We list also the time in seconds to solve the selec-
tion problem with the pool of candidates and, again, percentage increases.
In the last column we list the EDP improvement achieved. Note that, for
diUerent areas, the number of CI candidates varies because some CIs are
pre-Vltered by area occupancy; if their area is greater than the maximum
area targeted, they will not be considered. Also note that, as the number of
candidates of a given threshold includes those of higher ones, the amount
of candidates increases as the threshold value decreases. The time to solve
increases linearly with the number of candidates; the largest diUerence in
both the amount of CIs considered and seconds to solve happens relaxing
the threshold from 30% to 20%, showing that smaller fragments are more
frequent than larger ones. However, the EDP at those low thresholds is
not better than thresholds of 40 − 50% because larger fragments achieve
better EDP, and the threshold is related to the size of the fragment. Thus,
the increase in the problem complexity of the lowest thresholds weighed
against the problem size and time to solve of a threshold of the 50% has no
advantage because similar CIs are chosen.

5.7.2.3. Sharing Characterization

In this last analysis, we evaluate how area is shared among CIs to un-
derstand the high gains that the matching with fragments provides. Figu-
res 5.7 and 5.8 show two graphs that display the increasing percentage of the
Virtex 7 occupancy (up to 5%) of diUerent CI conVgurations on the x-axis
versus the normalized percentage of LUTs on the y-axis, broken down by
non-shared operators, shared operators and multiplexer overhead for cir-
cuit sharing. The CI conVgurations target all the applications in Table 5.1.
The graph on Figure 5.7 shows the characterization for partial matching,
whereas the graph on Figure 5.8 shows that of matching with fragments.

First, we observe that, for partial matching, the CI conVguration with
the smallest area (0.2%) does not share any of the CIs included. At that
small area, the cost for merging CI variants is too high to compete against
lighter application-speciVc CIs. In contrast, matching with fragments de-
votes 80% of the LUTs on the smallest conVguration to shared resources.
We Vnd the maximum percentage of shared circuits at smallest areas, which
explains why the conVgurations with CI fragments are more eXcient than
those without. The percentage of overhead due to multiplexers is more no-

104 Chapter 5

0.
20

0.
40

0.
60

0.
80

0.
99

1.
20

1.
38

1.
60

1.
79

1.
98

2.
19

2.
32

2.
59

2.
76

3.
00

3.
11

3.
48

3.
54

3.
78

3.
98

4.
19

4.
33

4.
51

4.
86

5.
00

Percentage of area

0.0

20.0

40.0

60.0

80.0

100.0
Pe

rc
en

ta
ge

 o
f L

U
Ts

Non-shared Shared Overhead

Figure 5.7: Characterization of shared FPGA hardware for diUerent area
utilizations with partial matching.

0.
20

0.
40

0.
59

0.
79

0.
98

1.
20

1.
38

1.
58

1.
78

2.
00

2.
18

2.
39

2.
58

2.
78

3.
03

3.
22

3.
46

3.
58

3.
82

3.
96

4.
20

4.
36

4.
63

4.
79

4.
94

Percentage of area

0.0

20.0

40.0

60.0

80.0

100.0

Pe
rc
en

ta
ge

 o
f L

U
Ts

Non-shared Shared Overhead

Figure 5.8: Characterization of shared FPGA hardware for diUerent area
utilizations with fragments.

Fragments of Domain-Specific Instructions 105

ticeable at lower areas also, correlated with the amount of shared resources.
Although at larger area utilizations the sharing levels decrease, they are
steadily higher than those for partial matching, where the sharing percen-
tages are around the 30% on average.

5.8. Summary

This chapter presents MInGLE+, an automated framework that extracts
CIs from a domain of applications that are executed on a DSFU. We aim to
select CIs that improve performance and energy eXciency for all the tar-
get applications, without substantially compromising any of them. Hence,
we propose techniques to perform partial matching of CIs based on their
similarity. Our techniques here build on top of the work of the previous
chapter, now focusing on getting high beneVts for DSFU with very limited
areas. Therefore, we introduce an analysis step that detects fragments of
CIs that can use the existing merged clusters with minimal extra overhead.
Our experimental results with eleven media benchmarks show that the new
matching technique with fragments achieves a speedup of 2.1× and an EDP
improvement of 3.8×, on average, across basic blocks, while within a basic
block we obtain a speedup of 1.5× and EDP improvement of 1.7×. Com-
pared to partially matched CIs, CIs with fragments are key for achieving
larger performance (2× versus 1.6×) and EDP improvements (3.6× versus
2.4×) for a limited hardware area (1%). This means that we achieve a par-
ticular energy eXciency with a greatly reduced hardware area. The work
presented in this chapter, complemented with the analysis and techniques
from Chapters 3 and 4, shows the applicability of introducing conVgurable
accelerators with limited area inside embedded processors. We demonstrate
the viability of accelerating many applications from a domain, improving
the system’s performance and energy eXciency.

