
���������	�
���
��	���

��
����
��
���

Lluís Solano*, Iñigo Gurrea** and Pere Brunet*

��������	
�	��
���
��������
������	�
����
�������
�����
�����	����
��
����������
��	�������������
��������������������
��	������������

���!"!#
$
%�&����	'�
�
���������
��	�������
������
����&��&�		�������	���

�������
�
Topological constraints, ship design, object oriented methods, pattern-based design.

��
��	���

In this paper we propose a generic and integrated data structure that is decoupled form the product
model database in order to manage and update the geometric elements (parts) related with
������&����
 �����	�����. We present a practical application in the case of ship design. In ship
design it is necessary to manage and to deal with a huge number of components and relationships.
The data structure is based on a directed graph. The software design follows object oriented
techniques and pattern-based design. Using class patterns to implement the graph and to manage
the topological constraints performs high reusability of the proposed solution.

��
������������

During last years, solid modeling techniques and 3D visualization methods have been
incorporated in CAD/CAM Systems used in Shipbuilding (Aarnio 2000). This, in
conjunction with the dramatic improvement of the performance of computers and
graphics devices, has led to the intensive use of 3D design techniques in many shipyards
(Alonso 1996).

FORAN (Garcia 1994) is a CAD/CAM system specifically oriented to shipbuilding, used
in more than 100 shipyards all over the world. One of the key features of FORAN is to
create and to manage a ship product model in a single database containing all ship
information in a concurrent multi-user environment.

The product model is a complete representation of the ship as an entity to be designed,
fabricated, mounted, operated and maintained. The product model contains 3D
geometrical data, information about the structure of the product (eg. the organization of
the ship components by systems, blocks and zones), element attributes (materials and
other technological properties) as well as all the necessary information, documents and
schedules for the ship fabrication and mounting process (Duran 1995). Geometric,
engineering and manufacturing data are recorded and maintained by the system, as well
as their relationships.

FORAN is now used in many shipyards for the 3D detail design of the hull structural and
outfitting elements of ships (figure 1). The incorporation of flexible tools for the
management of the relationships and dependencies among the parts of the model,
increases the potential to maintain changes in the design along the life cycle of the
product. It is useful to include in the product model topological data about the
relationships and dependencies among components. This paper addresses the use of
object oriented techniques and pattern-based design to manage relationships and
dependencies among parts.

Figure 1: Example of subsection of 3D ship structure.

This paper is structured in the following way. First, the basic shipbuilding process is
described and explained from the design cycle. In this process arises the problem of
keeping track of the relationship between the hull ship and the structure and components
parts of a ship. After that, some definitions are made and the problem is formalized.
Finally, a solution is proposed and discussed using object oriented technologies.

��
 !"#$%&
�%��!� ��"'

The starting point of shipbuilding engineering process is the design of the hull surface
model. This task takes a considerable amount of time to be completed. The resulting
product is an essential information for the following steps. Once a preliminary hull
surface model is obtained, the following processes can start. Related with the hull there
are all the ship structural elements. From the initial hull surface model starts the design of
structural parts as decks, frames, panels and plates, and the components and devices
(pipes, pumps, valves, etc.) that are located over the ship structure (figure 2).

Usually, design in shipbuilding environment is performed from a set of ship components
that are instantiated with specific parameters. For each part, its location and position is
defined together with its relationships with other parts. For instance, a pump is located
related to the deck position. In this sense, the design can be understood as an assembly
design with a very very large number of components.

In parallel to the design of structural parts based on the hull, the surface model is refined
and faired, without preventing other tasks from going on (Rodriguez 2000). Once the
surface model is finished, and using an integrated system the work performed on the
preliminary model must be automatically updated.

Figure 2: Example of ship structure.

The management of the relationships and dependencies among the parts involved and the
automatic update of the geometry are necessary in order to decrease the engineering
tasks. The relationships defined among different components allow establishing
dependencies in changes. If an element A is modified, the elements depending on A and
related with A, must be updated in position, dimension or both. We define these
dependency relations among the involved elements as ������&����
�����	�����.

(�����&����
�����	����� have to be kept in the product model to maintain changes in the
design and to update the location, shape and dimensions of the components and parts.

