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Abstract

Given a set P of points in the plane� the geometric tree graph of P is de�ned as the
graph T �P � whose vertices are non�crossing rectilinear spanning trees of P � and where two
trees T� and T� are adjacent if T� � T� � e� f for some edges e and f � In this paper we
concentrate on the geometric tree graph of a set of n points in convex position� denoted
by Gn� We prove several results about Gn� among them the existence of Hamilton cycles
and the fact that they have maximum connectivity�

� Introduction

Given a connected graph G� the tree graph T �G� is de�ned as the graph having as vertices the

spanning trees of G� and edges joining two trees T�� T� whenever T� � T�� e�f for some edges

e and f of G�

Tree graphs were introduced by Cummings �	
 in connection with the study of electrical

networks� showing that tree graphs are Hamiltonian� A simpler proof of the same fact was

found later by Holzmann and Harary ��
� and generalized to the base graph of a matroid� Liu

��
 related the connectivity of T �G� to the cyclotomic number of G� Later Liu showed that

tree graphs have maximum connectivity� that is� connectivity equal to the minimumdegree �

�

Additional results on tree graphs have been obtained recently ��
�

Here we consider a geometric version of the problem� Given a set P of points in the plane�

let T �P � be the set of non�crossing spanning trees of P �edges are straight line segments and

do not cross�� We de�ne the geometric tree graph T �P � as the graph having T �P � as vertex

set and the same adjacencies as in combinatorial tree graph� that is� two non�crossing spanning
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trees T� and T� are adjacent if T� � T��e�f � Geometric tree graphs have appeared previously

in the work of D� Avis and K� Fukuda ��
 as a tool for enumerating spanning trees� They show

that T �P � is connected for any point set P in general position and has diameter bounded by

	n� � if n � jP j�

In this paper we concentrate on the combinatorial properties of the graphs T �P � in the case

where P is a point set in convex position� For any n � 	� we denote Gn the geometric tree

graph of a set of n points in convex position�

In this paper we obtain a number of new results about the graphs Gn� In Section 	 we

give de�nitions and preliminary results as the minimum and the maximum degree of Gn� In

Sections � and � we determine the radius� the center and the group of automorphisms of Gn�

We also show that the diameter of Gn is at least �n�	� �� In Section � we present a tree of

geometric trees� a recursive construction of the graphs Gn in which a tree T in Gn gives rise

to
�
d��
�

�
di�erent trees in Gn��� where d is the degree of the n�th vertex in T � This tool is

then used to produce inductive proofs of two main results� Gn is a Hamiltonian graph for every

n � �� and Gn has connectivity equal to the minimum degree 	n � �� We remark that this

kind of construction has proved useful in solving similar problems for graphs of triangulations

instead of tree graphs ��
�

To determine the exact value of the diameter is the main open problem left in this paper�

In the case of combinatorial tree graphs� the diameter is obviously bounded by n � �� because

spanning trees satisfy the exchange property of the set of basis of a matroid� But this ceases

to be true in the geometric case�

� De�nitions and preliminaries

��� Geometric tree graphs

Let P � f�� � � � � ng be a set of points in the plane� no three of them collinear� A non�crossing

spanning tree for P is a spanning tree of P with edges given by straight line segments that do

not cross� Let T �P � be the set of non�crossing spanning trees of P � The geometric tree graph

T �P � of the set P has a vertex for every element in T �P � and two trees T�� T� � T �P � are

adjacent� and we write T� � T�� when there are edges e � T� n T� and f � T� n T� such that

T� � T� � f � e�

An example is shown in Figure ��
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Figure �� Two trees adjacent in T �P �

��� The graph Gn

Since any two sets of points� both in convex position� are equivalent with respect to their non�

crossing spanning trees� all sets of n points in convex position have the same geometric tree

graph� denoted simply by Gn� So we are free to work with the set Pn of vertices of a regular

polygon� We assume� without less of generality� that its vertices are labelled by integers � to n�

sorted counter�clockwise� and that � is the vertex with minimum x�coordinate� The arithmetic

of the indices is done modulo n� Let us denote by Tn the set of all non�crossing spanning trees

of Pn� that is� the vertex set of the graph Gn�

Figure �� The graph G�

We summarize next what is known about the graphs Gn�
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i� Gn is connected and has diameter bounded above by 	n� � ��
�

ii� The number of vertices of Gn is tn � �
�n��

��n��
n��

�
��� ��
� and every geometric tree graph

of a set of n points has at least this number of vertices ��
�

iii� The chromatic number of Gn is in ��n�� ��
�

We �nally remark a very useful property that will be used in the following sections�

