

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

A Novel Access Pattern-based
Multi-core Memory Architecture

Author:
Tassadaq Hussain

Advisors:

Dr. Oscar Palomar, Dr. Adrian Cristal, Dr. Osman S. Ünsal,
Prof. Eduard Ayguadé and Prof. Mateo Valero

Submitted to the Departament d'Arquitectura de Computadors in Partial
Fulfillment of the Requirements for

Doctor of Philosophy (PhD)

Barcelona - December 2014

ii

To my father Aman Ullah Cheema, my sweet mother Iffat Tanveer, my

lovely wife Amna Hussain and my charming little kid Umar Hussain

Acknowledgements

* All praises are due to Allah and may He send His salutations on our

Master and Messenger of Allah Muhammad (P.B.U.H) and his brethren

among the Prophets and Messengers and on their families and companions

and whoever followed them in righteousness until the Day of Judgment.

* This work was not possible to complete without the help of my advi-

sors. My cordial gratitude goes to my supervisors: Prof. Mateo Valero,

Prof. Eduard Ayguadé, Dr. Adrian Cristal, Dr. Osman S. Ünsal and Dr.

Oscar Palomar. I can never forget their outstanding manners, genius way

of thinking and benevolence towards me. Because of their fruitful and ev-

erlasting efforts I feel very confident in myself in the field of science and

technology. I often drew the inspiration from their incessant novel ideas. I

consider myself fortunate to have the honor of being a Ph.D. student under

their supervision. Dr. Oscar Palomar is the one who was absorbing and

tolerating my strange ideas and helping me extraordinarily to bring them

into good and meaningful shape before that these are presented to our se-

niors and as well at various research platforms. He has been conducting

regular meetings throughout the years. I always found him ready to spare

time for the research discussions.

* I would like to express my gratitude to Dr Miquel Pericas and Prof.

Nacho Navarro. They helped me a lot to push this work ahead in the right

direction. Later, my research group was changed but my learning with

them helped me a lot to effectively pursue later studies.

* The acknowledgements will remain incomplete if I do not quote the or-
ganizations and the projects who financially supported this thesis. These
include Barcelona Supercomputing Center (BSC), Technical University
of Catalonia (UPC), The Ministry of Science and Innovation of Spain
(Project: Computaciòn de Altas Prestaciones V, TIN2007-60625), The Eu-
ropean Union Framework Program-7 (Project: Scalable Computer Archi-
tecture, IST-2006-27648), the HiPEAC-2 Network of Excellence (FP7/ICT
217068), the European Commission in the context of the SARC Project
#27648 (FP6), the European Research Council under the European Unions
7th FP (FP/2007-2013) / ERC GA n. 321253, the Spanish Government
(TIN2012-34557), and the Unal Center of Education Research and Devel-
opment (UCERD). I am extremely thankful to all these organizations for
their full support during the work.

Abstract

Increasingly High-Performance Computing (HPC) applications run on het-
erogeneous multi-core platforms. The basic reason of the growing pop-
ularity of these architectures is their low power consumption, and high
throughput oriented nature. However, this throughput imposes a require-
ment on the data to be supplied in a high throughput manner for the multi-
core system. This results in the necessity of an efficient management of
on-chip and off-chip memory data transfers, which is a significant chal-
lenge. Complex regular and irregular memory data transfer patterns are
becoming widely dominant for a range of application domains including
the scientific, image and signal processing. Data accesses can be arranged
in independent patterns that an efficient memory management can exploit.
The software based approaches using general purpose caches and on-chip
memories are beneficial to some extent. However, the task of efficient
data management for the throughput oriented devices could be improved
by providing hardware mechanisms that exploit the knowledge of access
patterns in memory management and scheduling of accesses for a hetero-
geneous multi-core architecture.

The focus of this thesis is to present architectural explorations for a novel
access pattern-based multi-core memory architecture. In general, the the-
sis covers four main aspects of memory system in this research. These
aspects can be categorized as: i) Uni-core Memory System for Regular
Data Pattern. ii) Multi-core Memory System for Regular Data Pattern.
iii) Uni-core Memory System for Irregular Data Pattern. and iv) Multi-
core Memory System for Irregular Data Pattern.