Some of the structural parts are directly related with the hull surface. In fact, there are
components such as frames, which they are fit on the hull and follow a curve on the hull
surface. This means that any change in the hull surface has to be transmitted to the related
components. A modification or refinement in the hull of the ship implies to redesign the
dimension and position of the structural related parts as deck surfaces, panels and plates.
Using ������&����
�����	����� the parts can be updated in an automatic way.

Modeling parts that are related with ������&����
 �����	�����, where the location and
dimension of a part depend on the dimensions and locations of others parts is a form of
�)������
��)����&.

More specifically, let us consider the example in Figure 3 that shows a simplified
transversal section of half ship.

Figure 3: Simplified transversal section of a half ship.

Ship hull modifications must be propagated to the main deck, contiguous panels, lower
decks and center plane reference, as they produce changes of their shape or location. The
center plane reference must propagate its shape modifications to the different decks and
plates. Changes in the shape or location of the lower decks can modify the position of the
ship equipment; this forces specific modifications in the associated pipes which end up in
changes in the panels that must be crossed by the pipes.

Figure 4 shows the corresponding topological constraints of Figure 3 components.

Figure 4: Example of topological constraints among ship components.

The case explained above is a simplified case in order to state the problem. In fact, in real
ship design, a huge number of components in each one of ship sections are involved. In
average, there can be from fifteen to a hundred sections and from a dozen to several
hundreds of structural components as frames, plates, decks, and panels.

(�
 �"$)��"'
�%��!� ��"'

A ship is designed hierarchically, by composition of simple parts into more complex
ones. The natural way of representing the dependencies and relationships is using a
directed acyclic graph (Rappoport 1993). From a directed acyclic graph that represents
the topological constraints among ship components, it is possible to compute the
sequence to perform the automatic update of the components.

We define the ������&����
�����	����
&	��
 as a directed acyclic graph where nodes are
components of a design and edges represent the topological constraints.

The update process of the components related with ������&����
 �����	����� has to be
performed in a specific order. In Figure 2, the evaluation of node P has as a prerequisite
the evaluation of nodes Q, B, C, and H. To update the components after a change, it is
necessary to process the nodes in such an order that no node is processed before any node
which points to it.

Using a ������&����
��	���& (Aho 1983) it is possible to compute a linear ordering of the
graph nodes, such that if there is an edge from node i to node j, then in the linear
ordering, node i appears before node j.

(�����&����
 ��	���& is based on a graph depth-first search. The cost of a ������&����
��	���& is linear (O(n) where n= number of nodes). In the case of Figure 4, the ������&����
��	���& produces the sequence: C H Q A B F P E D.

A generic and integrated data structure, decoupled from the product model database, is
proposed (figure 5). This data structure allows managing and updating the geometric
elements (parts) related with ������&����
 �����	�����. The data structure is based on a
directed implicit graph where the nodes are ship structural components that keep
themselves the list of their related components (������&����
 �����	�����). The graph is
explicitly traversed when the update process is needed. The ship structure update is
performed by a set of class objects that have access to the ship structure components.

The present software development is based in object oriented techniques and pattern-
based design (Gamma 1994) in order to have a high level of software reusability and data
structure decoupled.

All the parts in the ship structure that are represented as graph nodes can depend on other
parts or they may have parts depending on them. To implement this behaviour we use a
variation of the Observer pattern. Generically, Observer pattern defines a one-to-many
dependency so that when one object changes its state, all its dependent objects are
notified and are updated automatically. In the Observer pattern an item, the ��*+���, has a
set of items, the ,*��	��	�, that depend on him. When the ��*+���
is modified, it notifies
to all its ,*��	��	� the modification and they update their state, if it is necessary. In our
variation each ship part is both ,*��	��	 and ��*+���.

To unify the interfaces of ,*��	��	 and ��*+���, a Facade pattern is used. Facade
provides a unified interface to a set of interfaces in a subsystem. Defining a higher level

interface makes the subsystem easier to use. In this way, the ship part, through the Facade
is both an ,*��	��	 and a ��*+���.

Figure 5: Class diagram defined to deal with topological constraints.

Using the generic Observer pattern, when a part is modified, the related parts are updated
in depth-first search through the implicit graph. As we have explained above, due to part
update prerequisites, it is necessary to update the parts following the sequence generated
from a ������&����
 ��	���&. To compute the ������&����
 ��	���& and to begin the parts
updating, the Subject ������ method is redefined.