Remark ��� Any tree T � Tn� n � �� has at least two edges on the boundary of Pn� that is�

two edges of the type �i� i� ��� and such that either the vertex i or the vertex i� � is a leaf of

T �

��� Maximum and minimum degree

The degrees of the vertices of Gn can be quite di�erent� There are vertices with degree ��n�

and vertices with degree ��n��� as shown below�

There are some trees with a specially simple structure called stars� The star Si is obtained

by joining the vertex i to all the other vertices� Note that for n � 	� � all trees are stars� In

order to obtain a tree of Tn from a star Si we can only add an edge of the boundary of Pn that

is not in Si� There are n � 	 edges of this kind� If �k� k � �� is one of these edges� when it is

added we must remove either the edge �i� k� or the edge �i� k � �� of the cycle that appears in

Si � �k� k� ��� Then we conclude that the degree of a star in Gn is 	�n� 	�� Let dG�i� denote

the degree of a vertex i in a graph G and ��G� and ��G� the minimum and the maximum

degree respectively� An easy induction proves the next result�

Proposition ��� ��Gn� � 	n� � and only the stars have this degree�

Other special trees are the chains� The chain Ci is obtained by taking all the edges in the

boundary of Pn� except �i� i � ��� The next result can also be proved by induction�

Proposition ��� ��Gn� �
�
n��
�

�
� n� � and only the chains have this degree�

� Center� radius and diameter

In this Section we continue the study of properties of the graph Gn� We will denote by d�T� T ��

the distance in Gn between two trees T and T � of Tn� that is� the minimum number of edges we

have to change from one of these trees in order to obtain the other one� so as at each exchange

the resulting tree is non�crossing� The eccentricity e�T � of T � Tn� is de�ned as the maximum
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distance between T and any other tree in Tn� The radius of the graph Gn is the minimum of

the eccentricities of the vertices of Gn� and the center of Gn is the set of all vertices that have

eccentricity equal to the radius�

Remark ��� Let T � Tn and let di be the degree of i in T � for � � i � n� Then d�T� Si� �

n� �� di �see ��
��

Remark ��� Let T � Tn and let ch�T � be the number of edges of T in the boundary of Pn�

Then

d�T�Ci� �

�
n� ch�T � if �i� i � �� � T�
n� �� ch�T � if �i� i� �� �� T�

The following result shows that the stars and the chains play a special role in the graph�

Theorem ��� The radius of Gn is equal to n � 	� and the center consists of the n stars

S�� � � � � Sn and the n chains C�� � � � � Cn�

Proof� From Remark ��� it is obvious that the eccentricity of a star is equal to n � 	� because

any tree has at least one edge in common with any star� Since all trees T � Tn have two edges

on the boundary of Pn� the eccentricity of a chain is also n � 	� It remains to show that if a

tree T is neither a star nor a chain� then e�T � � n� 	� It is su�cient to show that� for any of

these trees T there is another T � disjoint with T � that is� T � does not have any edge in common

with T � because then it is clear that d�T� T �� � n � �� The existence of T � is easily proved by

induction� �

T T’

Figure �� ch�T � � ch�T ��� dT �i� � dT ��i� �i

Remark ��� From Remarks ��� and ��	 the distances from a tree to the vertices of the center

are easily computed� One could think that these distances determine the tree� This is not so�
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moreover� as shown in Figure �� one can �nd two di�erent trees with the same degree sequences

and even the same edges on the boundary�

After having established the value of the radius� it is natural to ask about the diameter�

that is� the maximum of the eccentricities of the vertices of Gn� An obvious upper bound for

the diameter is twice the radius� i�e� 	�n� 	�� and a trivial lower bound is n� �� We give here

a more precise lower bound�

Let n be even� and let T� and T� be the following trees �see Figure �� �

T� � f�n� k�j � � k �
n
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Figure �� Two trees with d�T�� T�� �
�n

	
� �

Theorem ��� The diameter of Gn is at least b�n�	c � ��

Proof� We prove here the case n even� The case n odd is handled with a slight modi�cation of

the trees T� and T� de�ned above�

The edge e � �	� n� � T� is an edge of T� that has the minimum number of crossings with

the edges of T�� and e intersects n�	 � � edges of T�� To add an edge of T� we need at least

n�	�� changes� In the best case� we need a change for introducing each of the remaining edges

of T� that do not appear in T� � As T� and T� have in common two edges� we obtain�

d�T�� T�� � �
n

	
� �� � �n � �� �

�n

	
� ��

Finally� it is easy to �nd a path between T� and T� that has exactly this length� �

