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Abstract

Given a set P of points in the plane, the geometric tree graph of P is defined as the
graph T'(P) whose vertices are non-crossing rectilinear spanning trees of P, and where two
trees 71 and 715 are adjacent if 75 = Th — e + f for some edges e and f. In this paper we
concentrate on the geometric tree graph of a set of n points in convex position, denoted
by G.. We prove several results about G,,, among them the existence of Hamilton cycles
and the fact that they have maximum connectivity.

1 Introduction

Given a connected graph G, the tree graph T(() is defined as the graph having as vertices the
spanning trees of (G, and edges joining two trees 77,7, whenever T5 = T — e+ f for some edges
e and f of G.

Tree graphs were introduced by Cummings [2] in connection with the study of electrical
networks, showing that tree graphs are Hamiltonian. A simpler proof of the same fact was
found later by Holzmann and Harary [6], and generalized to the base graph of a matroid. Liu
[8] related the connectivity of T'(G) to the cyclotomic number of GG. Later Liu showed that
tree graphs have maximum connectivity, that is, connectivity equal to the minimum degree [9].
Additional results on tree graphs have been obtained recently [4].

Here we consider a geometric version of the problem. Given a set P of points in the plane,
let 7(P) be the set of non-crossing spanning trees of P (edges are straight line segments and
do not cross). We define the geometric tree graph T(P) as the graph having 7 (P) as vertex

set and the same adjacencies as in combinatorial tree graph, that is, two non-crossing spanning
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trees 17 and 75 are adjacent if T, = 11 —e+ f. Geometric tree graphs have appeared previously
in the work of D. Avis and K. Fukuda [1] as a tool for enumerating spanning trees. They show
that T'(P) is connected for any point set P in general position and has diameter bounded by
2n—4ifn =|P|.

In this paper we concentrate on the combinatorial properties of the graphs T(P) in the case
where P is a point set in convex position. For any n > 2, we denote G, the geometric tree

graph of a set of n points in convex position.

In this paper we obtain a number of new results about the graphs G,. In Section 2 we
give definitions and preliminary results as the minimum and the maximum degree of G,. In
Sections 3 and 4 we determine the radius, the center and the group of automorphisms of G,,.
We also show that the diameter of GG, is at least 3n/2 — 5. In Section 6 we present a tree of
geometric trees, a recursive construction of the graphs G, in which a tree T' in G, gives rise
to (d-gz) different trees in G,41, where d is the degree of the n-th vertex in 7. This tool is
then used to produce inductive proofs of two main results: G, is a Hamiltonian graph for every
n > 3, and G, has connectivity equal to the minimum degree 2n — 4. We remark that this

kind of construction has proved useful in solving similar problems for graphs of triangulations

instead of tree graphs [7].

To determine the exact value of the diameter is the main open problem left in this paper.
In the case of combinatorial tree graphs, the diameter is obviously bounded by n — 1, because
spanning trees satisfy the exchange property of the set of basis of a matroid. But this ceases

to be true in the geometric case.

2 Definitions and preliminaries
2.1 Geometric tree graphs

Let P ={1,...,n} be a set of points in the plane, no three of them collinear. A non-crossing
spanning tree for P is a spanning tree of P with edges given by straight line segments that do
not cross. Let T(P) be the set of non-crossing spanning trees of P. The geometric tree graph
T(P) of the set P has a vertex for every element in 7(P) and two trees 71,75 € T(P) are
adjacent, and we write T; ~ Ty, when there are edges e € T} \ Ty and f € T> \ T} such that
To=T+ f—e.

An example is shown in Figure 1.
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Figure 1: Two trees adjacent in 7'(P)

2.2 The graph G,

Since any two sets of points, both in convex position, are equivalent with respect to their non-
crossing spanning trees, all sets of n points in convex position have the same geometric tree
graph, denoted simply by G,,. So we are free to work with the set P, of vertices of a regular
polygon. We assume, without less of generality, that its vertices are labelled by integers 1 to n,
sorted counter-clockwise, and that 1 is the vertex with minimum x-coordinate. The arithmetic
of the indices is done modulo n. Let us denote by 7, the set of all non-crossing spanning trees

of P,, that is, the vertex set of the graph G,,.