6
Conclusion

6.1. Overview

Hardware specialization has gained attention over the past few years
in an eUort to improve performance and energy-eXciency at the end of
Dennard scaling. However, an application-speciVc processor delivers high
performance for that speciVc application only, and is costly to manufacture.
In contrast, domain-speciVc acceleration may deliver better overall system
performance when diUerent applications run on the custom device, and may
be more economically viable by targeting a larger market. In addition, the
design of custom instructions (CIs) enables a fast way of creating speciali-
zed hardware from the extension of a general-purpose processor. CIs run
on specialized functional units, which are an area-eXcient alternative of
hardware specialization, extending a processor with minimal impact on the
existing design. The memory hierarchy is maintained, and although the
amount of data that can be processed at once is limited, hardware exten-
sions are more eXciently managed, and energy consumption can be better
controlled to not be increased over the original baseline.

Although domain-speciVc CIs stand as a plausible option for accelera-
tion design, the diUerences among coding styles across applications com-
plicate the task of Vnding patterns that can be executed by a single CI.
Therefore, we propose using a canonical representation, the Taylor Expan-
sion Diagram (TED), to identify CIs that are functionally similar. Com-

108 Conclusion

pared to the commonly used Directed Acyclic Graph (DAG) representation,
TEDs are more eUective at identifying those functional equivalences along
sequences of code within and across applications. We also propose a Hybrid
representation, which uses TEDs when it is possible by the nature of the
computation, and otherwise uses DAG.

Additionally, we propose four scoring heuristics to quickly compare and
rank CIs in the selection phase, which is known to be an NP-complete
problem. These heuristics rank potential conVgurations of groups of CIs
to smooth the gains obtained across applications, making them suitable for
domain-speciVc acceleration.

We combine the functional equivalence identiVcation and the scoring
heuristics in our framework FuSInG, which allows a design space explo-
ration of new acceleration designs through performance and area estima-
tion. With the framework, we evaluate the proposed methodologies using
a set of application benchmarks from the media domain. We Vrst explore
the eUectiveness of a canonical representation for the design of domain-
speciVc CIs. While TED’s canonical representation does not lead to better
results than DAG with code sequences within the same application, it is
key to achieve higher speedups when generating domain-speciVc CIs. As
individual applications are coded following the same style, the beneVt of a
canonical representation is unnoticeable, as opposed to CIs across applica-
tions with diUerent code styles. In the domain-speciVc case, we Vnd that
Hybrid and TED techniques perform very similarly. Hybrid is, though, the
most eUective technique, achieving higher speedups at smaller areas and
increasing the speedup faster than only TED or DAG. The main advantage
of the Hybrid technique is that it tries to identify identical CIs using TED
Vrst, and when it cannot Vnd any more, it complements the identiVcation
using DAG. Furthermore, we evaluate the behavior of the heuristic selection
techniques. We observe that, from all four, the random-scaled sharing tech-
nique performs best on average, since it maximizes the overall performance
across applications. Also, we explore the trade-oUs of diUerent SFU con-
Vgurations to optimize full-system performance across applications subject
to area constraints. We compare conVgurations with application-speciVc
only, domain-speciVc only, or both application- and domain-speciVc CIs.
We Vnd that, while application-speciVc CIs result in the highest possible
performance at large or unbounded core areas, considering domain-speciVc
CIs next to application-speciVc CIs yields to the highest possible speedup
at realistic, smaller core areas. In addition, we cross-validate the results
looking at the performance of non-analyzed applications that run upon a
machine conVgured with a set of CIs for a particular application domain.
We demonstrate that the identiVed CIs are eUective for previously unseen

Conclusion 109

applications within the same domain, making specialization more generally
applicable. These Vndings underline the need of domain-speciVc instruc-
tions for practical and Wexible hardware specialization.

