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Abstract

Morphological analysis is the starting point for the diagnostic approach of more than 80%
of the hematological diseases. However, the morphological differentiation among different
types of abnormal lymphoid cells in peripheral blood is a difficult task, which requires high
experience and skill. Objective values do not exist to define cytological variables. This some-
times results in doubts on the correct classification in the daily hospital routine. Automated
systems exist for digital peripheral blood cell analysis, but they operate most effectively in
non-pathological blood samples.

The general objective of this thesis is to develop a complete methodology to automatically
recognize images of normal and reactive lymphocytes, and several types of neoplastic lym-
phoid cells circulating in peripheral blood in some mature B-cell neoplasms using digital
image processing methods. This objective has two directions: (1) with engineering and
mathematical background, transversal methodologies and software tools are developed; and
(2) with a view towards the clinical laboratory diagnosis, a system prototype is built and
validated, whose input is a set of pathological cell images from individual patients, and whose
output is the automatic classification in one of the groups of the different pathologies included
in the system.

This thesis is the evolution of various works, starting with a discrimination between normal
lymphocytes and two types of neoplastic lymphoid cells, and ending with the design of a
system for the automatic recognition of normal and reactive lymphocytes, and five types of
neoplastic lymphoid cells.

All this work involves the development of a robust segmentation methodology using color
clustering, which is able to separate three regions of interest: cell, nucleus and peripheral zone
around the cell. A complete lymphoid cell description is developed by extracting features
related to size, shape, texture and color. To reduce the complexity of the process, a feature
selection using theory information is performed. Then, several classifiers are implemented to
automatically recognize different types of lymphoid cells. The best classification results are
achieved using support vector machines with radial basis function kernel.

The methodology developed combining medical, engineering and mathematical back-
grounds is the first step to design a practical diagnosis support tool in the near future.
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Chapter 1

Introduction

1.1 Motivation

Severe hematological diseases, especially leukemias and lymphomas, are common in all life
periods. Early detection of the presence of leukemic cells in the peripheral blood (PB) and the
subsequent possibility of a prompt treatment are essential for the patient survival. Morpho-
logic analysis is the starting point for the diagnostic approach of more that 80% of these dis-
eases. However, the morphologic differentiation among different types of abnormal lymphoid
cells in B lymphoid neoplasms and among blast cells in PB is a difficult task, which requires
high experience and skill. Objective values do not exist to define cytological variables. More-
over, subtle morphologic characteristics exist that are exhibited by some malignant neoplastic
lymphoid cells, which are shared with reactive lymphoid cells. This sometimes results in
doubts on the correct classification in the daily hospital routine.

The hematological diagnosis starts with the morphologic analysis and continues with other
more complex procedures such as flow cytometry by using monoclonal antibodies and genetic
and molecular studies, which are available only in highly specialized clinical laboratories due
to the equipment costs and the required human skills. In this context, a methodology able
to automatically analyze objective morphologic features of lymphoid cells from the images
obtained through the optical microscope, could be a practical support tool to the morphologic
diagnosis in clinical laboratories.

Recently, there have appeared equipments that perform automatic preclassification of PB
cells based on digital image processing (DIP). They show a high efficiency in the recognition
of PB normal cells such as neutrophils, lymphocytes, monocytes, eosinophils and basophils.
However, these analyzers are not able to automatically identify neoplastic lymphoid cells cir-
culating in various hematological diseases. On the other hand, in recent years some approaches
have been reported in the literature trying to fill the gap in the automatic recognition between

1



Introduction

normal and abnormal PB cells. The aim of this thesis is to contribute with new developments
in this context, combining medical, engineering and mathematical backgrounds.

1.2 Objectives

The main goal of this thesis is to develop a complete methodology to automatically recognize
images of normal lymphocytes and several types of neoplastic lymphoid cells circulating in
peripheral blood in some mature B-cell neoplasms using digital image processing methods.
To achieve this goal, the following specific objectives are proposed:

• To perform a first exploratory study of different digital image processing techniques to
evaluate their usefulness for the discrimination of normal lymphocytes and some types
of neoplastic lymphoid cells.

• To develop and validate a robust segmentation method to separate the regions of interest
of the lymphoid cell images.

• To propose and implement the extraction of features that describe size, shape, color and
texture of the regions of interest on the lymphoid cell images.

• To identify and select the best features that provide useful information about the mor-
phologic characteristics of normal lymphocytes and different neoplastic lymphoid cells.

• To develop a methodology for automatic classification of normal and neoplastic lym-
phoid cells using the extracted and selected feature set.

• To validate the completed developed methodology for the automatic recognition of nor-
mal lymphocytes and neoplastic lymphoid cells, in a scenario where the methodology
can be useful in clinical practice.

1.3 Research methodology

Digital image processing comprises the use of computational methods to process digital im-
ages producing other images (acquisition and preprocessing), but also includes procedures
for the extraction of attributes of the image (segmentation and feature extraction) up to the
recognition of individual objects (classification). The DIP framework used in this thesis
mainly consists of the following steps as illustrated in Figure 1.1:
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FIGURE 1.1: Digital image processing workflow used in the research methodology of this thesis.

Acquisition In this step the PB digital cell images are obtained from an image analyzer device
which integrates a motorized microscope and a digital camera. Blood samples are
obtained from the routine workload of the Core Laboratory of the Hospital Clínic of
Barcelona.

Preprocessing This step groups all computational methods that attempt to improve the infor-
mation present in the cell image. In this work some preprocessing techniques such as
filtering process and color transformations are done .

Segmentation This is the step where the objects of interest are separated according to some
similarity criteria. Color clustering and watershed transformation are used to segment
the regions of interest of the cell image.

Feature extraction/selection In this step the features (size, shape, color, texture, etc.) of the
segmented objects are measured by quantitative (or qualitative) parameters. If there is
a high number of extracted features, it is necessary to reduce the amount of informa-
tion. This work uses information theoretic feature selection to choose the best features
according to their relevances and redundancies.
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Classification Through the features obtained from each segmented cell in the images, pattern
recognition techniques are used to classify the corresponding cell types. This thesis
investigates several classification methods to develop an efficient classifier.

The workflow in this thesis follows two directions: the development and the validation of the
methodology, which correspond to the top and bottom parts of Figure 1.1, respectively. The
first is oriented to the development of the methodologies, in which sets of images are used
in a training mode to build a robust segmentation procedure, a complete feature extraction
and selection step and a sucessful classification of lymphoid cells. The second direction is
devoted to the experimental validation of the methodology using sets of cell images from
individual patients not included in the training mode. The classification of different lymphoid
cells considering new patients allows to validate the methodology in a scenario close to the
clinical practice.

In this thesis, all the algorithms for the development and validation of the methodology
have been implemented using the scientific and high-level language MATLAB®.

1.4 Research framework

About four years ago a collaboration between members of the research group CoDAlab (Con-
trol, Dynamics and Applications) of the Technical University of Catalonia (UPC), led by Prof.
José Rodellar and, Dr. Anna Merino, who develops her healthcare, research and teaching
tasks at the Center for Biomedical Diagnosis of Hospital Clínic (HC) of Barcelona. A new
research line was initiated to explore the application of digital image processing and pattern
recognition techniques for automated classification of lymphoid cells in peripheral blood.
All this came from the experience acquired in the HC with new laboratory equipments that
incorporate software tools, but with serious limitations for recognition of malignant cells.

This thesis was proposed within this context and was made possible thanks to a pre-
doctoral fellowship (FPI-UPC) granted by the UPC to Santiago Alférez. The work has been
carried out in the space of CoDAlab, Department of Applied Mathematics III in the Barcelona
College of Industrial Engineering (Escola Universitària d’Enginyeria Tècnica Industrial de
Barcelona), with strong interaction and use of the facilities of the Cytology Unit of the Core
lab in the Hospital Clinic of Barcelona.
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1.5 Thesis outline

FIGURE 1.2: Thesis outline

1.5 Thesis outline

Figure 1.2 illustrates the reading plan of this thesis, which allows to understand the organi-
zation and the relations between the chapters. The present thesis consists of eight chapters
starting with this introduction where the motivation, the objectives, the DIP workflow, the
research framework and the organization are described. Chapter 2 includes a review of some
basic concepts about morphologic analysis of peripheral blood, and a state of art of the digital
image processing of blood cells. From Chapter 3 to Chapter 7 there is a special distribution of
reading according to two main topics: Chapters 3, 5, and 7 follow a medical approach, while
Chapters 4 and 6 present the main technical approaches developed in this thesis.

Chapter 3 presents the first exploratory work when the research was initiated in 2011,
using a first segmentation algorithm and a non-supervised classification technique with only
three groups of cells: normal lymphocytes and two types of neoplastic lymphoid cells. It is
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our first published paper in the Journal of Laboratory Hematology (2013). In Chapter 4, the
segmentation methodology is fully developed, which uses color clustering methods to separate
three regions of interest: the nucleus, the cytoplasm and the peripheral zone around the cell.
This segmentation method is used in the subsequent chapters of the thesis. Then, Chapter 5
represents a step forward in the developments since it incorporates the segmentation method
from Chapter 4 and improves the feature extraction step described in Chapter 3, developing
a methodology for the supervised classification of normal lymphocytes and four types of
neoplastic lymphoid cells. To do that, Chapter 5 involves the extraction of geometric and
color-texture features for each cell and the implementation of a linear discriminant classifier.
The work in Chapter 5 has been published in the American Journal of Clinical Pathology
(2015).

The addition of more color and texture features and the exploration of other classification
methods will allow to classify other types of atypical lymphoid cells, which is important in
view of a potential use as a diagnosis support tool in clinical practice. With this aim, Chapter
6 goes back to the technical direction and presents a complete feature extraction/selection and
classification methodology through different techniques and results from several classification
(training) experiments to develop the learning process. Chapter 6 integrates the segmentation
method presented in Chapter 4 with the new feature extraction/selection and classification
steps, so that the methodology developed in this thesis is completed.

Chapter 7 implements the methodology for the automatic recognition of normal lympho-
cytes, reactive lymphocytes and five neoplastic lymphoid cells, using a big training set of
peripheral blood cell images from different patients. Then, the methodology is validated
considering a new group of patients in a horizon where it could be useful in clinical practice.
Chapter 8 summarizes the end conclusions of the thesis and some perspectives on possible
improvements and future works.
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Chapter 2

State of the Art of Digital Blood Cell
Image Processing

2.1 Introduction

This thesis addresses the need for automated methods for the classification of neoplastic
lymphoid cells associated to mature B-cell neoplasms by using digital image processing (DIP)
techniques in PB. This chapter presents a review of some basic concepts about morphologic
analysis and a state of the art of the digital image processing of blood cells. The Chapter
is organized as follows. Section 2.2 introduces the concept of Hematopoiesis, Section 2.3
describes the the mature B-cell and their classification, Section 2.4 explains some basics about
morphologic analysis of the peripheral blood cells, Section 2.5 shows the trend of automated
digital morphology systems, and Section 2.6 presents a state of art of digital image processing
of peripheral white blood cells.

2.2 Hematopoiesis

Hematopoiesis is defined as the production, development, differentiation, and maturation of all
blood cells [1], see Figure 2.1. The blood circulating through the blood vessels or PB contains
the following cells: leukocytes (basophilic, eosinophilic and neutrophilic segmented granulo-
cytes, monocytes and lymphocytes), erythrocytes and platelets (or thrombocytes). They are
created in the bone marrow and are derived from the maturation of myeloid or lymphoid
lineages of stem cells. These stem cells have two basic functions: (1) self-renewal, and
(2) differentiation and maturation. The lymphoid stem cell produces lymphoblasts, which
can differentiate in B and T lymphoid cells and Natural killer cells. On the other hand, the
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2.3 Mature B-cell neoplasms and their classification

myeloid stem cell derives a transitional (differentiated) stem cell that originates the erythroid,
megakarycytic, myeloid, monocytic, eosinophilic or basophilic lineages. Cell proliferation in-
volves amplifying the number of mature cells produced from a cell that has been differentiated
to a particular cell lineage. Normally, there is a balance between the quiescence and the ability
for self-renewal of hematopoietic stem cells, with a control of the proliferation, the apoptosis
and the differentiation of the progenitors to mature cells. Moreover, cell differentiation implies
the progressive development of biochemical, functional and structural characteristics for a
specific cell type [2–4]. This thesis deals specifically with B lymphoid cells.

2.3 Mature B-cell neoplasms and their classification

Lymphoid neoplasms are cancers that proceed from lymphoid cells of the immune system
in various stages of differentiation. Which derive in a broad spectrum of immunological,
morphologic and clinical findings. These neoplasms can occur in the form of leukemia (in-
volvement of bone marrow and blood) and/or lymphomas (solid tumors) [5].

The medical classification is the language of medicine, allowing to describe, define and
name a disease before this can be diagnosed, treated and studied. Then, there must be a
consensus of definitions and terminology which are essential for both clinical practice and re-
search of these type of pathologies. In 2008, the World Health Organization (WHO) presented
a classification of the lymphoid neoplasms, considering the cell of origin, in the following
groups [6, 7]:

1. Precursor B-cell lymphoid neoplasm (immature B-cells)

2. Precursor T-cell neoplasms (immature T-cells)

3. Mature B-cell neoplasms

4. Mature T-cell and natural killer cell neoplasms

5. Hodgkin lymphoma

Precursor B-cells that mature in the bone marrow may undergo apoptosis or develop into
mature naïve cells that, following exposure to antigen and blast transformation may develop
into plasma cells or enter the germinal center of the lymphoid follicle (see Figure 2.2). In
other words, normal B-cell differentiation begins with precursor B-cells known as progenitor
B-cells which differentiate into mature naïve B-cells in the bone marrow. These naïve B-
cells circulate in PB and also occupy primary lymphoid follicles and follicle mantle zones.
Naive B lymphoid cells maturation occurs in the lymphoid follicle. Most cases of mantle cell
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FIGURE 2.2: Diagrammatic representation of B-cell differentiation and relationship to B-cell
neoplasms. B-cell neoplasms correspond to stages of B-cell maturation. Precursor B-cells that mature
in the bone marrow may undergo apoptosis or develop into naïve B-cells in the lymphoid follicles
where, following exposure to antigen enter to the germinal center (GC). Centroblasts, the transformed
cells of the GC either undergo apoptosis or develop into centrocytes. Post GC cells included both
long-lived plasma cells and memory/marginal zone B cells.

lymphoma are thought to correspond to naïve B-cells. Naïve cells undergo transformation,
proliferate and mature to antibody secreting plasma cells and memory B-cells. Transformed
cells that have encountered antigen may mature directly into plasma cells that produce IgM
antibody response to antigen [6].

B-cell and T/NK neoplasms are clonal tumors of mature and immature B-cells, T-cells or
natural killer (NK) cells at various stages of differentiation. Most of the B-cell neoplasms arise
from follicle center cells. When these different types of neoplastic lymphoid cells in B-cell
neoplasms reach the PB it means that we have leukemic cells from mature lymphoid neoplasm
origin and we have the possibility to analyze the morphology and the immunophenotype or
these abnormal cells. Morphology and immunophenotype are sufficient for the diagnosis of
most lymphoid neoplasms.
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2.3 Mature B-cell neoplasms and their classification

Mature B-cell neoplasms comprise over 90% of lymphoid neoplasms worldwide. The
classification of lymphoid neoplasms is based on utilization of all available information to
define the different diseases. The multiparameter approach to classification adopted by the
WHO classification has been validated in international studies as being highly reproducible
and enhancing the interpretation of clinical studies.

2.3.1 WHO classification of mature B and T cell neoplasms

The following list contains the B and T-cell mature neoplasms in which the circulation of
leukemic cells in PB more frequently can be detected. This thesis is focused in some of the
groups of mature B-cell neoplasms included in this list.

Mature B-cell neoplasms

• Chronic lymphocytic leukemia (CLL)

• B-cell prolymphocytic leukemia (B-PL)

• Splenic marginal zone lymphoma

• Hairy cell leukemia (HCL)

• Lymphoplasmacytic lymphoma

• Plasma cell myeloma

• Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT
lymphoma)

• Follicular lymphoma (FL)

• Mantle cell lymphoma (MCL)

• Diffuse large B-cell lymphoma (DLBCL)

• Marginal zone lymphoma

• Burkitt lymphoma
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FIGURE 2.3: Several examples of neoplastic lymphoid cells images. N, normal lymphocytes; CLL,
chronic lymphocytic leukemia; MCL, mantle cell lymphoma; BPL, B-prolymphocytes; FL, follicular
lymphoma; HCL, hairy cell leukemia.

Mature T-cell and NK neoplasms

• T-cell prolymphocytic leukemia

• Aggressive NK cell leukemia

• Adult T-cell leukemia/lymphoma

• Sézary syndrome

2.4 Morphologic analysis of peripheral blood

The White Blood Cell (WBC) differential count measures the percentage of each of the
subpopulations of leukocytes. This test can be requested directly for the clinician with a
specific diagnostic suspicion, subject to lymphadenopathy and/or splenomegaly. It is also
a task of the physician of the laboratory to indicate the realization of the WBC differential
when the results of the complete blood count have some quantitative anomaly, or any alarm
occurs in the autoanalyzer. The manual count under the microscope have several protocols
with particular criteria because it is a laborious test [4]. However, a careful observation
of this procedure provides a lot of information, being a valuable tool in both diagnostic
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orientation (which guides the complementary tests) and performing some definitive diagnoses.
Moreover, since this morphologic study is the first step in the diagnosis, the recognition of
neoplastic lymphocytes in blood smears can contribute to a fast diagnosis of B-cell diseases,
enabling rapid therapeutic intervention influecing the prognosis [8]. An altered number of
WBCs in PB, leukocytosis (high counts) or leukopenia (low counts), can indicate different
pathologies. Often the diagnosis of CLL is made by the accidental finding of a leukocytosis
with lymphocytosis on a routine blood test in a patient of advanced age and the detection
of abnormal lymphocytes in the smear. The final diagnosis is accomplished through the
integration of clinical findings, bone marrow aspirate, immunophenotypic, cytogenetic and
molecular biology studies [6, 9].

Morphologic distinction between various types of lymphoid cells requires experience and
skill and, moreover, objective values do not exist to define cytological variables. For example,
some qualitative descriptions of various types of neoplastic lymphoid cells are presented
above. CLL cells are typically small lymphocytes with clumped chromatin and scant cy-
toplasm. HCL cells are larger than normal lymphocytes and they have abundant weakly
basophilic cytoplasm with irregular hairy margins. In FL neoplastic lymphocytes have an
irregular nuclear membrane and condensed chromatin without nucleoli. In MCL, the cells
have an irregular, cleaved nuclear contour and may resemble those of FL. Prolymphocytes are
slightly larger cells with nucleoli. Figure 2.3 shows several images corresponding to the above
neoplastic lymphoid cells.

2.5 Automated digital morphology systems

At the beginning of XXI century, a new trend started in the digital morphology with the
development of new equipment able to preclassify different types of normal WBCs in a fast
and efficient way. These systems use motorized microscopy, digital image processing and
pattern recognition techniques to automatically identify nucleated cells as well as perform
a morphologic evaluation of the Red Blood Cells (RBCs). Subsequently, the images are
displayed on a screen so that the physician can confirm or reclassify the cells.

Medica EasyCell® assistant Cell Image Analysis System (Sysmex America, Inc, Mundelein,
IL) [10] automatically detects WBCs on a blood smear, then it reaches classify normal WBCs,
smudge cells and nucleated RBCs. This system employs image processing and artificial
intelligence to do that work. Next, the cell images are grouped and displayed for review.

The HemaCAM® system (Fraunhofer-Gesellschaft, Germany) [11, 12] is able to evaluate
the PB samples and make WBC differential. This equipment can automatically preclassify
different types of leukocyte as: neutrophils, basophils, eosinophils granulocytes, lymphocytes,
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monocytes, nuclei shadows, and large platelets. Since 2010, Hemacam has been available on
the market as a certified medical product.

Bloodhound® is developing the cobas m 511 system [13], which combines a digital mor-
phology analyzer, a cell counter, a classifier in only one equipment that include an auto-stainer
and a microscope analyzer of blood smears. This technology analyzes the cell morphology,
counts and classifies each cell providing a 5-part differential of WBCs, platelets and reticulo-
cyte count. Currently, this instrument is not available in the USA and is not approved by the
Food and Drug Administration (FDA).

CellaVision® DM96 (CellaVision AB, Lund, Sweden) [14] is an automated device for the
differential preclassification of WBCs, evaluation of RBC morphology, platelet estimation on
the blood smears and it can also analyze body fluids. This equipment includes a motorized
microscope, a camera and a computer containing the acquisition and classification software.
This system preclassifies WBCs, then a medical operator can confirm or reclassify the sug-
gested cell classification. The Cellavision DM96 has been studied in several works which
evaluate the concordance between automated differential count of this device and the manual
differential count made by the physician with the microscope:

• Kratz et al. [15] evaluates the CellaVision DM96 obtaining values of correlation be-
tween the automated preclassification and the usual microscopy of WBCs between 0.67
and 0.96. The sensitivity values is between 95% and 100% and the specificity values
between 88% and 97%, depending on the abnormality. It concludes that this automated
analyzer showed a similar performance to the manual clinical microscopy.

• Cornet et al. [16] analyzes samples from 440 patients using the CellaVision DM96.
This system obtains an efficiency of 95% for the automated preclassification, which is
increased up to 98% after a manual reclassification by the medical technologist. The cor-
relation of the manual and automated methods is excellent for neutrophils, lymphocytes
and eosinophils, acceptable for immature granulocytes, erythroblasts and basophils, and
low for monocytes. In this paper some B-cell chronic lymphoproliferative disorders
are evaluated, but the DM96 equipment is not able to classify correctly the abnormal
samples. The correct classification is done manually by the medical operator trough the
screen and the CellaVision software.

• Briggs et al. [17] compares the differential done by different operators using the CellaV-
ision DM96 with the manual differential under the microscope. The accuracy of the
automated preclassification is 89.2%, while precision is similar to the 100-cell manual
differential. Then, it concludes that DM96 accuracy depends on both blood pathology
and the experience of the medical operator.
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• Merino et al. [18] evaluates the automated preclassification performed by the CellaV-
ision DM96 and the subsequent reclassification by the medical operator. It gets excel-
lent values of correlation (preclassification) between this device and the conventional
microscopy for segmented neutrophils, lymphocytes, monocytes and blasts, and good
values for eosinophils, basophils and plasma cells. Furthermore, the correlation for the
reclassification is very good for promyelocytes and myelocytes, intermediate for reac-
tive lymphocytes and erythroblasts, and low for metamyelocytes. Neoplastic lymphoid
cells are reclassified only by the medical user, because the DM96 is not able to do that.

The conclusions from the above studies are the good correlation and concordance of the
application of the digital image analysis over the traditional method by direct microscopy,
but emphasizing the need of subsenquently validation and review by a skilled physician.
They also note the reduction of the time spent in the analysis by improving the workflow,
the efficiency and the quality. Finally, several of these papers highlight that the DM96 is
not able to automatically classify neoplastic lymphoid cells. Thus, the automatic neoplastic
lymphoid cell recognition was the problem that gave rise to the approach of this thesis.

2.6 Peripheral blood digital cell image processing: state of
the art

As it was mentioned above, several devices have been developed which use DIP techniques
to achieve an automated preclassification of nucleated cells from PB involving a lot of cal-
culations based on morphologic characteristics of the cell such as color, size, shape, texture,
among others [9, 19]. However, although theses analyzers represent a technological advance of
great interest because they are able to preclassify the majority of normal WBCs, they cannot
automatically identify the different types of neoplastic lymphoid cells such as: centrocytes,
centroblasts, prolymphocytes, hairy cells, Sézary cells and other ones circulating in PB in
some lymphoid neoplasms.

Due to the difficulty of the correct automatic classification of neoplastic lymphoid cells,
few studies have been published using different methods of DIP with satisfactory results.

FIGURE 2.4: Simplified digital image processing framework.
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The problem has been addressed by the extraction of a large number of measurements and
parameters that describe the morphologic features of interest in cells, along with pattern
recognition techniques used to classify different types of cells [20–22].

Figure 2.4 shows a simplified scheme of the DIP, which is the same for all applications
including the automated recognition of cells. The main stages of the DIP are: acquisition,
preprocessing, segmentation, feature extraction and classification. The state of the art on these
DIP stages relevant for this thesis is reviewed below.

2.6.1 Acquisition

The acquisition is the first process in the DIP, in which images are obtained. In the anal-
ysis of PB cells the preparation of an adequate blood smear and its staining are essential
to generate quality images. Various techniques are used for the staining process, but the
May-Grünwald-Giemsa (MGG) stain is widely used due to its properties, which highlight
the basic components of the blood cell [3]. It is very important to develop an accurate and
automated methodological process for the blood smear of high quality in terms of staining,

FIGURE 2.5: Acquisition process protocol of the blood cell images. The blood smears from
pathological samples from the autoanalyzer are automatically stained with May-Grünwald-Giemsa
and the the images are obtained by the Cellavision DM96.
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since it is the first step in the acquisition process and it is essential for the development of
post-processing algorithms. Thus, extensions of low quality will result in degraded image, i.e.
with the inclusion of noise in the entire system performance.

To acquire blood cell images, the most widely used method is by optical microscopy with
immersion objectives of 50 to 100 magnifications (500 to 1000 in total), followed by a digital
camera with CCD sensors mounted in the optical path [23]. However, automated digital
morphology devices incorporate a motorized microscope with a digital camera such as the
CellaVision DM96.

Figure 2.5 shows the standardized acquisition protocol used in this work, where the patho-
logical samples of the peripheral blood smears are automatically stained with MGG and then
they are passed through the DM96 to get different images with a specified resolution. This
device is used because it allows to have a big database of pathological samples.

2.6.2 Preprocessing

There are different factors that may affect the quality of the acquisition of images derived from
the blood smear: staining process, variations in lighting, optical geometric distortions due to
the type of lens and microscope, format in which the images are stored (not recommended
compressed formats and thus lose data), random noise, lack of contrast between tone levels,
etc.

Some preprocessing techniques have been described to improve the quality of the image
before the segmentation process, either to select the absolute area of the blood smear [24] or
to describe the individual characteristics of each cell [25, 26]: contrast enhancement, spatial
and frequency filtering, color transformations, and other manipulations of the histogram.

Different contrast enhanced procedures have been used: contrast stretching to improve the
possible separation between nucleus and cytoplasm of WBCs [27]; local, global, dark and
bright contrast stretching to improve the interpretability of the WBC images of patients with
acute leukemia [28]; and partial contrast, bright stretching and dark stretching to enhance the
morphologic features helping to the recognition between two types of acute leukemia [29].

The filtering of the images aims to reduce the noise level using various types of filters.
Eom et al. [30] uses a Gaussian filter of 3 x 3 to prepare WBC images for the segmentation
process. Scotti et al. [24] applies a Gaussian low-pass filtering with no zero-padding or the
average of multiple WBC images, to reduce the noise. Ushizima et al. [31] utilizes Gaussian
filtering to the gradient of the image before some transformation for automated cytoplasm
detection. Angulo et al. [32] filters the green color component of the image to remove the
noise and small digitalization mistakes, and segments mainly the erythrocytes of a peripheral
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blood smear. Ghosh et al. [33] uses a Wiener filter to reduce the noise of the background of
WBCs images to improve the segmentation methodology of the WBCs.

The images stained with MGG are bluish and purple. Therefore, a color transformation
or treatment of WBCs images which may separate, highlight or extract the best profiles can
be applied in both the preprocessing and segmentation. Sinha and Ramakrishnan [34] applies
color transformation from the RGB (red, green and blue) to HSV (hue, saturation and value)
color space prior to the segmentation procedure. Würflinger et al. [25] implements an adaptive
color space transformation by a cluster analysis of the RGB histogram and it applies the Fisher
transform reducing the difference between three different staining process of the same blood
cell, to combining the respective images in only one image by a process named coregistration.