L
N AN

/
1

N
[

1 Y 7

Figure 2: The graph G4

We summarize next what is known about the graphs G,.



i) Gy, is connected and has diameter bounded above by 2n — 4 [1].

1 <3n—3

s——(2"77) [3, 10], and every geometric tree graph

ii) The number of vertices of G, is t,, =

of a set of n points has at least this number of vertices [5].

iii) The chromatic number of (&, is in ©(n?) [4].

We finally remark a very useful property that will be used in the following sections.

Remark 2.1 Any tree 7' € 7,, n > 3, has at least two edges on the boundary of P,, that is,
two edges of the type (¢,i+ 1), and such that either the vertex i or the vertex i 4+ 1 is a leaf of
T.

2.3 Maximum and minimum degree

The degrees of the vertices of G, can be quite different. There are vertices with degree ©(n)
and vertices with degree ©(n?), as shown below.

There are some trees with a specially simple structure called stars. The star S; is obtained
by joining the vertex ¢ to all the other vertices. Note that for n = 2,3 all trees are stars. In
order to obtain a tree of 7, from a star S; we can only add an edge of the boundary of P, that
is not in S;. There are n — 2 edges of this kind. If (k, k + 1) is one of these edges, when it is
added we must remove either the edge (i, k) or the edge (i, k + 1) of the cycle that appears in
S; U (k,k+1). Then we conclude that the degree of a star in G, is 2(n — 2). Let d¢(é) denote
the degree of a vertex ¢ in a graph G and 6(G) and A(G) the minimum and the maximum

degree respectively. An easy induction proves the next result.
Proposition 2.2 §(G,) = 2n —4 and only the stars have this degree.

Other special trees are the chains. The chain Cj is obtained by taking all the edges in the
boundary of P,, except (i,¢+ 1). The next result can also be proved by induction.

Proposition 2.3 A(G),) = (”;1) —n+ 1 and only the chains have this degree.

3 Center, radius and diameter

In this Section we continue the study of properties of the graph G,,. We will denote by d(T,T")
the distance in G, between two trees 7" and T of 7, that is, the minimum number of edges we
have to change from one of these trees in order to obtain the other one, so as at each exchange

the resulting tree is non-crossing. The eccentricity e(7) of T' € 7, is defined as the maximum



distance between T and any other tree in 7,. The radius of the graph G, is the minimum of
the eccentricities of the vertices of (G,,, and the center of G, is the set of all vertices that have

eccentricity equal to the radius.

Remark 3.1 Let 7' € 7, and let d; be the degree of i in T, for 1 < ¢ < n. Then d(T,S;) =
n—1—d; (see [1]).

Remark 3.2 Let T € 7, and let ch(T) be the number of edges of T in the boundary of B,.

Then
N _ ) n=ch(T) it (ii+1)eT,

The following result shows that the stars and the chains play a special role in the graph.

Theorem 3.3 The radius of G, s equal to n — 2, and the center consists of the n stars

S1,...,5, and the n chains C1,...,C,.

Proof. From Remark 3.1 it is obvious that the eccentricity of a star is equal to n — 2, because
any tree has at least one edge in common with any star. Since all trees T € 7, have two edges
on the boundary of P,, the eccentricity of a chain is also n — 2. It remains to show that if a
tree T is neither a star nor a chain, then e(7") > n — 2. Tt is sufficient to show that, for any of
these trees T' there is another 7" disjoint with 7', that is, 7" does not have any edge in common
with T, because then it is clear that d(7,7") > n — 1. The existence of T” is easily proved by

induction. O

Figure 3: ch(T) = ch(T"), dr(i) = d/(7) Vi

Remark 3.4 From Remarks 3.1 and 3.2 the distances from a tree to the vertices of the center

are easily computed. One could think that these distances determine the tree. This is not so,



moreover, as shown in Figure 3, one can find two different trees with the same degree sequences

and even the same edges on the boundary.