In order to achieve high and balanced speedups with domain-speciVc
CIs, reusability across applications is a critical factor. However, targeting
code sections beyond the basic block level to achieve higher speedups results
in not enough exact equivalences to generalize the accelerating hardware.
Therefore, to improve the code coverage, we propose a new canonical repre-
sentation of code sequences across basic blocks, the Merging Diagram. This
representation is partly based on TED-DAG Hybrid, and its structure facili-
tates the identiVcation of partial similarities. We also introduce a clustering-
based partial matching of CIs, that we merge, calculating their potential
performance and energy improvement.

Also, having conVrmed the suitability of the CI selection in an applica-
tion domain, we introduce energy eXciency as a new parameter to take into
account, since in the context of devices with limited power-budgets, focu-
sing only on performance could introduce power-hungry CIs. We propose
then a constraint-based selection mechanism that, with a novel objective
function, balances speedup and energy eXciency across an application do-
main.

These techniques expand the opportunity for CIs with a limited area
budget inside embedded processors to accelerate several applications from a
domain, improving the system’s energy eXciency. We evaluate our claims
with MInGLE, an automated framework that converts code sequences at
the loop body level into CIs, considering several implementations for each
of them. CIs are further transformed into Merging Diagrams, and clustered
to Vnd partially-matching sequences to minimize specialized area.

Experimental results with a set of media benchmarks show that looking
across basic blocks achieves a speedup of 1.98× and an EDP improvement of
3.35×, a signiVcant gain over looking within a single basic block (speedup
of 1.48× and EDP improvement of 1.67×). Improvements in both perfor-
mance and EDP across basic blocks are due to be able to cover 41% more
dynamic instructions on average, which expands the acceleration opportu-
nities. Furthermore, across basic blocks, partial matching achieves larger
speedups and EDP improvements as compared to exact matching, given
the same area. For example, for a limited hardware area (1.8%), partial
matching achieve larger performance than exact matching (1.88× versus
1.73×) and EDP improvements (3.04× versus 2.53×). Alternatively, for a
given EDP improvement, partial matching saves area, which is important
as the area available to implement the CIs in a low-power processor is very
limited.

110 Conclusion

Previous results show that partially-similar domain-speciVc CIs outper-
form application-speciVc ones when the area for implementation is over a
given threshold. However, at small areas, application-speciVc CIs are still
in dominance, since the overhead added when two CIs are merged override
the potential gains. Consequently, we extend the CI merging of MInGLE
with an analysis step that detects fragments of CIs that can use the exis-
ting merged clusters with minimal extra overhead. With CI fragments we
can improve reutilization of hardware at the most limited areas, because we
partially reuse an already merged CI cluster. Experimental results show that
the newmatching technique with fragments achieves a speedup of 2.1× and
an EDP improvement of 3.8×, on average, across basic blocks, while within
a basic block we obtain a speedup of 1.5× and EDP improvement of 1.7×.
Comparing matching techniques across basic blocks, matching with frag-
ments outperforms previously proposed techniques from the beginning, at
very limited areas. With only 1% of the area, we have a speedup of 2×
and EDP improvement of 3.65×, clearly higher than the same values for
partial matching, 1.63× and 2.35×, respectively. Matching with fragments
uses area more eUectively; a speedup of 1.96× is achieved with fragments
at 0.75% of the area, in contrast with the 2.5% needed with partial mat-
ching. As there is virtually more area available from the low overhead costs
of including a new fragment, better performing CIs can be selected.

The results presented in this dissertation show the applicability of intro-
ducing conVgurable accelerators with limited area inside low-power pro-
cessors to accelerate many applications from a domain, improving the sys-
tem’s performance and energy eXciency.

6.2. Future work

The techniques for domain-speciVc acceleration proposed in this disser-
tation could be extended and adapted to new environments.

In order to improve performance, we could broaden the coverage of
CIs beyond the loop body level. For example, the analysis phase might try
to identify a coarser type of CIs than body loops, possibly at the function
level. However, Vnding similarities across larger sequences of code might
pose a problem, once again due to the disparities of coding strategies across
applications. That said, a new canonical representation at the algorithmic
level, conscious of data structures, and acting as a functional intermediate
representation, could help with the similarity identiVcation. With a beyond-
loop-level type of CI, memory transfers should be included, which might
imply architectural changes to allow more direct memory connections. To
improve the similarity matching, we could also consider approximate com-

Conclusion 111

puting approaches, such as relaxing type constraints to be able to generalize
more CIs across applications.