2.6.3 Segmentation

The segmentation stage separates the different objects of an image. This procedure is essential
within the DIP framework because a robust segmentation is instrumental to be successful in
the remaining stages of feature extraction and classification [35]. PB cell segmentation is a
complex procedure due to the complicated morphology of the cell and the problems caused by
variations of the staining methodology. Several publications exist about the cell segmentation
process with different works either for differential count of WBCs, selection of the work area
of the blood smear, morphologic description of RBCs or recognition of neoplastic lymphoid
cells.

The thresholding technique is the simplest segmentation, wherein a threshold is chosen
from the approximate probability distribution function or histogram, i.e. separate in two
objects. For its simplicity and efficiency, this technique has been used with multiple thresh-
olds [36], applying the method of Otsu to segment WBCs [37], using morphologic adaptive
thresholding to find the optimal working area of the blood smear [32], and a combination
of automatic contrast stretching, image arithmetic operations, minimum filtering and global
threshold techniques to localize the nucleus of WBCs [38]. Furthermore, Piury and Scotti
[27, 39] uses Canny edge detection and some mathematical binary morphology to segment the
whole cell (membrane) and cropping of the cell, contrast stretching, low-pass morphologic
filtering and automated thresholding to separate the nucleus of WBCs. Ritter et al. [40]
combines an automatic thresholding with connected components and an adaption of Dijkstra’s
shortest path algorithm and graph representation to the standard adjacency list to segment
cells and identify the border on images from PB smear. Ghosh et al. [33] presents a nucleus
segmentation of WBCs using fuzzy divergence by Gamma, Gaussian and Cauchy type of
membership functions of the image pixels and some modified thresholding methods.
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A basic way to treat color segmentation is separating the components of the RGB color
space of the image. It has been shown that a thresholding about 100 (between 0 to 255)
applied over the green component leads to a good separation of cell nucleus [41]. Also,
various works use several transformations to other color spaces inside the application of
different segmentation methods: scale space filtering and watershed transformation over a
3D histogram of the HSV color space to separate the cytoplasm [42]; Bayes classification
over L*a*b* (CIELAB 1976, L* is the luminance, a* and b* are the chromaticities) color
space to determine different regions depending on the color tones [31]; thresholding of the
S component to obtain the nucleus region of blasts [43]; and a methodology to localize and
segment lymphoblasts by extracting and binarizing Hue and Saturation components of the
HSV color space and applying mathematical morphology operations [44].

The snake technique works as a string which is deformed according to the edges of the
object (in this case the cell or the nucleus), influenced by an external force field. This active
contour model has been applied to segment WBCs using different variations of the technique:
Ongun et al. [45] proposes the fast snake-balloon method using morphologic operators for the
initial positioning of the snakes to segment firstly PB normal WBCs, and secondly different
types of cell in the bone marrow [46]; Yang et al. [47] develops and implements a robust
color contour active algorithm to segment lymphoid cells, operating in the L*u*v* (CIELUV
1976, L* is the luminance, u* and v* are the chromaticities) color space by introducing a color
gradient and a L2E robust estimation into the classic gradient vector flow (GVF) active contour
model [48]; Eom et al. [30] performs a level set active contours method using GVF where the
region information is estimated using a statistical analysis with the expectation-maximization
algorithm (EM-algorithm) and Bayes probabilities to segment nucleus and cytoplasm of nor-
mal WBCs. Sadeghian et al. [26] also uses another methodology with GVF active contours on
edge images of the leukocyte processed by Canny edge detection to extract the WBC nucleus
(it also segments the cytoplasm through automatic thresholding).

Segmentation by clustering is an unsupervised method for grouping of pixels according to
some information, usually the color. In that case, each pixel is a vector of three components
(e.g. in the RGB color space: r, g, b ) and the problem is solved by clustering of the similar
vectors according to a criterion. Foran et al. [21] segments lymphoid cells using the L*u*v*
color space transformation of the cell image to implement the fast non-parametric clustering
method developed in Comaniciu and Meer [49], which is a stable and efficient algorithm.
Sinha and Ramakrishnan [34] segments nucleus and cytoplasm of WBCs by the Expectation-
maximization algorithm with an initial estimation using k-means clustering of the HSV color
space of the cell image. Ramoser et al. [50] applies k-means clustering technique of the HSV
color space to segment the nucleus and probabilistic segmentation to separate the leukocyte.
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Scotti [24] implements Fuzzy k-means clustering of the RGB space color to segment the
WBCs. Mohapatra et al. [51–53] uses a variation of fuzzy clustering named Gustafson
Kessel clustering and the nearest neighbor classification of the L*a*b* color space to segments
the nucleus of WBCs from the other blood components. González et al. [54] uses the k-
means clustering technique with the standard Euclidean distance on the L*a*b* color space
but omitting the luminosity component to separate the image in four groups: background,
cytoplasm, nucleus of WBCs and RBC from bone marrow cell images.

Mathematical morphology is one of the most used techniques of DIP, which analyses
the image in a non-linear way extracting information or modifying the objects of an image
by the formal description of their geometry. Dorini et al. [55] proposes a methodology to
segment the nucleus and the cytoplasm of WBCs using some simple operations of mathemat-
ical morphology and Watershed Transformation (WT) [56, 57]. Angulo and Flandrin [32]
presents a technique to automatically detect the working area of blood smears stained with
MGG, utilizing mathematical morphology to extract the RBCs, their centers and the RBCs
without center. These cells are counted and two parameters about their overlapping and the
spreading are evaluated. Angulo et al. [58, 59] develops a methodology to extract the erythro-
cytes and WBCs by automatic thresholding and binary filtering of the green component, and
subsequently the WT with markers is applied over a morphologic gradient of the green and
saturation components (RGB and HSV) to segment the nucleus and cytoplasm of lymphocytes.
Markiewicz et al. [60] applies the WT on a distance transform of a gray scale version of the
bone marrow cell image to segment the whole leukocyte.

2.6.4 Feature extraction

In the feature extraction step, the characteristics of the object are obtained by quantitative
measures. In the lymphoid cell recognition problem these features are calculated for the entire
cell, cytoplasm, the nucleus and the region around the cell. They can represent morphologic
qualitative features usually employed by the hematologist [3] or abstract quantitative param-
eters [35]. Since one of the main objectives of this thesis is to analyze PB lymphoid cells of
patients with lymphoid neoplasms, and the description methods of normal WBCs and blood
cells present in leukemia can be significant for the DIP process, the state of the art is divided
into three principal items corresponding to the feature extraction of normal WBCs, cells from
leukemias and neoplastic lymphoid cells, respectively.
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2.6.4.1 Feature extraction of normal WBCs

To recognize WBCs, Ongun et al. [46, 61] calculates 57 features mainly grouped in two
categories: shape based features (moments and affine invariants, length of the cell bound-
ary, curvature and boundary energy), and color/texture based features (mean and standard
deviation for cell, cytoplasm and nucleus in the L*a*b* color space and HSV color his-
tograms features). Sinha and Ramakrishnan [34] presents a methodology for automatically
differentiate WBCs, extracting several parameters: shape features (eccentricity of the nucleus
and cytoplasm, nuclear compactness, area-ratio and number of nucleus lobes), color features
(means of each component of the RGB color space), texture features based on computations
of the gray level co-ocurrence matrix (GLCM) and the autocorrelation matrix (energy, entropy
and correlation for GLCM, and coarseness and busyness for the autocorrelation matrix). Sanei
and Lee [62] uses principal component analysis (PCA) in similar way to face recognition but
extended to the YIQ (Y is the luma, I and Q are the chromaticities) color space to obtain the
eigencells and after a linear transformation use them as features to describe WBCs. In order to
describe WBCs, Piuri and Scotti [27, 39] extracts various geometric features for the nucleus
and cytoplasm such as: area, perimeter convex area, solidity, major axis length, orientation,
filled area, eccentricity, rectangularity, circularity, and number of nucleus lobes. The best
features are selected by a technique named forward selection. Ramoser et al. [50] proposes
the extraction of 18 color statistical features for the nucleus and cytoplasm (mean, standard
deviation and skewness of each component of HSV color space), five nucleus shape features
(convexity, principal axes ratio, compactness, circular variance and elliptical variance) and
three geometric features (sizes of nucleus and cytoplasm, and number of detected nucleus
regions), to obtain information of the WBCs. Pan et al. [63] employs image-based features
rather than concrete features, thus it uses RGB color histogram of the whole cell, the intensity
histograms of the nucleus and the cytoplasm to make an only feature vector; then this one is
reduced by Kernel PCA to represent a quantitative characterization of blood and bone marrow
cells. Rodrigues et al. [64] utilizes shape descriptors by spatial moments with invariance
for translation and rotation (row and column moments of inertia, aspect, spread and Hu
descriptors), texture features (mean, standard deviation, skewness, kurtosis, first and second
neighbor contrasts), and some geometric features (mean, area, perimeter of the cytoplasm and
nucleus, and circularity) to recognize WBCs.

2.6.4.2 Feature extraction of blast cells from acute leukemias

Markiewicz et al. [60, 65] and Siroic et al. [66] present the extraction of four groups of
features of WBCs from bone marrow smear of patients suffering from acute leukemia: texture
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(applied to the three RGB color components on the nucleus and cytoplasm), geometric (of
the cell), statistical (color distribution of the cell image) and morphologic (mathematical
morphology operations); then the most relevant features are selected by a genetic algorithm
feature selection or a Support Vector Machines (SVM) feature selection. Mohapatra et al.
[51–53] calculates various nuclear features to detect acute lymphoblastic leukemia from PB
smear images: perimeter roughness (by fractal geometry), contour signatures, shape features
(area, perimeter, compactness, solidity, eccentricity, elongation, form factor), color features
(means of each component of RGB and HSV color spaces) and four second statistical features
based on GLCM of a gray version of the image.

After a segmentation process, González et al. [54] extracts several features corresponding
to the geometry (perimeter, area, major and minor axis, orientation, Euler number, among
others), texture (gray threshold of the segmentation, sum of the histogram, maximum and
minimum of the histogram, mean, standard deviation and variance), and another type of
feature obtained from PCA of the bone marrow cells with the purpose of identify possible
leukemias. In order to differentiate between normal lymphocytes and abnormal lymphoblast
cells, Madhloom et al. [67] obtains shape features (area, eccentricity, perimeter, circularity,
elliptical features of the nucleus, cell area and ratio of the nucleus to the whole cell) and
texture features (first and second statistical features); subsequently Fisher’s discrimination is
utilized to select the best and uncorrelated features. Aimi et al. [68] gets different quantitative
parameters to describe WBCs from patients with acute leukemia: size based features (cell area,
nucleus area, cytoplasm area, nucleus-cytoplasm ratio, cell perimeter and nucleus perimeter),
shape based features (roundness, compactness, central moment and affine invariant moment
of the nucleus), and color based features (mean and standard deviation of intensity and RGB
color space for nucleus and cytoplasm).

2.6.4.3 Feature extraction of neoplastic lymphoid cells

Comaniciu et al. [49] and Foran et al. [21] extract the following features of the nucleus:
area, shape (elliptical Fourier descriptors) and texture features based on a multiresolution
simultaneous autoregressive model within the develop of a image-guide decision support
for pathology to characterize neoplastic and normal lymphoid cells. Benattar et al. [69]
proposes a scoring system for lymphocytes in B-cell neoplasm using various morphometric
parameters: nuclear shape, cell shape, cell area, nucleus-cytoplasm ratio, nuclear red/blue
ratio, cytoplasmic green/blue ratio and the proportion of cell with nucleolus. Angulo et
al. [58, 59] extracts several quantitative parameters from the lymphocytes to define some
qualitative morphologic features: nuclear and cell sizes, nucleus - cytoplasm ratio, nuclear
excentration, chromatin density (texture) by granulometric curves, regular and irregular nu-
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clear shapes through some simple parameter (form factor, circularity, eccentricity) and the
specific analysis of the nuclear lobes and others irregularities, number of big or medium
nucleolus, cytoplasmic basophilia (mean of the each color component of L*a*b* color space),
and cytoplasmic granulations, cytoplasmic shape by binary granulometry. Ushizima et al. [70]
studies the leukocyte recognition problem by calculating shape and size features (perimeter,
area, circularity, bending energy, nucleus - cytoplasm ratio, etc.) and texture features based
on the GLCM applied for different block sizes over a grayscale version of the cell image.
Afterwards, it uses feature selection by an exhaustive search, and heuristic search with forward
sequential selection and backward sequential selection. In a subsequent work, Ushizima et al.
[71, 72] extends its proposed method by applying the texture features to the components of
the RBC color space and adding some statistical features, later it utilizes again the feature
selection method to choose the most important and independent features. Jahanmehr et al.
[73] analyzes quantitative and qualitative cytological parameters of lymphocytes from B-
cell neoplasms (CLL, MCL and B-PL). Particularly, cell area, cell diameter, cytoplasm area,
nuclear area, nuclear/cell ratio and nuclear density are evaluated and it demonstrates that these
features can be useful to differentiate the lymphoid neoplasms. For the purpose of describing
neoplastic lymphoid cells and blast cells, Tuzel et al. [74, 75] performs a cell representation
characterizing its texture structure using textons inside both nucleus and cytoplasm by the
construction of two texton histograms.

2.6.5 Classification

The classification step consists of the application of different algorithms (supervised and/or
unsupervised) to recognize the different cells from their extracted features. The state of the art
is divided into three parts, which correspond to the classification of normal WBCs, neoplastic
lymphoid cells, and acute leukemia cells, respectively.

2.6.5.1 Classification of normal leukocytes

With the purpose of automatically differentiate 258 WBCs from bone marrow and PB, Ongun
et al. [46, 61] extracts quantitative parameters to be used as inputs for different classifica-
tion algorithms: k Nearest Neighbor (kNN), linear vector quantization (LVQ), multi layer
perceptron (MLP) neural networks and support vector machines (SVM). It obtains the best
result using SVM with a training accuracy of 100% and a testing accuracy of 91.03%. Sinha
and Ramakrishnan [34] implements an automated method for differential of WBCs by several
classification methods of 50 samples for training and 34 for testing, obtaining the best results
with 97% accuracy for Artificial Neural Networks (ANN) and 94% for SVM. Sanei and Lee
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[62] proposes an automatic method to classify 15 classes of mature cells and blasts, excluding
mature platelets, and other variations by Bayes classification, resulting in accuracy of 96.5%
for mature cells on PB, and 85% for inmmature cells or blasts on PB, but with an missed
classification of 21% for myelocytes, promyelocytes, monocytes and metamyelocytes from
bone marrow. Piuri and Scotti [27, 39] utilizes kNN, feed-forward ANN, radial basis function
neural network, and a parallel classifier built using feed-forward ANN to identify the following
classes of WBCs: basophil, eosinophil, lymphocyte, monocyte and neutrophil. The best result
was achieved for the parallel ANN with a mean error of 0.08. Ramoser et al. [50] evaluates a
set of 1166 cell images (13 classes) by a polynomial SVM classifier using the extracted feature
database. It results in accuracies around 90%, but for neoplastic lymphocytes (grouped in only
one class) the accuracy is 73%. Mircic and Jorgovanovic [76] proposes a methodology for
automatic classification of WBCs by the analysis of blood smear images using artificial neural
networks (ANN), specifically a feed-forward ANN with 19 inputs neurons, 5 output neurons
and two hidden layers with 120 and 70 neurons; this procedure results in a high sensitivity and
a classification accuracy of 86%. Pan et al. [63] develops a classification system using SVM
classifiers with polynomial kernel for 10 classes of WBCs from bone marrow smears involving
monocytic and granulocytic series (15 samples), all of them labeled by the pathologist. It
obtains an accuracy of 90.5% (it divides randomly the data into five sub-test-sets). Rodrigues
et al. [64] proposes two approaches for the classification of five types of normal WBCs, the
first one uses feed forward neural networks trained by a backpropagation algorithm (BPNN)
and the second method is a hybrid model between SVM and pulse-coupled neural networks
(PCNN). The BPNN approach achieves an accuracy of 81.31% and the PCNN-SVM method
gets 86.9%. Colunga et al. [77] implements a method to classify three types of WBCs: band
neutrophils, eosinophils and lymphocytes from PB smear. It uses PCA to project the cell
image to a lower dimensional subspace, employing the Gaussian mixture EM-algorithm with
the maximum posterior decision rule.

2.6.5.2 Classification of cells from acute leukemias

After feature selection, Markiewicz et al. [60, 65] achieves an automatic recognition of 10
types of WBCs from bone marrow smear samples of patients suffering of acute myeloid
leukemia (AML), acute lymphocytic leukemia (ALL) and CLL by the implementation of
SVM with Gaussian kernel. The respective results confirm good efficiency, achieving the
agreement of almost 87% with the human expert score and around 13% of missclassification.
Reta et al. [78] proposes an automatic method for morphologic classification of abnormal
WBCs images from bone marrow smears into different subtypes of acute leukemia. This
classification is done using instance based classifiers, decision trees, regression functions and
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metaclassifiers, resulting in an overall accuracy of 92% for acute leukemia types, 84% for
lymphoblastic subtypes and 92% for myeloblastic subtypes. In various works, which differ
mainly in the segmentation, Mohapatra et al. [51–53] uses the extracted features to classify
WBCs from (108) blood smears of patients with ALL by SVM, obtaining a classification
accuracy of 95%. González et al. [54] presents a data mining strategy to identify leukemias
from bone marrow smears by the extraction of features that feed several machine learning
algorithms. This method achieves accuracies above 95.5% to differentiate between AML and
AML. After that, it obtains an accuracy of 90% among five leukemia subtypes. Madhloom
et al. [67] describes a method for the automated classification between normal lymphocytes
and abnormal lymphoblast cells (ALL) from PB smear, which utilizes a kNN with Euclidean
distance classifier, resulting in 92.5% of accuracy. Aimi et al. [68] presents a methodology for
automatic recognition of WBCs inside ALL and AML blood samples by using the MLP and
Simplified Fuzzy ARTMAP (SFAM) neural networks, obtaining the best classification with
the MLP trained by Bayesian Regulation algorithm with a testing accuracy of 95.7%.

2.6.5.3 Neoplastic lymphoid cell classification

Comaniciu et al. [21, 49] implements a content-based image retrieval (CBIR) system to
support the decision making in clinical pathology using a database of 261 specimens, which
belong to three types of lymphoid neoplasm (CLL, FL and MCL) and the normal cell type. The
performance of the system is evaluated by 10-fold cross validation classification, obtaining
satisfactory results compared with human experts. Ushizima et al. [72] evaluates the use of
SVM classification of five types of normal WBCs and only one type of neoplastic lymphoid
cell (CLL). It obtains an average accuracy around 94%, however the CLL accuracy is 88%.

Angulo et al. [58] firstly presents a classification of five types of normal WBCs from PB
smears using the full cell image, then it combines statistical techniques, granulometries and
color histograms to identify the cell type, obtaining an accuracy of 95%. Secondly, it develops
a methodology withing the CBIR framework (Ontology) to classify neoplastic lymphoid cells,
in which the extracted features from the cell are classified into categories using decision trees
[59].

Tuzel et al. [74] addresses a classification among four types of malignancies (CLL, MCL,
FL and acute leukemia) and normal cells by SVM with linear kernel using only texture
features, and a combination between shape, area and texture features. The best results are
obtained with the full set of features within a leave-one-out cross-validation classification test
(to evaluate independently each case without cell mixing), obtaining classification rates of
84.62% for cell test and 91.42% for case; while for a 10-fold cross validation test (where
the cell were mixed between cases) the best classification rate is 93.18%. In a related work,
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Yang et al. [75] presents another 10-fold cross-validation classification test with a new and
independent smaller database but with the SVM trained with the old bigger database, resulting
in 87.22% of accuracy due to that the new interclass similarities and intraclass variations were
never seen during the training.

26



Chapter 3

A First Digital Image Processing
Approach for Neoplastic Lymphoid Cell
Classification
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classification of atypical lymphoid B cells using digital blood image processing, International Journal of
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Abstract

There are automated systems for digital peripheral blood (PB) cell analysis, but they operate
most effectively in non-pathological blood samples. The objective of this chapter is to design
a first approach to explore the automatic classification of abnormal lymphoid cells. 340
digital images of individual lymphoid cells from PB films obtained in the CellaVision DM96
were analyzed: 150 Chronic Lymphocytic Leukemia (CLL) cells, 100 Hairy Cell Leukemia
(HCL) cells and 90 normal lymphocytes (N). Afterwards, the Watershed Transformation was
implemented to segment the nucleus, the cytoplasm and the peripheral cell region. From these
regions, 44 features were extracted and then the clustering Fuzzy C-Means (FCM) was applied
in two steps for the lymphocyte classification. Then, the images were automatically clustered
in three groups, one of them with 98% of the HCL cells. The set of the remaining cells was
clustered again using FCM and texture features. The two new groups contained 83.3% of the
N cells and 71.3% of the CLL cells, respectively. The developed approach has been able to
automatically classify with high precision three types of lymphoid cells. The addition of more
descriptors and other classification techniques will allow extending the classification to other
classes of neoplastic lymphoid cells.

3.1 Introduction

Peripheral blood (PB) is an organic fluid easily accessible and its study is the initial analytical
step in the diagnosis of most of the hematological and non hematological diseases [79].
Frequently, the blood smear provides the primary or the only evidence of a specific diagnosis,
remaining an important diagnostic tool even in the age of molecular analysis [9]. Morphologic
evaluation of leukemia and lymphoma cells is essential for their diagnosis and classification.
In the World Health Organization (WHO) classification, neoplastic cell morphology, along
with immunophenotype and genetic changes, remains essential in defining lymphoid neo-
plasms [6].

Despite the significant improvements during the last years in hematology analyzers, no
significant progress has been made in terms of automatic classification of neoplastic PB cells.
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These devices are limited to identifying normally circulating leukocytes and flagging abnormal
cells, without being able to classify the abnormal leukocytes.

The close collaboration between cytologists, mathematicians and engineers over the last
few years has made possible the development of automatic methodologies for digital image
processing of normal blood cells. Some equipment are able to pre-classify cells in differ-
ent categories by applying neural networks, extracting a large number of measurements and
parameters that describe the most significant cell morphologic characteristics [19]. These
systems, when integrated in the daily routine, represent an interesting technological advance
since they are able to pre-classify most of the normal blood cells in PB [17].

Neoplastic lymphoid cells are the most difficult pathological cells to classify using mor-
phology features only [80], so that few studies of automatic classification of these cells with
satisfactory results have been published. In most of the previous studies, the lymphoid cell
classification has been addressed with pattern recognition systems to separate the cells into
categories [20, 59, 70, 74]. Nevertheless, the image processing techniques used in some of the
papers are not useful for the current digital images, since the present acquisition technology is
based on charge-coupled device sensors [20].

Morphologic distinction between various types of lymphoid cells requires experience and
skill and, moreover, objective values do not exist to define cytological variables. Chronic
Lymphocytic Leukemia (CLL) cells are typically small lymphocytes with clumped chromatin
and scant cytoplasm. Hairy cell leukemia (HCL) cells are larger than normal lymphocytes
(N) and they have abundant weakly basophilic cytoplasm with irregular hairy margins. This
chapter explores a starting methodology for lymphocyte recognition to allow the automatic
classification of abnormal lymphoid cells circulating in PB in some B lymphoid neoplasms,
such as CLL and HCL cells.

3.2 Material and methods

3.2.1 Blood sample preparation and digital image acquisition

Samples from patients with CLL and HCL were included in the study. The diagnoses were
established by clinical and morphologic findings as well as characteristic immunophenotype
of the lymphoid cells. Specifically, CLL cells had the phenotype CD5+, CD19+, CD23+,
CD25+, weak CD20+, CD10-, FMC7- and dim surface immunoglobulin (sIg) expression. All
the patients with HCL had lymphoid cells with the phenotype CD11c+, CD25+, FMC7+,
CD103+ and CD123+.
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3.2 Material and methods

Blood samples were obtained from the routine workload of the Core Laboratory of the
Hospital Clínic of Barcelona. Venous blood was collected into tubes containing K3EDTA as
anticoagulant. The samples were analyzed by a cell counter Advia 2120 (Siemens Healthcare
Diagnosis, Deerfield, USA) and PB films were automatically stained with May-Grünwald-
Giemsa in the SP1000i (Sysmex, Japan, Kobe) within 4 hours of blood collection.

The quality of the smears and cell morphology was assessed by hematologists prior to the
image study. 340 lymphoid cell images from PB films were selected, where 90 images were
lymphocytes from healthy patients, 100 were lymphoid cells from patients with HCL and 150
were lymphoid cells from patients with CLL. Each individual cell image had a resolution of
360 x 363 pixels and they were obtained by the CellaVision DM96 system (Lund, Sweden).

3.2.2 Novel method for lymphocyte classification

In this chapter a novel method for lymphocyte recognition was developed based on 3 steps: 1)
color segmentation; 2) feature extraction; and 3) classification. They are shortly described in
the remaining of this section.

3.2.2.1 Color segmentation

A digital blood image is composed of a finite number of pixels. Each one has a particular
location and color value, which can be represented in several spectral components or color
spaces: RGB, HSV, Lab, among others [35]. The goal of the segmentation procedure is to
separate lymphoid cells captured by microscope from other objects in the image [26, 48, 81].

In this chapter, lymphoid cell segmentation was obtained using the Watershed transforma-
tion (WT), which was applied only on the gradient of the green component from RGB color
space [57]. As a final result, 3 different regions of the cell were identified (segmented): the
cytoplasm, the nucleus and the peripheral zone around the cell.

3.2.2.2 Feature extraction

The objective of this stage is to obtain information about the objects in the image under
analysis. A number of 44 features were used in this chapter, which are related respectively to:
geometry (10), texture (30), basophilia intensity (3), and cytoplasm external profile (1). They
are summarized as follows:

Geometric features These features are quantitative geometric interpretations of the cell and
nucleus shapes. For each cell and nucleus were calculated: area, diameters, perimeters and
conic eccentricities. Then, nucleus/cytoplasm ratio was calculated by dividing the respective
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(a) Normal cell image (b) Green gradient (c) Cell markers (d) Cell Segmentation

(e) Nucleus markers (f) Nucleus segmentation (g) Watershed lines (h) Nucleus and cytoplasm

FIGURE 3.1: Different stages of the Watershed segmentation (WT): The original cell (a) was processed
to obtain the external and internal markers (c). The WT was calculated on the gradient of green
component (b). The markers limit the WT to segment the cell (d). Once the lymphoid cell was separated,
its edges are used as the new external marker and the thinned mask of the nucleus as the new internal
marker (e) in the WT to segment the nucleus (f). Finally the watershed lines (g) showed the regions of
interest: the nucleus, the cytoplasm (h) and the peripheral zone around the cell.

areas. The nucleus eccentricity relative to the cell center was calculated as the distance
between the center of the cell and the nucleus [59].

Texture features Several statistical measures were used to describe the texture of the
cytoplasm and nucleus regions [82]. The skewness measures the asymmetry of the shape; the
kurtosis, the relative flatness; the energy, the uniformity; and the entropy, the variability. In
addition, the mean and the standard deviation were calculated. Other second-order statistical
features were considered: contrast, homogeneity, correlation, energy, entropy, variance and
difference variance [83].