After having established the value of the radius, it is natural to ask about the diameter,
that is, the maximum of the eccentricities of the vertices of G,,. An obvious upper bound for
the diameter is twice the radius, i.e. 2(n — 2), and a trivial lower bound is n — 1. We give here
a more precise lower bound.

Let n be even, and let 77 and T3 be the following trees (see Figure 4) :

To= {mk1<k<HU{GH G+1sk<n-1)
L= {(G+LBII<E< UL R)] 5 +2<k<n).
n n
1 n2+1 1 w2 +1
2 2 2 w2

T T

1 2

3
Figure 4: Two trees with d(7T7,T%) = 771 -5

Theorem 3.5 The diameter of G, is at least |3n/2] — 5.

Proof. We prove here the case n even. The case n odd is handled with a slight modification of
the trees 77 and 75 defined above.

The edge e = (2,n) € Ty is an edge of T5 that has the minimum number of crossings with
the edges of T7, and e intersects n/2 — 1 edges of Ti. To add an edge of T5 we need at least
n/2-1 changes. In the best case, we need a change for introducing each of the remaining edges

of Ty that do not appear in 77 . As 77 and 75 have in common two edges, we obtain:

n 3n
d(Ty,Ty) > (5 -+ (n—-4) = 7—5.
Finally, 1t 1s easy to find a path between 77 and 7% that has exactly this length. a

For the upper bound of the diameter, besides the trivial value 2n — 4, we have only obtained
partial results, bounding the eccentricity of certain families of trees. From Remarks 3.1 and 3.2

we can conclude:



Lemma 3.6 Let T' € T,. If ch(I') > % or there is some vertex i such that dp(i) > % then

e(T) < 3 —2.

Taking into account this result, in order to maximize the eccentricity, it is natural to consider
those trees that have few edges in the boundary of P, and vertices with low degree. But we

have obtained the next result, whose proof 1s omitted.

Lemma 3.7 If T € Ty, is such that ch(T) = 2, then e(T) < 3n/2 — 2.

4 Group of automorphisms

Let us denote by T'(G),) the automorphism group of Gy. Tt is clear that any symmetry of the
regular n-polygon will induce a corresponding automorphism on G,. No more automorphisms

are possible, as proved next.

Theorem 4.1 The automorphism group T'(Gy,) is isomorphic to the dihedral group D, of the

symmetries of a reqular polygon with n sides.

Proof. We know from Theorem 3.3 that the center C' of (G, is equal to the set of stars and

chains

C=1{S1,...,5,,C1,...,Cp}.

Moreover, it is straightforward to see that

d(si,S;) = n—2;
d(C;,C;) = 1,
d(C;, S;) = {

n—21if j=1¢ or j=i+1;
n — 3 otherwise.

Now let v be in T'(G},). The center of the graph is invariant by v, more precisely, because of

the above relations, we see that

")/({Sl,,Sn}) = {Sl,...,Sn},
’Y({Cl,,cn}) = {01,...,C’n}.

If v(S1) = S;, as d(S1,C1) = d(S;,v(Ch)), then either v(C1) = C; or 4(C1) = Cj_1. In the
first case it follows that v(C3) = €11, and in the second case that y(C3) = Cj_s. Proceeding
in this way we see that v is either a rotation or a reflection of the index set {1,...,n}. This

shows that the restriction of I'(G)) to the center is equivalent to the dihedral group D,,.