For the upper bound of the diameter� besides the trivial value 	n��� we have only obtained

partial results� bounding the eccentricity of certain families of trees� From Remarks ��� and ��	

we can conclude�
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Lemma ��� Let T � Tn� If ch�T � � n
� or there is some vertex i such that dT �i� �

n
� then

e�T � � �n
� � 	�

Taking into account this result� in order to maximize the eccentricity� it is natural to consider

those trees that have few edges in the boundary of Pn and vertices with low degree� But we

have obtained the next result� whose proof is omitted�

Lemma ��� If T � Tn is such that ch�T � � 	� then e�T � � �n�	� 	�

� Group of automorphisms

Let us denote by ��Gn� the automorphism group of Gn� It is clear that any symmetry of the

regular n�polygon will induce a corresponding automorphism on Gn� No more automorphisms

are possible� as proved next�

Theorem ��� The automorphism group ��Gn� is isomorphic to the dihedral group Dn of the

symmetries of a regular polygon with n sides�

Proof� We know from Theorem ��� that the center C of Gn is equal to the set of stars and

chains

C � fS�� � � � � Sn� C�� � � � � Cng�

Moreover� it is straightforward to see that

d�Si� Sj� � n� 	�

d�Ci� Cj� � ��

d�Ci� Sj� �

�
n� 	 if j � i or j � i � ��
n� � otherwise�

Now let � be in ��Gn�� The center of the graph is invariant by �� more precisely� because of

the above relations� we see that

��fS�� � � � � Sng� � fS�� � � � � Sng�

��fC�� � � � � Cng� � fC�� � � � � Cng�

If ��S�� � Sj � as d�S�� C�� � d�Sj� ��C���� then either ��C�� � Cj or ��C�� � Cj��� In the

�rst case it follows that ��C�� � Cj��� and in the second case that ��C�� � Cj��� Proceeding

in this way we see that � is either a rotation or a re�ection of the index set f�� � � � � ng� This

shows that the restriction of ��Gn� to the center is equivalent to the dihedral group Dn�
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That action on the center is crucial� as we conclude next by proving that �jC � �jC implies

� � �� Equivalently� we are going to show that if �jC � �jC then � � �� Before proving this�

assuming �jC � �jC � we make two remarks�

i� Let T be any tree and di � dT �i� the degree of T on the vertex i� From Remark ��� we know

that d�T� Si� � n� �� di� But� by hypothesis� � is trivial on the stars� and an automorphism

preserves distances� hence

d���T �� Si� � d���T �� ��Si�� � d�T� Si� � n� �� di

and the vertex i has the same degree in T and ��T � for any i� � � i � n�

ii� On the other hand� if ch�T � is the number of edges that T has in the boundary� then

d���T �� Ci� � d���T �� ��Ci�� � d�T�Ci� �

�
n� ch�T � if �i� i� �� � T�
n� �� ch�T � if �i� i � �� �� T

hence T and ��T � have the same edges in the boundary�

We prove now that if �jC � � then � � �� by induction on the number of vertices� Let T

be any tree of Tn and let i be a vertex such that dT �i� � � and �i� i � �� � T � We consider

T� � T n i� By i� and ii� we can a�rm that d��T � � � and �i� i��� � ��T �� We can consider the

restriction �� of � to Pn n fig which is an automorphism of Gn�� that is trivial on the center�

By induction ��T�� � T�� hence T and ��T � must be the same and we conclude that � � �� �

� Tree of geometric trees

In this section we describe the main tool for proving the results that appear in the next two

sections� on the Hamiltonicity and the connectivity of the graph Gn� This tool is a recursive

construction of the graphs Gn in which a tree T of Gn gives rise to
�
d��
�

�
di�erent trees of Gn���

In this way we obtain an in�nite tree� whose vertices are the trees in Tn� for all n� This kind of

construction has proved useful in solving similar problems for graphs of triangulations ��
� In

this in�nite tree� every T � Tn has one father� belonging to Tn��� and some sons� belonging to

Tn���

If T � Tn is such that i� � i� � � � � � id are the vertices adjacent to n in T � we construct

its sons Si�j�T � as the trees of Tn�� de�ned as follows� We distinguish three kinds of sons�

Type 	� We add the edge �n� n� �� to T and distribute between n and n� � the edges �ik� n�

of T �

S����T � � T � f�n� n� ��g�

and for k� � � k � d�

S��k�T � � f�a� b�ja� b �� n� �a� b� � Tg � f�n� �� ip�j � � p � kg �

�f�n� ip�j k � � � p � dg � f�n� n� ��g�






Type �� We split the edge �ik� n� into the two edges �ik� n� and �ik� n� ���

S��k�T � � f�a� b�ja� b �� n� �a� b� � Tg � f�n� �� ip�j � � p � kg �

�f�n� ip�j k � p � dg�

for � � k � d�

Type j� j � �� For every subset S of cardinal j of fi�� � � � � idg� S � fik� ik��� � � � � ik�j��g� we

build the chain n� �� ik� ik��� � � � � ik�j��� n�

Sj�k�T � � f�a� b�ja� b �� n� �a� b� � Tg � f�n� �� ip�j � � p � kg

�f�n� ip�j���j k � � � p � d� j � 	g

�f�ik� ik���� �ik��� ik���� � � � � �ik�j��� ik�j���g�

Figure �� Construction of the sons Sj�k�S�� of the star S� � T�

In Figure � we show all the sons of the star S� � T�� The sons of type � are at the �rst

�oor� those of type � at the second one� and so on�

The number of sons of a tree T � Tn depends on the degree of n in T � More exactly� if this

degree is d� then the number of sons of T is

�d� �� � d� �d� �� � � � �� � �
�d� 	��d� ��

	
�

�
d� 	

	

�
�
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We observe that any T has always the sons S����T � and S��d�T �� This sons are a copy of T

with a pending edge �n� n���� and will play an important role later� We denote them by F �T �

and L�T �� respectively� F and L stand for �rst and last� a name that will become clear later�

If T � Tn is a son of T� � Tn��� we say that T� is a father of T and we write T� � f�T ��

If T�� T� have the same father� we say that T� and T� are brothers� The father f�T � of T is

easily obtained by reversing the process� The father is unique� hence we have an �in�nite� tree

as follows� Taking the unique vertex of G� as the root of this tree� at level n�� we have all the

trees of Tn� that is� the vertices of Gn� In Figure � we can see the �rst three levels of the tree�

The adjacencies in the graphs Gn are lifted up and down through the tree just constructed

in a way we describe in the next two Lemmas� which are immediate�

Figure �� First levels of a tree of geometric trees

Lemma ��� Let T�� T� � Tn� The following properties hold�

�a� If T�� T� are adjacent� then F �T��� F �T�� are adjacent and L�T��� L�T�� are also

adjacent�

�b� If T�� T� are adjacent and �i� n� � T� 	 T�� then Sj�i�T��� Sj�i�T�� are adjacent for

j � �� 	�

�c� If T�� T� are adjacent and have in common all the edges adjacent to n� then Sj�k�T��

and Sj�k�T�� are adjacent for all j� k�

Lemma ��� The sons of T induce a subgraph ST in Gn�� that has the following properties�

�a� ST is ��connected�

�b� ST has a Hamiltonian path with extremes F �T � and L�T ��
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�c� The degree of the vertices of ST is between � and � �in ST ��

In the rest of the paper we will refer to the subgraph of Gn�� induced by the set of sons of

T as ST � and to the Hamiltonian path of Lemma ��	�b� as a brother�path �from F�T� to L�T���

Figure � illustrates the last lemma� Each vertex of the �gure represents a son of the tree T �

Sons of type Sj�k are at the �j � ��th� �oor �bottom to top��

Figure �� The sons subgraph ST and the brother�path having extremes L�T � and F �T �

Because of Lemma ��� any substructure of Gn has an isomorphic copy in Gn�� via F �

fF �T � � S����T � j T � Tng or via L � fL�T � � S��d�T � j T � Tng� For this reason we can say

that F and L are copies of Gn in Gn��� We can obtain all the vertices of Gn�� from these two

copies of Gn� joining the two copies F �T �� L�T � of each vertex T of Gn through the Hamiltonian

path in ST �see Lemma ��	��

� Hamiltonicity and connectivity

As a �rst application of the tree introduced in the preceding section� we prove that the graph