Granulometric features of the nucleus Four features were calculated from the granu-
lometric curve of the lymphoid cell (mean, standard deviation, skewness and kurtosis), to
discriminate the different types of nuclear texture and improve chromatin description [84].
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3.3 Results

Basophilia features of the cytoplasm Cytoplasmic basophilia can be estimated by color
analysis. The Lab color space is characterized by its approximation to human perception.
Therefore, the means of the intensities for each color component are appropriate to represent
the basophilia degree of the cytoplasm [59].

Cytoplasmic profile feature In this chapter a novel method to characterize the cytoplasmic
profile was proposed. It estimates the projections of the cytoplasm using the peripheral region
around the cell segmented by WT. This feature is obtained by using thresholding segmentation
to the green component and counting the pixels of this region.

3.2.2.3 Classification

In this chapter, the main objective of the classification step was to obtain an automatic clus-
tering using the features extracted from each image to analyze how they can provide relevant
information for the detection of normal, HCL or CLL lymphoid cells.

All features were stored in a data matrix, which was used as the input data for the clas-
sification. The unsupervised classification methodology Fuzzy c-mean (FCM) was applied.
Similar input data were grouped in each cluster with certain membership degree [85]. Finally,
the maximum membership value was considered to select the cluster for each lymphoid cell.

3.3 Results

In the first step, WT was effective in separating the nucleus of the cell. Besides, it allowed
segmenting more regions, specifically the outer profile of the cytoplasm, which is crucial
to extract the useful information to discriminate different types of lymphocytes. Moreover,
its computational cost was low. Figure 3.1 shows the images corresponding to the different
stages that were obtained by applying the WT segmentation to the lymphoid cells. The
lymphoid original cell stained with MGG is shown in Figure 3.1a. The WT was applied
only on the gradient of the green component from RGB color space (Figure 3.1b). Since
the gradient highlights the edges (high intensity changes) of the objects, some external and
internal markers were included as minimum values over the gradient image to improve the
delimitation of the different regions as shown in Figure 3.1c. Thereby, the over-segmentation
was avoided and only the entire lymphoid cell was separated (the darkest region on Figure
3.1d). Once the entire lymphoid cell was separated, new markers were imposed (Figure 3.1e)
and the WT was applied again to segment the nucleus (Figure 3.1f). Afterwards, mathematical
morphology operations were performed to improve the quality of the regions from the nucleus
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(a) Cell images (b) Cell granulometric curves

FIGURE 3.2: Normal (N), HCL and CLL lymphoid cells (a) and their corresponding granulometric
curves (b), which place the information from the dark spots on the left (negative coordinates) and the
information from the bright spots on the right (positive coordinates).

and cytoplasm. Finally, 3 different regions of the cell were identified: the cytoplasm, the
nucleus and the peripheral zone around the cell (Figures 3.1g and 3.1h).

Corresponding to the second step (feature extraction), Figure 3.2 shows an example of
N, HCL and CLL lymphoid cell images (Figure 3.2a) and their granulometric curves. Figure
3.2b shows how these curves discriminate the types of nuclear texture in the different lymphoid
cells, improving chromatin description. In order to obtain information from each curve, four
features were calculated: mean, standard deviation, skewness and kurtosis.

Figure 3.3 displays an example of cytoplasmic profile feature extraction obtained in one
of the hairy cell images. After the segmentation of the cell (Figure 3.3a), the peripheral zone
around the cell was selected (Figure 3.3b). The histogram representation of this region showed
an intermediate lobe that contained most of these “hairy” projections (Figure 3.3c). Then, the
presence or absence of these projections was determined (Figure 3.3d). Finally, this area was
quantified. The novel cytoplasmic profile feature proposed in this chapter was decisive for the
detection of the hairy cells. Figure 3.4 shows the characteristic cytoplasmic profile feature for
all the cells. HCL cells showed very high values of this feature compared with CLL and N
lymphoid cells.

Afterwards, for the classification step, the 44 features of the 340 available cells were used
to create the data matrix. It was automatically clustered into 3 groups using FCM, producing 3
membership functions. Since every cell pertains to one of the 3 groups with different degrees
of membership, the criterion that each lymphoid cell belongs to the group with the highest
membership value was used. The left part of Table 3.1 gives a summary of the whole data
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(a) Cell watershed lines (b) Cell peripheral zone

(c) Cell peripheral zone histogram (d) Quantified hairy projections

FIGURE 3.3: Stages to calculate the HCL cell cytoplasmic feature. After the cell segmentation (a), the
peripheral zone around the cell was selected (b). The histogram representation of this region showed
an intermediate lobe that contained most of the hairy projections (c). Then, the presence of these
projections was determined (d). Finally, this area was quantified.

obtained in the first FCM classification step. This shows an excellent classification on the
group 3 because it included 98% of the HCL cells. However, the groups 1 and 2 contained
75.6% of normal lymphoid cells and 62.7% of CLL cells, respectively. Figure 3.5 contains
3 plots corresponding to each group. The horizontal axis represents each individual cell,
while the vertical axis gives its membership value. These 3 values represent the probability of
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FIGURE 3.4: Cytoplasmic profile feature in N, HCL and CLL lymphoid cells. HCL cells showed very
high values of this feature compared with CLL and N lymphoid cells.

FIGURE 3.5: Membership function of each type of cell: normal lymphocytes (Normal), hairy cells
(HCL) and lymphoid cells from chronic lymphocytic leukemia (CLL). The horizontal axis represents
the cells, while the vertical axis represents the probability of belonging to each group. The horizontal
line for each type of cell represents the mean of their membership values in each group.
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TABLE 3.1: Two steps classification process. First, 3 different classes of data were obtained. Each
group has cells of the 3 types, i.e. the group 3 has 98% of the HCL cells. A second Fuzzy C-means
(FCM) was applied using the texture features only. It resulted in two new groups with 83.3% of N
lymphoid cells and 71.83% of CLL cells, respectively.

Type
FCM step 1 FCM step 2

Group 1 Group 2 Group 3 New group 1 New group 2
N 75.6% 20.0% 4.4% 83.3% 12.2%

HCL 1.0% 1.0% 98.0% 2.0% 0.0%
CLL 30.0% 62.7% 7.3% 21.3% 71.3%

N, normal cells; HCL, Hairy Cell Leukemia cells; CLL, Chronic Lymphocytic Leukemia cells

belonging to each group, their sum being equal to 1. In every plot, the data set was sorted in
this way: the first 90 images belong to N lymphocytes, the following 100 to HCL cells and the
last 150 to CLL cells. From Figure 3.5, it was clear to assure that both the normal cells and
the CLL cells do not belong to group 3 due to their low membership values. It was also clear
that HCL cells had high probability of belonging to group 3. On the contrary, from Figure 3.5
it was difficult to infer to which group (1 or 2) belong the normal and the CLL cells due to the
high variance of their membership values in groups 1 and 2.

In order to improve the classification, once the HCL group was identified, the set of the
remaining cells was clustered again using FCM. In this new clustering process, only two types
were considered (N and CLL cells) and only the texture features were used. The right part of
Table 3.1 gives a report of the results in this step: the percentage of normal lymphoid cells
increased to 83.3% in the new group 1 and the percentage of CLL cells increased to 71.3% in
the new group 2. In this case, this was clear enough to distinguish these two types of cells,
because their membership values were quite different for a significant percentage of cells as
observed in the right part of Table 3.1.

3.4 Discussion

In this chapter, a group composed by normal and two types of neoplastic lymphoid cells
(HCL and CLL) has been analyzed. HCL and CLL cells were selected in this work for their
representative morphology and the large number of these cells found in the routine workload
in the laboratory.

Cell morphology is subject to variability in slide making and staining procedures. In order
to minimize this variability, the images used in this chapter were obtained in a standard and
reproducible way using automatic staining and the Cellavision DM96 analyzer. The system
scanned the slides identifying different types of white blood cells (WBC). It takes digital
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cell images and uses artificial neural networks to analyze them [17, 19]. The analyzer pre-
classifies WBC but is not able to separate the different abnormal lymphoid cells circulating in
PB in some B cell lymphoid neoplasms [18].

Since neoplastic lymphoid cells are the most difficult ones to be classified using only
morphology features [80], in this chapter a starting methodology is proposed combining
segmentation, feature extraction and classification algorithms. It was shown that this auto-
mated image-based methodology extracted granulometric, basophilia and cytoplasmic profile
features in an objective and reproducible way. Then, this work explores a methodology that
could help to provide a new generation of automated systems to assist in the diagnosis through
hematological cytology.

The results showed that texture descriptors were the most relevant in CLL lymphoid
cell discrimination. Moreover, nuclear characteristics are important features in morphologic
diagnosis. The nuclear staining pattern reflects chromatin organizations and, in addition, the
CLL cells typically contain clumped chromatin [73]. Therefore it supplies a good descriptor.

In a previous work [59], granulometry was used to describe cytoplasmic profile feature.
Although that work showed good segmentation and description results, it was not completed
with further studies towards the discrimination among different groups of similar diagnosis.

In this chapter, a novel cytoplasmic profile feature is proposed based on a simple thresh-
olding of the peripheral zone around the cell. As it was expected, this feature was crucial for
the HCL cells detection, since in PB stained with MGG they show a soft, blue-gray cytoplasm
with hair-like cytoplasmic projection [86]. On the other hand, this feature could be used for the
detection of another neoplastic lymphoid cells with cytoplasmic villous, such as the splenic
marginal zone lymphoma.

Concerning to the classification process, 26 features (geometric and second-order statis-
tical features) were used in [70] to automate the classical microscopic diagnosis, obtaining
good results in the classification of CLL cells but only with respect to the different abnormal
types of leukocytes from PB. In this chapter, 44 features are used adding other geometric and
second-order statistical features as well as basophilia, granulometric, first-order statistical and
cytoplasmic profile features. In addition, 3 types of lymphoid cells were distinguished: nor-
mal, CLL and HCL cells. It is relevant to remark that hairy cells have never been automatically
classified before in the literature.

3.5 Conclusion

One of the main contributions of this chapter is the segmentation of the peripheral region of
the cell, in addition to the nucleus and cytoplasm, which allows proposing a new cytoplasmic
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3.5 Conclusion

profile feature describing information about the villous. This enables to achieve an accurate
classification of HCL cells.

In summary, the approach presented in this chapter has been able to discriminate between
3 groups of lymphoid cells with encouraging results. It goes in the direction of combining
medical, engineering and mathematical backgrounds to provide more objective and repro-
ducible estimation of the neoplastic lymphoid cell morphology than the standard microscopy
analysis. The development of a more robust segmentation, the addition of more features and
other classification techniques will allow extending the methodology to other classes of neo-
plastic lymphoid cells. In this respect, the subsequent chapter develops the full segmentation
methodology that will be used in the remaining of this thesis.
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Chapter 4

Color Clustering Segmentation of
Lymphoid Cell Images Using Spatial
Kernel Fuzzy C-means

Based upon: S. Alférez, A. Merino, L. Bigorra, L. Mujica, M. Ruiz, and J. Rodellar, Color clustering
segmentation of lymphoid cell images using spatial kernel fuzzy c-means, manuscript in preparation.
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Abstract

The study of the characteristics of the peripheral blood cells under the microscope provides
very useful information and it is the first analytic step in diagnosing most of the hematological
diseases. In this chapter, a robust segmentation methodology is developed using mainly color
clustering by the spatial kernel fuzzy c-means technique (sKFCM), to obtain three regions
from lymphoid cell images: nucleus, cytoplasm and the peripheral zone around the cell.
The methodology consists principally in two parts: (1) the cropping of the lymphoid cell
from the remaining components of the images by the sKFCM clustering of the Y and K
color components of the CMYK space, and (2) the application of the sKFCM clustering of
the XYZ color space on the cropped image to separate the nucleus. Then, the Watershed
transformation and other operations of mathematical morphology are applied to complete the
segmentation. The general methodology was tested using a database of 3394 cell images
containing normal lymphocytes and five types of neoplastic lymphoid cells corresponding to
different pathologies, showing an overall efficiency of 92.81%. This segmentation technique
will be part of the neoplastic lymphoid cells automatic classification system developed in this
thesis.

4.1 Introduction

The hematological diagnosis is an integrated process involving clinical information and dif-
ferent complementary tests such as morphologic analysis, genetic studies, inmunophenotype
tests, molecular biology, among others. But cytology is still the first analytical step in the
diagnosis of most of the diseases [79]. However, the morphologic differentiation between
different types of neoplastic lymphoid cells in the peripheral blood (PB) is a challenging
task that requires extensive experience and skill. Furthermore, there are no objective values
to define cytological variables, so that the slight differences in morphologic characteristics
present in several pathologies can lead to doubts on the classification of malignancies in the
hospital daily routine as well as false negatives [80].
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In recent years, various automated methods have been developed for digital image process-
ing (DIP) of white blood cells (WBCs), specially for five types of them: basophils, eosinophils,
monocytes, neutrophils and lymphocytes. This normal leukocyte recognition problem has
been well studied and the differences between the types are significant, allowing effective
solutions. On the other hand, the automated classification of neoplastic subtypes of lymphoid
cells, corresponding to the neoplasms defined by the World Health Organization (WHO) [6],
is a more complicated problem, which has been scarcely studied in the literature.

The central focus of this thesis is the automated identification of neoplastic lymphoid cells.
To solve that within the DIP framework, one of the most important steps is the segmentation,
which consists in separating the different objects of an image according to similar character-
istics of the pixels. This procedure is fundamental to obtain good results in the subsequent
stages of feature extraction and classification. The segmentation has been studied in various
works in the context of the identification of normal WBCs, neoplastic lymphoid cells and
blood cells from leukemia (from PB smears and bone marrow smears), by applying various
methods such us: automatic thresholding, color clustering, mathematical morphology, active
contours, etc. These works are detailed in the state of the art in Chapter 2 in Section 2.6.3.

The usual leukocyte classification methodology is not able to automatically recognize
neoplastic lymphoid cells, because their segmentation and subsequently description should be
more detailed. Then, although there have been several approaches for segmentation of normal
leukocytes and blood cells from leukemias, neoplastic lymphoid cells can be seen as new
types of cells requiring a particular treatment. This segmentation problem has been scarcely
studied in the literature (most are about normal leukocytes), and it is always limited to a few
types of neoplastic lymphoid cells. In this chapter, a novel methodology is proposed using the
color information of the image through fuzzy clustering of different color components and the
application of WT with markers, to obtain three regions of the cell: the nucleus, the cytoplasm
and the peripheral zone around the cell.

The remainder of the chapter is organized as follows. Section 4.2 explains the original
Fuzzy C-means (FCM) clustering technique, its kernelized version Kernel Fuzzy C-means
(KFCM), the spatial Fuzzy C-means (sFCM), and the combined technique spatial Kernel
Fuzzy C-means (sKFCM). Section 4.3 introduces the principles of the marker-controlled WT.
In Section 4.4 is explained the developed methodology for the color segmentation of the
lymphoid cells using sKFCM and WT. Section 4.5 provides the experimental results of the
sKFCM clustering and the completed segmentation applied over several cell types. Finally, in
Section 4.6 the conclusion and future perspectives are presented.
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4.2 Fuzzy clustering techniques

4.2 Fuzzy clustering techniques

Fuzzy c-means (FCM) clustering is an unsupervised method that partitions the data into
clusters, minimizing the distance between each data point in the cluster and its center, and
maximizing the distance between cluster centers. However, under certain restrictions each
data point can belong to several groups at the same time in a fuzzy way [87]. FCM has been
widely in medical applications such as analysis of magnetic resonance images, microarray
data, cell identification, among others. In this work, a combination of a kernelized fuzzy
clustering with a simple improvement using spatial information was made to segment color
PB cell images.

4.2.1 Original fuzzy c-means

The original FCM is introduced by Bezdek [88], extending the hard c-means method to a
fuzzy perspective. Let X = {x1,x2, ...,xn} be a set of n data samples, where each xk is a vector
defined by p features. For example, X can be an image, and xk a pixel defined by three values
corresponding to the RGB color components. X can be partitioned into c clusters, minimizing
the objective function

Jm =
c

∑
i=1

n

∑
k=1

µ
m
ik ∥xk −vi∥2 (4.1)

where vi is the ith cluster center, ∥·∥ is a norm metric (to calculate the distance between each
vector and the cluster center) and m is a constant parameter that controls the fuzziness of the
partition (the best choice is between 1.5 and 2.5). The membership matrix is defined as

U =
{

µik ∈ [0,1]
∣∣∑c

i=1
µik = 1;0 < ∑

n

k=1
µik < n

}
(4.2)

where µik is the membership of xk in the ith cluster.
Although there is not a simple solution, Bezdek et al. [89] proposes an efficient and

iterative algorithm to minimize the objective function:

1. Fix c (2 ≤ c ≤ n) and m. Initialize the membership matrix U (0). Then, each step is
numbered as r, where r = 0,1,2...
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2. Calculate the c centers vi for each step using

vi =

n

∑
k=1

µ
m
ik xk

n

∑
k=1

µ
m
ik

; 1 ≤ i ≤ c (4.3)

3. Calculate the update membership matrix U (r+1) using

µik =

 c

∑
j=1

(
∥xk −vi∥∥∥xk −v j

∥∥
)2/(m−1)

−1

1 ≤ k ≤ n;1 ≤ i ≤ c; f or xk ̸= vi (4.4)

4. If
∥∥∥U (r+1)−U (r)

∥∥∥≤ ε , stop; otherwise set r = r+1 and return to step 2.

In the last step, the algorithm compares a matrix norm ∥·∥ of two successive fuzzy iterations
to a level of accuracy ε . It is also possible to use the objective function to stop the algorithm
by
∣∣∣J(r+1)

m − J(r)m

∣∣∣≤ ε .

4.2.2 Kernel fuzzy c-means (KFCM)

Several kernel learning algorithms have been proposed in the literature [90]. One of the best
known applications is the Support Vector Machines (SVM) [91, 92]. However this is not
the only application where kernels can transform a linear algorithm (with inner products) to
a nonlinear version [93, 94]. The kernel trick can also be applied to the FCM algorithm
modifying its objective function [95–97].

Consider Φ : x ∈ X ⊆ Rp → Φ(x) ∈ F ⊆ RQ with p ≪ Q, a nonlinear transformation to a
higher dimensional feature space F (it may be infinite). A kernel can be defined as K (x,y) =
⟨Φ(x),Φ(y)⟩, which is a inner product in the new feature space F. This method allows to
calculate the inner product in the feature space, without explicitly using Φ. Then, equation
(4.1) is kernelized introducing the transformation into the distance:

Jm =
c

∑
i=1

n

∑
k=1

µ
m
ik ∥Φ(xk)−Φ(vi)∥2 (4.5)
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The expression inside the norm metric can be expanded as follows:

∥Φ(xk)−Φ(vi)∥2 = (Φ(xk)−Φ(vi))
T (Φ(xk)−Φ(vi))

= Φ(xk)
T

Φ(xk)−Φ(vi)
T

Φ(xk)−Φ(xk)
T

Φ(vi)+Φ(vi)
T

Φ(vi)

= K (xk,xk)+K (vi,vi)−2K (xk,vi)

(4.6)

There are some typical kernel functions used in different applications: Polynomial, Sig-
moid, inverse multiquadric and specially radial basis function (RBF) [93, 95]. This last kernel
is defined as

K(x,v) = exp

(
−∥x−v∥2

σ2

)
(4.7)

where σ is a customizable parameter of the RBF function kernel.
From this kernel, a convenient consequence when both variables are the same is obtained:

K(x,x) = K(v,v) = 1. Then, substituting equation (4.7) for kernel (4.7) into equation (4.5),
the objective function is simplified as

Jm = 2
c

∑
i=1

n

∑
k=1

µ
m
ik (1−K (xk,vi)) (4.8)

Following the same principle that FCM clustering, the minimization of the new objective
function of the RBF kernel produces two expressions for the cluster centers and the member-
ship matrix [97]:

vi =

n

∑
k=1

µ
m
ik K (xk,vi)xk

n

∑
k=1

µ
m
ik K (xk,vi)

(4.9)

µik =
(1−K (xk,vi))

−1/(m−1)

c

∑
j=1

(1−K (xk,vi))
−1/(m−1)

(4.10)

Since the above two equations are necessary but not sufficient to solve the optimization
problem, it is necessary to perform a similar algorithm as the one proposed for FCM in Section
(4.2.1). This procedure is accomplished by substituting equations (4.3) and (4.4) by equations
(4.9) and (4.10), respectively into the algorithm. In equation (4.9) the RBF kernel function acts
as a weighting, thus when the data points are far from the cluster center, the corresponding
weighted sum will be smaller, making the KFCM algorithm a robust estimator. Furthermore,
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the parameter for σ should have an appropriate value, neither too large nor too small, which
can be found by trial and error testing [96].

4.2.3 Spatial kernel fuzzy c-means (sKFCM)

The previous development is general for any data set, but if the problem is particularized to
an image it can be taken advantage of intrinsic considerations. For instance, the neighboring
pixels are strongly correlated because they have related characteristics. Thus, there is a greater
probability for these pixels to belong to the same cluster. Chuang et al. [98] proposes
to include the spatial information inside the FCM algorithm and therefore modifying the
membership matrix as summarized below.

Let X = {x1,x2, ...,xn} be an image of n pixels, where each xk is a vector that defines a
pixel by p color components in a color space. The spatial function is defined as

hik = ∑
j∈NB(xk)

µi j (4.11)

where NB(xk) is a neighborhood region around the pixel xk (centered square window). This
function is a spatial likelihood for the pixel xk to belong to the ith cluster, which is high if
the neighboring pixels are in the same cluster. Then, after the FCM updating step of the
membership matrix (step 3, equation (4.4)), a new modified membership is calculated as

µ̃ik =
µ

p
ikhq

ik
c

∑
j=1

µ
p
jkhq

jk

(4.12)

where p and q are control parameters of the membership matrix and the spatial function,
respectively. If p = 1 and q = 0 the original memberships remain unchanged as the classic
FCM. A significant consequence of this simple method is that it reduces the noise influence
due to the weighting of the spatial function.

The previous method can be also included into the KFCM modifying the corresponding
membership function. In order to clarify the FCM procedure with the kernel and spatial
insertions, the algorithm for the sKFCM method is outlined below:

1. Fix c and m. Initialize the membership matrix U (0). Then, each step is numbered as r,
where r = 0,1,2...

2. Calculate the c centers vi for each step using equation (4.9).

3. Update the membership matrix U (r+1) using equation (4.10).
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4. Calculate the spatial function of equation (4.11) and update again the membership
matrix using equation (4.12).

5. If
∥∥∥U (r+1)−U (r)

∥∥∥≤ ε , stop; otherwise set r = r+1 and return to step 2.

4.3 Marker-controlled watershed transformation

Intuitively, the WT is a region-based segmentation method that treats the image like a topo-
graphic relief. Then, water falling on this relief will fill the basins beginning with the local
minimums. Thus, water flows moving from different basins could clash, particularly when the
water reaches the maximum peaks, resulting in watershed lines that correspond to the limits
of the adjacent basins of the water regions [57]. Generally, the WT is not applied over the
original image, but over some function of it, e.g. the gradient image. There have been several
implementations of the WT algorithms depending of its formulation [56], but this work uses
one of the most commonly applied algorithms based on distance functions, which is introduced
by Meyer et al. [99]. In order to avoid any over segmentation, a set of markers can be defined
over the image function, considerably improving the results [100].

4.4 Color segmentation using sKFCM and watershed trans-
formation

The segmentation methodology proposed in this work uses the color composition of the cell
image due to the MGG staining applied over the blood sample, particularly the blue, magenta
and pink colors, seen as a first approximation of perception. The developed technique involves
the segmentation by color clustering using the sKFCM algorithm and the WT to obtain directly
the nucleus region and indirectly the cytoplasm and the peripheral zone around the lymphoid
cell. Figure 4.1 shows a simple scheme of the proposed segmentation methodology, which has
different parts. The most important sub-processes of this methodology are described below.

4.4.1 Preprocessing and color transformation

For removing noise of an image, mean or Gaussian filters are generally used, but they also
eliminate important information such as the details of the object edges. In this work, the cell
image was preprocessed by a filter to smooth the image but also preserve the edges [101]. This
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FIGURE 4.1: General methodology of the lymphoid cell segmentation.
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4.4 Color segmentation using sKFCM and watershed transformation

filter is based on a convolution mask that uses the Manhattan color distances between a central
pixel and its 8-connected neighboring pixels. The color distance is defined as

di =
|rc − ri|+ |gc −gi|+ |bc −bi|

3N
0 ≤ i ≤ 8 (4.13)

Where rc, gc, bc are the color values of the central pixel in the RGB color space, ri, gi, bi

are the pixels in the 8-connected neighborhood, and N is the number of possible values for
each color component (usually 255). Then, the convolution mask is given by

1

∑
8
i=1 ci

 c1 c2 c3

c4 0 c5

c6 c7 c8

 (4.14)

where ci = (1 − di)
s with s ≥ 1. Filtering is carried out through the convolution of each

color component (plane) with the above mask. The parameter s controls the blurring over the
image, since it scales the color differences. A value of s = 10 was utilized to filter the images,
producing a good performance.

After the filtering process, the image was transformed to the CMYK (cyan, magenta,
yellow and black) and CIE 1931 XYZ (Y is luminance, and the XZ plane contains the chro-
maticities), to provide the color information to the subsequent algorithms.

4.4.2 Only lymphoid cells algorithm

In this algorithm, the filtered cell image was processed to produce a binary mask which
separates the lymphoid cell from the remaining blood components. The main part of this
algorithm worked as a filter of RBCs producing a new image without them. This result was
achieved through the clustering segmentation by sKFCM with three clusters of the components
Y and K of the CMYK color space, generating three membership images: background, cell
and RBCs. Since this clustering method does not detect which corresponds to each cluster,
these three images were automatically identified by comparing with the green background
and the magenta foreground (both were binary masks obtained by thresholding). Afterwards,
a simple thresholding was applied on the RBCs membership image resulting in a binary mask,
which was used to reduce the thickness of the RBCs over the foreground (a defuzzification of
the background membership image). Then, the WT was performed over the distance transform
of this modified foreground, obtaining a separation of the cells in a label matrix that divides
the image in several regions which contain different cells. Subsequently, a first approach of
the nucleus by combining the red and green components of the RGB color space allowed to
identify the cropping section that encloses the lymphoid cell. All the above procedure could
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(a) Cyan component (b) Magenta component (c) Yellow component (d) Black (K) component

(e) Lymphoid cell image (f) Background membership (g) Cell membership (h) RBCs membership

(i) Foreground mask (j) Modified foreground mask (k) WT label matrix (l) Selected cropping section

FIGURE 4.2: Different stages for a Mantle Cell Lymphoma cell in the algorithm only lymphoid cells.

produce various regions of interest (ROI) because an image may contain multiple lymphoid
cells.

Figure 4.2 illustrates the above described procedure for a cell from a patient suffering
Mantle Cell Lymphoma (MCL) : Figures 4.2a-4.2d show the CMYK color components of the
lymphoid cell image in Figure 4.2e; Figures 4.2f-4.2h show the related membership images
as a result of the Y-K clustering process; Figure 4.2i exhibits the modified mask respect to the
original foreground in Figure 4.2j; Figure 4.2k illustrates the label matrix after the application
of the WT; and Figure 4.2l shows the lymphoid cropping region delimited by the red line.