With this approach we have modified the Observer pattern in order to represent an
efficient relation and evaluation scheme for problems that can be represented with acyclic
graphs and need to be evaluated using ������&����
��	���&. The ������&����
��	���& is not
always computed. Each time a part is modified the ������&����
 ��	���& of the graph is
locally evaluated from the modified part. This implies traversals only of the related parts
in the implicit structure. The worst case is if there are changes in a part at the top level of
������&����
�����	���� graph.

Modifications of a part are not the only situation in which the parts structure must be
traversed. A traversal is also necessary to prevent cyclic relationships when a new
������&����
�����	���� is added or to check the parts status in a concurrent multi-user
environment with a unified product model.

In order to have flexible graph traversal strategies the Visitor pattern is used, adding the
Visitors �������	 to the Facade. A Visitor represents an operation to be performed on the
elements of an object structure. Visitor lets define an operation without any changes in

the classes of the elements on which it operates. Using a single common structure, the
Visitor pattern allows computing the ������&����
 ��	���&, testing the acyclic graph and
easily opening a door to define future operations without changing the overall data
structure.

The part updating methods are managed using the Mediator pattern. Mediator defines an
object that encapsulates how a set of objects interacts. Mediator promotes loose coupling
by keeping objects from referring to each other explicitly, and it lets them modify their
interactions independently. In the Mediator pattern the -�)����	 interacts with the
������&���� The -�)����	 knows the concrete relations between the ������&��� and
provokes their appropriated updates.

When the ��*+��� updates the ,*��	��	, it activates the -�)����	 that is in charge of the
relation managing between the parts. The -�)����	 interacts with the ������&��� that are
ship parts therefore the Colleagues have access to the necessary methods on the ship parts
to update them.

In figure 5, the class diagram used in the data structure described above is shown. The
main advantage of this data structure is that it defines a framework to plug ������&����
�����	���� management in a product model with minor changes. The persistent product
model information is in the ��	� object. Using inheritance mechanism the topological
constraints are added to the product model elements.

*�
 �"'�$)��"'�

 In this work a method to deal with ������&����
�����	����� in ship design environment
has been presented. (�����&����
�����	����� play an important role to keep dependencies
in the product model of a ship where a huge number of parts and information are
involved. A directed and acyclic graph structure is used to manage the ������&����
�����	�����. Based on a ������&����
 ��	���&, a data structure using object oriented
technologies and pattern-based design has been described. The used patterns have been
designed in order to achieve the required functionality and behaviour. Pattern-based
design performs a high level of reusability. The proposed solution is decoupled from the
product model and it is useful to implement �)������
 ��)����& schemes. Future work
includes the study of parallelization techniques to speed up the update process in the
product model.

!%+%!%'�%�

Aarnio, M.,(2000). Early 3-D Ship Models Enables New Design Principles and Simulations. In .��

%���	��������
 !�	������	����
 ��
 �������	
 /�����������
 ��)
 %���	������
 (��
����&�
 ��
 �
�
 -�	�����
%�)���	���
��,-�%(01222 , pp. 5-17.

Aho, J., Hopcroft, J., and Ullman, J. (1983)�
����
��	����	��
��)
/�&�	��
��, Addison-Wesley.

Alonso, F., Andujar, C., Brunet, P., Garcia, L., Navazo, I., and Vinacua, A. (1996). Virtual Reality Tools In
Shipbuilding Design. In (����/�345, pp.39-43.

Duran, J., Puzas, M.J., Alonso, F., and Garcia,L. (1995). The use of a 3D product model orientated
CAD/CAM System in a small/medium size shipyard. In �/�/�346.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). ����&�
�����	��7
!�������
��
#����*��
,*+���8
,	�����)
������	�. Addison-Wesley.

Garcia, L., Fernandez, V., and Torroja, J. (1994). The Role of CAD/CAE/CAM in engineering for
production. In %��/�349.

Rappoport, A. (1993). A Schema for Single Instance Representation in Hierarchical Assembly Graphs. In
Falcidieno and T.Kunii (eds): -�)����&
��
�������	
�	��
���. Springer Verlag, pp. 213-223.

Rodriguez, A., Vivo, M. and Vinacua, A. (2000). New Tools for Hull Surface Modelling, In .��
%���	��������
!�	������	����
 ��
 �������	
 /�����������
 ��)
 %���	������
 (��
����&�
 ��
 �
�
 -�	�����
 %�)���	���
��,-�%(01222 , pp. 400-411.