Contents

List of Figures xv

List of Tables xix

I Introduction and Research Proposal 1

1 Introduction 3
1.1 Target Heterogeneous Multi-core Systems . 6

1.1.1 Field Programmable Gate Arrays (FPGA) 7

1.1.2 Scalar Soft Processor core (SSP) . 8

1.1.3 Application Specific Hardware Accelerator (ASHA) 9

1.1.4 Vector Processor (VP) . 11

1.2 A Conventional Memory System . 12

1.2.1 Local Memory System . 12

1.2.1.1 Cache . 13

1.2.1.2 Scratchpad . 14

1.2.2 Main Memory System . 15

1.3 Problem and Motivation . 17

1.3.1 Multi-core System Delays . 17

1.3.1.1 Memory Management Delay 17

1.3.1.2 Bus Delay . 19

1.3.1.3 Scheduling Delay . 20

1.3.1.4 Memory Delay . 20

1.3.2 Access Patterns . 21

1.3.2.1 Regular Access Patterns . 21

1.3.2.2 Irregular Access Patterns 22

1.3.3 Scheduling . 23

vii

CONTENTS

1.3.3.1 Symmetric Scheduling . 23

1.3.3.2 Asymmetric Scheduling . 23

1.3.3.3 Run-time Scheduling . 24

1.4 Thesis Contributions . 24

1.4.1 Regular Data Access Patterns For Single Core 24

1.4.2 Multi Core System with Regular Data Patterns 25

1.4.3 Single Core System with Irregular Data Transfer Support 26

1.4.4 Multi Core System with Irregular Data Transfer Support 26

1.5 Thesis Organization . 26

2 Proposed Heterogeneous Multi-Core Memory System 29
2.1 Programmable Memory Controller Architecture 32

2.1.1 Bus System . 32

2.1.1.1 Front-End Interface . 32

2.1.1.2 On-Chip Bus System . 33

2.1.2 Local Memory System . 34

2.1.2.1 Descriptor Memory . 35

2.1.2.2 Buffer Memory . 36

2.1.2.3 Specialized Scratchpad Memory 36

2.1.3 Memory Manager . 39

2.1.3.1 Address Manager . 40

2.1.3.2 Data Manager . 42

2.1.3.3 Scheduler . 43

2.1.4 Main Memory System . 48

2.2 Programming Model . 50

2.2.1 Descriptors and Data Structures . 51

2.2.2 Working Examples . 53

2.2.3 Access Patterns . 58

2.2.3.1 Vector Access Pattern . 58

2.2.3.2 Tiling Access . 60

2.2.4 Programming PMC . 61

II Uni-core Memory System for Regular Data Pattern 65

3 PPMC: A Programmable Pattern Based Memory Controller 67
3.1 System Architecture . 68

viii

CONTENTS

3.2 Evaluation Architecture . 68
3.2.1 MicroBlaze SSP . 69
3.2.2 ROCCC ASHA . 69
3.2.3 PPMC based SoC . 71
3.2.4 Baseline MPMC based SoC . 71
3.2.5 Test Applications . 72

3.3 Results and Discussion . 73
3.4 Conclusion . 75

4 A Bus Controller for Graphics System 77
4.1 PGC Graphics System Specification . 79

4.1.1 Overview of PGC System . 80
4.1.2 Processing Unit . 81
4.1.3 Bus Unit . 83

4.1.3.1 Bus Specification . 83
4.1.3.2 Bus Control unit . 86
4.1.3.3 Bus Interconnect . 87

4.2 Experimental Framework . 88
4.2.1 MicroBlaze based Graphics System 88
4.2.2 PGC based Graphics System . 89

4.3 Results and Discussion . 90
4.3.1 Bus Performance . 90

4.3.1.1 Single-Camera Bus Bandwidth 91
4.3.1.2 Multi-Camera Bus Bandwidth 91

4.3.2 Snapshot Mode Performance . 92
4.3.3 Applications Performance . 92
4.3.4 Power . 93

4.4 Conclusion . 94

5 PVMC: Programmable Vector Memory Controller 95
5.1 Vector Processor . 96
5.2 Programmable Vector Memory Controller . 98
5.3 PVMC Functionality . 100