4.4.3 sKFCM nucleus segmentation

The sKFCM technique was applied on the transformed image to the CIE XYZ space color,
but limited to the lymphoid cell cropping region, to obtain (at least) three membership images:
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4.4 Color segmentation using sKFCM and watershed transformation

(a) X component (b) Y component (c) Z component

(d) Background membership (e) Nucleus membership (f) Cytoplasm membership

(g) Cytoplasm membership edges (h) Defuzzified nucleus membership (i) Nucleus binary mask

FIGURE 4.3: Different stages during the nucleus segmentation procedure for a MCL cell.

nucleus, cytoplasm and background. They were automatically identified by comparing with
the green background and the complement of the green component2 (maximum green value
minus green value). Then, a robust but simple procedure was done by combining the binary
mask of the nucleus membership image (defuzzification by thresholding) and the edges of
the cytoplasm membership image, achieving an excellent nucleus segmentation. Although,

2It is similar to the magenta color component
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(a) Y gradient with markers (b) Cell binary mask

FIGURE 4.4: Application of the watershed transformation on the Y gradient.

segmentation could be done using only the membership image of the nucleus, the last step
significantly improved the results.

Continuing with the example shown in Figure 4.2, Figure 4.3 illustrates the nucleus seg-
mentation procedure: the XYZ color components of the lymphoid cell are shown in Figures
4.3a-4.3c; the resulting membership images of the sKFCM clustering over the X, Y and
Z components are exhibited in Figures 4.3d-4.3f; the edges of the cytoplasm membership
image calculated by Canny edge detection are shown in Figure 4.3g; the defuzzification by
thresholding of the nucleus membership image is illustrated in Figure 4.3h; and the final binary
mask of the nucleus is shown in Figure 4.3i.

4.4.4 Cell segmentation by WT

This stage produced the binary mask of the whole cell by applying the WT with controlled
markers. The perimeter of the lymphoid cropping region was utilized as the external marker
and the binary mask of the nucleus as the internal mask. Subsequently, they were imposed as
minimum over the gradient of the Y component of the XYZ color space. Then, the WT was
applied on this modified gradient, obtaining the whole cell region.

Figure 4.4 shows the cell segmentation by applying the WT for the lymphoid cell in Figure
4.2e. Figure 4.4a depicts the Y gradient and the external and internal markers (green lines)
and Figure 4.4b illustrates the binary mask of the entire cell after performing the WT.
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4.5 Experimental results

FIGURE 4.5: Complete segmentation of the lymphoid cell in Figure 4.2e.

4.4.5 Individual masks

At this point, if there was a single lymphocyte in the cell image, the three ROI had already
been obtained: the nucleus, the entire cell and the peripheral zone around the cell. However,
if there were multiple lymphoid cells in the image, the three regions obtained would be:
all the nucleus, all the entire cells and the cropping section that contains all the lymphoid
cells. Therefore, an extra algorithm was developed to generate the individual mask for each
lymphocyte. This procedure was able to obtain masks for each cell separating the cases: (1)
there was a single nucleus per cell and (2) there were multiple nucleus per cell. Finally, some
post-processing operations on each final mask were done to clean several residues, such as:
cell fragments in the border, cytoplasm remains that cross the boundaries, RBC residues in the
peripheral zone around the cell, among others. Finally, the cytoplasm mask was obtained by
the difference between the masks of the whole cell and the nucleus, and the peripheral zone
around the cell was obtained by the difference between the lymphoid cropping section and the
entire cell mask.

The final segmentation of the lymphoid cell in Figure 4.2e is shown in Figure 4.5, which
includes three regions: peripheral zone around the cell (between red and green lines), cyto-
plasm (between green and blue lines) and nucleus (inside the blue line).

4.5 Experimental results

The developed algorithms were applied over peripheral blood images which come from sam-
ples of normal donors (N) and patients with different B mature lymphoid neoplasms such as:
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Chronic Lymphocytic Leukemia (CLL), Hairy Cell Leukemia (HCL), MCL and Follicular
Lymphoma (FL). B-prolymphocytes (BPL) images were obtained from transformed CLL.

The diagnoses were established by clinical and morphologic findings as well as charac-
teristic immunophenotype of the lymphoid cells. Specifically, CLL cells had the phenotype
CD5+, CD19+, CD23+, CD25+, weak CD20+, CD10-, FMC7- and dim surface immunoglob-
ulin (sIg) expression. All the patients with HCL had lymphoid cells with the phenotype
CD11c+, CD25+, FMC7+, CD103+ and CD123+. Patients with MCL showed lymphoid
cells with the phenotype CD5+, FMC7+, CD43+, CD10- and BCL6-. FL cells showed B-
cell associated antigens (CD19, CD20, CD22, CD79a) BCL2+, BCL6+, CD10+, CD5- and
CD43- .

Blood samples were obtained from the routine workload of the Core Laboratory of the
Hospital Clínic of Barcelona. Venous blood was collected into tubes containing K3EDTA as
anticoagulant. Samples were analyzed by a cell counter Advia 2120 (Siemens Healthcare Di-
agnosis, Deerfield, USA) and PB films were automatically stained with MGG in the SP1000i
(Sysmex, Japan, Kobe) within 4 hours of blood collection.

Individual lymphoid cell images from PB had a resolution of 360 x 363 pixels and they
were obtained by the CellaVision DM96 system (Lund, Sweden). The quality of the smears
and cell morphology was assessed by hematologists prior to the image study.

The parameters of the sKFCM clustering algorithm used in most segmentation experi-
ments in this section were: m = 2, p = 0,q = 2,σ = 150, and n = 3 clusters. These values will
be used in the rest of this chapter, unless specific values are stated.

4.5.1 sKFCM clustering of the entire lymphoid cell image: RBCs, cell
and background

As it was mentioned above, the first main part of the segmentation methodology is the sep-
aration of the lymphoid cells from the remaining components, i.e. the rough differentiation
between WBCs, RBCs, and background (and other components). In this section, the results of
the sKFCM clustering for different color spaces of six types of lymphoid cells are presented
to show how the different parts of the image can be separated. To display results in a clear
and compact way, a false colored representation was assigned for each resulting membership
images of the clustering process: yellow for the cell/nucleus, magenta for the RBCs, and black
for the background; all of these were integrated into a single image.

Figure 4.6 shows the clustering experiments for lymphoid cells using several color spaces.
Rows represent a different cell type: (a) N, (b) HCL, (c) MCL, (d) FL, (e) CLL, and (f) BPL.
Every column (from the second one) represents the clustering results for a particular color
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(f) BPL

(e) CLL

(d) FL 

(c) MCL

(b) HCL

(a) N RGB CMYK XYZ HSV YKL*a*b*

FIGURE 4.6: sKFCM clustering experiments of six cell-type images (rows) for five colors spaces
and two particular components Y and K of the CMYK space (columns). The parameters used for the
algorithm were: m = 2; p = 0;q = 2;σ = 150; and n = 3 clusters.

space: RGB (red, green and blue), CMYK (cyan, magenta, yellow, black), CIE 1931 XYZ (Y
is the luminance, X and Z are the chromaticities), L*a*b* CIE 1976 (L* is the luminance, a*
and b* are the chromaticities), HSV (hue, saturation and value), and the last column represents
the clustering using only the Y and K components of the CMYK space. RGB and XYZ
clustering shows an excellent and precise definition of each object, but they may confuse the
cytoplasm region with the RBCs such as for N and HCL cells in Figure 4.6a-b. CMYK and
L*a*b* clustering exhibit a good performance for most cell types, except for those with a clear
cytoplasm (low basophilia) as the HCL cell in Figure 4.6b. HSV clustering does not work well
because it may confuse some RBCs with the background, as shown in the respective cases in
Figure 4.6a-d. Finally, although Y-K sKFCM process presents some few mixed granulations,
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(a) N

(b) HCL

(c) MCL

(d) FL 

(e) CLL

(f) BPL

p=2,q=0 p=1,q=0 p=1,q=1 p=0,q=1 p=0,q=2

FIGURE 4.7: sKFCM clustering experiments for the Y and K color components varying the spatial
parameters p and q. The remaining parameters used for the algorithm were: m = 2,σ = 150 and n = 3
clusters.

this clustering has the best performance in the differentiation between the components of the
cell image. For instance, normal and HCL cell in Figure 4.6a-b, the shadow in Figure 4.6e,
and the entire neutrophil in Figure 4.6f are clearly distinguished by the membership images.
The latter is the main reason why Y and K clustering was chosen as an essential part of the
complete methodology to isolate the lymphoid cell.
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4.5.2 sKFCM clustering of the CMYK color space with different spatial
parameters

In this section, the sKFCM clustering of the Y and K components of the CMYK color space
with different spatial parameters p and q are presented for the same cells in Figure 4.6. The
resulting color membership images for p = 2 and q = 0, i.e. the spatial part is null while
the membership of the intensities is amplified by squared, are shown in the second column
of Figure 4.7; they are clear, well defined and sharpened with some variations inside the cell
membership similar to a noise. When p = 1 and q = 0, the technique is the same that KSFCM,
and these images present a high quantity of noise variations into the background, RBC and cell
memberships (e.g. Figure 4.7d). This is the worst result of all the experiments with various
parameters. The experiment with p = 1 and q = 1 involves both the intensity membership
as the spatial part, resulting in clearer and more defined images with less variations inside
the cell membership. The clustering with p = 0 and q = 1 is equivalent to a smoothed version
(low-pass filter) of the membership produced by the KSFCM case, as it can be seen comparing
the third and fifth columns in Figure 4.7. Lastly, the sKFCM clustering with p = 0 and q =

2 produces the best results with well defined, slightly sharpened and moderately smoothed
membership images for the background, RBCs and the cell.

4.5.3 sKFCM clustering of the limited lymphoid cell image: nucleus,
cytoplasm and background

Through the Y-K clustering and the only lymphoid cells algorithm, the generated cropping
region was used to reduce the information of the cell image. This section presents several
results of the kSFCM clustering on the limited image for various color spaces applied to
the same lymphoid cell types shown before in Figure 4.6. Figure 4.8 shows the clustering
experiments, where rows represent the different lymphoid cell types and the columns the color
spaces. The false color representation for each membership image was assigned as follows:
yellow for the nucleus, magenta for the cytoplasm and black for the background. Each cell
image is zoomed according to the lymphoid cropping region to improve the visualization. Due
to the remarkable textures of the nuclear chromatin, most of the color membership images
exhibit significant variations of the cytoplasm membership inside the nucleus region as it
can seen especially for the RGB, CMYK, L*a*b* and HSV clustering processes for the
FL cell (Figure 4.8d) or the CMYK clustering of the CLL cell (Figure 4.8e). Thus, as the
fourth column of the Figure 4.8 shows, the best clustering performance happens for the XYZ
color space, resulting in clear definitions and small variations for the different regions. This
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XYZ HSVCMYKRGB
(a) N

(b) HCL

(c) MCL

(d) FL 

(e) CLL

(f) BPL

L*a*b*

FIGURE 4.8: sKFCM clustering experiments of six cell-type images (rows) for five color spaces. The
parameters used for the algorithm were: m = 2; p = 0;q = 2;σ = 150; and n = 3 clusters.

last result became fundamental for the general methodology to segment the nucleus of the
lymphoid cells.

4.5.4 Completed segmentation results

The segmentations of the cells in Figures 4.6-4.8 are shown in Figure 4.9. These results present
an excellent performance for the six types of lymphoid cell: separating the whole cell even
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(a) Normal cell (b) HCL cell (c) MCL cell

(d) FL cell (e) CLL cell (f) BPL cell

FIGURE 4.9: Results of completed segmentation for the cell in Figures 4.6-4.8

when RBC are touching it (Figure 4.9b), simultaneously segmenting multiple cells (Figure
4.9d) even when they are touching each other (Figure 4.9c), isolating shadows (Figure 4.9e),
or not considering other types of WBCs (Figure 4.9f).

It is important to remark that several works have segmented only two regions of the cell
(nucleus and cytoplasm) [39, 53, 59, 67]. In Chapter 3, the WT on the green color component
was applied to segment three regions: the nucleus, the cell (the cytoplasm by difference),
and the peripheral zone around the cell. This last region was especially significant because it
allowed to evaluate the external profile of the cytoplasm. This chapter has implemented the
segmentation of the same three regions, but with a higher efficiency and robustness, using the
color information of the image instead of only one gray level.

4.5.5 Efficiency of the segmentation methodology

A total of 3394 individual PB lymphoid cells distributed between six types were segmented
to measure the efficiency of the developed segmentation methodology. The efficiency was
defined as the number of correctly segmented cell images divided by the total number of
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TABLE 4.1: Segmentation efficiency for various types of lymphoid cells

Type #Cells Correct Efficiency
N 287 260 90.59%

HCL 571 530 92.82%
MCL 827 732 88.51%
FL 582 551 94.67%

CLL 904 863 95.46%
BPL 223 214 95.96%
Total 3394 3150 92.81%

images (for each type and for the whole set). A segmentation was considered correct when
the three regions were well-segmented: the nucleus, the cell and the peripheral zone around
the cell. Then, if one of the segmented regions was wrong, the whole process would be seen
as incorrect. The confirmation of the segmentation results during the experiments was done
by expert cytologists. Table 4.1 presents the number of cells, the correctly segmented cell
images and the segmentation efficiency for each type of lymphoid cell. Almost all cell types
were segmented with an efficiency above 90%, except for the MCL cells which have a variable
size, irregular nuclear profile and the chromatin may have different textural variations being
condensed, lax or immature. But, although MCL cells is the most complicated cell type to
segment, the 88.51% of efficiency achieved is quite good.

4.5.6 sKFCM clustering of cell images from different sources

All the results presented above were obtained from images acquired from the Cellavision
DM96 system, following a standard protocol (e.g. the automated staining), to take advantage
of pathological information obtained during several years in the clinical laboratory. How-
ever, the extension of the segmentation methodology to other images acquired by different
equipment may allow the application of the DIP framework and the automatic detection of
lymphoid neoplasms to simpler clinical laboratories. Accordingly, results of the application
of the sKFCM technique over images from two different microscopes are presented in this
section.

Figure 4.10 shows the clustering of the Y and C components of the CMYK color space
for two cell images of patients with acute myeloid leukemia (AML) and AML with nucle-
ophosmin gene mutations (NPM-AML). They were acquired with a pixel resolution of 640 ×
480 from an Olympus BX50 microscope equipped with a compact 3CCD RGB color camera
module SONY XC-003. Figure 4.11 also shows the Y-K clustering for two cell images of
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NPM−AML

AML

FIGURE 4.10: Y-K sKFCM clustering of two cell images from patients with AML and NPM-AML. They
are obtained using an Olympus BX50 microscope equipped with a compact 3CCD RGB color camera
module SONY XC-003. The PB smear is stained with MGG. The parameters used for the algorithm
were: m = 2; p = 0;q = 2;σ = 150; and n = 3 clusters.

AML

MCL

FIGURE 4.11: Y-K sKFCM clustering of cell images from patients with AML and MCL, obtained from
an Olympus BX43 microscope equipped with an Olympus DP73 camera. The PB smear is stained with
MGG. The parameters used for the algorithm were: m = 2; p = 0;q = 2;σ = 150; and n = 3 clusters.
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patients with AML and MCL. They were obtained by the Olympus BX43 equipped with an
Olympus DP73 camera, the images having an original resolution of 4800 × 3600 pixels. It can
be seen that all four color membership images show an excellent representation of each region,
separating the lymphoid cell, the RBCs and the background. Therefore, this procedure can be
the starting point to generalize the methodology to images obtained with different acquisition
systems.

4.6 Discussion

Several works have studied the color clustering segmentation problem of blood cells. Most of
them have been applied to the segmentation of normal WBC [24, 34, 50], other works have
segmented immature WBC (from bone marrow to study leukemia) [52, 53], while neoplastic
lymphoid cell has been scarcely studied [49]. The proposed color clustering method developed
in this thesis is used mainly to segment atypical lymphoid cells.

Respect to Fuzzy clustering for blood cell segmentation, the original FCM has been ap-
plied for color clustering segmentation of WBC using the L*a*b color space and thresholding
techniques [24]. The work in this chapter has combined the Kernel method for FCM clustering
[95] with the spatial method proposed in [98], thus resulting into a novel segmentation method.
While the papers [95, 98] apply the fuzzy clustering segmentation to Magnetic Resonance
images, the sKFCM clustering method developed in this thesis has been extended to color
images, increasing its applicability.

The sKFCM algorithm can be used for both the complete image or for a cropped section
(it is not necessarily a rectangular region). Particularly, the sKFCM color clustering was very
useful to separate different regions of PB cell images stained with MGG stain, providing
excellent results for most color spaces, especially with the Y and K color components of
the CMYK space. Furthermore, tuning the parameters that control the relative importance
of the membership and spatial functions allowed to improve the membership images that
represent the region of the cell image. For instance, the clustering results with p = 0 and
q = 2 were much better than just using KFCM. Moreover, the color clustering by sKFCM of
a cropped image produced more detailed membership images related to the ROI because the
information was reduced and approximately limited to them, as it happened with the nucleus
segmentation of the lymphoid cell image by using the XYZ color space clustering. Therefore,
the sKFCM was used two times in a kind of cascade mode: firstly to crop the lymphoid cell
from the remaining regions, and secondly to distinguish between the regions of the nucleus,
the cytoplasm and the background.
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Since atypical lymphoid cells3 present more subtle differences compared to normal WBCs,
their characterization is more complex, causing the segmentation algorithm has to be more
specific and precise. This chapter is focused on the segmentation of different types of atypical
lymphoid cells (and normal lymphocytes).

The general problem of segmenting atypical lymphoid cells has seldom been studied. An-
gulo et al. [59] uses the green and saturation components with thresholding and mathematical
morphology tools (Watershed transformation and some morphological operators) to segment
the nucleus and cytoplasm of lymphocytes, while Yang et al. [47] develops a segmentation
methodology based on active contours (gradient vector flow) and robust estimation for the
nucleus and cytoplasm of lymphoid cells from FL, MCL and CLL. The segmentation method
proposed in this chapter, through clustering color and Watershed transformation, segments
not only the nucleus and cytoplasm, but also the external region of the cell, which can supply
relevant information in some types of cells such as HCL. In addition, the efficiency of the
segmentation is tested on normal lymphocytes and five types of neoplastic lymphoid cells
(HCL, FL, MCL, CLL and PLB).

4.7 Conclusion

A robust segmentation methodology has been developed, which separates three regions: the
nucleus, the cytoplasm and the peripheral zone around the cell. The peripheral zone is par-
ticularly important to characterize some pathologies which present cells with hairy-like cy-
toplasmic projections. The segmentation methodology has been able to process different
types of lymphoid cell images, which have varied morphologic characteristics, achieving a
total efficiency of 92.81%. Thus, the segmentation method could be extended to other types
of WBCs such as blasts, reactive lymphocytes, plasma cells and other neoplastic lymphoid
cells. On the other hand, promising clustering results indicate that the methodology could be
expanded to other images obtained from different acquisition systems.

Since the sKFCM clustering algorithm can work with color spaces, the potential appli-
cations are not only limited to PB cells images but to any kind of color images to segment
different regions with color and spatial similarities.

In the remaining of this thesis, the developed segmentation methodology is used to com-
plete the further steps of feature extraction/selection and automatic classification of atypical
lymphoid cells.

3Atypical lymphoid cells include reactive lymphocytes and neoplastic lymphoid cells
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Chapter 5

A Methodology for Automatic
Recognition of Neoplastic Lymphoid Cell
Images from Peripheral Blood

Based upon: S. Alférez, A. Merino, L. Bigorra, L. Mujica, M. Ruiz, and J. Rodellar, Automatic recognition
of atypical Lymphoid cells from peripheral blood by digital image analysis, American Journal of Clinical
Pathology, vol. 143, pp. 168-176, 2015. doi: 10.1309/AJCP78IFSTOGZZJN
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Abstract

The objective of this chapter was the development of a methodology for the automatic recog-
nition of different types of neoplastic lymphoid cells. In the methodology development, a
training set (TS) of 1500 lymphoid cell images from peripheral blood was used. Clustering of
color components and Watershed Transformation were use to segment the images. A number
of 113 features were extracted for lymphocyte recognition by Linear Discriminant Analysis
(LDA) with a 10-fold cross validation over the TS. Then, a new validation set (VS) of 150
images was used, performing two steps: 1) tuning the LDA classifier using the TS; and 2)
classifying the VS in the different lymphoid cell types. The segmentation algorithm was very
effective in separating cytoplasm, nucleus and peripheral zone around the cell. From them,
descriptive features were extracted and used to recognize the different lymphoid cells. The
accuracy for the classification in the TS was 98.07%. The precision, sensitivity and specificity
values were above 99.7%, 97.5% and 98.6% respectively. The accuracy of the classification
in the VS was 85.33%.

5.1 Introduction

Detecting lymphoma and leukemia cells timely to provide patients with an adequate treatment
is decisive for their prognosis. Frequently, the blood smear provides the primary or the
only evidence for a specific diagnosis, remaining an important diagnostic tool even in the
age of molecular analysis [9, 79]. In the World Health Organization (WHO) classification,
neoplastic cell morphology, along with immunophenotype and genetic changes, remains es-
sential in defining lymphoid neoplasms [6]. Morphologic distinction between various lym-
phoid cell types requires experience and skill and, moreover, objective values do not exist
to define cytological variables. Chronic Lymphocytic Leukemia (CLL) cells are typically
small lymphocytes with clumped chromatin and scant cytoplasm. CLL cells are larger than
normal lymphocytes (N) and they have abundant weakly basophilic cytoplasm with irregular
hairy margins. However, subtle differences on morphologic characteristics exhibited by some
lymphoma and leukemia cells leads to a significant number of false negatives in the routine



A Methodology for Automatic Recognition of PB Neoplastic Lymphoid Cell Images

screening. Moreover, additional studies are expensive and time-consuming. This is why
having an automated screening imaging system for decision support could reduce the cost
and morbidity of the patients.

Some available equipments for Digital Image Processing (DIP) are able to pre-classify
cells in different categories by applying neural networks, extracting a large number of mea-
surements and parameters that describe the most significant cell morphologic characteristics
[19]. These systems, when integrated in the daily workload, represent an interesting techno-
logical advance since they are able to pre-classify most of the normal blood cells in peripheral
blood (PB) [17, 102].

Neoplasatic lymphoid cells are the most difficult pathological cells to classify using mor-
phology features only [80]. Few studies about automatic recognition of different neoplastic
lymphoid cells with satisfactory results have been published. In most of the previous studies,
the lymphoid cell classification has been addressed with pattern recognition systems to sepa-
rate the cells into categories [20, 59, 70, 74]. Nevertheless, the image processing techniques
used in these works are not useful for the current digital images, since the present acquisition
technology is based on charge-coupled device sensors [20].

Among the difficulties to overcoming the automation of the lymphoid cell classification
process from their morphologic characteristics, the most relevant are: 1) to accurately solve
the cell segmentation problem, which means separating the cells of interest from the whole
image; 2) to obtain descriptive features from the cells of interest, which allow high accuracy
during the classification step; and 3) to train a classifier to distinguish accurately among the
different lymphoid subtypes [54, 103]. This chapter presents a methodology for lymphocyte
recognition to allow the automatic classification of normal and four neoplastic lymphoid cells
circulating in Peripheral Blood (PB) mature B cell lymphoid neoplasms.

5.2 Material and methods

This study was carried out in two stages: 1) the methodology development, and 2) the method-
ology validation. In the first one, a set of 1500 lymphoid cell images was used, which is
referred to as training set. In the second one, a new independent set of 150 cell images
was used, which is named validation set. Figure 5.1 shows the scheme of the complete
methodology.
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FIGURE 5.1: The complete methodology has two stages: 1) the methodology development, and 2) the
methodology validation. In the first one, a training set of 1500 lymphoid cell images is processed to
obtain a database of features, which is used in a 10-fold cross validation with LDA classification to
calculate some statistical measures. In the second one, a new independent validation set of 150 cell
images was processed following the preceding steps. Then, the validation consists in two steps: a)
tuning the classifier using the previous training set; and b) classifying the new validation set in the
different lymphoid cell types.

5.2.1 Methodology development

The methodology to achieve the automatic recognition of lymphoid cells was performed
through the following steps:

5.2.1.1 Blood sample preparation and digital image acquisition

Samples from normal donors and patients with CLL, HCL and Mantle Cell Lymphoma (MCL)
were included in this study. The diagnoses were established by clinical and morphologic
findings as well as characteristic immunophenotype of the lymphoid cells. Specifically, CLL
cells had the phenotype CD5+, CD19+, CD23+, CD25+, weak CD20+, CD10-, FMC7- and
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dim surface immunoglobulin (sIg) expression. All the patients with HCL had lymphoid cells
with the phenotype CD11c+, CD25+, FMC7+, CD103+ and CD123+. Patients with MCL
showed lymphoid cells with the phenotype CD5+, FMC7+, CD43+, CD10- and BCL6-. B-
prolymphocytes (BPL) images were obtained from transformed CLL.

Blood samples were obtained from the routine workload of the Core Laboratory of the
Hospital Clínic of Barcelona. Venous blood was collected into tubes containing K3EDTA
as anticoagulant. Samples were analyzed by a cell counter Advia 2120 (Siemens Healthcare
Diagnosis, Deerfield, USA) and PB films were automatically stained with May-Grünwald-
Giemsa in the SP1000i (Sysmex, Japan, Kobe) within 4 hours of blood collection.

Individual lymphoid cell images from PB had a resolution of 363 x 360 pixels and they
were obtained by the CellaVision DM96 system (Lund, Sweden). The quality of the smears
and cell morphology was assessed by hematologists prior to the image study.

A training set of 1500 lymphoid cell images from PB films was selected to evaluate
the accuracy of the developed methodology. They were distributed as follows: 181 normal
lymphocytes from healthy patients, 301 HCL, 401 MCL and 617 from patients with CLL.
This group was divided into 542 CLL clumped chromatin typical lymphocyte images and 75
BPL images.

5.2.1.2 Clustering color segmentation

Through the segmentation step, lymphoid cells were separated from other objects in the image
[26, 35, 81]. In this chapter, the segmentation methodology developed in Chapter 4 was
applied to segment the cells, obtaining three regions for each cell: (1) cell region, (2) nucleus
region, and (3) peripheral zone around the cell. The cytoplasm region was obtained by the
difference between the regions of the whole cell and the nucleus.

5.2.1.3 Feature extraction

The objective of this step is to obtain quantitative information about the objects in the image
under analysis. In the present study, 113 features were used related respectively to: geometry
(10), color and texture (102), and cytoplasm external profile (1). Table 5.1 shows the distinct
categories of the features used in this work. They are summarized below.

Geometric features They were calculated for each individual cell as described in Chapter
3. These features are quantitative geometric interpretations of morphologic characteristics
such as the size and the shape of both nucleus and cell, and the nucleus-cytoplasm ratio.
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TABLE 5.1: Set of 113 lymphoid cell features that were extracted in the methodology described in this
chapter.

Feature Description Quantitative Feature
Cytoplasmic profile feature (1) Estimation of the Hairy projections

Geometric features (10)

Cell area Cell diameter
Cell conic eccentricity Cell perimeter

Nucleus area Nucleus diameter
Nucleus conic eccentricity Nucleus perimeter

Nucleus/cytoplasm ratio
Nucleus eccentricity respect to the cytoplasm

Color and texture features (102)* Cytoplasm Nucleus
Mean Mean

Standard Deviation Standard Deviation
First-order statistical Skewness Skewness

features (12 x 3) Kurtosis Kurtosis
Energy Energy
Entropy Entropy
Contrast Contrast

Homogeneity Homogeneity
Second-order statistical Correlation Correlation

features (14 x 3) Energy Energy
Entropy Entropy
Variance Variance

Difference Variance Difference Variance
Mean Mean

Granulometric features (8 x 3) Standard Deviation Standard Deviation
(Based on granulometric curve) Skewness Skewness

Kurtosis Kurtosis
* Color and texture features were applied to the nucleus and cytoplasm for each component of the L*a*b* color space.