To extend the applicability of the techniques presented in this disserta-
tion, instead of an oU-line analysis and generation of CIs, we could do both
the identiVcation of CIs and conVguration of SFUs in runtime. Runtime
conVguration would need architectural support to raise an exception and
stop the program, Wushing and updating the SFU. IdentiVcation at runtime
is a more interesting and diXcult problem. We could approach it, for ins-
tance, by establishing an initial baseline of CIs that could evolve and change
depending on real workload dynamics.

Additionally, we could extrapolate the domain-speciVc design methods
to other, not yet explored, architectures. For instance, the design and im-
plementation of non-tightly-coupled accelerator types would be of interest,
because oU-core accelerators would allow better performance gains. This
direction would be related to the expansion of CIs beyond the loop body,
since full functions would be oYoaded on accelerators to minimize commu-
nication with the main processor. However, without changing the granu-
larity of the CIs, we could start extending the current work for out-of-order
processors, which in the latest years are growing as the default choice in
embedded devices. Also, we could evaluate our techniques in other high-
performance environments, like multiprocessors. Using an Intel Atom pro-
totype with 2-way SMT, we can have up to 4 simultaneous threads with a
dual-core machine. We could study the architectural possibilities on such
a platform, and the possible impact of introducing CIs in the system. For
example, in a scenario of two applications running concurrently in the same
chip, we could design exact duplicates of the DSFUs as it is done in Atom
for rest of the FUs. Alternatively, we could design diUerent kinds of DSFUs
in each processor, and a scheduler would choose in which one of them a
process that uses CIs would run.

Bibliography

[1] G. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, pp. 114–117, Apr. 1965.

[2] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous,
and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very
small physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9,
pp. 256–268, Oct. 1974.

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
architecture, ISCA ’11, pp. 365–376, ACM, 2011.

[4] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources
of ineXciency in general-purpose chips,” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, ISCA ’10,
pp. 37–47, ACM, 2010.

[5] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Redu-
cing the energy of mature computations,” in Proceedings of the Fif-
teenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XV, pp. 205–218, ACM,
2010.

[6] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and
R. Mahnkopf, “More-than-Moore white paper,” International Techni-
cal Roadmap for Semiconductors, 2010.

[7] G. Estrin, “Organization of computer systems: The Vxed plus vari-
able structure computer,” in Papers Presented at the May 3-5, 1960,
Western Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM
’60 (Western), pp. 33–40, ACM, 1960.

114 Bibliography

[8] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to ASIP: The
next design discontinuity,” in Computer Design: VLSI in Computers

and Processors, pp. 84–90, IEEE, 2002.

[9] Xilinx, “Accelerating integration – Vivado High-Level Synthesis.”
http://www.xilinx.com/products/design-tools/vivado/

integration.html, 2015.

[10] R. Kastner, a. Kaplan, S. O. Memik, and E. Bozorgzadeh, “Instruction
generation for hybrid reconVgurable systems,” ACM Transactions on

Design Automation of Electronic Systems, vol. 7, pp. 605–627, Oct. 2002.

[11] B. Middha, A. Kumar, V. Raj, M. Balakrishnan, P. Ienne, and A. Gang-
war, “A Trimaran Based Framework for Exploring the Design Space of
VLIW ASIPs with Coarse Grain Functional Units,” in In Proceedings of

the 15th International Symposium on System Synthesis, pp. 2–7, 2002.

[12] P. Yu and T. Mitra, “Scalable custom instructions identiVcation for
instruction-set extensible processors,” in Proceedings of the 2004 In-

ternational Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, CASES ’04, pp. 69–78, ACM, 2004.

[13] P. Yu and T. Mitra, “Disjoint Pattern Enumeration for Custom Instruc-
tions IdentiVcation,” Field Programmable Logic and Applications, 2007.

FPL 2007. International Conference on, pp. 273 – 278, 2007.

[14] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-speciVc instruc-
tion generation for conVgurable processor architectures,” in Procee-

dings of the 2004 ACM/SIGDA 12th International Symposium on Field

Programmable Gate Arrays, FPGA ’04, pp. 183–189, ACM, 2004.

[15] L. Pozzi and P. Ienne, “Exploiting pipelining to relax register-Vle port
constraints of instruction-set extensions,” in Proceedings of the 2005

International Conference on Compilers, Architectures and Synthesis for

Embedded Systems, CASES ’05, pp. 2–10, ACM, 2005.