5.3.1 Memory Hierarchy . 100
5.3.2 Address Registers . 101
5.3.3 Main Memory Controller . 101
5.3.4 Programming Vector Accesses . 101

ix

CONTENTS

5.4 Experimental Framework . 103

5.4.1 The VESPA System . 103

5.4.1.1 SSP . 103

5.4.1.2 Vector Processor . 104

5.4.1.3 Memory System . 104

5.4.2 The Proposed PVMC System . 105

5.4.3 The Baseline Nios System . 105

5.4.4 Applications . 106

5.5 Results and Discussion . 106

5.5.1 Memory & Bus System . 106

5.5.2 Performance Comparison . 108

5.5.3 Dynamic Power & Energy . 110

5.5.4 Bandwidth . 111

5.6 Conclusion . 113

III Multi-core Memory System for Regular Data Pattern 115

6 PMSS: A Programmable Memory System and Scheduler for Complex Memory
Patterns 117
6.1 PMSS Architecture . 119

6.1.1 Memory Manager . 120

6.1.1.1 Scheduling . 121

6.1.1.2 Memory Organization . 122

6.1.1.3 Locality and Isolation . 122

6.1.1.4 Programmability . 122

6.2 Evaluation Architecture . 123

6.2.1 MicroBlaze based Multi-ASHA System 123

6.2.2 PMSS based multi-ASHA System . 124

6.2.3 Test Applications . 125

6.3 Results and Discussion . 125

6.3.1 Memory Bandwidth . 126

6.3.2 Application’s Performance . 126

6.3.3 System Performance . 127

6.3.4 Static Power . 128

6.4 Conclusion . 128

x

CONTENTS

7 AMC: Advanced Multi-accelerator Controller 131
7.1 Architecture . 133
7.2 Evaluation Architecture . 138

7.2.1 Intel based HLS multi-ASHA System 138
7.2.1.1 The Master Core . 138
7.2.1.2 The Programming API . 139
7.2.1.3 The PCI Bus Unit . 140

7.2.2 MicroBlaze based HLS multi-ASHA System 140
7.2.3 AMC based HLS multi-ASHA System 141
7.2.4 HLS multi-ASHA Kernels . 142

7.3 Results and Discussion . 142
7.3.1 Application Performance . 143

7.3.1.1 Applications Performance without On-Chip Memory 143
7.3.1.2 Applications Performance with On-Chip Memory 145

7.3.2 System’s Performance . 146
7.3.3 Area and Power . 147

7.4 Conclusion . 148

IV Uni-core Memory System for Irregular Data Pattern 149

8 APMC: Advanced Pattern based Memory Controller 151
8.1 APMC Architecture . 152

8.1.1 APMC Working Operation . 154
8.2 Experimental Setup . 155

8.2.1 Baseline MPMC System . 156
8.2.2 APMC based System . 157
8.2.3 Test Applications . 159

8.3 Results and Discussion . 160
8.3.1 Application Performance . 160
8.3.2 Bandwidth . 163
8.3.3 Power . 164

8.4 Conclusion . 164

V Multi-core Memory System for Irregular Data Pattern 167

9 AMMC: Advanced Multi-core Memory Controller 169

xi

CONTENTS

9.1 AMMC Architecture . 170

9.2 Experimental Framework . 172

9.2.1 MicroBlaze-based Multi-Core System 173

9.2.2 AMMC based Multi-Core System . 173

9.3 Results and Discussion . 174

9.3.1 Multi-Core System Performance . 175

9.3.2 Area & Power . 178

9.4 Conclusion . 178

10 MAPC: Memory Access Pattern based Controller 179
10.1 MAPC Architecture . 181

10.1.1 MAPC Working Operation . 181

10.2 Experimental Framework . 183

10.2.1 Multi-core System and Applications 184

10.2.2 Nios Multi-core System . 186

10.2.3 MAPC Multi-core System . 186

10.3 Results and Discussion . 187

10.3.1 Single-Core Performance . 187

10.3.2 Multi-Core Performance . 189

10.3.3 Resource and Total Power . 191

10.3.4 Fairness . 191

10.3.5 Bandwidth . 192

10.4 Conclusion . 193

VI Related Work, Conclusions and Future Research Directions
195

11 Related Work 197
11.1 Local Memory System . 197

11.1.0.1 Scratchpad . 197

11.1.1 Cache . 198

11.2 Memory Manager . 200

11.3 Main Memory System . 202

11.3.1 Prefetching . 203

11.3.2 Scatter Gather Controllers . 205

xii

CONTENTS

12 Conclusions and Future Research Directions 209
12.1 Conclusions . 209
12.2 Future Research Directions . 212

Publications 215
I Publications . 217
II Other Papers and Extended Abstracts . 219