Color and texture features First-order statistical features (based on the histogram of each
color component) [82], second-order statistical features [83], and granulometric features [84]
were applied in this chapter, and also used in [103]. In addition, the novelty in the present
chapter was to apply them over the nucleus and the cytoplasm for each component of the
L*a*b* color space to extract new features.

Cytoplasmic profile feature As it was introduced in Chapter 3, this feature was extracted
to characterize the cytoplasm profile. It estimates the projections of the cytoplasm using the
peripheral region around the segmented cell. Cytoplasmic profile feature is obtained by using
threshold segmentation to the green component and counting the pixels of this region.
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All features were stored in a numerical data matrix, which was used as the input data for
the classification step.

5.2.1.4 Feature analysis

The objective of this step is to determine the most relevant features for each cell type, which
was achieved within the context of the information theory feature selection using the so called
Conditional Mutual Information (CMI) Criteria [104, 105].

Principal Component Analysis (PCA) was used as a tool to visualize all the features. PCA
is a technique that is commonly used to reduce the dimensionality of a big dataset by its
transformation into a new set of principal components linearly uncorrelated, searching the
causes of variability and sorting the components by their importance [106].

5.2.1.5 Classification

The aim of this step was to obtain the automatic recognition of normal and different types of
neoplastic lymphoid cells from PB using the supervised classification method called Linear
Discriminant Analysis (LDA) [107].

To assess the efficiency of the proposed method, a 10-fold cross validation technique was
performed over the training set of 1500 lymphoid cells. This technique randomly divides
the data set into 10 equal size subsets. A single subset is used as the testing data, while
the remaining data are used for training. Then, the process is repeated 10 times. Finally, a
confusion matrix was obtained to calculate some overall statistical measures.

5.2.2 Methodology validation

In order to validate the methodology as illustrated in Figure 5.1, an independent validation set
of 150 new lymphoid cell images was distributed as follows: 34 normal lymphocytes, 19 HCL,
37 MCL, 30 LLC and 30 BPL. These images were acquired, segmented and their features
were extracted precisely through the same steps previously used for the training set. Next, the
validation of the methodology consisted in performing the LDA technique in two steps: 1)
tuning the classifier using the previous training set; and 2) classifying the new validation set
in the different lymphoid cell types.

5.3 Results

The developed segmentation algorithm was very effective in separating three different regions
of the cell image: cytoplasm, nucleus and peripheral zone around the cell. This procedure
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is an essential part of the methodology to ensure the success of the final classification step.
Figure 5.2 shows different examples of the segmentation step obtained in different normal and
neoplastic lymphoid cell images from PB.

For the classification, the 113 features mentioned in the Section 5.2 and listed in Table
5.1 were used. In addition, for each cell type the ten most ranked features by relevance
and interdependence were identified using information theory feature selection [104, 105].
The two most important features were among the geometric ones: (1) cell perimeter and (2)
nucleus-cytoplasm ratio. Regarding the remaining eight, they were color and texture features:
(3) standard deviation of the granulometric curve of the L component of the nucleus, (4) mean
of the b component of the nucleus, (5) standard deviation of the b component of the cytoplasm,
(6) entropy (first order statistical) of the a component of the nucleus, (7) correlation of the L
component of the nucleus, (8) homogeneity of the a component of the nucleus, (9) kurtosis of
the L component of the nucleus, and (10) eccentricity of the cell.

Figure 5.3 shows the first and second principal components derived from the whole set
of 113 features obtained by PCA dimension reduction. It can be observed that the different
subtypes of lymphoid cells presented a different position according to these principal compo-
nents. LLC cells showed a pattern more similar to normal lymphocytes but very different with
respect to HCL cells and BPL.

5.3.1 Methodology performance evaluation

The 1500 cell images of the training set were classified using LDA with 10 fold cross-validation.
Table 5.2 shows these results (confusion matrix) where the rows represent the true diagnosis
supplied by physicians and the columns the predicted diagnosis given by the classification
algorithm for each type of lymphoid cell. Appendix A gives details on the performance
classification parameters based on the confusion matrix. Every row was normalized with
respect to the total number of cells of its respective type to represent the percentages with

FIGURE 5.2: Segmentation results obtained in some images of lymphoid cells from peripheral blood:
Normal lymphocyte (N), Hairy cell leukemia (HCL), Chronic lymphocytic leukemia (CLL), Mantle Cell
Lymphoma (MCL) and B-prolymphocyte (BPL). The outer line delimits the cell from the external area;
the middle line corresponds to the cytoplasm margin and the inner line to the nucleus perimeter.
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FIGURE 5.3: First and second principal components of all set of features obtained by Principal
Components Analysis (PCA) showing that the different subtypes of lymphoid cells presented a different
position taking into account these principal components of the set of features. Chronic lymphocytic
leukemia (CLL) cells showed a similar pattern with respect to normal lymphocytes (N) but very different
from Hairy cell leukemia (HCL) cells and B-prolymphocytes (BPL).

TABLE 5.2: Confusion Matrix of the LDA classification and 10-fold cross-validation for the training
set.

P r e d i c t e d*
N HCL CLL MCL BPL

Tr
ue

N 99.45 0.00 0.00 0.00 0.55
HCL 1.66 97.67 0.00 0.00 0.67
CLL 0.92 0.00 98.71 0.19 0.18
MCL 1.25 0.00 0.00 97.50 1.25
BPL 4.00 1.33 0.00 0.00 94.67

* The rows represent the true diagnosis and the columns the predicted diagnosis
given by the classification algorithm for each type of lymphoid cell. The values
are in percentage. Accuracy = 98.07 % and standard deviation = 0.80.
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respect to the true diagnosis. The five-class classification accuracy was 98.07% and also its
standard deviation (STD) was calculated to measure the variability between folds, which was
0.80%. Diagonal values are the true positive rates for each cell subtype, showing values of
99.45% for normal lymphoid cells, 97.67% for HCL, 98.71% for CLL, 97.5% for MCL and
94.67% for BPL.

Figure 5.4 shows some statistical measurements of the five-type classification. Most of
the precision values are above 99.7% with their respective STDs lower than 1%, except for N
and BPL cells, which present values above 88.8% and STDs lower than 9.6%. Most of the
sensitivity values are above 97.5% with their STD lower than 2%, while PLB value is 94.7%
with a STD of 6.9%. All the specificity values are above 98.6% with their STDs lower than
0.9%.

Figure 5.5 shows some images corresponding to the different lymphoid subtypes classifi-
cation results using the last fold of the first experiment. Each row corresponds to a different
lymphoid cell type (N, HCL, CLL, MCL and BPL).

5.3.2 Validation of the methodology

Table 5.3 shows the classification results (confusion matrix) in which the five-class classifi-
cation accuracy is 85.33%. True positive rates for each cell subtype are: 94.12% for normal
lymphoid cells, 94.74% for HCL, 80% for CLL, 89.19% for MCL and 70% for BPL.

5.4 Discussion

Morphologic examination of PB cells is the first analytical step in the hematological diagnosis
and it is a truly useful aid for the indication of further necessary tests. Since neoplastic

FIGURE 5.4: Precision (a), sensitivity (b) and specificity (c) of the 10-fold cross validation with Linear
Discriminant Analysis (LDA) classification of the training set. Standard deviations are represented by
the lines on the top of the bars.
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FIGURE 5.5: Images corresponding to the different lymphoid subtypes classification results using
the last fold of our first experiment. Each row corresponds to a different lymphoid cell type: normal
lymphocytes (N), hairy cell leukemia (HCL), chronic lymphocytic leukemia cells (CLL), Mantle Cell
Lymphoma (MCL) and B-prolymphocytes (BPL).

lymphoid cells are the most difficult ones to be classified using only morphologic features [80],
the major goal of the work in this chapter is to design a methodology combining segmentation,
feature extraction and classification algorithms that can be useful as a diagnosis support tool.

Cell morphology is susceptible to variations in slide making and staining process. With
the aim of decreasing that variation, the images were obtained by a standard and reproducible
method using automatic staining and the Cellavision DM96 analyzer. This equipment can
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TABLE 5.3: Confusion Matrix of the LDA classification for the validation set.

P r e d i c t e d*
N HCL CLL MCL BPL

Tr
ue

N 94.12 0.00 0.00 5.88 0.00
HCL 0.00 94.74 0.00 0.00 5.26
CLL 16.67 0.00 80.00 3.33 0.00
MCL 2.70 0.00 0.00 89.19 8.11
BPL 0.00 0.00 0.00 30.00 70.00

* The rows represent the true diagnosis and the columns the predicted diagnosis
given by the classification algorithm for each type of lymphoid cell. The values
are in percentage. Accuracy = 85.33 %

scan the slides identifying different types of WBC by artificial neural networks [17, 19], but it
is not able to separate the diverse neoplastic lymphoid cells circulating in PB [18].

Normal and four neoplastic (CLL, HCL, MCL and BPL) lymphoid cells were selected due
to their characteristic morphology and the high number of them that were collected from daily
workload in the clinical laboratory.

With respect to the segmentation method, some authors have only segmented two regions
of the cell (nucleus and cytoplasm) [39, 53, 59, 67]. In Chapter 3, watershed transformation
on the green color component to segment three regions (nucleus, cytoplasm and the peripheral
zone around the cell) was used. In that study, the peripheral region of the cell was especially
significant because it allowed us to evaluate the external profile of the cytoplasm. In this
chapter, the full extended segmentation procedure of Chapter 4 has been used to segment the
three regions of each lymphoid cell, which uses the color information of the image instead of
only one gray level. This has resulted to be very useful to extract the appropriate description
about the cell.

Regarding the feature extraction step, Scotti calculated only a few geometric features
over the cell, nucleus and cytoplasm [39]. Other authors calculated geometric and statistical
features of the nucleus [53, 67]. Angulo et al. [59] used extensively the granulometry over the
luminance component to compute features for the lymphocyte identification. In this chapter,
the texture features have been extended to multiple color components obtaining a total of 113
features, combining geometric, statistical and granulometric features to analyze the texture of
the nucleus and the cytoplasm. This extension has permitted to find a better color and texture
description of these regions. Nuclear characteristics are important features in morphologic
diagnosis. The nuclear staining pattern reflects chromatin organizations and, in addition,
CLL cells typically contain clumped chromatin [73]. Not only the cytoplasm profile feature
described by the first time in [103] has been calculated, but also its texture, which has been
scarcely analyzed in the literature.
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Furthermore, it has been demonstrated that the size of the lymphoid cell (perimeter) and
the nucleus-cytoplasm ratio are the two main features, which comprise the most information
regarding the type of cell. Eight relevant features have also been found, six of them containing
information of the nuclear texture, one related to cytoplasm and one relative to the cell shape.
All above morphologic features are used in the conventional differential analysis of the cells
under the microscope.

Moreover, the whole set of features has been represented using their two principal com-
ponents. From the PCA dimension reduction, HCL cells were the subtype most separated
from the rest of cells, which corresponds to the differences in the morphology of these cells
with respect to the others. LLC cells were located very close to the normal lymphocytes and
a portion of the MCL cells, which is in accordance with the subtle morphologic differences
between them. Figure 5.3 shows that the group of PLB cells overlaps the group of MCL cells,
which is according to the morphologic similarities that they share. The separation observed
from the PCA plot is an indicator that both segmentation and feature extraction steps have
been satisfactorily performed.

Concerning the classification process, Angulo et al. [59] classified the morphologic fea-
tures of the lymphoid cells in categories using decision trees, but that work was not completed
with further studies toward the specific discrimination among different groups of similar
diagnosis. In addition, Yang et al. [75] classified five types of neoplastic blood cells but they
included precursor lymphoid neoplasms and acute myeloid leukemia blast cells. One of the
main practical contributions of the present work is that the proposed methodology succeeded
in classifying five types of lymphoid cells (normal and mature B-cell neoplasms).

The accuracy of the methodology has been truly satisfactory, with very low standard
deviation. Precision, sensitivity and specificity values have presented excellent values, while
they were lower for N and BPL cells because the number of the images for these two types
of cells was smaller and therefore less representative. Moreover, the methodology has been
satisfactorily validated through the classification of an independent validation set using a group
of cells from new patients.

5.5 Conclusion

In summary, the methodology presented in this chapter started with the design of a segmenta-
tion procedure to obtain regions of interest in lymphoid cells; from them, descriptive features
were extracted and a combination of these characteristics was used in algorithms to classify
normal and four different types of neoplastic lymphoid cells.
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5.5 Conclusion

The addition of more color and texture features and exploring other classification meth-
ods to the described methodology will allow classifying other types of neoplastic lymphoid
cells, which is important in view of a potential use as a diagnosis support tool in clinical
practice. With this aim, the next chapter presents further developments related to feature
extraction/selection and classification procedures.

81





Chapter 6

Feature Extraction and Classification of
Neoplastic Lymphoid Cells from
Peripheral Blood Digital Images

Based upon: S. Alférez, A. Merino, L. Bigorra, L. Mujica, M. Ruiz, and J. Rodellar, S. Alférez, A. Merino,
L. Bigorra, L. Mujica, M. Ruiz, and J. Rodellar, A methodology for automatic recognition of neoplastic lymphoid
cell images from peripheral blood, manuscript in preparation.
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Abstract

Morphologic analysis of peripheral blood cells is the first analytical step in the hematological
diagnosis, which is useful to indicate further laboratory tests. The objective of this chapter was
to develop a feature extraction and automatic classification methodology of neoplastic lym-
phoid cells, since they are the most difficult to be recognized by only qualitative morphologic
features. The feature set implemented in this work consists of geometric features and color-
texture features (statistical, wavelet and granulometric features) from various color spaces.
This full feature set was extracted from 1834 cell images of six different types of lymphoid
cells to be used in several classification experiments. The best experiment configuration
was obtained for 20 features selected by theoretic feature selection and classified by support
vector machines with radial basis function kernel, achieving a lymphoid cell classification
accuracy of 97.93%. The feature extraction and classification methodology developed in this
chapter will be integrated into the automatic classification system of neoplastic lymphoid cells
developed in this thesis.

6.1 Introduction

As it has been pointed out in previous chapters, morphologic analysis over different types of
neoplastic lymphoid cells is difficult and requires skills developed through experience [79]. In
addition, cytological variables are very difficult to define objectively, resulting in doubts on the
recognition of pathologies due to small variations of the morphologic features [80]. Then, the
mathematical characterization of these parameters can lead to objective values improving the
identification (manual or automatic) of neoplastic lymphoid cells. The characteristics of the
cell can be obtained by quantitative measures calculated in the feature extraction step of the
digital image processing (DIP) framework. They can represent morphologic qualitative fea-
tures usually employed by the hematologist [3] or can be just abstract quantitative parameters
[35].

Feature extraction/selection and classification techniques have been investigated in dif-
ferent papers (see Chapter 2, Sections 2.6.4 and 2.6.5) with the purpose of automatically
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recognize normal white blood cells (WBCs), neoplastic lymphoid cells and leukemia blood
cells.

Neoplastic lymphoid cells are the most difficult pathological cells to classify (manually
and automatically) using only morphologic features [80]. A problem still open is to achieve a
successful automatic discrimination among a relevant number of different neoplastic lymphoid
cells in the context of the currently known B cell neoplasms [6]. Up to our knowledge, the
literature has reported automatic classification tools able to recognize only a limited number
of neoplastic lymphoid cells [21, 59, 70, 74, 75]. In previous Chapters 3 and 5 in this thesis,
a method for lymphocyte recognition to allow the automatic classification of normal and up
to four types of neoplastic lymphoid cells circulating in PB in mature B cell neoplasms is
presented. This chapter extends the classification to include a new group: Follicular Lym-
phoma (FL). This extension involves significant methodological improvements in the feature
extraction/selection and in the classification methodology. The present chapter presents the
formulation in detail, including extensive classification experimental results to evaluate the
merits of different alternative designs. Chapter 7 will present a strategy for automatic recog-
nition of PB neoplastic lymphoid cells implementing and evaluating the methodology in a
scenario where it could be useful in clinical practice.

The remainder of this chapter is organized as follows. Section 6.2 reviews the segmenta-
tion method used to separate the regions of interest (ROI). Section 6.3 explains the geometric
features, which include the geometric features and the Elliptical Fourier Descriptors (EFD).
Section 6.4 describes the color-texture features, introducing: the first and second order sta-
tistical features, the wavelet features and the granulometric features; all of them applied on
different color spaces. Section 6.5 introduces the normalization methods applied over the
features. Section 6.6 reviews the information theoretic feature selection used to reduce the
feature set, considering the redundancy and the relevance. Support Vector Machines (SVM)
classifiers with several kernels are briefly explained in Section 6.7. In Section 6.8 various
classification experiments are shown to analyze the features and to find the best possible
configuration of a lymphoid cell classification system. Finally, conclusions are presented in
Section 6.9.

6.2 Regions of interest obtained by color segmentation

Three ROI were obtained for each individual cell image using the color clustering segmen-
tation methodology developed in Chapter 4: the entire cell, the nucleus and the peripheral
zone around the cell. These three regions are originally binary masks, from which geometric
features can be calculated directly or they can define the corresponding color regions to extract

86



6.3 Geometric features

color-texture features. The cytoplasm region was obtained by the difference between the entire
cell and the nucleus regions.

6.3 Geometric features

This kind of features aims to measure basic morphologic features such as size and shape. The
geometric features extracted in this work are described below.

6.3.1 Geometric-size features

These features measure quantities related to the size of the cell, the nucleus and the cytoplasm.
They also include a feature related to the relative orientation and a simple feature about the
shape.

Area The area was calculated by counting the number of pixels in the region.

Diameter It was calculated as the equivalent diameter of a circle with the same area as the
ROI, i.e. diameter =

√
4Area/π .

Perimeter The perimeter was obtained as the border length of the ROI, i.e the sum of the
distances between adjacent pixels on the boundary.

Conic eccentricity It was measured as the conic eccentricity of an equivalent ellipse that
describes the ROI. An eccentricity equal to 1 represents a straight line, whereas if it is 0
represents a circle.

Compactness It was calculated as the relation between the squared perimeter and the area,
Compactness = perimeter2/area.

Nucleus eccentricity respect to the cytoplasm This feature was calculated as the distance
between the cell center and the nucleus center.

Nucleus-cytoplasm ratio The nucleus-cytoplasm ratio was obtained as the relation between
the nucleus and cytoplasm areas, using the following expression:

NCratio =
areanucleus

areacell −areanucleus
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Cytoplasmic profile feature This feature estimates the projections of the cytoplasm using
the peripheral region around the segmented cell. It was obtained by using threshold segmen-
tation to the green component and counting the pixels of this region (See Chapter 3 for more
details).

Area, diameter, perimeter, conic eccentricity and compactness were calculated for both the
nucleus and the cell regions.

6.3.2 Elliptical Fourier descriptors

Fourier descriptors represent a closed contour using a limited number of coefficients, which
are derived from the Fourier series of the border. However, these descriptors are not invariant
in translation, scale and rotation. The elliptical Fourier descriptors, proposed by Kuhl and
Giardina [108], are a contour representation taking the Fourier series individually over each
coordinate of each point [x(t),y(t)] seen as a parametric function, where t is the time required
to reach the point. If the “velocity” is constant, this parameter can be considered as the arc
length of the chain code or any piecewise linear representation of a contour. Then, the EFD
for the nth harmonic of a contour with K points are:

an =
T

2n2π2

K

∑
p=1

△xp

△tp

[
cos

2nπtp

T
− cos

2nπtp−1

T

]

bn =
T

2n2π2

K

∑
p=1

△xp

△tp

[
sin

2nπtp

T
− sin

2nπtp−1

T

]

cn =
T

2n2π2

K

∑
p=1

△yp

△tp

[
cos

2nπtp

T
− cos

2nπtp−1

T

]

dn =
T

2n2π2

K

∑
p=1

△yp

△tp

[
sin

2nπtp

T
− sin

2nπtp−1

T

]
(6.1)

where tp = ∑
p
i=1△ti, △tp =

√
△x2

p +△y2
p, △xp = xp−xp−1, △yp = yp−yp−1, and T = tK is

the period trough all points of the closed contour (or the total arc length of the closed contour).
The EFD geometric interpretation as an addition of rotating phasors, which are linked by

ellipses corresponding to each harmonic, allows to make the descriptors to be invariant in
terms of: (1) the starting (and arbitrary) point of the contour, (2) spatial rotations and, (3) size
variations (translation invariance is obtained eliminating the DC2 components of the Fourier

2DC component is really the first component, at zero frequency.
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series). This normalization procedure is based on whether the locus of the first harmonic
phasor is elliptical or circular.

In this work, 8 harmonics for the nucleus contour and 8 harmonics for the cell contour were
calculated, obtaining 64 EFD. The elliptical Fourier descriptors were not made size-invariant
in this work since the size is important in the cell morphologic analysis.

6.4 Color-texture features

These features allow to extract information about the color and texture of the image. The tex-
ture was characterized by using statistical features, wavelet statistical features (which included
first and second order statistical features) and granulometric features. The color information
was described by applying the texture features on different color components of several color
spaces. Each of these features was applied to the nucleus and the cytoplasm.

6.4.1 First order statistical features

These features are based on the histogram of a grayscale digital image. The histogram is a
discrete function that shows the number of pixels H(i) on the image having the pixel intensity
value i (frequencies) [35]. Since the digital image is a discretized matrix, its pixels can take
values between the range [0,L−1] (L is not necessarily the number of values that can take
the pixels, but the number of containers under which the frequencies of the histogram are
calculated). The histogram can also be interpreted as a probability density of occurrence of
the intensity values if the frequencies are divided by the number of pixels in the image (or the
number of containers):

p(i) = H(i)/L , i = 0,1, ...,L−1 (6.2)

From the simple statistical information about the image supplied by the histogram, several
first order statistical features can be obtained [82]. Table 6.1 shows the six features used in
this work. The mean is the average of the whole intensity values of the image (or the ROI),
the standard deviation measures the dispersion of the intensity values around the mean, the
skewness describes the symmetry of the histogram around the mean; the kurtosis measures the
flatness, the energy the uniformity, and the entropy3 describes the variability of the histogram.

3There are two entropies, one for the first order and another for the second order statistical features.
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Feature Expression

Mean µ =
L−1

∑
i=0

ip(i)

Standard deviation σ =
L−1

∑
i=0

(i−µ)2 p(i)

Skewness µ3 = σ−3
L−1

∑
i=0

(i−µ)3 p(i)

Kurtosis µ4 = σ−4
L−1

∑
i=0

(i−µ)4 p(i)−3

Energy (uniformity) E1 =
L−1

∑
i=0

[p(i)]2

Entropy 1 H1 =
L−1

∑
i=0

p(i) log2 (p(i))

TABLE 6.1: First order statistical features

6.4.2 Second order statistical features

Haralick et al. [83] defines the second order statistical features, which provide more infor-
mation about the texture of the regions to be analyzed. These parameters are defined based
on the gray level co-occurrence matrix (GLCM) of a digital image, which represents the joint
probability P(i, j) that a pair of pixels have intensity values of i and j, respectively, at a distance
d in a particular direction θ . This probability can be calculated as the frequency count of
occurrences (second order histogram) divided by the total number of neighbouring pixels [82].
Thus, the co-occurrence matrix considers not only the information about the intensity values,
but also the position of the pixels with similar intensities. Figure 6.1 shows an example for an
simple image of size 4×4 pixels with three levels of intensity (Figure 6.1a). Its co-occurrence
matrix, for d = 1 and θ = 135° (northwest), has a size of 3×3 because the intensity levels in
the image are 1, 2 and 3 (Figure 6.1b). The element in (1, 1) position of the GLCM indicates
that the level 1 is adjacent to the level 1 in the northwest direction 2 times. The element in (2,
3) relates that the level 2 is adjacent to the level 3 in the same direction, appearing only once.

Considering that the grayscale image has N levels of gray and its pixels can take values
between the range of [1,N] (it can be obtained by normalization or by reducing the number
of intensities and quantifying a few levels), the second order statistical features are defined as
follows [109, 110].
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(a) A simple image

(b) Co-occurrence matrix

FIGURE 6.1: Example of a gray level co-occurrence matrix with d = 1 and θ = 135° for a simple
image

Angular second moment, energy or uniformity

s1 =
N

∑
i=1

N

∑
j=1

[P(i, j)]2 (6.3)

Contrast or inertia

The contrast, inertia or texture contrast can be defined in two ways, completely equivalent:

Contrast calculated directly This is the most simple way to calculate the texture contrast.
It uses the level intensities and the co-occurrence matrix.

s2 =
N

∑
i=1

N

∑
j=1

(i− j)2 P(i, j) (6.4)

Contrast calculated by pair-differences Haralick et al. [83] defines the difference or the
pair-differences:

Px−y (k) = ∑
i

∑
j

|i− j|=k

P(i, j) (6.5)

where k={0,1, ...,N −1.} Then, the texture contrast can also be defined:

s2 =
N−1

∑
k=0

Px−y(k) (6.6)
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Alternative contrast Another way to estimate the texture contrast is using the following
formula:

s2 =
N

∑
i=1

N

∑
j=1

|i− j|P(i, j) (6.7)

Marginal probabilities

The marginal probabilities are defined as follows:

Px(i) =
N

∑
j=1

P(i, j) Py( j) =
N

∑
i=1

P(i, j) (6.8)

The means and standard deviations of the marginal probabilities are:

µx =
N

∑
i=1

iPx(i) =
N

∑
i=1

N

∑
j=1

iP(i, j) µy =
N

∑
j=1

jPy( j) =
N

∑
i=1

N

∑
j=1

jP(i, j) (6.9)

σx =

√
N

∑
i=1

(i−µx)2Px(i) =

√√√√ N

∑
i=1

N

∑
j=1

(i−µx)2P(i, j) (6.10)

σy =

√√√√ N

∑
j=1

( j−µy)2Py( j) =

√√√√ N

∑
i=1

N

∑
j=1

( j−µy)2P(i, j) (6.11)

Px and Py are types of histogram of an image and µx and µy are their respective means.

Correlation or texture correlation

The original paper [83] defines the following formula:

s3 =
N

∑
i=1

N

∑
j=1

i jP(i, j)−µxµy

σxσy
(6.12)

More recent authors have defined the correlation with another representation [35, 109]:

s3 =
N

∑
i=1

N

∑
j=1

(i−µx)( j−µy)P(i, j)
σxσy

(6.13)

Variance

s4 = σ
2
x =

N

∑
i=1

N

∑
j=1

(i−µx)
2P(i, j) (6.14)
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Homogeneity or inverse difference moment

s5 =
N

∑
i=1

N

∑
j=1

P(i, j)
1+(i− j)2 (6.15)

The texture homogeneity is another version of the above term [35], producing similar
results:

s5 =
N

∑
i=1

N

∑
j=1

P(i, j)
1+ |i− j|

(6.16)

Sum average or mean of pair - sums

The pair-sums is defined as

Px+y (k) = ∑
i

∑
j

(i+ j)=k

P(i, j) (6.17)

where k = {2,3, ...,2N}. Then, the sum average or mean of pair-sums is

s6 =
2N

∑
k=2

kPx+y(k) (6.18)

Sum variance or variance of pair-sums

s7 =
2N

∑
k=2

(k− f6)
2Px+y(k) (6.19)

Sum entropy or entropy of pair-sums

s8 =−
2N

∑
k=2

Px+y(k) log2 [Px+y(k)] (6.20)

Entropy 2

s9 =
N

∑
i=1

N

∑
j=1

P(i, j) log2 (P(i, j)) (6.21)

The logarithm for entropy usually has base 2, but sometimes is used with base 10 or also with
natural base.
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Difference variance or variance of pair-differences

s10 =
N−1

∑
k=0

(k−µx−y)
2Px−y(k) (6.22)

where the mean of pair of differences is: µx−y = ∑
N−1
k=0 kPx−y(k).