That action on the center is crucial, as we conclude next by proving that vjc = pjc implies
v = p. Equivalently, we are going to show that if ¢ = 1j¢ then v = 1. Before proving this,
assuming y¢ = 1j¢, we make two remarks.
i) Let T be any tree and d; = dp(i) the degree of T on the vertex i. From Remark 3.1 we know
that d(7,5;) = n —1—d;. But, by hypothesis, v is trivial on the stars, and an automorphism

preserves distances, hence

and the vertex ¢ has the same degree in T and 4(T) for any ¢, 1 <i < n.
ii) On the other hand, if ch(7") is the number of edges that T has in the boundary, then

11, C) = do (1) 5 (Co) = arcy = { H 2GRN ST

hence T and 4(T) have the same edges in the boundary.

We prove now that if 4 = 1 then v = 1, by induction on the number of vertices. Let T'
be any tree of 7, and let ¢ be a vertex such that dp(i) = 1 and (¢, + 1) € T. We consider
T. =T\i. By i) andii) we can affirm that d, )y = 1 and (¢,i41) € y(T"). We can consider the
restriction 7. of v to P, \ {¢} which is an automorphism of G,,_; that is trivial on the center.

By induction y(7%) = Tk, hence T" and +(7") must be the same and we conclude that y = 1. O

5 Tree of geometric trees

In this section we describe the main tool for proving the results that appear in the next two
sections, on the Hamiltonicity and the connectivity of the graph G,. This tool is a recursive
construction of the graphs (G, in which a tree T" of (G,, gives rise to (d-gZ) different trees of Gy 41.
In this way we obtain an infinite tree, whose vertices are the trees in 7, for all n. This kind of
construction has proved useful in solving similar problems for graphs of triangulations [7]. In
this infinite tree, every 7" € 7, has one father, belonging to 7,,_1, and some sons, belonging to
Tot1.

If T' € 7, is such that i1 < iy < ... < 44 are the vertices adjacent to n in T', we construct
its sons S; ; (T) as the trees of 7,41 defined as follows. We distinguish three kinds of sons:
Type 0: We add the edge (n,n+ 1) to 7" and distribute between n and n + 1 the edges (i, n)
of T

Soo(T) =T U{(n,n+1)};
and for k, 1 < k <d,
Sox(T) = {{a,D)la,b#n,(a,8) € Ty U{(n+1,i,)| 1 < p< k}U

U{(n,ip)] k+1 < p < d}U{(nyn+ 1)},



Type 1: We split the edge (i, n) into the two edges (ix,n) and (ix,n + 1).
Sip(T) = {(a,b)]a,b#Fn,(a,b) e ThU{(n+1,4,)| 1 <p < k}U
U{(n,ip)| k < p < d},
for 1 <k <d.

Type j, j > 2: For every subset S of cardinal j of {i1,...,4a}, S = {ix, fkt1, ..., tkgj_1}, We

build the chain n + 1, ¢, thy1, .oy thgj—1, N0

Sik(T) = {a,b)a,b#n,(a,b) € THU{(n+1,3)] 1 <p <k}

U{(n,ippj—2)| k+1<p<d—j+2}

UL (ks th1)s (Bt Thg2)s - - o (g2, Thpi—1) }-

SA

AP AN AN
AR AN

Figure 5: Construction of the sons Sjyk;(Sz}) of the star Sy € T4

In Figure 5 we show all the sons of the star Sy € 74. The sons of type 0 are at the first
floor, those of type 1 at the second one, and so on.
The number of sons of a tree T € 7, depends on the degree of n in 7. More exactly, if this

degree 1s d, then the number of sons of 7' is

(d+1)+d+(d—1)+,,,+1zwz <d+2).

2 2
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We observe that any T has always the sons Sy o(7T') and Sp ¢(T). This sons are a copy of 7'
with a pending edge (n,n+ 1), and will play an important role later. We denote them by F(T)
and L(T), respectively. F and L stand for first and last, a name that will become clear later.