[16] L. Pozzi, K. Atasu, and P. Ienne, “Exact and approximate algorithms
for the extension of embedded processor instruction sets,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, pp. 1209–1229, July 2006.

[17] A. K. Verma, P. Brisk, and P. Ienne, “Rethinking custom ise identiV-
cation: a new processor-agnostic method,” in Proceedings of the 2007

International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, CASES ’07, pp. 125–134, ACM, 2007.

Bibliography 115

[18] P. Biswas, N. Dutt, P. Ienne, and L. Pozzi, “Automatic identiVcation
of application-speciVc functional units with architecturally visible sto-
rage,” Design, Automation, and Test in Europe, 2006.

[19] N. T. Clark, H. Zhong, and S. A. Mahlke, “Automated custom ins-
truction generation for domain-speciVc processor acceleration,” IEEE
Transactions on Computers, vol. 54, p. 2005, 2005.

[20] K. Atasu, O. Mencer, W. Luk, C. Ozturan, and G. Dundar, “Fast custom
instruction identiVcation by convex subgraph enumeration,” in Procee-
dings of the 2008 International Conference on Application-SpeciVc Sys-

tems, Architectures and Processors, ASAP ’08, pp. 1–6, IEEE Computer
Society, 2008.

[21] T. Li, Z. Sun, W. Jigang, and X. Lu, “Fast enumeration of maximal
valid subgraphs for custom-instruction identiVcation,” in Proceedings

of the 2009 International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, CASES ’09, pp. 29–36, ACM, 2009.

[22] A. C. Murray, R. V. Bennett, B. Franke, and N. Topham, “Code transfor-
mation and instruction set extension,” ACM Transactions on Embedded

Computing Systems, vol. 8, pp. 1–31, July 2009.

[23] K. Atasu, W. Luk, O. Mencer, C. Ozturan, and G. Dundar, “FISH: Fast
Instruction SyntHesis for Custom Processors,” Very Large Scale Inte-

gration (VLSI) Systems, IEEE Transactions on, vol. 20, no. 99, pp. 1–1,
2012.

[24] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot, “Con-
straint Programming Approach to ReconVgurable Processor Extension
Generation and Application Compilation,” ACM Transactions on Re-

conVgurable Technology and Systems, vol. 5, pp. 1–38, June 2012.

[25] N. Arora, K. Chandramohan, N. Pothineni, and A. Kumar, “Instruction
selection in ASIP synthesis using functional matching,” International
Conference on VLSI Design, vol. 0, pp. 146–151, 2010.

[26] a. Lodi, M. Toma, F. Campi, a. Cappelli, R. Canegallo, and R. Guerrieri,
“A VLIW processor with reconVgurable instruction set for embedded
applications,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 1876–
1886, Nov. 2003.

[27] J. Hauser and J. Wawrzynek, “Garp: a MIPS processor with a reconVg-
urable coprocessor,” in Proceedings of the 5th Annual IEEE Symposium

116 Bibliography

on Field-Programmable Custom Computing Machines), pp. 12–21, IEEE
Computer Society, 1997.

[28] J. E. Carrillo and P. Chow, “The eUect of reconVgurable units in su-
perscalar processors,” in Proceedings of the 2001 ACM/SIGDA Ninth

International Symposium on Field Programmable Gate Arrays, FPGA
’01, pp. 141–150, ACM, 2001.

[29] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” Proceedings of the

27th Annual International Symposium on Microarchitecture - MICRO

27, no. November, pp. 172–180, 1994.

[30] C. Ralph and R. D. Wittig, “OneChip: An FPGA Processor With Re-
conVgurable Logic,” in In IEEE Symposium on FPGAs for Custom Com-

puting Machines, pp. 126–135, 1995.

[31] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA:
A High-Performance Architecture with a Tightly-Coupled ReconVg-
urable Functional Unit,” in Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, pp. 225–235, ACM Press,
2000.

[32] R. Gonzalez, “Xtensa: a conVgurable and extensible processor,” IEEE
Micro, vol. 20, no. 2, pp. 60–70, 2000.

[33] R. Gonzalez, “A software-conVgurable processor architecture,” IEEE

Micro, pp. 42–51, 2006.

[34] Altera Corporation, “Altera Nios II Processor.” https://www.

altera.com/products/processors/overview.html, 2015.

[35] Altera Corporation, “Nios II custom instruction user guide,” tech. rep.,
2011.