Difference entropy or entropy of pair-differences

s11 =−
N−1

∑
k=0

Px−y(k) log2 [Px−y(k)] (6.23)

Information measure of correlation 1

s12 =
HXY −HXY1

max(HX ,HY )
(6.24)

where,

• HXY = s9 = Entropy 2 (Equation 6.21)

• HXY1 =−∑
N
i=1 ∑

N
j=1 P(i, j) log [Px(i)Py( j)]

• HX =−∑
N
i=1 Px(i) log(Px(i))

• HY =−∑
N
j=1 Py( j) log(Py( j))

Information measure of correlation 2

s13 =
√∣∣1− e−2(HXY2−HXY )

∣∣ (6.25)

where HXY2 =−∑
N
i=1 ∑

N
j=1 Px(i)Py( j) log [Px(i)Py( j)].

Maximal correlation coefficient

s14 = (Second largest eigenvalue o f Q)1/2 (6.26)

where

Q(i, j) =
N

∑
k=1

P(i,k)P(k, j)
Px(i)Py( j)

(6.27)
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Maximum probability

s15 = max
i, j

(P(i, j)) (6.28)

There are two extra features that were not defined in the original paper but they are
commonly used to describe texture [111]:

Cluster shade

s16 =
N

∑
i=1

N

∑
j=1

(i−µx + j−µy)
3 P(i, j) (6.29)

Cluster prominence

s17 =
N

∑
i=1

N

∑
j=1

(i−µx + j−µy)
4 P(i, j) (6.30)

In this thesis the GLCM was calculated with d = 1. Every feature was computed for
θ ={0° ,45° ,90° ,135°} and then the average of the four values was taken as the feature value,
to give rotational invariance.

6.4.3 Wavelet statistical features

Wavelet transform is widely used in signal processing due to its ability to decompose the signal
in trends (lower resolution) and fluctuations (local changes). The analysis of the fluctuations of
a digital image allows to characterize the texture, separating the details. The dyadic continuous
wavelet transform of a 1D signal f (x) is defined as:

〈
f (x),ψa,b(x)

〉
=

∞∫
−∞

f (x)
1√
a

ψ

(
x−b

a

)
dx (6.31)

where a = 2−s and ψa,b is the mother wavelet translated by b and dilated by a.
Mallat [112] develops a wavelet decomposition and reconstruction algorithm using quadra-

ture mirror filters (QMF) to implement the discrete wavelet transform (DWT). This algorithm
computes the wavelet coefficients using a lowpass wavelet filter and a highpass wavelet filter,
implementing the DWT without directly using wavelet functions [82]. Figure 6.2 shows
the QMF scheme for a first-level decomposition and reconstruction of a signal f. In the
decomposition stage the filters h (highpass) and g (lowpass) are used with downsampling
by 2, while in the reconstruction stage the filters h’ and g’ are used with upsampling by 2.
The approximation coefficients a1 and the detail coefficients d1 are about half the size of the
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FIGURE 6.2: First level wavelet decomposition and reconstruction for a 1D signal f using QMF.

original signal f. Otherwise, the lower frequency sub-band signal A1 and the high frequency
sub-band signal D1 (i.e. the reconstructions of the coefficients) are about the same size of the
original signal f. The second level wavelet decomposition consists in applying the first level
decomposition over the first approximation coefficients a1, resulting in the second level detail
and approximation coefficients d2 and a2, respectively. Figure 6.3 illustrates the complete
second level decomposition and reconstruction methodology by the QMF. At the end of this
method, the sub-bands A2 (second approximation), D2 (second detail) and D1 (first detail)
reconstruct the signal. It is important to remark that the coefficients d2 and a2 are about a
quarter the size of the original signal, while the reconstruction of the coefficients D2 and A2

(also D1 and A1) are about the same size of the original signal.
The two-dimensional DWT over a grayscale digital image is implemented by the decom-

position using the QMF method separately along its rows and columns [112]. Figure 6.4a
illustrates the QMF scheme for the first level decomposition of a two dimensional image,

FIGURE 6.3: Second level wavelet decomposition and reconstruction for a 1D signal f using QMF.
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(a) QMF image scheme (b) Square representation

FIGURE 6.4: First level wavelet decomposition for a two dimensional digital image.

which consists basically of two stages: the filtering trough the rows followed by downsam-
pling (by 2) of the columns, and the subsequent filtering through the columns followed by
downsampling of the rows. Then, four wavelet coefficients are produced: the approximation
coefficient a1 (lowpass→lowpass), the horizontal detail coefficient dH1 (lowpass→highpass),
the vertical detail coefficient dV 1 (highpass→lowpass) and the diagonal detail coefficient dD1

(highpass→highpass). All the coefficients are about half the size of the original image as
shown in the representation in Figure 6.4b. The second level wavelet decomposition of a
two dimensional image is obtained in the same way as for the one dimensional case, i.e. by
reapplying the QMF method of Figure 6.4a over the approximation coefficient, resulting in
4 new coefficients. Figure 6.5a shows the square representation of the second-level wavelet
decomposition of an grayscale image and Figure 6.5b illustrates an example of this decompo-
sition for a grayscale image of a reactive lymphocyte.

In this thesis, the reconstruction of detail coefficients (high frequency sub-band images) of
the second level wavelet decomposition and the two-dimensional image were used to calculate
some texture features [113–115]. That is, the first and second statistical features were extracted
in the ROI over each color component and its corresponding six details sub-band of the wavelet
decomposition.

6.4.4 Granulometric features

Granulometry measures the particle size distribution of an image by mathematical morphology
operations, such as dilation, erosion, opening and closing. Let f (x,y)∈R be a grayscale image
and b(x,y) ∈ R a structuring element, for (x,y) ∈ Z2, the following operations are defined as:
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(a) Square representation (b) Decomposition of a reactive lymphocyte

FIGURE 6.5: Representation and example of the second level wavelet decomposition of a two
dimensional image.

Dilation
δ ( f ) = ( f ⊕b)(u,v) = max

(x,y)∈Db

{ f (u− x,v−u)+b(x,y)} (6.32)

Erosion
ε ( f ) = ( f ⊖b)(u,v) = min

(x,y)∈Db

{ f (u+ x,v+ y)−b(x,y)} (6.33)

Opening
γ ( f ) = f ◦b = ( f ⊖b)⊕b (6.34)

Closing
ϕ ( f ) = f •b = ( f ⊕b)⊖b (6.35)

where Db is the domain of the structuring element b [35]. Dilation is equivalent to a maximum
filter (for a flat structuring element), reducing or eliminating dark details depending on how
their values and shapes are related to the structuring element. Erosion is equivalent to a
minimum filter (flat structuring element), reducing the bright details in the image that are
smaller in area than the structuring element. Opening removes small bright details in the
image while leaving the rest of the image relatively unchanged including the larger bright
details. Closing suppress small dark regions, whilst leaving relatively unchanged the global
gray levels and large dark details [116].
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Formally a granulometry is defined as a family of transformations Ψ = (ψλ ) ,λ ≥ 0 that
satisfies the following conditions [117, 118]:

1. Identity transformation: ψ0 ( f ) = f .

2. ψλ is increasing.

3. ψλ is anti-extensive: ψλ ( f )≤ f ,∀λ ≥ 0.

4. Absorption: ψλ ψµ = ψµψλ = ψmax(λ ,µ),∀λ ≥ 0,∀µ ≥ 0.

Then, a granulometry of openings (or simply granulometry) is defined by: Γ = (γλ ) ;γλ =

f ◦λb,λ ≥ 0, while a granulometry of closings (or anti-granulometry) is defined by the family:
Φ = (ϕλ ) ;ϕλ = f •λb,λ ≥ 0. Thus, if λb are structuring elements with increasing size, the
four above properties are satisfied. In this thesis a disk-shaped structuring element with an
increasing radius was always used.

The granulometry analysis is performed through a size measurement m(γλ ( f )) for each
step, which is the area (intensity sum of the pixels) of each opening. Then, the granulometric
curve (pattern spectrum) for a family of openings Γ = (γn) ;n ≥ 0 is defined by the following
transformation:

PSΓ ( f ,n) =
m(γn( f ))−m(γn+1( f ))

m( f )
(6.36)

Therefore, for each size (nth iteration) corresponds a particular measure of the bright structures
in the image obtained by the brightness loss between two successive openings. PSΓ is a
size-histogram in which a high value at a specific size indicates the presence of many bright
structures with similar size in the image. In a similar way, the anti-granulometric curve for a
family of closings Ψ = (ψn) ,n ≥ 0 is defined as

PSΦ ( f ,−n) =
m(ϕn( f ))−m(ϕn−1( f ))

m( f )
(6.37)

which is used to describe dark structures in the image.
The joint between the granulometric curve for openings associated with “positive” sizes

and the anti-granulometric curve for closings associated with “negative” sizes results in the
completed granulometric curve [118], which is defined as follows:

{−n,0,n}→ PS ( f ,n) = {PSΦ ( f ,−n) ,0,PSΓ ( f ,n)} ; n ≥ 1 (6.38)

Although dilation and erosion do not satisfy the absorption condition, it is quite useful to
define a pseudo-granulometry for a family of erosions ε = (εn) = f ⊖nb and an anti-pseudo-
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granulometry for a family of dilations ∆ = (δn) = f ⊕ nb with n ≥ 0, such that the pseudo-
pattern spectra for erosion and dilation are, respectively:

PPSε ( f ,n) =
m(εn( f ))−m(εn+1( f ))

m( f )

PPS∆ ( f ,−n) =
m(δn( f ))−m(δn−1( f ))

m( f )

(6.39)

In the same way as it was shown above, the complete pseudo-granulometric curve is
defined as follows [118]:

{−n,0,n}→ PPS ( f ,n) = {PPS∆ ( f ,−n) ,0,PSε ( f ,n)} ; n ≥ 1 (6.40)

Figure 6.6 shows an example of the granulometric curve and the pseudo-granulometric
curve for a lymphoid cell of a patient with Hairy Cell Leukemia. The left part of the curves
(negative sizes) represents the size density of dark granules, while the right part of the curves

(a) Hairy cell
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(b) Granulometric curve
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(c) Pseudo-granulometric curve

FIGURE 6.6: Granulometric and pseudo-granulometric curves for the nucleus of a Hairy cell
(leukemia).
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6.4 Color-texture features

represents the size density of bright granules.
In this thesis, a flat disk-shaped structuring element with its specified (and increasing)

radius (n) was always used to calculate the granulometric curves.
The mean, standard deviation, skewness and kurtosis (described in Section 6.4.1) were

calculated over the granulometric and pseudo-granulometric curves. These eight parameters
constitute the granulometric features used in this work.

6.4.5 Summary of the color-texture features

Figure 6.7 shows the scheme of the application of the color-texture features on four color
components. The 23 statistical features consist of 6 first order statistical features and 17
second order statistical features. The 138 wavelet statistical features are constituted by the
application of the statistical features over the six detail sub-bands images of the second wavelet
decomposition. And the 8 granulometric features are calculated over the granulometric (4) and
pseudo-granulometric (4) curves. Then, a total of 169 features are extracted for the two ROIs:
the nucleus and the cytoplasm. Thus, 338 color-texture features are extracted for each color
component.

FIGURE 6.7: Scheme of the application of the color-texture features for various color components.
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6.5 Feature normalization

In any process which requires exploring data, it is important to perform a preprocessing of
them. One of the most basic methods is the normalization, which is especially useful when
the features have different units and scales. There are two widely known procedures to make
a linear scaling of the data between the interval [0, 1] (it is also common [-1, 1]). Let x be a
particular feature value, and let xminand xmax be the respective minimum and maximum values
of that feature. Then the max-min scaling is defined as follows:

x′ =
x− xmin

xmax − xmin
(6.41)

where x′ is the normalized feature value. The other procedure is the standardization, in which
all the feature values are centered such that the mean is 0 and standard deviation is equal to 1.
This can be done by the following definition:

x′ =
x−µ

σ
(6.42)

where µ is the mean and σ the standard deviation of the feature values.
If there are atypical feature values (outliers), the above normalization procedures scale lin-

early all the data, considering these extreme values. Furthermore, the standardization method
assumes that the data have a Gaussian distribution, which is not necessarily true. A solution
to these problems is to use a nonlinear normalization as the softmax scaling. This procedure
presents a linear part (which can be controlled by a parameter) and the space allocated to
the outliers can be controlled by the uncertainty level of the sample. The expression for the
softmax normalization is:

x′ =
1

1+ exp
(

x−µ

rσ

) (6.43)

where r is the parameter that controls the size of the linear response.
Throughout this thesis, it has been used mainly the softmax scaling (for the classification

process) and the standardization (for the feature selection process).

6.6 Information theoretic feature selection

When many features are extracted, the complexity of the problem description becomes high,
making difficult to build a good classification system. Feature selection defines a topic com-
monly used in data mining to select the more significant features. Feature selection allows
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to improve the classification performance, makes faster and more profitable classifiers and
provides a better understanding of the data processing [119]. Usually, there are two types of
feature selection techniques: those that depend on the classification and those that are inde-
pendent of the classification. The former evaluates the feature subsets through the accuracy of
a particular classifier (wrapper method), or it takes advantage of the framework of a particular
classifier (embedded method). The second considers filter methods, which select the features
by defining a scoring with a specific criterion (estimated classification accuracy), being faster
and easier to understand than the classifier-dependent methods [105]. The feature selection
procedure used in this thesis lies within this second group.

Roughly, the filter methods select the features by an usefulness score that maximizes the
relevance and minimizes the redundancy of the features, evaluating their utility of inclusion in
a specific set. This filtering process can be performed through forward selection step (a feature
is added according to the maximum score) or backward elimination step (a feature is removed
according to the minimum score). Brown et al. [105] presents a single unifying framework
for feature selection using information theoretic that includes about twenty years of heuristic
scoring criteria research, by the optimization of the conditional likelihood of the class label
given the features.

To define the framework of information theory, it is necessary to review some basic con-
cepts. The entropy of a random variable X (of the feature x) is defined as follows:

H(X) =−∑
x∈X

p(x) log p(x)

where p(x) is the probability of the particular event X = x. This entropy measures the uncer-
tainty of the distribution of X . On the other hand, the entropy of the feature can be conditioned
on other events, e.g. on the presence of the random variable of the class label Y . Thus the
conditional entropy of X given Y is defined in the form

H(X |Y ) =−∑
y∈Y

p(y)∑
x∈X

p(x|y) log p(x|y)

With the two above concepts, the mutual information between X and Y is defined as
follows:

I(X ;Y ) = H(X)−H(X |Y ) = ∑
x∈X

∑
y∈Y

p(xy) log
p(xy)

p(x)p(y)

The mutual information conditioned on another event or conditional information is,
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I(X ;Y |Z) = H(X |Z)−H(X |Y Z) = ∑
z∈Z

p(z)∑
x∈X

∑
y∈Y

p(xy|z) log
p(xy|z)

p(x|z)p(y|z)

where Z is another random variable (another feature, the label class, etc.).
Through the above definitions, Table 6.2 shows four criteria of the information theoretic

feature selection framework. It is important to remark that one of the more general criteria,
Conditional Mutual Information (CMI), can be expressed by three terms: the first corresponds
to the relevance (mutual information between the unselected feature and the class label),
the second is related to the redundancy (mutual information between the unselected feature
and the selected features), and the third corresponds to the conditional redundancy (mutual
information between the unselected feature and the selected features given the class label).
Then, most of the criteria, especially those that combine these terms linearly, make a balance
between these three parts, showing that it is not only important to include features that increase
the relevance and reduce redundancies, but also to include some correlated features [105].

In this thesis, the criteria MRMR, JMI and CMIM were used to analyze and select the
features, with the purpose of developing the lymphoid cell recognition methodology.

TABLE 6.2: Summary of the framework for information theoretic feature selection
Criterion Score formula

Conditional Mutual
Information (CMI) [105] Icmi (Xk) = I (Xk;Y |S) = I (Xk;Y )− I (Xk;S)+ I (Xk;S|Y )

Minimum-Redundance
Maximum-Relevance

(MRMR) [120]
Jmrmr (Xk) = I (Xk;Y )− 1

|S| ∑ j
X j∈S

I
(
Xk;X j

)
Joint Mutual Information

(JMI) [121] J jmi (Xk) = ∑ j
X j∈S

I
(
XkX j;Y

)
Conditional Mutual Info

Maximization (CMIM) [122] Jcmim (Xk) = min
X j∈S

[
I
(
Xk;Y |X j

)]
S: current set of selected features; Y: class label; X : random variable of the feature x; Xk /∈ S; X j ∈ S

XkX j is a joint variable between the candidate Xk with each previous selected feature.

6.7 Support Vector Machines classification

SVM defines a well known and widely used classification (and regression) technique, which
aims to produce a model using training data sets that can predict the corresponding class
labels of validation data sets. Given a training set of N pairs of feature vectors and their
corresponding labels (xi,yi), with i = 1, ...,N, where xi ∈ RD and yi ∈ {−1,1}, the original
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SVM approach obtains the linear discriminant f (xi) = ⟨w,Φ(xi)⟩+b with maximum margin
in the transformed feature space (higher-dimensional) by the mapping function Φ : RD → RH ,
through solving the following optimization problem [90, 123]:

min
w,b,ξ

1
2 ⟨w,w⟩+C

N

∑
i=1

ξi

subject to yi (⟨w,Φ(xi)⟩+b)≥ 1−ξi

ξi ≥ 0,w ∈ RH ,b ∈ R

(6.44)

where ξ is the vector of slack variables, w is the weight coefficients vector, C is the penalty
parameter (to balance the classification error and the margins), and b is the bias term of the
separating hyperplane. Since w can have a very high dimension, the optimization problem is
solved indirectly by the Lagrangian dual function obtaining the following approach:

min
α

1
2

N

∑
i=1

N

∑
i=1

αiα jyiy jK
(
xi,x j

)
−

N

∑
i=1

αi

subject to
N

∑
i=1

αiyi = 0

0 ≤ αi ≤C

(6.45)

where the inner product K:RD×RD is the kernel function defined by K
(
xi,x j

)
=
〈
Φ(xi),Φ(xj)

〉
,

and αi are the dual variables corresponding to the constraints. The solution of the last problem
is w=∑

N
i=1 αiyiΦ(xi), therefore the discriminant function becomes f (x) = ∑

N
i=1 αiyiK (xi,x)+b.

The most common and profitable Kernels used in the literature are the following functions:

Linear K
(
xi,x j

)
=
〈
xi,x j

〉
Polynomial K

(
xi,x j

)
=
(
γ
〈
xi,x j

〉
+ r
)d

,γ > 0

Radial Basis Function (RBF) K
(
xi,x j

)
= exp

(
−γ
∥∥xi −x j

∥∥2
)
,γ > 0; with

∥∥x2
∥∥= ⟨x,x⟩

Sigmoid K
(
xi,x j

)
= tanh

(
γ
〈
xi,x j

〉
+ r
)

where γ , r, and d are parameters of the kernel function.
SVM was originally proposed as a binary classifier but it can be extended to multiclass

problems using the construction of different binary classifiers to recognize a particular label
from the remaining (one-against-all), or for every pair of classes (one-against-one) [124].

In this work, SVM were mainly applied with Linear and RBF kernel functions to classify
the cell features, implementing the multi-classification through the one-against-one technique.
All the procedures were implemented using the library package LIBSVM [92].
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6.8 Experimental Results

In this chapter, several experiments were done to analyze the features (feature selection) and
evaluate the performance of the different classifiers, mainly SVM classifiers with different
kernels and parameters. Up to six color spaces were used to extract color-texture features for
their subsequent analysis and classification, separately and in combination with the geometric
features. The implemented color spaces were: RGB4 (Red, Green and Blue), CMYK5 (Cyan,
Magenta, Yellow and Black), XYZ (or CIE 1931 XYZ, where Y is the luminance, X and Z
are the chromaticities), L*a*b* (or CIELAB 1976, where L* is the luminance and, a* and
b* are the chromaticities), L*u*v (or CIELUV 1976 where L* is the luminance and, u* and
v* represent the chromaticities) and HSV (Hue, Saturation and Value) [35, 125]. Thus, the
number of computed features was dependent on the color spaces and the color components
that were selected in each experiment.

6.8.1 Blood sample preparation and digital image acquisition

The blood images used in the experiments were samples from normal donors and patients with
Chronic Lymphocytic Leukemia (CLL), Hairy Cell Leukemia (HCL), Mantle Cell Lymphoma
(MCL) and Follicular Lymphoma (FL), where FL cells were the new type of neoplastic lym-
phoid cell included in this chapter with respect to the previous Chapter 5. The diagnoses were
established by clinical and morphologic findings as well as characteristic immunophenotype
of the lymphoid cells. Specifically, CLL cells had the phenotype CD5+, CD19+, CD23+,
CD25+, weak CD20+, CD10-, FMC7- and dim surface immunoglobulin (sIg) expression. All
the patients with HCL had lymphoid cells with the phenotype CD11c+, CD25+, FMC7+,
CD103+ and CD123+. Patients with MCL showed lymphoid cells with the phenotype CD5+,
FMC7+, CD43+, CD10- and BCL6-. Follicular lymphoma cells showed B-cell associated
antigens (CD19, CD20, CD22, CD79a) BCL2+, BCL6+, CD10+, CD5- and CD43-. B-
prolymphocytes (BPL) images were obtained from transformed CLL. Blood samples were
obtained from the routine workload of the Core Laboratory of the Hospital Clínic of Barcelona.
Venous blood was collected into tubes containing K3EDTA as anticoagulant. Samples were
analyzed by a cell counter Advia 2120 (Siemens Healthcare Diagnosis, Deerfield, USA) and
PB films were automatically stained with May Grünwald-Giemsa in the SP1000i (Sysmex,
Japan, Kobe) within 4 hours of blood collection.

Individual lymphoid cell images from PB had a resolution of 363 x 360 pixels and they
were obtained by the CellaVision DM96 system (Lund, Sweden). The quality of the smears

4Standard RGB
5The blackboard style of Y is to avoid confusion with the second component of the XYZ color space
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was assessed by cytologists prior to the image study. A training set of 1834 lymphoid cell
images from PB films was selected by the cytologist to evaluate the accuracy of the proposed
methodology, which were distributed as follows: 181 normal lymphocyte images from healthy
patients (N), 301 HCL, 401 MCL, 334 FL and 617 from patients with CLL. This group was
divided into 542 CLL clumped chromatin typical lymphocyte images and 75 BPL images.

6.8.2 Feature analysis and classification experiments

The first classification experiment was made using the full set of features, which combines
77 geometric features and 6422 color-texture features calculated over the six color spaces
(RGB, CMYK, XYZ, L*a*b*, L*u*v, and HSV). Due to the high number of features, a SVM
classifier with only a linear kernel (C = 10) was applied. Table 6.3 shows the results of this
experiment through the confusion matrix of a 10-fold cross validation classification procedure.
Appendix A gives details on the performance classification parameters based on the confusion
matrix. The average classification accuracy for the 10 folds was 95.96%. Table 6.3 also
shows that almost all true positives rates (diagonal of the confusion matrix) exceed 90%,
except for BPL type because of its low number of samples. Although these results indicate a
great performance, the large amount of information makes the classification a very complex
and time-consuming process.Therefore, an additional feature selection step is quite useful to
reduce the information (considering the redundancy and relevance), thereby optimizing the
process.

Table 6.4 presents the accuracies of several classifications using SVM with Linear (C =

10) and RBF (C = 10,γ = 0.5) kernels for 20 features selected from the full set (geometric
and color-texture features of the six color spaces), by using information theoretic with three
different criteria: CMIM, MRMR and JMI. These results show that the introduction of the

TABLE 6.3: 10-fold cross validation confusion matrix of a SVM classification using the full set of
features (6499).

Predicted*
N HCL CLL FL MCL BPL

Tr
ue

N 92.27 2.21 1.10 0.00 3.87 0.55
HCL 1.00 97.34 0.33 0.00 0.66 0.66
CLL 0.74 0.00 98.34 0.55 0.00 0.37
FL 0.60 0.00 1.20 95.51 2.69 0.00

MCL 1.25 0.25 0.00 1.75 96.26 0.50
BPL 1.33 4.00 2.67 0.00 9.33 82.67

* The rows represent the true diagnosis and the columns the predicted diagnosis given by the
classification algorithm for each type of lymphoid cell. Every row was normalized in relation
to the total number of cells of its respective type to obtain the percentages respect to the true
diagnosis. Linear kernel, C = 10; Classification accuracy = 95.96%.
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TABLE 6.4: Lymphoid cell classification accuracy (Acc) using SVM for 20 selected features from the
full set.

Criterion Kernel Acc (%)

CMIM
Linear 97.11
RBF 97.49

MRMR
Linear 95.97
RBF 96.46

JMI
Linear 96.07
RBF 96.46

The color-texture features were extracted from six
color spaces: RGB, CMYK, XYZ, L*a*b*, L*u*v,
and HSV. SVM classifiers: linear kernel, C = 10;
RBF kernel, C = 10,γ = 0.5.

feature selection step improves the accuracy in all cases, especially using the criterion CMIM
and the SVM classifier with RBF kernel, which obtains a 97.49% of accuracy utilizing only
20 features.

Previously, the cell-type classification using the full set of features was made, but it is
also important to analyze separately the specific weight of each feature category to improve
and optimize the DIP process. Thus, several experiments according to the different types of
features are presented below, separating the geometric-size features, the EFD, the color-texture
features extracted from each color component, and some combinations between them (always
on the same color space).

Table 6.5 shows the accuracy of cell-type classification resulting from applying SVM with
Linear (C = 10) and RBF (C = 10,γ = 0.5) kernels over three categories of features excluding
color-texture features: (1) only geometric-size features (Geo-s), (2) only EFD and (3) the
combination between Geo-s and EFD (Geo). The first case uses the full set of features, i.e. no
feature selection (NFS) was made, while the second and third cases use a set of 20 features
selected by using information theoretic (CMIM, MRMR and JMI criteria). The best result
of this experiment is the SVM classification with RBF kernel of the geometric-size features
with an accuracy of 88.39%, while the classification accuracy of the EFD is below 80% and
the accuracy for the classification of the full geometric features reaches a value up to 88%.
Consequently, the EFD have very little impact on the description of the lymphoid cells studied
in this chapter.

Table 6.6 presents the accuracy results in the lymphoid cell classification using SVM with
Linear (C = 10) and RBF (C = 10,γ = 0.5) kernels, for only the full set of 6422 color-texture
features (no feature selection, NFS), as well for the case of 20 features selected from this full
set (calculated over all the color spaces: RGB, CMYK, XYZ, L*a*b*, L*u*v, and HSV),
by using three information theoretic selection criteria (CMIM, MRMR and JMI). All the
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TABLE 6.5: Lymphoid cell classification accuracy (Acc) using SVM for 20 features selected from three
feature categories.

Case #Features Criterion SVM kernel Acc (%)

Geo-s 13 NFS
Linear 87.24
RBF 88.39

EFD 64

NFS
Linear 75.63
RBF 74.1

CMIM
Linear 74.65
RBF 76.06

MRMR
Linear 73.83
RBF 76.44

JMI
Linear 73.72
RBF 76.5

Geo 77

NFS
Linear 84.35
RBF 83.1

CMIM
Linear 87.19
RBF 86.37

MRMR
Linear 88
RBF 87.95

JMI
Linear 87.73
RBF 87.24

SVM classifiers: linear kernel, C = 10; RBF kernel, C = 10,γ = 0.5. Geo-s, geometric-size
features; EFD, elliptical Fourier features; Geo, combination between Geo-s and EFD; NFS,
no feature selection.