References 221

xiii

CONTENTS

xiv

List of Figures

1.1 Conventional Multi-core Memory System . 3

1.2 An example view of data flow of Heterogeneous System 7

1.3 Conventional High Level Synthesis Tool Flow 10

1.4 A Conventional Memory System Architecture 12

1.5 SRAM: Local Memory . 12

1.6 Scratchpad Memory Hierarchy . 15

1.7 DRAM: Main Memory . 16

1.8 Generic Multi-Core Architecture . 17

1.9 Conventional Load Store Access . 18

1.10 Direct Memory Access . 18

1.11 SDRAM Memory Architecture . 20

1.12 Examples of: (a) Regular access pattern (b) Irregular known access pattern (c)
Independent unknown irregular access pattern (d) Dependent unknown irregu-
lar access pattern . 22

2.1 PMC based Multi-core Heterogeneous Architecture 30

2.2 PMC: Front End Interface . 32

2.3 On Chip Bus System . 34

2.4 Descriptor Memory Structure: Regular and Irregular Access Patterns 35

2.5 3D-Stencil . 37

2.6 Buffer Memory Organization and Specialized Memory Structure 38

2.7 PMC : Memory Manager . 39

2.8 Descriptor Memory: Run-Time Managed Access Patterns 40

2.9 Address Manager: Run Time Managed Descriptor Block 41

2.10 Load, Update and Reuse of FIR Access Pattern 42

2.11 PMC: (a) State Controller (b) Scheduler (c) Scheduling Example 44

2.12 PMC: Request, Hold and Grant Policy . 46

xv

LIST OF FIGURES

2.13 PMC: Pattern Aware Main Memory Controller 48

2.14 Examples of Specialized Scratchpad Memory and Main Memory Data Struc-
ture . 52

2.15 DMA Transfer Function Calls: (a) Conventional DMA (b) PMC 53

2.16 Conventional Load/Store Stencil Access Pattern 55

2.17 PMC 3D Stencil Access Pattern . 56

2.18 PMC Programming Example of 2D and 3D Applications 57

2.19 PMC Vector Access Patterns . 59

2.20 3D Stencil Vector Access . 59

2.21 3D Specialized Memory Structure . 60

2.22 PMC Tiling Example . 60

2.23 PMC Program Flow . 62

2.24 PMC Descriptor Memory . 63

3.1 PPMC: Programmable Pattern based Memory Controller 68

3.2 ROCCC-based Hardware Accelerator . 69

3.3 Test Environment: PPMC based SoC with Reconfigurable Hardware Accelerator 70

3.4 Test Environment: MPMC based SoC with Reconfigurable Hardware Accelerator 71

3.5 Clock Cycles: PPMC and MicroBlaze Read/Write data to/from Main Memory . 74

3.6 Execution time (clock cycles) of the applications 74

3.7 Execution time for various volume sizes with domain decomposition done by
the host processor and tiling done by the PPMC for the 3D-Stencil 75