If T €7, is ason of Ty € Tp_1, we say that T} is a father of T" and we write T}, = f(T).
If 71, T> have the same father, we say that 77 and T are brothers. The father f(T) of T is
easily obtained by reversing the process. The father is unique, hence we have an (infinite) tree
as follows. Taking the unique vertex of (G5 as the root of this tree, at level n — 1 we have all the
trees of 7,, that is, the vertices of GG,,. In Figure 6 we can see the first three levels of the tree.

The adjacencies in the graphs G, are lifted up and down through the tree just constructed

in a way we describe in the next two Lemmas, which are immediate.

AN A AN

NN ATINVINL £ K

Figure 6: First levels of a tree of geometric trees

Lemma 5.1 Let T1, T5 € T,,. The following properties hold.
(a) If T1,To are adjacent, then F(T1),F(T2) are adjacent and L(Ty), L(T%) are also

adjacent.
b) If 11,15 are adjacent and (¢,n) € 1) N1y, then S;;(11),S;:(1%) are adjacent for
7, 7,
j=1,2.
(¢) If T, T> are adjacent and have in common all the edges adjacent to n, then S; . (Th)
and S; x(Tv) are adjacent for all j k.

Lemma 5.2 The sons of T' induce a subgraph St in Gp41 that has the following properties.

(a) St is 2-connected.

(b) St has a Hamiltonian path with extremes F(T) and L(T).
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(¢) The degree of the vertices of St is between 2 and 6 (in St ).

In the rest of the paper we will refer to the subgraph of G, 41 induced by the set of sons of
T as Sr, and to the Hamiltonian path of Lemma 5.2(b) as a brother-path (from F(T) to L(T)).
Figure 7 illustrates the last lemma. Each vertex of the figure represents a son of the tree 7.

Sons of type S x are at the (j + 1)~ floor (bottom to top).

/ N
VAN

Figure 7: The sons subgraph 87 and the brother-path having extremes L(T) and F(T)

Because of Lemma 5.1 any substructure of G,, has an isomorphic copy in G4 via F =
{F(T)=Spo(T) | T €Tn}torvia L ={L(T) = S50,4(T) | T € Tn}. For this reason we can say
that F' and L are copies of G, in G, 1. We can obtain all the vertices of G411 from these two
copies of G, joining the two copies F'(T), L(T) of each vertex T of &y, through the Hamiltonian
path in Sp (see Lemma 5.2).

6 Hamiltonicity and connectivity

As a first application of the tree introduced in the preceding section, we prove that the graph
(', 1s Hamiltonian by means of an inductive construction. We have to consider two special kind
of trees, ), and B,,, defined as follows. (', is the chain having all the edges of the boundary
except (1,n), and B, is the tree having all its edges in common with C), except the edge (1, 2)
that is replaced by (1,3) instead. It is clear that B, and ), are adjacent in G, and that the

next properties are also satisfied.
Lemma 6.1 The sons of C,, and By, have the following properties:
(a) C, has exactly three sons and they are connected through the path F(Cp) = So,0(Cr) ~
S1.1(Cn) ~ S0,1(Cr) = L(Cp).

(b) B, has exactly three sons and they are connected through the path F(B,) = Sy 0(Bp) ~
S11(Bn) ~ So,1(Bn) = L(Bn).

(¢) F(Cp) = Cpy1, F(Bp) = Boyi.
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(d) S; j(Crn) ~ Sij(Bn).

Theorem 6.2 G, s a Hamiltonian graph for all n > 3. Moreover, there is a Hamiltonian

cycle in which C,, and By, are adjacent.

Proof. We proceed by induction on n. (3 1s K3, and the basis of the induction is clear. Let us
assume now that (G, has a Hamiltonian cycle C' as in the statement. We obtain a copy of C' in
Gp41 via L, and a second and disjoint copy via F. For every tree T,, of G, the vertices L(T},)
and F(T,) are connected through the path formed by the sons of T,,, and all the vertices of
(ip 41 belong to some of these paths. By Lemma 6.1 we have F'(C),) = Cpq1 and F(Bp) = Bpy1.
Taking into account these facts and Lemma 6.1 we construct a Hamiltonian cycle in G411 in
the way depicted in Figure 8. The case where (G, has an even number of vertices is shown in

the middle of the figure, and the case where this number is odd is shown on the right. ad

“. Sl
'
T\

Figure 8: Constructing a Hamiltonian cycle in G 41 given a cycle in Gy,

As a second example of application of the tree introduced in Section 5, we compute the

connectivity of the graph G,,. We need the following lemmas.