TABLE 6.6: Lymphoid cell classification accuracy (Acc) using SVM for the full set of color texture
features and for 20 features selected from this full set.

Criterion Kernel Acc (%)
NFS Linear 95.64

CMIM
Linear 94.71
RBF 95.58

MRMR
Linear 94.66
RBF 95.15

JMI
Linear 94.44
RBF 95.36

The color-texture features were extracted from six
color spaces: RGB, CMYK, XYZ, L*a*b*, L*u*v,
and HSV. SVM classifiers: linear kernel, C = 10;
RBF kernel, C = 10,γ = 0.5. NFS, no feature
selection.
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accuracies of the color-texture classification exceed 94%, showing the importance of these
color-texture features in the description of the lymphoid cells. The best result is for the full
color-texture feature set, but the SVM-RBF classification of the features selected using the
criterion CMIM is quite close, with the extra advantage of reducing computation times. This
is the main reason why the following experiments use only this criterion in the feature selection
step and the SVM with the RBF kernel in the classification process.

With the purpose of further investigating and analyzing the contribution of the color to
the description of the lymphoid cells, several experiments were done by calculating the cor-
responding features on each color component and using the SVM classifier (RBF kernel,
C = 10,γ = 0.5) and the feature selection step (CMIM criterion, 20 features) with various
combinations of feature sets, depending on the color space. Subsequently, the same process
was done but adding the geometric features to the combined feature sets. Table 6.7 presents
the lymphoid cell classification accuracy results of the experiments described above. The
first column represents the color components that were used to calculate the features, the
second one is the cell classification accuracy using only the color-texture features, and the third
one is the accuracy of the combination between the geometric and the specific color-texture
features. By comparing columns 2 and 3, it is observed that the addition of the geometric
features improves the classification up to 7% in terms of accuracies. The best classification
result was obtained with the CMYK color space both for only the color-texture features
and the combination of them with the geometric features. Moreover, three combinations of
color-texture features (and geometric ones) achieved a classification accuracy greater than
97%: CMYK, L*a*b and CK. As the above results show, the color-texture features are very
important to describe the types of lymphoid cells analyzed in this chapter.

From this point, the experiments are focused on the set that presented better results: 20
features selected from the set of geometric and the color-texture features calculated over the
CMYK color space (1429 features). They are selected by information theory with CMIM
criterion (best performance feature set). The selected features of this configuration are shown
in Table 6.8. The two most important features are the cell perimeter and the nucleus-cytoplasm
ratio, however the color-texture features (granulometric and statistical features) are also pre-
sented, specially those calculated on the Cyan and Black color components.

In order to build the best possible classifier, several lymphoid cell classification exper-
iments were made using SVM with four different kernels, varying their parameters over
the feature set with the conditions mentioned above. Table 6.9 shows a comparison of the
corresponding results using linear, RBF, polynomial and sigmoid kernels. In these experi-
ments, most classification accuracies were above 97%, but the best result was the SVM-RBF
with C = 5,γ = 0.8, obtaining a 97.93% of accuracy. In addition, a comparison between
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TABLE 6.7: Lymphoid cell classification accuracy using SVM for a set of 20 features selected by using
information theoretic (CMIM) from various features sets depending on the color components.

Color Accuracy (%)
Components Color Geo+Color

RGB 94.49 96.13
CMYK 95.417 97.71
XYZ 92.58 95.91

L*a*b* 95.2 97.11
L*u*v* 94.22 96.78
HSV 95.31 96.13

R 92.42 96.29
G 93.07 95.41
B 90.24 93.4
C 92.09 96.13
M 92.09 95.04
Y 88.33 94.22
K 92.42 96.46
X 91.98 95.42
Y 90.78 94.77
Z 91.82 94.71
L* 92.15 95.15
a* 88.39 92.91
b* 93.78 96.62
l* 90.78 94.77
u* 87.73 94.82
v* 91.6 95.53
H 89.15 94.71
S 92.31 95.31
V 92.64 95.42

RG 94.11 96.29
CK 94.66 97.33
XZ 92.97 96.4

L*b* 94.33 96.78
l*v* 93.95 95.8
SV 94.77 96.73

SVM classifier with RBF kernel, C = 10,γ = 0.5; “Color
component” indicates which components were used to calculate the
color-texture features; Color, classification accuracy utilizing only
the color-texture set; Geo+color, classification accuracy utilizing the
geometric and the color-texture features.
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TABLE 6.8: 20 features selected by information theoretic (CMIM criterion) from the geometric and
CMYK color-texture feature set.

1. Perimeter – cell 11. IMC2 – K – nucleus
2. Nucleus – cytoplasm ratio 12. Mean – Y – cytoplasm
3. IMC1 – C – nucleus 13. Kurtosis – K – nucleus
4. Standard deviation – H1 – M – nucleus 14. Homogeneity – C – cytoplasm
5. IMC2 – C – nucleus 15. Standard deviation – PGC – K – nucleus
6. Diameter – nucleus 16. Entropy (2) – K – nucleus
7. Mean – PGC – C – nucleus 17. Standard deviation – GC – M – cytoplasm
8. Mean – C – nucleus 18. Standard deviation – M – nucleus
9. Standard deviation – C – nucleus 19. Skewness – PGC – Y – cytoplasm
10. IMC2 – D2 – K – cytoplasm 20. Standard deviation – K – cytoplasm

C, cyan; M, Magenta; Y, yellow; K, black; IMC, information measure of correlation (1 and 2); GC, granulometric curve; PGC,
pseudo-granulometric curve. H1, V1, D1, H2, V2, and D2 are the details sub-images corresponding to the one and second levels of
the wavelet decomposition. The application of each feature over the sub-images, color components, curves and regions goes from left
to right.

TABLE 6.9: Comparative lymphoid cell classification accuracies (Acc) using SVM with several kernels
of 20 features selected by information theoretic (CMIM criterion) from a set of geometric and color-
texture features of the CMYK color space. C is the penalty parameter and γ ,d and r are the different
parameters corresponding to the particular kernel.

Kernel C γ d r Acc (%)

Linear

1 97.55
10 97.27

100 97.00
1000 96.78

5 97.33

RBF

10 0.5 97.71
10 0.05 97.71

100 0.05 97.71
1000 0.05 97.65

5 0.9 97.87
5 0.8 97.93

Polynomial

10 0.5 2 -1 97.76
10 0.5 2 -0.95 97.82
10 0.5 3 0 97.49
10 0.5 4 0 97.44
1 3 1 0 97.65

Sigmoid
10 0.05 0 96.78

100 0.05 0 97.44
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the classification techniques SVM (RBF kernel), Linear Discriminant Analysis (LDA), k-
Nearest Neighbors (kNN) and Naive Bayes classifier (NB), was done on the same feature
set previously used. The respective best classification accuracies are shown in Table 6.10. The
SVM-RBF classifier (it was also presented in Table 6.9) presents the best performance in the
cell classification. However, the other classifiers also show good results (above of 92% of
accuracy), thus indicating the high quality of the cell description.

Table 6.11 shows the confusion matrix for the best experimental result, i.e. the SVM-RBF
classifier (C = 5,γ = 0.8) over the best performance feature set. It can be observed that this
confusion matrix is superior in all aspects to that shown in Table 6.3.

Finally, Figure 6.8 illustrates the accuracies of the SVM with a RBF kernel (C = 5,γ =

0.8) respect to the number of selected features from the CMYK space, by using information
theoretic with CMIM criterion (best performance in above experiments). This figure helps
to explain why the number of 20 features was chosen as the most appropriate in the feature
selection step. Indeed, beyond this threshold, the accuracy remains approximately constant
with the increasing of the number of features.

TABLE 6.10: Lymphoid cell classification accuracy using various classifiers over 20 features selected
by information theoretic (CMIM criterion) from a set of geometric and color-texture features of the
CMYK color space.

Classifier Parameters/note Accuracy (%)
SVM RBF kernel, C = 5,γ = 0.8 97.93
LDA 95.58
k-NN Euclidean distance, 3 neighbors 95.96
NB Gaussian distribution 92.47

SVM, Support Vector Machines; LDA, Linear Discriminant Analysis; kNN, k-Nearest Neighbors;
NB, Naive Bayes classifier.

TABLE 6.11: 10-fold cross validation confusion matrix of the best experiment result.
Predicted*

N HCL CLL FL MCL BPL

Tr
ue

N 98.34 1.66 0.00 0.00 0.00 0.00
HCL 0.66 98.34 0.00 0.00 0.33 0.66
CLL 0.18 0.00 99.45 0.18 0.00 0.18
FL 0.30 0.00 1.50 96.41 1.80 0.00

MCL 0.75 0.00 0.00 1.50 97.26 0.50
BPL 0.00 0.00 1.33 0.00 4.00 94.67

* The rows represent the true diagnosis and the columns the predicted diagnosis given by the
classification algorithm for each type of lymphoid cell. The data set consists of 20 color-
texture features from the CMYK space selected by information theoretic (CMIM criterion).
SVM classifier with RBF kernel (C = 5,γ = 0.8). Classification accuracy = 97.93%.
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FIGURE 6.8: Variation of the lymphoid cell classification (SVM-RBF C = 5,γ = 0.8) accuracy respect
to the number of features selected by information theoretic using three different criteria.

6.9 Discussion

The work in this chapter is an evolution of the methodology presented in Chapter 5, resulting
in important differences and extensions of the methodology in the feature extraction and
classification stages.

In the methodology developed in this chapter, the geometric features include the com-
pactness and the EFD. The second order statistical features are extended to the full set of
Haralick [83] and two more features [111]. Besides, in this chapter the statistical features are
also applied over the detail sub-band images of the second wavelet decomposition, achieving
a more elaborated description of the texture. The granulometric features in Chapter 5 are
calculated based only on the granulometric curve, while in this chapter they are also calculated
not only on the granulometric curve, but also on the pseudo-granulometric curve. In Chapter
5 the color-texture features are applied directly over the L*a*b* color space. However, in this
chapter, they are applied up to six color spaces, producing up to 6499 features.
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The feature selection procedure in Chapter 5 is used only to analyze the behavior and
importance of the full set of features. On the other hand, in this chapter, the feature selection
step is used and included within the pattern recognition methodology.

In this chapter, various classification experiments are done, showing that the SVM clas-
sifier works better than the LDA classifier, which is used in Chapter 5. The number of types
of lymphoid cells automatically recognized has been increased, including the Follicular Lym-
phoma cells (respect to Chapter 5), showing promising results in the respective classifications.

The full set of extracted features provides an excellent cell description obtaining a suc-
cessful classification. However, higher number of features makes the feature extraction a
more complex process (particularly with new cells), with longer run time and more difficult
interpretations. In this work, three strategies were adopted to optimize the DIP methodology
of the lymphoid cells: (1) separation of the features according to their type and color space,
(2) information theoretic feature selection, and (3) implementation of various classifiers.

Individually, the geometric-size features reach a good cell classification performance,
while the EFD have the worst performance of the experiments. That is, the “size” is more
important than the “shape” in the DIP of the lymphoid cells studied in this work.

In spite of the differences are not very large, most of the experiments presented better cell
classification accuracies with the information theoretic criteria CMIM, particularly those that
used the color and texture information. Furthermore, the SVM with RBF kernel showed the
best cell classification performance (with a reduced feature set). This explains why the combi-
nation between feature selection with CMIM and SVM-RBF produced the best classification
results.

The separated color experiments presented excellent classification performance, showing
the importance and the specific weight of the color-texture features in the lymphoid cell
description. Besides, the features extracted from CMYK, L*a*b* and CK presented the best
accuracy results (in combination with the geometric features).

The best lymphoid cell classification performance through all experiments was obtained
with 20 features selected (by CMIM criteria) from the set formed by the geometric and the
color-texture features from the CMYK color space. This reduced set included geometric-size
features, statistical features, wavelet statistical features and granulometric features, mostly
extracted from the C and K color components.

Although the color-texture features have individually a better classification accuracy than
the geometric features, when they are combined, the most important features are the geometric
ones, particularly the cell perimeter and the nucleus cytoplasm ratio. These two were the most
important features in all experiments that involved some combination with the geometric-size
features.
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The slight differences between the classification accuracy of the different SVM config-
urations (variations of the kernel and the parameters) and other classifiers, show a certain
independence of the classification process respect to the classifier, i.e. the lymphoid cell
feature extraction and selection has been successful.

6.10 Conclusion

This chapter has focused on three main issues (feature extraction, feature selection and clas-
sification), which are consecutively linked in a cascade form to obtain a final recognition
procedure for the lymphoid cells under study.

The successful cell classification results show that the extracted full feature set has been
able to describe size, shape, texture and color of the different types of lymphoid cells, involv-
ing the calculation of geometric and color-texture features. First and second order statistical
features have been calculated for each color component. The wavelet statistical features have
been implemented by the application of the first and second order statistical features over
the six detail sub-bands images of the second wavelet decomposition of each color compo-
nent. The granulometric features have been calculated on the granulometric and pseudo-
granulometric curves of each color component. All the above features describe the texture
and color of the lymphoid cells, and with the geometric features (size features and EFD)
constitute the full dataset with almost 6500 features. This complete feature extraction process,
which joins several texture concepts, is a novel methodology in the description framework of
different types of neoplastic lymphoid cells.

This chapter has presented automatic classifications of different types of lymphoid cells
without considering the correlation between cells of the same patient. In the next chapter, the
cells are separated in a training and a validation set where individual patients are not previously
included. The purpose is to validate the methodology in a horizon where the overall system
could be useful in clinical practice.
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Chapter 7

A System for Automatic Identification of
Atypical Lymphoid Cells from Peripheral
Blood Cells Images

Based upon: S. Alférez, A. Merino, L. Bigorra, L. Mujica, M. Ruiz, and J. Rodellar, A new strategy
for automatic identification of atypical lymphoid cell images from peripheral blood, International Journal of
Laboratory Hematology, 2015, submitted for publication.
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Abstract

The objective of the work presented in this chapter was to go forward in the development
of a system capable of the successful automatic discrimination of a significant number of
atypical lymphoid cell images in view of practical diagnosis purposes. A training set of
3617 lymphoid cell images from peripheral blood from 70 patients was used. They were
segmented using clustering of color components and watershed transformation. From the
regions of interest of each image, 6499 features were extracted and selected to choose the
most significant for lymphocyte recognition. A 10-fold cross validated classification using
Support Vector Machine was done. The complete classification system was tested through
processing lymphoid cell images from 21 new patients individually. The number of features
obtained in the extraction step was reduced to the 95 most relevant, which were used for
the lymphoid recognition. The accuracy for the cell classification in the training set was
92.3%. In the validation for each patient, the system was able to successfully recognize most
of the cells corresponding to the true diagnosis. The cell classification accuracy of the whole
validation process was 85.2%. The strategy was able to achieve high precision in the automatic
recognition of 7 different types of lymphoid cells. The performed patient-based validation
results are important in view of the use of this system as a support tool for initial B lymphoid
neoplasm detection in peripheral blood.

7.1 Introduction

Atypical lymphoid cells are the most difficult pathological cells to classify using only mor-
phology features [80]. Since morphologic evaluation is primarily focused on the cytological
features, quantitative measurements or descriptors of individual lymphoid cells by imaging
analysis may contribute to define morphologic features of malignant lymphocytes.

If one aims to advance in the objective that an automatic classification could become an
useful practical diagnosis support tool in the near future, a problem still open is to achieve
a successful discrimination among a relevant number of different atypical lymphoid cells in
the context of the currently known B cell neoplasms [6]. Up to the authors knowledge, the
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literature has reported classification tools able to recognize only a limited number of atypical
lymphoid cells [21, 59, 70, 74, 75]. In Chapter 5, normal and four types of neoplastic lymphoid
cells were classified: Chronic Lymphocytic Leukemia (CLL), Hairy Cell Leukemia (HCL),
Mantle Cell Lymphoma (MCL) and B-prolymphocytes (BPL).

In previous Chapters 3 and 5 a method for lymphocyte recognition to allow the automatic
classification of normal and several types of neoplastic lymphoid cells circulating in PB in
mature B cell neoplasms was presented. This method was based on solving three problems:
1) cell segmentation to separate the regions of interest from the overall image; 2) feature
extraction for a relevant quantitative description of morphologic characteristics; and 3) trained
classification to automatically identify the different lymphoid subtypes. In Chapter 6 a detailed
methodology for automatic recognition of neoplastic lymphoid cells, including a new group
(Follicular Lymphoma FL), was described. This development involved significant improve-
ments in the feature extraction/selection and classification steps. The present chapter extends
the work of Chapter 6, with the following three main contributions: 1) it uses a significantly
higher number of cell images, 2) it includes a new type of atypical lymphoid cells (Reactive
Lymphocytes RL), and 3) it evaluates the effectiveness of the completed classification system
in such a way that a number of lymphoid cell images from individual patients (previously not
included) are processed by the system achieving the recognition of the different types of cells.
This validation is important in view of practical diagnosis purposes, where the system would
operate to automatically recognize the atypical lymphoid cells of each new single patient.

The remainder of this chapter is organized as follows. Section 7.2 describes the develop-
ment of the methodology through various digital image processing steps and the validation of
the classification system. Section 7.3 shows the most important selected features, the evalua-
tion of the performance of the methodology and specifically the validation of the methodology
as a support diagnostic tool. Finally, Sections 7.4 and 7.5 provide discussions and conclusions.

7.2 Material and methods

The work presented in this chapter was developed in two stages: 1) system development,
resulting in an operative classification system; and 2) validation of the system through tests
in which cell images from individual patients were classified for diagnosis purposes. In the
first stage, a set of 3617 lymphoid cell images from 70 patients was used, which is referred
to as training set. In the second one, a number of 910 new images obtained from 21 patients,
previously selected by the cytologist, were used to evaluate the system. The set of lymphoid
cells from each independent patient was named as validation set. Figure 7.1 shows the scheme
of the two-stage process. The bottom part of this scheme can be visualized as a diagnostic
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support tool whose inputs are the cell images from the patient and the output is the cell
classification in the different types of normal or atypical lymphoid cells.

All the algorithms for the development and validation of the classification system have
been implemented using the scientific and high-level language MATLAB®.

7.2.1 System development

The introduction of new types of atypical lymphoid cell implies more complexity to the
classification problem, which led to modify the developed methodology with improvements
in almost all the steps of the digital image processing, specifically the feature extraction and
classification process. The optimized methodology to carry out the automatic classification
of 7 different types of lymphoid cells was done through the following steps: 1) blood sample
preparation and digital image acquisition; 2) clustering color segmentation and Watershed
transformation; 3) feature extraction; 4) feature selection; and 5) classification. The details of
the methodology have been described in Chapters 4 and 6.

FIGURE 7.1: The whole process has two stages: 1) the system development (digital image processing
is applied over the training set), and 2) the system validation (the methodology is applied over lymphoid
cells of individual patients).
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7.2.1.1 Blood sample preparation and digital image acquisition

Samples from normal donors and patients with CLL, HCL, MCL and FL were included in
this study. The diagnoses were established by clinical and morphologic findings as well
as characteristic immunophenotype of the lymphoid cells. Specifically, CLL cells had the
phenotype CD5+, CD19+, CD23+, CD25+, weak CD20+, CD10-, FMC7- and dim surface
immunoglobulin (sIg) expression. All the patients with HCL had lymphoid cells with the
phenotype CD11c+, CD25+, FMC7+, CD103+ and CD123+. Patients with MCL showed
lymphoid cells with the phenotype CD5+, FMC7+, CD43+, CD10- and BCL6-. Follicular
lymphoma cells showed B-cell associated antigens (CD19, CD20, CD22, CD79a) BCL2+,
BCL6+, CD10+, CD5- and CD43-. BPL images were obtained from transformed CLL. The
reactive lymphocyte images were obtained from patients with the diagnoses of infectious
mononucleosis. Blood samples were obtained from the routine workload of the Core Lab-
oratory of the Hospital Clínic of Barcelona. Venous blood was collected into tubes containing
K3EDTA as anticoagulant. Samples were analyzed by a cell counter Advia 2120 (Siemens
Healthcare Diagnosis, Deerfield, USA) and PB films were automatically stained with May
Grünwald-Giemsa in the SP1000i (Sysmex, Japan, Kobe) within 4 hours of blood collection.

Individual lymphoid cell images from PB had a resolution of 363 x 360 pixels and they
were obtained by the CellaVision DM96 system (Lund, Sweden). The quality of the smears
was assessed by cytologists prior to the image study. A training set of 3617 lymphoid cell
images from PB films was selected by the cytologist to evaluate the accuracy of the proposed
methodology, which were distributed as follows: 320 normal lymphocyte images from healthy
patients (N), 408 RL, 529 HCL, 732 MCL, 551 FL and 1077 from patients with CLL. This
group was divided into 863 CLL clumped chromatin typical lymphocyte images and 214 BPL
images. For the validation step cell images from a total of 21 different patients previously
selected by the cytologist were used.

7.2.1.2 Clustering color segmentation and Watershed transformation

As described in Chapter 4, lymphoid cells were segmented from other objects in the image
using sKFCM clustering technique over the XYZ and CMYK color spaces and the Watershed
Transformation (WT). Thus, three regions were obtained: cell, nucleus and peripheral zone
around the cell.

7.2.1.3 Feature extraction

The feature extraction methods described in Chapter 6 are used in this work. A summary of
the implementation of the feature extraction step is presented here.
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Geometric features These features are numerical interpretations of morphologic attributes
such as size, shape, nucleus-cytoplasm ratio, etc. A total of 77 geometric features were
calculated: 13 geometric-size features and 32 Elliptic Fourier Descriptors (EFD) for each
region of interest. They also included a cytoplasmic profile feature, which estimates the
external projections of the cytoplasm [103].

Color and texture features Three different methods to characterize the color and texture
were used, obtaining the following three types of features for each color component from
six color spaces (RGB, CMYK, XYZ, L*a*b*, L*u*v, and HSV): (1) statistical features; (2)
wavelet statistical features; and (3) granulometric features. Each of these features was applied
to the nucleus and the cytoplasm.

1. Statistical Features

In Chapter 5, 6 first order and 7 second order statistical features were used [83]. As
in Chapter 6, from 7 to 15 second order statistical features were extended and 2 more
features were also added: cluster shade and cluster prominence [111]. These 23 features
were calculated over each color component of the image.

2. Wavelet statistical features

A novelty respect to earlier works (Chapters 3 and 5) is that the above 23 statistical
features were applied not only over the color components of the original image but also
over 6 sub-images derived from a two level wavelet decomposition [113–115] for each
color component. As derived in Chapter 6, this procedure consists in the application of
the discrete wavelet transform (DWT) over an image (in this case a color component).
It decomposed the image into in 4 sub-images: an approximation of the image and three
highlighted versions of the horizontal (H1), vertical (V1) and diagonal (D1) details.
This process was repeated in a second level decomposition over the first approximation
image and four more sub-images were obtained: A2, H2, V2 and D2. These 6 detail
sub-images were used to obtain the 23 x 6 wavelet statistical features.

3. Granulometric features

As in Chapter 6, 8 granulometric features were extracted: 4 of them were calculated on
the granulometric curve (it uses successive operations of opening and closing) and the
remaining 4 were calculated on the pseudo-granulometric curve, which uses successive
applications of the mathematical morphology operations dilation and erosion [84].

In summary, 23 statistical features for the original image, 23 x 6 wavelet statistical features
and 8 granulometric features were obtained. These 169 features were calculated for each color
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component of the six color spaces. All of them were applied for the nucleus and the cytoplasm
regions. All features were stored in a numerical data matrix, which was used as the input data
for the feature selection step.

7.2.1.4 Feature selection

Due to the large number of cell features extracted, it was necessary to apply feature selection
to reduce their interdependence, their redundancy and to make the classification process more
feasible. The purpose of this step was to determine the most significant features for the further
classification step. In the present work, as it was studied in Chapter 6, the information theoretic
feature selection using the so-called Conditional Mutual Info Maximization (CMIM) criteria
was used [105, 122].

7.2.1.5 Classification

The objective of this step was to obtain the automatic recognition of normal and reactive
lymphocytes, and five types of neoplastic lymphoid cells from PB. Accordingly, the most
relevant features from the selection were used as inputs to the supervised learning classifier
based on Support Vector Machines (SVM) using a radial basis function kernel [91, 92] as it
was developed and tested in Chapter 6. The classification performance was evaluated by the
application of the 10-fold cross validation technique over the training set of 3617 lymphoid
cell images. This technique randomly divides the data set into 10 equal size subsets. A single
subset is used as the testing data, while the remaining data are used for training. Then, the
process is repeated 10 times and a confusion matrix is calculated to get significant overall
statistical measures.

7.2.2 System validation

After the methodology development stage, a classification system was assembled by tuning
the SVM classifier with the use of the set of the reduced selected features. The aim of
this part of the work was to evaluate the effectiveness of the cell classification system for
diagnosis purposes. A total of 910 images from 21 patients were selected by the cytologist,
and distributed as follows: 69 normal lymphocytes, 175 RL, 84 HCL, 93 MCL, 236 CLL,
136 FL and 117 BPL. These images were processed following the steps described above
but extracting only the previously selected features (see Figure 7.1, lower part). Then, this
new feature database was processed by the tuned SVM classification system, producing the
recognition of the different types of lymphoid cells for each patient. This procedure was
repeated for each patient, thereby completing the system validation. It is important to remark

124



7.3 Results

that the cell images in the validation set of the patients were not used before in the training of
the overall classifier.

7.3 Results

7.3.1 Feature selection

As it was explained before, feature selection was used to reduce the redundancy of the vari-
ables and the complexity of the classification. A total of 6499 features were obtained in the
previous extraction step, 77 were geometric and 6422 were color and texture features. Through
several tests, the feature selection step allowed improving the classification process reducing
the number of features from 6499 to 95, which were the only inputs for the classification step.
The first twenty features of that set are listed in order of relevance in Table 7.1. A total of 6
features were geometric and the remaining 89 were color and texture features. However, the
three most important features obtained in the selection process were geometric: the nucleus -
cytoplasm ratio, the perimeter of the nucleus and diameter of the cell.

7.3.2 Methodology performance evaluation

The 3617 cell images included in the training set were classified into 7 types using SVM
with 10-fold cross validation. A confusion matrix is shown in Table 7.2, which evaluates
the performance of the classification of these images. Rows denote the true diagnosis and
columns represent the predicted diagnosis supplied by the classification process for each type

TABLE 7.1: The 20 most relevant features (from a total of 95) were obtained using the Conditional
Mutual Info Maximization criteria of the information theoretic feature selection step.

1. Nucleus – cytoplasm ratio 11. Correlation – G – nucleus
2. Perimeter – nucleus 12. Mean – PGC – C – nucleus
3. Diameter – cell 13. Mean – X – nucleus
4. Mean – b* – nucleus 14. Entropy 1 – a* – nucleus
5. IMC1 – M – nucleus 15. Entropy 1 – K – nucleus
6. Cytoplasmic profile feature 16. Mean – PGC – M – nucleus
7. Mean – u - nucleus 17. Skewness – GC – v – nucleus
8. Standard deviation – PGC – B – cytoplasm 18. Skewness – PGC – X – nucleus
9. Mean – C – nucleus 19. Mean – PGC – b* – nucleus
10. Mean – PGC – S – nucleus 20. Correlation – H – nucleus

Color spaces involved: L*a*b*, CMYK, Luv, RGB, HSV, XYZ. Abbreviations: IMC, information measure of correlation (1 and 2);
PGC, pseudo-granulometric curve; GC: granulometric curve. The application of each feature over the sub-images, color components,
curves and regions goes from left to right.
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TABLE 7.2: Confusion Matrix of the support vector machines classification and 10-fold cross-
validation for the training set.