4.1 Generic Graphics System on Chip . 78

4.2 PGC : Internal Structure . 79

4.3 PGC : Flowchart . 80

4.4 Camera Control Unit: (a) Resource Utilization (b) Reduced Memory Map . . . 82

4.5 CCU and DCU Data Rate . 83

4.6 Graphics Bus Required Bandwidth . 84

4.7 Bus Unit Timing Cycles . 85

4.8 PGC Graphics Bus Unit . 87

4.9 MicroBlaze based Graphics System . 88

4.10 PGC: Graphics System . 89

4.11 Single and Dual Camera Systems: Bandwidth For Different Frame Rate 90

4.12 Application Performance . 92

5.1 Generic Vector Processor . 97

xvi

LIST OF FIGURES

5.2 PVMC: Vector System . 98
5.3 Data Memory Buffers: Load, Reuse & Update 100
5.4 (a) Vector Loop (b) PVMC Vector Loop . 102
5.5 PVMC Data Transfer Example . 102
5.6 (a) Baseline VESPA System (b) PVMC System 104
5.7 Speedup of PVMC and VESPA over Nios II/f 108
5.8 Vector & Scalar Systems: Application Kernels Execution Clocks 109
5.9 Vector & Scalar Systems: Memory Bandwidth 112

6.1 System Stall Time . 118
6.2 PMSS Architecture . 120
6.3 PMSS:Memory Manager . 121
6.4 Test Architectures: MicroBlaze based multi-ASHA 123
6.5 Test Architectures: PMSS based multi-ASHA 124
6.6 DataSet Read /Write Time by different System 126
6.7 Multi-ASHA system execution . 127
6.8 Memory Access and Scheduling of multi-ASHA System 128

7.1 Architecture of Advanced Multi-Accelerator Controller Based System 133
7.2 Memory Hierarchy of AMC System . 134
7.3 AMC: Back-End Scheduler Lookup Table . 134
7.4 N-Stencil Vector Load & Update Points . 136
7.5 HLS multi-ASHA Systems: (a) Intel Core System (b) MicroBlaze System . . . 139
7.6 HLS multi-ASHA Systems: AMC System . 142
7.7 Application Kernels Execution Time Without On-chip Memory Support 144
7.8 Application Kernels Execution Time with On-chip Memory Support 145
7.9 HLS multi-ASHA Systems Execution Time 147

8.1 APMC: Block Diagram With Data Flow . 153
8.2 APMC: Data Manager: (a) Load, Update & Reuse Units 155
8.3 (a) MPMC based System Architecture (b) APMC based System Architecture . 156
8.4 MPMC & APMC Systems Resource Utilization 157
8.5 Application Execution Time . 160
8.6 Dataset Read/Write Bandwidth . 163

9.1 Architecture of Advanced Multi-core Memory Controller 170
9.2 MicroBlaze-based multi-core system: (a) Block Diagram (b) Resource Utiliza-

tion . 172

xvii

LIST OF FIGURES

9.3 AMMC-based multi-core system: (a) Block Diagram (b) Resource Utilization 174
9.4 Symmetric System Performance: (a) AMMC (b) MicroBlaze Pipeline and

Overlap Time Period . 174
9.5 Asymmetric System Applications Performance: (a) AMMC (b) MicroBlaze . . 176
9.6 Asymmetric System: (a) and (b) AMMC and MicroBlaze Systems Pipeline

and Overlap Time Period . 177

10.1 MAPC: Block Diagram With Data Flow . 181
10.2 MAPC: Request, Hold and Grant Policy . 182
10.3 MAPC:: Pattern Descriptor and Pattern Scheduler 183
10.4 Multi-Core Systems: (a) Nios (b) MAPC . 184
10.5 Brief description of application kernels . 185
10.6 Control Data Flow Graph of RTM . 185
10.7 Single-Core Results: Execution Time . 187
10.8 Fairness: Single-Core Hold Time . 191
10.9 MAPC and Nios Multi-core Systems: Memory Bandwidth 192

12.1 PMC : Maximum Operating Frequency of Each Unit on ML505 FPGA 211
12.2 Programming Model Data Transfer Example: (a) StarSs (b) PMC 213

xviii

List of Tables

2.1 C/C++ Device Drivers to Program/Operate PMC System 50

3.1 Brief description of application kernels . 73

4.1 Graphics System: Use Case, Mode of Operations 81

5.1 Brief description of application kernels . 105
5.2 (a) Local Bus Maximum Frequency (MHz) (b) Global Bus Maximum Fre-

quency (MHz) . 106
5.3 Resource Utilization of the Memory Hierarchy 107
5.4 Systems: Resource, Power and Energy utilization 110