Lemma 6.3 Let T|Y € 7T, be two adjacent vertices of Gy,. If T, Y are not brothers, then the

number of vertices in Sgyy which are adjacent to T is at most two.
Proof. If T'is not a brother of Y then their fathers f(7) and f(Y') are different vertices of
G —1. In particular, they differ in at least one edge.

If all the edges of f(Y) not appearing in f(T) are not incident with the vertex n — 1, then
the only vertex of Sy(y) adjacent to 7" is Y. Otherwise f(7') and f(Y) differ in an edge incident
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with the vertex n—1. Let be d = df(y)(n— 1) and let ¢; < iy < ... < iq be the vertices adjacent
to n — 1 in the tree f(Y). We have two cases.

Case 1: (n—1,i1) ¢ f(T). Every son of f(Y) has either the edge (n—1,41) or the edge (n, 1),
but none of them appear in any son of f(7'). In particular, they cannot appear in T. Since T
and Y are adjacent, they differ only in an edge and 7T cannot be adjacent to any other son of

F(T) because they differ in more than two edges. The same proof applies if (n — 1,¢4) € f(T).

Case 2: (n—1,i,) & f(T), with 1 < k < d. In this case (n — 1,i) and (n, i) are not edges of
any son of f(T), but they may be edges of Y. We observe that if (n —1,4;) and (n, i) are both

edges of Y, then 7" and Y differ in more than two edges, so they cannot be adjacent in G,,.

Case 2.1: Either (n,d;) or (n — 1,4;) is an edge of Y. We suppose that (n,iz) € Y (the proof
is analogous if (n — 1,4;) € Y'). All edges of the tree T are shared with Y, but (n, ). Let e be
the edge of T not belonging to Y. The edge e is not contained in any brother of Y, as otherwise
T would be a brother of Y, against the hypothesis. Only the brothers of Y which differ of Y
exactly by e can be adjacent to 7" and there is a unique brother of Y verifying this condition.

Hence, T' can be adjacent to at most two sons of f(Y).

Case 2.2.: Neither (n — 1, i) nor (n, i) are edges of Y. In this case, the edge e € T such that
e ¢ Y is an edge which does not belong to any brother of Y. As in the preceding case, we can

conclude that T is adjacent to at most two of the sons of f(Y). a

A tree of Tp, (n > 5) containing a path 1, ..., i, where & > 4 and the first and last vertices
are consecutive on the boundary, will be called a Ps-tree. A simple induction gives the next

lemma.

Lemma 6.4 If T € T, is a Py-tree, then dg, (T) > 2n+ 1.

Now we are ready for proving our last theorem.
Theorem 6.5 The connectivity of the graph Gy s equal to 2n — 4.

Proof. As the minimum degree is 2n—4 we only have to prove that the graph remains connected
when any 2n—5 vertices are suppressed. This is clear for n = 3. The case n = 4 is easily proved
by direct inspection. We assume now that the property holds for some n > 4 and proceed by
induction: we will prove that G, 41 remains connected after the removal of any set W of 2n — 3

vertices. We distinguish three cases. Recall that F' and L are isomorphic copies of Gy, in Gpq1.
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Case I: W C For WC L. If W C F, we can construct a path between any two given nodes
T and Y as follows: from T to L(f(T)), then from L(f(T)) to L(f(Y)), and finally to Y. The
same proof applies when W C L.