Predicted*
N HCL CLL FL MCL BPL RL

Tr
ue

N 85.94 1.56 6.88 0.94 1.25 0.94 2.50
HCL 1.70 94.33 0.57 0.00 0.57 0.57 2.27
CLL 1.85 0.35 96.18 0.93 0.23 0.23 0.23
FL 0.36 0.36 2.54 90.93 5.63 0.00 0.18

MCL 0.27 0.27 0.41 5.19 90.71 1.78 1.37
BPL 0.00 0.93 0.00 0.47 3.74 89.25 5.61
RL 0.49 3.43 0.25 0.00 1.72 0.98 93.14

* The rows represent the true diagnosis and the columns the predicted diagnosis given by
the classification algorithm for each type of lymphoid cell. The values are in percentage.
Accuracy = 92.34 % and standard deviation = 0.92%.

of lymphoid cell. Every row was normalized in relation to the total number of cells of its
respective type to obtain the percentages respect to the true diagnosis. Appendix A gives
details on the performance classification parameters based on the confusion matrix. The
overall 7-type classification accuracy was 92.34%. Its standard deviation (STD) was also
computed (which was 0.92%) to measure the variability between folds. Diagonal values are
percentage values of the true positive rates for each cell subtype: 85.94% for normal lymphoid
cells, 94.33% for HCL, 96.18% for CLL, 90.93% for FL, 90.71% for MCL, 89.29% for BPL
and 93.14% for RL (see Table 7.2).

Figure 7.2 shows three statistical measurements of the 7-type classification obtained with
the automatic classification methodology described in this chapter. The precision values were
above 88.43% for all neoplastic lymphoid cell subtypes and, normal and reactive lympho-
cytes. The sensitivity values were above 89.25% except for the normal cell subtype, in which
sensitivity value was 85.94%. Finally, all the specificity values were above 98.09%.
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FIGURE 7.2: Precision (a), sensitivity (b) and specificity (b) values (in percentages) of the different
lymphoid cell subtypes obtained in the system development.
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7.3.3 Validation of the methodology

The classification system was tested by individually processing lymphoid cell images from 21
new patients. Normal lymphoid cell images were selected from 5 healthy subjects, reactive
lymphocytes from 6 patients with the diagnoses of infectious mononucleosis, and neoplastic
B cells from the remaining 10 patients (2 HCL, 2 MLC, 2 FL, 2 CLL and BPL cells were
selected from other 2 CLL patients). As shown in Table 7.3, in the validation for each patient,
the system was able to successfully recognize most of the cells corresponding to the true
diagnosis: 92% to 100% for RL, 97% to 100% for HCL cells, 54% to 66% for MCL cells,
63% to 95% for FL cells, 80% to 82% for CLL cells, 85% to 100% for normal lymphocytes
and 68% to 97% for BPL cells. The cell classification accuracy of the whole validation process
was 85.17%.

Figure 7.3 shows some images used in the validation step, which correspond to different

TABLE 7.3: Percentage of the classification results obtained in the validation stage using lymphoid
cells corresponding to individual patients.

Patient
True Cell Predicted*

diagnosis images HCL% MCL% FL% CLL% BPL% N% RL%
1 RL 10 0 0 0 0 0 0 100
2 RL 53 2 0 0 0 0 0 98
3 RL 29 0 0 0 0 0 0 100
4 RL 26 0 0 0 0 4 4 92
5 RL 44 2 0 0 0 0 0 98
6 RL 13 0 0 0 0 0 0 100
7 HCL 52 100 0 0 0 0 0 0
8 HCL 32 97 0 0 0 0 3 0
9 MCL 13 0 54 31 0 0 15 0

10 MCL 80 0 66 31 1 1 0 0
11 FL 63 0 37 63 0 0 0 0
12 FL 73 0 1 95 4 0 0 0
13 CLL 165 0 4 15 80 1 1 0
14 CLL 71 4 4 0 82 1 7 1
15 N 16 0 0 0 0 0 100 0
16 N 14 0 0 0 7 0 93 0
17 N 11 0 9 0 0 0 91 0
18 N 13 0 0 8 0 0 85 8
19 N 15 0 0 0 7 0 93 0
20 BPL 64 0 2 0 0 97 2 0
21 BPL 53 0 23 0 0 68 6 4

* The values of the cell types are in percentage. Global cell classification accuracy = 85.17%
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FLN

NHCL

NCLL

MCLFL

FLMCL

MCLBPL

Correct images obtained in the automatic classi cation Incorrect images

RL HCL

FIGURE 7.3: Examples of lymphoid cell images of individual patients obtained after the automatic
classification process in the validation stage. Correct classified images are shown in the first 5 columns,
while in the last column images incorrectly classified are included (magnifications: ×1000 and stain:
May-Grünwald-Giemsa).
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lymphoid cell types obtained in the classification process. Each row corresponds to cell images
from an individual patient (N, HCL, CLL, FL, MCL, BPL and RL). The first five columns
show correct images obtained after the automatic classification, while the last column shows
images that were not correctly classified.

7.4 Discussion

Morphologic analysis of PB cells is the first analytical step in the hematological diagnosis,
being very useful for the indication of further laboratory tests. Since atypical lymphoid cells
are the most difficult to be recognized by only morphologic features [80], the major goal
of the current work was to use the methodology introduced in Chapter 6, including reactive
lymphocytes and validating the performance of the classification system using a number of
lymphoid cell images from individual patients.

In this chapter, normal, reactive lymphocytes and five types of neoplastic (HCL, CLL, FL,
MCL and BPL) lymphoid cells were selected considering their characteristic morphology and
the high number collected from daily workload in the clinical laboratory. In the present work,
the segmentation method described in Chapter 4 was implemented, using the color information
of the image to separate the main regions for each lymphoid cell (nucleus, cytoplasm and the
peripheral zone around the cell). This procedure has been very useful to extract information
about the cell.

Geometric features over the cell, the nucleus and the cytoplasm were used previously by
Scotti [39]. In other papers, geometric and statistical features were also used for the analysis of
the shape and the nucleus texture [53, 67]. Granulometry on the luminance color component
of the L*a*b* space to calculate texture features was also used by Angulo et al [59] for
the recognition of lymphoid cells. In this work, the number of morphologic characteristics
considered in Chapter 5 were extended from 113 to 6499 features. New geometric features
were used to describe the shape of the cell and the whole set of second order statistical features
were expanded. In addition, the application of the wavelet decomposition and the use of the
pseudo granulometric curve made possible to characterize with more detail the texture of
both the nucleus and cytoplasm. This feature extraction strategy is novel in the automatic
recognition of the atypical lymphoid cells.

A number of 95 important features were obtained after their selection, and it is interesting
to remark that the nucleus-cytoplasm ratio, the perimeter of the nucleus and the diameter of
the cell were the three more relevant features. This finding is according to the more relevant
size-morphologic characteristics that the cytologist uses to differentiate among lymphoid cells.
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Concerning the classification procedure, Ushizima et al [72] investigated the use of SVM
classifiers to recognize five different types of normal leukocytes but only one subtype of
neoplastic lymphoid cell (CLL cells). Moreover, Angulo et al [59] classified the morpho-
logic features of the lymphoid cells in categories using decision trees, but that work was
not completed with further studies toward the specific discrimination among different groups
of similar diagnosis. In addition, the methodology proposed by Yang et al [75] was able
to recognize five types of neoplastic blood cells, but the images selected in this study were
precursor lymphoid cells and myeloid blast cells from acute leukemia patients. In this work,
the developed methodology has been extended to automatically recognize 7 types of lymphoid
cells, obtaining very satisfactory performance measures. This high number of different types
of lymphoid cell classification, to our knowledge, has not been previously published in the
literature.

7.5 Conclusion

In order to validate the methodology, a group of new patients were selected, not included in
the training set. A good accuracy was obtained in the classification results of the different
lymphoid cells using the images of these new patients with higher percentages of lymphoid
cell subtypes recognized. These results in the validation step of the classification method are
encouraging toward the idea that the system could be useful for diagnosis purposes in the
future.

In summary, an overall system for the automatic classification of different types of atypical
lymphoid cells has been assembled with the combination of the robust segmentation method,
the best selected feature set and the best classifier, all of them developed in this work. The
classification algorithm recognized normal and reactive lymphocytes, and five different types
of neoplastic B lymphoid cells. The main contribution of this work, combining medical, en-
gineering and mathematical backgrounds, is the development of a complete methodology that
could allow in the next future to design a practical diagnosis support tool. The classification of
the different lymphoid cells considering a group of new patients was made not only to validate
the methodology but also in a horizon where this methodology could be useful in clinical
practice.
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Chapter 8

Conclusions and contributions. Future
perspectives

This thesis presents a methodology for the automatic classification of peripheral blood (PB)
lymphoid cells in atypical lymphoid cells through several steps of digital image processing
and pattern recognition. The thesis has grown through the evolution of various works, starting
with a discrimination between normal lymphocytes and two types of neoplastic lymphoid
cells, and ending with the design of a system for the automatic recognition of normal and
reactive lymphocytes, and five types of neoplastic lymphoid cells. All this work has involved
the development of a robust lymphoid cell segmentation, a complete cell description by feature
extraction/selection and a successful classification using support vector machines (SVM).

The conclusions derived along this research are summarized in Section 8.1. The main
contributions of this thesis are highlighted in Section 8.2. Finally, some future perspectives
open from this work are outlined in Section 8.3.

8.1 Conclusions

• The segmentation method proposed in this thesis combines the novel fuzzy clustering
method spatial Kernel Fuzzy C-means (sKFCM) on different color components and
watershed transformation, to segment not only the nucleus and cytoplasm, but also the
external region of the cell, which can supply relevant information in some types of
cells such as HCL. In addition, the efficiency of the segmentation is tested on normal
and reactive lymphocytes, and five types of neoplastic lymphoid cells (HCL, FL, MCL,
CLL and PLB).
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• A novel cytoplasmic profile feature has been proposed based on a simple thresholding
of the peripheral zone around the cell. This feature has been important for the HCL
cells recognition, since they show a soft, blue-gray cytoplasm with hair-like cytoplasmic
projection. On the other hand, this feature could be used for the detection of another
neoplastic lymphoid cells with cytoplasmic villous, such as the splenic marginal zone
lymphoma.

• The methodology uses mainly two steps to segment the regions of interest: (1) cropping
the lymphoid cell from the remaining regions, and (2) separating the regions of the
nucleus, the cytoplasm and the background. For the cropping of the lymphoid cell from
the remaining regions, it has been found that Y and K are the best combination of color
components using sKFCM clustering. For the separation of the regions of interest, it
has been found that XYZ is the best color space using the sKFCM clustering.

• The procedure has achieved a high level of efficiency in the segmentation of the dif-
ferent types of lymphoid cell images included in this thesis, which exhibit a variety of
morphologic features.

• The extracted full feature set has been able to describe size, shape, texture and color
of different types of lymphoid cells included in this work, involving the calculation of
almost 6500 geometric and color-texture features. The further successful cell classifica-
tion results show that this extracted feature set provides excellent cell description.

• In general, the feature selection is a necessary step to simplify the complexity of the
process, reducing the run time of the algorithms associated to the high number of
descriptors. In this thesis many classification experiments have been carried out with
different combinations of color components and/or geometric features, applying infor-
mation theoretic feature selection tools.

• The experiments using only geometric features have shown good performance, while
features extracted only from combinations of color components have shown better clas-
sification performance. On the other hand, when both types of features are combined,
the classification performance improves. Particularly, the best results have been ob-
tained using the following color sets: CMYK, L*a*b* ,CK and the combination of all
six color spaces studied.

• It has been found that 95 features were the most relevant and less redundant for the
classification step. Each selected set included geometric and the following color-texture
features: statistical, wavelet statistical and granulometric features. The three most
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important selected features for the automatic lymphoid cell recognition are the nucleus-
cytoplasm ratio, the perimeter of the nucleus and the diameter of the cell.

• In this work several classifiers have been implemented to automatically recognize dif-
ferent types of lymphoid cells. The best classification results have been achieved using
support vector machines (SVM) with radial basis function (RBF) kernel.

• The information theoretic feature selection procedure developed in this thesis is inde-
pendent of the classification process. This explains that, although the SVM classifier
has shown the best results, the differences with respect to the use of other classifiers
have been slight.

• An overall system for the automatic classification of different types of normal and atypi-
cal lymphoid cells has been assembled with the combination of the robust segmentation
method, the best selected feature set and the best classifier, all of them developed in this
work.

• The methodology for the automatic lymphoid cell recognition has shown excellent
accuracies in the system development stage.

• In the development of the methodology, the information theoretic feature selection
criterion CMIM (conditional mutual info maximization) applied over the color-texture
set extracted from the six color spaces: RGB, CMYK, XYZ, L*a*b*, L*u*v, and HSV,
and the geometric features has been the best configuration of feature extraction/selection
according to the results of the classification of the lymphoid cells included in the study
group.

• In the validation of the methodology, the feature selection with the criterion CMIM
applied over the color-texture and the geometric features has been found as the best
configuration of feature extraction/selection according to the results of the lymphoid
cell classification from individual patients.

• The classification system using SVM classifiers has been designed and experimentally
assessed in two stages: (1) development, and (2) validation. In the first stage, the
digital image processing (DIP) steps are developed to build the classifier using a training
set of image cells collected from a study group of subjects with normal or reactive
lymphocytes and patients with different B-cell neoplasms. In the second stage, the DIP
steps are implemented considering the previous stage with a validation set of lymphoid
cell images collected from individual patients not included in the previous study group.
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The classification of the different lymphoid cells considering new patients was made
not only to validate the methodology but also in a horizon where this methodology
could be useful in clinical practice. The developed methodology has been extended to
automatically recognize 7 types of lymphoid cells, obtaining very satisfactory perfor-
mance measures. The methodology developed, combining medical, engineering and
mathematical backgrounds, could allow to designing a practical diagnosis support tool
in the next future.

8.2 Main contributions of this thesis

The most significant novel contributions with respect to the available state of the art are the
following:

• The clustering segmentation method developed in this thesis combines the fuzzy C-
means technique with the kernel method and it also takes in account the spatial infor-
mation. This combination results in a novel spatial kernel fuzzy C-means clustering for
color segmentation of digital images.

• A robust segmentation methodology has been developed using mainly color clustering
and Watershed transformation, which is able to separate three regions of interest: cell,
nucleus and peripheral zone around the cell. This peripheral zone is particularly im-
portant to discriminate lymphoid cells with hairy-like cytoplasmic projections, which
are present in specific B-cell neoplasms such as hairy cell leukemia. To the best of our
knowledge, the segmentation of this peripheral zone of the cell has not been previously
published in the literature.

• A novel cytoplasmic profile feature has been proposed based on a simple thresholding of
the peripheral zone around the cell. This feature has shown to be one the most relevant
for the recognition of the atypical lymphoid cells.

• In particular, the cytoplasmic profile feature has been crucial for the Hairy Cell Leukemia
(HCL) automatic recognition, since in peripheral blood the lymphoid cells show a soft,
blue-gray cytoplasm with hair-like cytoplasmic projection. The automatic recognition
of hairy cells has been scarcely studied in the literature.

• An innovative feature extraction method has been proposed in this thesis. This method
computes geometric features (size and shape) and color-texture features. The novelty
lies in that the color-texture information is obtained through the extraction of statistical,
wavelet statistical and granulometric features on different color components.
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• In addition, a feature selection procedure using information theory has been applied to
identify and select the best features that provide useful information about the character-
ization of the lymphoid cells. This feature extraction/selection strategy is novel in the
automatic recognition of the atypical lymphoid cells.

• The novel segmentation and feature extraction/selection have been completed with a
support vector machine classifier. This particular pattern recognition strategy has re-
sulted in a complete methodology to automatically recognize normal and reactive lym-
phocytes, and five types of neoplastic lymphoid cells circulating in peripheral blood in
different mature B-cell neoplasms with a very satisfactory classification performance.
The classification of this high number of different types of lymphoid cells, to the best of
our knowledge, has not been previously published in the literature.

8.3 Future perspectives

The results obtained in this thesis open some issues that could be further developed. Some of
them are outlined below:

• The methodology developed could be extended to the classification of target cells from
other hematological diseases, such as precursor B/T cells lymphoid neoplasms, or other
mature B/T cells neoplasms not included in the present work. In other words, the future
goal is to identify any abnormal lymphoid cells in a peripheral blood sample.

• It would be interesting to extend the methodology to the automatic classification of ab-
normal cells in body fluids in different hematological or non hematological neoplasms.

• Since the full set of features extracted and selected in this thesis has reached a very
good characterization of lymphoid cells, it could be interesting to apply them over other
types of abnormal hematopoietic cells to detect myelodysplastic morphologic changes
of some hematological diseases.

• It would be interesting to apply the methodology developed to asses their effectiveness
in the classification of abnormal red blood cells circulating in peripheral blood in differ-
ent types of anemias.

• Since the sKFCM clustering algorithm can work with color spaces, the potential appli-
cations are not only limited to cell images obtained from peripheral blood but to other
medical application areas, which require segment images with different regions with
color and spatial similarities.
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• Although the sKFCM segmentation experiments were implemented with three clusters,
the algorithm can be used with more clusters, increasing the details in the regions or the
number or regions obtained.

• The peripheral zone around the cell has been explored only to calculate an approximated
measure of the hairy-like cytoplasmic projections. It would be interesting to extract
more features from this region to analyze their contribution to the characterization of
the cell.

• The new applications proposed above will require, as has occurred in the development
of this thesis, further extensions in the DIP steps.
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Appendix A

Performance classification parameters

In this thesis, the confusion matrix has been applied to evaluate the performance of the clas-
sification experiments. In the confusion matrix each column represents the predicted classes,
while each row represents the true classes. For example, Table A.1 was obtained in Chapter 5
from a classification by Linear Discriminant Analysis (LDA) (using 10-fold cross validation)
of five types of lymphoid cells (classes): normal lymphocytes (N), Hairy Cell Leukemia
(HCL), Chronic Lymphocytic Leukemia (CLL), Mantle Cell Lymphoma (MCL) and B pro-
lymphocytes (BPL). In this table, the true and confirmed diagnosis correspond to the rows,
while the predicted lymphoid cell types correspond to the columns. For instance, 542 CLL
cells were predicted as: 5 N, 0 HCL, 535, CLL, 1 MCL and 1 PBL. It is important to remark
that the diagonal of the confusion matrix correspond to the true positives (classes predicted
correctly).

In order to calculate some useful performance classification parameters based on the con-
fusion matrix, some definitions for a specific type of cell (e.g. CLL) are described as follows.

TABLE A.1: Confusion Matrix of the LDA classification and 10-fold cross-validation for the training
set.

P r e d i c t e d*
N HCL CLL MCL BPL

Tr
ue

N 180 0 0 0 1
HCL 5 294 0 0 2
CLL 5 0 535 1 1
MCL 5 0 0 391 5
BPL 3 1 0 0 71

* The rows represent the true diagnosis and the columns the predicted diagnosis
given by the classification algorithm for each type of lymphoid cell. Accuracy =
98.07 %.
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Performance classification parameters

True positives (TP) Predicted cells that were correctly classified.

False positives (FP) Predicted cells that were incorrectly classified as CLL cells.

False negatives (FN) CLL cells that were incorrectly classified as other cell type.

True negatives (TN) All the remaining cells correctly classified as non CLL cells.

Following the example for the CLL cells, the TP correspond to the diagonal value of 535.
The FP are obtained summing all the values of the CLL column except the TP, in this case 0.
The FN are the sum of all values in the CLL row except the TP, which in this case is 7. Finally,
the TN are calculated by the sum of all the values of the confusion matrix except the row and
the column corresponding to the CLL type, i.e. 958.

From these basic definitions, several performance classification parameters can be com-
puted:

Sensitivity or true positive rate (TPR)

T PR =
T P
P

=
T P

T P+FN

Specificity or true negative rate (TNR)

T NR =
T N
N

=
T N

FP+T N

Precision or positive predictive value (PPV)

PPV =
T P

T P+FP

Accuracy (ACC)

ACC =
#Correct

Total
where #Correct is the number of correct classifications and Total is the complete number of
cells under study. The accuracy can also be obtained from the confusion matrix by summing
all the diagonal values and dividing it by the sum of all the values of the matrix.

Following the example of Table A.1, for the CLL type the above parameters in percentage
are: TPR = 99.45%, TNR = 100%, PPV = 100% and ACC = 98.07%.
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Appendix B

Technical glossary

10-fold cross validation This technique randomly divides the data set into 10 equal size
subsets. A single subset is used as the testing data, while the remaining data are used
for training. Then, the process is repeated 10 times. Finally, a confusion matrix was
obtained to calculate some overall statistical measures.

Active contours Active contours, or snakes, are computer-generated curves that move within
images to find object boundaries [48].

Binary mask It is the usual representation of a segmented region of the image, where the
pixels have the value 1 if they are within the region and 0 if they are outside.

Classification It is the process of automatically assigning classes to objects based on the
information extracted from them [126].

Clustering It is the process of organizing objects into groups (clusters) whose members are
similar in some way. Then, a cluster collects objects which are similar between them
and are dissimilar to the objects that belong to other clusters [127].

Color space It is a organized representation of colors following some standard. Generally, a
color space follows a mathematical color model that specifies each color as a point on a
coordinate system [35].

Conditional information I(X ;Y |Z) = H(X |Z)−H(X |Y Z) It is the information still shared
between X and Y after the value of a third variable, Z, is revealed [105].

Digital Image Processing (DIP) DIP consists of applying multiple algorithms to process dig-
ital images by a digital computer [35].
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Technical glossary

Discrete Wavelet Transform (DWT) While Fourier transform decomposes the signal into
sines and cosines (functions localized in Fourier space), the wavelet transform uses
functions that are localized in both the real and Fourier space. The DWT is an im-
plementation of the wavelet transform using a discrete set of the wavelet scales and
translations with some rules. Particularly, this transform decomposes the signal into
mutually orthogonal set of wavelets [112, 113].

Distance transform For each pixel in a binary image, the distance transform assigns a num-
ber that is the distance between that pixel and the nearest nonzero pixel of the image
[126].

Entropy (information) The entropy H(X) quantifies the uncertainty present in the distribu-
tion of a random variable (see 6.6). If there is little uncertainty over the outcome, then
the entropy is low. If all events are equally likely, that is, there is maximum uncertainty
over the outcome, then the entropy is maximal [105].

Feature extraction The main objective of feature extraction is to obtain information of the
objects of interest of the digital image. It is a form of dimensionality reduction, because
the image is represented by a set of features (feature vector) [35, 128].

First order statistical features These features are based on the histogram of a grayscale
digital image. From the simple statistical information about the image supplied by the
histogram, several first order statistical features can be obtained, such as: mean, standard
deviation, skewness, kurtosis, energy and entropy [82].

Fuzzy C-means (FCM) It is an unsupervised method that partitions the data into clusters,
minimizing the distance between each data point in the cluster and its center, and
maximizing the distance between cluster centers. However, under certain restrictions
each data point can belong to several groups at the same time in a fuzzy way [87].

Granulometric curves The granulometric curve is a size-histogram in which a high value at
a specific size indicates the presence of many bright structures (or dark structures) with
similar size in the image [118].

Granulometry It is a field of the mathematical morphology that deals with determining the
size distribution of particles in an image [35, 118, 126].

Gray Level Co-ocurrence Matrix (GLCM) represents the joint probability P(i, j) that a pair
of pixels have intensity values of i and j, respectively, at a distance d in a particular
direction θ . This probability can be calculated as the frequency count of occurrences
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(second order histogram) divided by the total number of neighbouring pixels. Thus, the
co-occurrence matrix considers not only the information about the intensity values, but
also the position of the pixels with similar intensities [82].

Histogram The histogram is a discrete function that shows the number of pixels H(i) on the
image having the pixel intensity value i (frequencies) [35].

Image Gradient The gradient of a image is based on local derivatives of the image. Then,
each pixel of the gradient image shows the intensity change of that point on the original
image, in a particular direction [35, 125].

k-Nearest Neighbors (k-NN) It is a non parametric method used for classification (or re-
gression). The input consist of the k closest training examples in the feature space. The
output is a class membership. An object is classified by a majority vote of its neighbors,
with the object being assigned to the class most common among its k nearest neighbors
(k is a positive integer, typically small). If k = 1, then the object is simply assigned to
the class of that single nearest neighbor [129].

Kernel trick It consists in the operation of the kernel functions in a high-dimensional, im-
plicit feature space without ever computing the coordinates of the data in that space,
but simply calculating the inner products between the images of all pair of data in the
feature space [91].

Kurtosis It is a measure of whether the data are peaked or flat relative to a normal distribution
[130].

Linear Discriminant Analysis (LDA) LDA This method maximizes the ratio between-class
variance to the within-class variance in any particular data set, ensuring maximum
separability. This method can be used for classification or dimensionality reduction
[129].

Mathematical morphology It is a set of mathematical tools for extracting useful image com-
ponents to represent and describe regions of interest of the image, based on set theory
[35, 118, 126].

Membership image In fuzzy logic, elements of a fuzzy set have varying degrees of member-
ship in the set. They are mapped to an universe of membership values. If this sets are
images they respective representation are membership images [87].
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Mutual information I(X ;Y ) = H(X)−H(X |Y ) It is the amount of uncertainty in X which is
removed by knowing Y, i.e. the amount of information that one variable provides about
another [105].

Naive Bayes classifier The naive Bayes classifier is designed for use when predictors are
independent of one another within each class, but it appears to work well in practice even
when that independence assumption is not valid. It classifies data in two steps: 1) Using
the training data, the method estimates the parameters of a probability distribution,
assuming predictors are conditionally independent given the class. 2) For any unseen
test data, the method computes the posterior probability of that sample belonging to each
class. The method then classifies the test data according the largest posterior probability
[131].

Preprocessing Image preprocessing suppresses information that is not relevant to specific
image processing tasks. Preprocessing consists of a set of image processing operations
to enhance certain fine features in the data and to remove certain noise [126].

Principal Component Analysys (PCA) PCA is a technique that is commonly used to reduce
the dimensionality of a big dataset by its transformation into a new set of principal
components linearly uncorrelated, searching the causes of variability and sorting the
components by their importance [106].

Region-based segmentation It segments an image into a number of regions, where for each
pixel a criteria decides or estimates which class it belongs to [35].

Second order statistical features They provide more information than the first order statis-
tical features. These features are based on a joint probability that a pair of pixels have
a particular combination of a pair of values at a specific distance in a given direction
[35, 82, 83].

Segmentation It consists of subdividing the images into its constituent regions or objects,
selecting mainly the objects of interest [35].

Skewness It s a measure of symmetry, or lack of symmetry. A distribution is symmetric if it
looks the same to the left and right of the center point [130].

Support Vector Machines SVM defines a well known and widely used classification (and
regression) technique, which aims to produce a model using training data sets that
can predict the corresponding class labels of validation data sets. An SVM model is
a representation of the examples as points in space, mapped so that the examples of the
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separate categories are divided by a clear gap that is as wide as possible. New examples
are then mapped into that same space and predicted to belong to a category based on
which side of the gap they fall on (see Section 6.7).

Texture Texture refers to properties that represent the surface or structure of an object, but it
has not precise definition because to its wide variability [126].

Thresholding segmentation It is the simplest segmentation method. By a threshold value
it can decide which pixels make the object of interest and which pixels are just the
background of the image.

Watershed Transformation (WT) A grey-level image might be seen as a topographic relief.
The concept of Watershed transformation is based on visualizing the maximum and
minimum intensity values as peaks and basins. Then, water falling on this relief flows
to reach a minimum. Intuitively, the watershed of a relief corresponds to the limits of
the adjacent basins of the water regions [57, 100].
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