6.1 Brief description of application kernels . 125

7.1 Brief description of application kernels . 143
7.2 AMC: computedpoint/accesspoint Ratio of Local Memory System 144

8.1 Application kernels with Regular access patterns 158
8.2 Application kernels with Irregular access patterns 159
8.3 APMC: ComputedPoint/AccessedPoint Ratio 162

9.1 Asymmetric Scheduling Priority Policies . 175

10.1 MAPC System Speedups, Power and Energy for different Scheduling Policies . 189

xix

LIST OF TABLES

xx

Part I

Introduction and Research Proposal

1

1

Introduction

A typical multi-core system uses two types of random-access memory (RAM): on-chip

memory usually consisting of static SRAM, and off-chip memory usually consisting of
dynamic DRAM. The on-chip and off-chip memories are also called Local Memory

and Main Memory respectively (shown in Figure 1.1). The on-chip memory has low
read/write access latencies compared to off-chip memory. The Off-chip memory is less
expensive by a factor of 20 or more, denser and slower by a factor of 10 to 100 than on-

chip memory. To combine their advantages, often a low-cost off-chip memory is used
in the system that handles large data with high latency, and then a small low latency but
expensive on-chip memory is added to manage the frequently used data in run-time.

The deviation between capacity and operating frequency is crucial in memory tech-
nology. In last few decades, the capacity of DRAM chips enlarged a thousand fold,
quadrupling every three years while the memory cycle time improved by a factor of

Figure 1.1: Conventional Multi-core Memory System

3

1. INTRODUCTION

two only. In current multi-core architectures, the gap between processor cycle time

and memory cycle time is substantially getting larger. The conventional DRAM ar-

chitectures are using wider, and wider paths [1] into memory and greater interleaving

of memory banks. A number of advanced DRAM [2] designs appear on the market

which transfer a large number of bits per memory cycle within the chip, and pipeline

the transfer of those bits at high frequency. These advanced designs improve the band-

width, but latency issues remain there.

Efficient Memory Management is important to improve performance for many ap-

plications running on multi-core systems. The multi-core systems normally support

efficient utilization of data in SRAMs by providing a fixed architecture of caches or

scratchpad memories. The cache stores copies of the data from frequently used Main

Memory locations. Transparent to the programmer, the cache memories [3] are very

effective when the working set fits in the cache hierarchy, and there is locality. In many

High Performance Computing (HPC) applications the data sets can be large and have

unpredictable, irregular patterns, thus reducing the spatial locality. In cache memory

systems, the mapping of program elements is done transparently, whereas in scratch-

pad memory systems this is done either by the user or automatically by the compiler

using lookup table algorithms [4]. Scratchpads are, usually, not feasible for applica-

tions having irregular or dynamic data structures [5]. The generated scratchpad code

is not portable across different sizes of scratchpads.

In the multi-core architecture, noncontiguous memory accesses take extra time

while accessing and arranging data in Local Memory and generate delays while ac-

cessing data to/from Main Memory. Prefetching mechanism improves Local Memory

usage efficiency by predicting future Main Memory data accesses and prefetching them

before the data access request. Hardware prefetching [6] is effective in hiding the Main

Memory delay when the accesses are known in advance, but it cannot be tailored for

data-dependent accesses, e.g. lists, trees, etc. Adaptive software prefetching [7] can be

utilized to change prefetch distances during runtime, but it is difficult to insert prefetch

information for irregular access patterns at runtime. A number of intelligent and high-

performance memory systems [8; 9] exist to manage the processor and Main Memory

speed gap. Unfortunately, these memory controllers rely on a master processor or

microcomputer and are typically limited to applications with regular memory access

patterns thereby, prohibiting the acceleration of applications with irregular patterns.

4

Due to limited support of irregular access patterns in existing memory controllers, the

multi-core systems are not effectively leveraging code with pointer-based data struc-

tures [10]. These memory systems are designed on the basis of few heuristics that are

generic enough to provide different degree of performance enhancement for various

applications. However, the performance for certain applications on the device can still

be improved by providing more specialized memory layouts for those applications.

Over the past decade, system architectures changed towards reconfigurability, par-

allelism and heterogeneity that results in high performance, low power and easy design.