Gn is Hamiltonian by means of an inductive construction� We have to consider two special kind

of trees� Cn and Bn� de�ned as follows� Cn is the chain having all the edges of the boundary

except ��� n�� and Bn is the tree having all its edges in common with Cn except the edge ��� 	�

that is replaced by ��� �� instead� It is clear that Bn and Cn are adjacent in Gn� and that the

next properties are also satis�ed�

Lemma ��� The sons of Cn and Bn have the following properties�

�a� Cn has exactly three sons and they are connected through the path F �Cn� � S����Cn� �

S����Cn� � S����Cn� � L�Cn��

�b� Bn has exactly three sons and they are connected through the path F �Bn� � S����Bn� �

S����Bn� � S����Bn� � L�Bn��

�c� F �Cn� � Cn��� F �Bn� � Bn���
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�d� Si�j�Cn� � Si�j�Bn��

Theorem ��� Gn is a Hamiltonian graph for all n � �� Moreover� there is a Hamiltonian

cycle in which Cn and Bn are adjacent�

Proof� We proceed by induction on n� G� is K�� and the basis of the induction is clear� Let us

assume now that Gn has a Hamiltonian cycle C as in the statement� We obtain a copy of C in

Gn�� via L� and a second and disjoint copy via F � For every tree Tn of Gn the vertices L�Tn�

and F �Tn� are connected through the path formed by the sons of Tn� and all the vertices of

Gn�� belong to some of these paths� By Lemma��� we have F �Cn� � Cn�� and F �Bn� � Bn���

Taking into account these facts and Lemma ��� we construct a Hamiltonian cycle in Gn�� in

the way depicted in Figure �� The case where Gn has an even number of vertices is shown in

the middle of the �gure� and the case where this number is odd is shown on the right� �

Cn+1

Bn+1

Bn+1

Cn+1

B

C

n

n

Figure 	� Constructing a Hamiltonian cycle in Gn�� given a cycle in Gn

As a second example of application of the tree introduced in Section �� we compute the

connectivity of the graph Gn� We need the following lemmas�

Lemma ��� Let T� Y � Tn be two adjacent vertices of Gn� If T� Y are not brothers� then the

number of vertices in Sf�Y � which are adjacent to T is at most two�

Proof� If T is not a brother of Y then their fathers f�T � and f�Y � are di�erent vertices of

Gn��� In particular� they di�er in at least one edge�

If all the edges of f�Y � not appearing in f�T � are not incident with the vertex n � �� then

the only vertex of Sf�Y � adjacent to T is Y � Otherwise f�T � and f�Y � di�er in an edge incident
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with the vertex n��� Let be d � df�Y ��n��� and let i� � i� � � � � � id be the vertices adjacent

to n� � in the tree f�Y �� We have two cases�

Case 	� �n� �� i�� �� f�T �� Every son of f�Y � has either the edge �n� �� i�� or the edge �n� i���

but none of them appear in any son of f�T �� In particular� they cannot appear in T � Since T

and Y are adjacent� they di�er only in an edge and T cannot be adjacent to any other son of

f�T � because they di�er in more than two edges� The same proof applies if �n� �� id� �� f�T ��

Case �� �n� �� ik� �� f�T �� with � � k � d� In this case �n � �� ik� and �n� ik� are not edges of

any son of f�T �� but they may be edges of Y � We observe that if �n��� ik� and �n� ik� are both

edges of Y � then T and Y di�er in more than two edges� so they cannot be adjacent in Gn�

Case ��	� Either �n� ik� or �n � �� ik� is an edge of Y � We suppose that �n� ik� � Y �the proof

is analogous if �n� �� ik� � Y �� All edges of the tree T are shared with Y � but �n� ik�� Let e be

the edge of T not belonging to Y � The edge e is not contained in any brother of Y � as otherwise

T would be a brother of Y � against the hypothesis� Only the brothers of Y which di�er of Y

exactly by e can be adjacent to T and there is a unique brother of Y verifying this condition�

Hence� T can be adjacent to at most two sons of f�Y ��

Case ����� Neither �n� �� ik� nor �n� ik� are edges of Y � In this case� the edge e � T such that

e �� Y is an edge which does not belong to any brother of Y � As in the preceding case� we can

conclude that T is adjacent to at most two of the sons of f�Y �� �

A tree of Tn� �n � �� containing a path i�� � � � � ik� where k � � and the �rst and last vertices

are consecutive on the boundary� will be called a P��tree� A simple induction gives the next

lemma�

Lemma ��� If T � Tn is a P��tree� then dGn
�T � � 	n� ��

Now we are ready for proving our last theorem�

Theorem ��� The connectivity of the graph Gn is equal to 	n� ��

Proof� As the minimumdegree is 	n�� we only have to prove that the graph remains connected

when any 	n�� vertices are suppressed� This is clear for n � �� The case n � � is easily proved

by direct inspection� We assume now that the property holds for some n � � and proceed by

induction� we will prove that Gn�� remains connected after the removal of any set W of 	n��

vertices� We distinguish three cases� Recall that F and L are isomorphic copies of Gn in Gn���



��

Case 	� W 
 F or W 
 L� If W 
 F � we can construct a path between any two given nodes

T and Y as follows� from T to L�f�T ��� then from L�f�T �� to L�f�Y ��� and �nally to Y � The

same proof applies when W 
 L�

Case �� jW 	 F j � 	n � � or jW 	 Lj � 	n � �� If jW 	 F j � 	n � �� there is only one vertex

Z in W that is not in F � If Z �� f�T � and Z �� f�Y � then� because of the 	�connectivity of the

subgraphs of sons� we can construct a path as in the preceding case� If Z � f�T � or Z � f�Y ��

it is easy to see that T has� at least� one adjacent vertex outside of Sf�T � and that it is not in

L� The same proof applies when jW 	 Lj � 	n� ��

Case 
� jW 	 Lj � 	n � � and jW 	 F j � 	n � �� Because of the induction� the subgraphs

L�W and F �W of Gn���W are connected� On the other hand� we know that the number of

trees of Gn is tn � 	n� �� �n � ��� Hence we can assure the existence of at least one complete

brother�path in Gn�� �W � So� it is enough to prove that from any vertex of Gn�� �W we

can reach some vertex in F � or in L� Let T be a vertex of Gn�� �W and suppose that both

paths from T to F �f�T �� and from T to L�fT �� through Sf�T � are broken in Gn�� �W � We

have two subcases�

Case 
�	� T is a star in Gn���

If T is Sn or Sn��� we know that T is� respectively� F �Sn� or L�Sn�� considering now Sn as

a star in Gn� Therefore� T is already in F or L�

If T is the star Si� � � i � n � �� the father of Si is the star Si as a vertex of Gn� and

Sf�Si� has only three vertices� Hence� the number of vertices in Gn�� adjacent to T that are

not in Sf�Si� is greater or equal than dGn��
�Si� � 	 � 	n � �� By Lemma ��� these vertices

are distributed in at least n � 	 di�erent brother�paths� The minimum number of vertices we

would have to remove from Gn�� in order to separate Si from F and L would be at least

	�n� 	� � 	 � 	n� 	 which is strictly greater than 	n� �� the cardinal of the set W actually

removed�

Case 
��� T is not a star in Gn�� �and� as a consequence� dGn��
�T � � 	n� ���

Case 
���	� Suppose �rst that T is a son of type � not in F � L� or of type j� j � 	� These

trees are P��trees and have at most � neighbors belonging to Sf�T �� Hence� by Lemma ���� T

is adjacent to at least 	n� �� � � 	n� 	 vertices not in Sf�T �� and we can conclude as in case

����

Case 
����� If T is S����f�T �� �or T is S��d�f�T ��� which is handled similarly�� then T is

adjacent to F �f�T �� and to two more trees of S�f�T �� one of type �� not in F �L� and one having



��

type j� j � 	� which are connected to F or to L� as we have seen in case ������ T has � neighbors

in Sf�T �� so the number of trees adjacent to T that are not in Sf�T � is at least 	n���� � 	n���

and they are distributed in at least n�	 brother�paths� Again� the minimumnumber of vertices

we have to remove for separating T from F and L is 	�n� 	� � � � 	n� � � 	n� ��

Case 
���
� If T � S��k�f�T ��� 	 � k � d� �� T is adjacent to � trees in Sf�T �� four of them

of type � or j� j � 	� which are connected to F or to L� On the other hand� T is adjacent to not

less than 	n� �� � � 	n� � vertices not in Sf�T �� distributed in at least n� � brother�paths�

Hence� the minimum number of vertices we have to remove in Gn�� for separating T from F

and L is 	�n� �� � � � 	n� 	 � 	n� �� �

	 Conclusions and open problems

Many basic properties of the graphs Gn have been obtained in this work� We consider that

to exactly determine the diameter is the main open problem left in this paper� An e�cient

algorithm for �nding shortest paths in Gn would be also interesting�

On the other hand� when the set P of points is not in convex position it would be interesting

to relate the position of the points to the properties of T �P �� as well as to try to characterize

the graphs which are geometric tree graphs for some P �
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