[36] R. Dimond, O. Mencer, and W. Luk, “Application-speciVc customisa-
tion of multi-threaded soft processors,” IEE Proceedings - Computers

and Digital Techniques, vol. 153, no. 3, pp. 173–180, 2006.

[37] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-eXcient computing,”Micro, IEEE,
vol. 32, pp. 38–51, Sept 2012.

Bibliography 117

[38] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki,
and K. Sankaralingam, “Design, integration and implementation of the
DySER hardware accelerator into OpenSPARC,” in Proceedings of the

2012 IEEE 18th International Symposium on High-Performance Com-

puter Architecture, HPCA ’12, pp. 1–12, IEEE Computer Society, 2012.

[39] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled exe-
cution of recurring traces for energy-eXcient general purpose process-
ing,” in Proceedings of the 44th Annual IEEE/ACM International Sym-

posium on Microarchitecture, MICRO-44, pp. 12–23, 2011.

[40] M. Haaß, L. Bauer, and J. Henkel, “Automatic custom instruction iden-
tiVcation in memory streaming algorithms,” in Proceedings of the 2014

International Conference on Compilers, Architecture and Synthesis for

Embedded Systems, CASES ’14, pp. 6:1–6:9, ACM, 2014.

[41] L. Bauer, M. ShaVque, and J. Henkel, “Run-time instruction set selec-
tion in a transmutable embedded processor,” in Proceedings of the 45th

annual Design Automation Conference, pp. 56–61, ACM, 2008.

[42] L. Bauer, M. ShaVque, and J. Henkel, “Concepts, architectures, and
run-time systems for eXcient and adaptive reconVgurable processors,”
in Adaptive Hardware and Systems (AHS), pp. 80–87, IEEE, 2011.

[43] T. Halfhill, “Intel’s tiny Atom,” Microprocessor Report, vol. 22, 2008.

[44] C. Lattner and V. Adve, “LLVM: A compilation framework for life-
long program analysis & transformation,” in Proceedings of the Inter-

national Symposium on Code Generation and Optimization, CGO ’04,
pp. 75–86, IEEE Computer Society, 2004.

[45] R. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691,
1986.

[46] M. Ciesielski, P. Kalla, and S. Askar, “Taylor expansion diagrams: A
canonical representation for veriVcation of data Wow designs,” IEEE

Transactions on Computers, vol. 55, no. 6, pp. 1188–1201, 2006.

[47] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and E. Boutillon,
“Variable ordering for taylor expansion diagrams,” in Proceedings of

the High-Level Design Validation and Test Workshop, 2004. Ninth IEEE

International, HLDVT ’04, pp. 55–59, IEEE Computer Society, 2004.

118 Bibliography

[48] M. Arnold and H. Corporaal, “Designing domain-speciVc processors,”
in Proceedings of the 9th International Symposium on Hardware/Soft-

ware Codesign, pp. 61–66, ACM, 2001.

[49] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network struc-
ture, dynamics, and function using NetworkX,” in Proceedings of the

7th Python in Science Conference (SciPy2008), pp. 11–15, Aug. 2008.

[50] W. Stein et al., Sage Mathematics Software (Version 5.8). The Sage
Development Team, 2013. http://www.sagemath.org.

[51] SRISC, “Simply risc s1 core,” 2012.

[52] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.

[53] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “MediaBench II
video: expediting the next generation of video systems research,” Mi-

croprocessor and Microsystems, vol. 33, pp. 301–318, June 2009.

[54] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 26, pp. 203–215, Feb 2007.

[55] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the Workload Characterization,

2001. WWC-4. 2001 IEEE International Workshop, WWC ’01, pp. 3–14,
IEEE Computer Society, 2001.

[56] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions

on Architecture and Code Optimization (TACO), 2014.

[57] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 42, pp. 469–480, ACM, 2009.

[58] D. Müllner, “fastcluster: Fast hierarchical, agglomerative clustering
routines for R and Python,” Journal of Statistical Software, vol. 53,
no. 9, pp. 1–18, 2013.

Bibliography 119

[59] IBM, “ILOG CPLEX Optimizer.” http://www-01.ibm.com/

software/commerce/optimization/cplex-optimizer/index.

html, 2015.

[60] D. Kroshko, “OpenOpt: Free scientiVc-engineering software for ma-
thematical modeling and optimization,” 2007–2015.

[61] K. Karuri and R. Leupers, “A primer on ISA customization,” in Appli-

cation Analysis Tools for ASIP Design, pp. 93–109, Springer New York,
2011.