Case 2. WNF|=2n—4or [WNL|l=2n—4. If WNF| =2n— 4, there is only one vertex
Z in W that is not in F. If 7 # f(T) and Z # f(Y') then, because of the 2-connectivity of the
subgraphs of sons, we can construct a path as in the preceding case. If 7 = f(T) or Z = f(V),
it is easy to see that 7" has, at least, one adjacent vertex outside of Sy(y and that it is not in

L. The same proof applies when |W N L| = 2n — 4.

Case 3 [WN Ll <2n—5and [IWNF| < 2n—5. Because of the induction, the subgraphs
L—W and FF—W of Gp41— W are connected. On the other hand, we know that the number of
trees of Gy, is ty, > 2n—5, (n > 4). Hence we can assure the existence of at least one complete
brother-path in G411 — W. So, it is enough to prove that from any vertex of Gp41 — W we
can reach some vertex in F, or in L. Let T" be a vertex of G,,41 — W and suppose that both
paths from T to F(f(7)) and from T to L(fT')) through S;(ry are broken in G131 — W. We

have two subcases.

Case 3.1: T 1s a star in Gpy1.

If Tis S, or Sp41, we know that 7' is, respectively, F(S,) or L(S,), considering now S, as
a star in GG,,. Therefore, T is already in F' or L.

If T is the star S;, 1 < ¢ < n — 1, the father of S; is the star S; as a vertex of GG,,, and
Sy(s;) has only three vertices. Hence, the number of vertices in G,41 adjacent to 1" that are
not in S¢s,) is greater or equal than dg,,,(Si) —2 = 2n — 4. By Lemma 6.3 these vertices
are distributed in at least n — 2 different brother-paths. The minimum number of vertices we
would have to remove from G141 1n order to separate S; from F' and L would be at least
2(n — 2) 4+ 2 = 2n — 2 which is strictly greater than 2n — 3, the cardinal of the set W actually

removed.

Case 3.2: T is not a star in G411 (and, as a consequence, dg, ., (1) > 2n — 1).

Case 3.2.1: Suppose first that 7" is a son of type 0 not in F'U L, or of type j, j > 2. These
trees are Pj-trees and have at most 5 neighbors belonging to Sy(7y. Hence, by Lemma 6.4, T
is adjacent to at least 2n + 3 —5 = 2n — 2 vertices not in Sy(r), and we can conclude as in case

3.1

Case 3.2.2: f T is S11(f(T)) (or T is S1,4(f(T)), which is handled similarly), then 7' is
adjacent to I'(f(7")) and to two more trees of S(;(r)) one of type 0, not in F'U L, and one having
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type 7, 7 > 2, which are connected to F or to L, as we have seen in case 3.1.1. T has 4 neighbors
in Sy (7y, so the number of trees adjacent to 7" that are not in Sy 7y is at least 2n—1—4 = 2n—5,
and they are distributed in at least n—2 brother-paths. Again, the minimum number of vertices

we have to remove for separating 7" from F and Lis 2(n —2)+3=2n—1> 2n— 3.

Case 3.2.3: If T'= 51 x (f(T)), 2 < k <d—1, Tis adjacent to 6 trees in Sy 7y, four of them
of type 0 or j, j > 2, which are connected to F' or to L. On the other hand, 7" is adjacent to not
less than 2n — 1 — 6 = 2n — 7 vertices not in Sy(ry, distributed in at least n — 3 brother-paths.
Hence, the minimum number of vertices we have to remove in G411 for separating 7' from F

and Lis2(n—3)4+4=2n—-2>2n—3. O

7 Conclusions and open problems

Many basic properties of the graphs (,, have been obtained in this work. We consider that
to exactly determine the diameter is the main open problem left in this paper. An efficient
algorithm for finding shortest paths in G, would be also interesting.

On the other hand, when the set P of points is not in convex position it would be interesting
to relate the position of the points to the properties of T'(P), as well as to try to characterize

the graphs which are geometric tree graphs for some P.
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