Field-Programmable Gate Array (FPGA) provides high performance by reconfiguring

parameterized general purpose soft cores and application-specific hardware accelera-

tors. Due to the significant performance improvements, high density, low power and

reconfigurability feature of FPGAs [11; 12] the combination of multi-cores and het-

erogeneity, referred to as multi-core heterogeneous systems for simplicity, is becoming

more popular in areas ranging from low-power embedded systems to high-performance

computing (HPC) systems. As the number of cores increases the demand of memory

bandwidth increases as well. Efficient memory hierarchy is required that accelerates

both regular and irregular access patterns manages memory accesses by applying in-

telligent scheduling policies.

As the number of cores in a chip increases the reuse of the communication infras-

tructure becomes difficult. Buses and point to point connections that have been the

principal means to connect multiple cores on a chip today do not result in scalable

platform architecture for many core architecture. Buses can cost-efficiently connect a

few tens of processing cores. Point to point communication connections are practical

for cores having regular streaming data transfers. As the applications having com-

plex and irregular access patterns increase on multi-core system, latency of the long

wire switching, effects the performance of the system. Therefore, the pattern (packet)

based on-chip communication infrastructure can play an increasingly dominant role in

multi-core design.

This thesis presents an overall view of the thesis work which centers upon the

architectural explorations for heterogeneous multi-core systems. The chapter starts

by giving a general introduction on the heterogeneous multi-core system architectures.

This is followed by description of a conventional memory system. Before summarizing

5

1. INTRODUCTION

the chapter, we will briefly look at the contributions made during this thesis work as
well the organization of this thesis document.

1.1 Target Heterogeneous Multi-core Systems

In the light of Moore’s law, the number of transistors on silicon chips doubles approxi-
mately every 18 months. The processor clock speed increased 30% per year and hit the
power wall when it reached 5 GHz due to power density [13]. The power wall then di-
rected computer technology to carry Moore’s law by adding multiple processing cores
in a chip and keeping the clock frequency constant. In a comparison to the traditional
parallel computing on general purpose cores, heterogeneous systems with components
such as the application specific accelerators have exhibited significant performance
advantages in application domains such as multi-media, graphics [14], digital signal
processing [15] and some scientific applications. These hardware accelerators have
low footprint and low power consumption and provide high performance computation.
The application using data in the form of complex and irregular data structures could
also utilize the potential of accelerators computing. This may require a general pur-
pose Reduced Instruction Set Computing (RISC) core that reorders and manages data
transfer tasks.

To manage power, memory wall effects and complexity of the system, the HPC
industry supports multi- processor and accelerator cores for data intensive scientific
applications. The Application Specific Hardware Accelerators (ASHA) and Vector Pro-

cessor (VP) architectures lead to throughput oriented computing on devices with par-
allel streaming architectures. These throughputs oriented architectures execute parallel
workloads while attempting to maximize total throughput. The ASHA and VP architec-
tures consist of numerous types of components including the memory structures, com-
pute units, control units, I/O channels and I/O controls, etc. The hardware accelerator
cores, normally, offer a large number of compute resources but restrict the applications
to arrange parallel and maximally independent data sets to feed the compute resources
as streams. That is why the HPC accelerators use a Scalar Soft Processor core (SSP)
Master Core to feed data. The performance for these applications on an arbitrary plat-
form depends on how well the data is managed into streams before is forwarded to the
computing cores. An example view of the data flow for HPC application [16] through

6

1.1 Target Heterogeneous Multi-core Systems

Figure 1.2: An example view of data flow of Heterogeneous System

a heterogeneous architecture is shown in the Figure 1.2. The figure shows that SSP,

ASHA and VP are processing blocks of data (Block0), (Block1) and (Block2) respec-

tively. The heterogeneous multi-core system does not get optimum performance if

accelerators are not tightly scheduled. The SSP schedules the memory requests and

manages data transfers between Accelerator Cores, Local Memory and Main Mem-

ory. The SSP master core is capable of initiating data transfer on the bus and is also

responsible for memory management and scheduling of heterogeneous multi-core sys-

tem. It decides when a processing core start execution and provides the memory and

I/O link. All cores can communicate with each other via SSP. Each Accelerator Core

takes data from their Local Memory and performs computation in parallel. The section

is further divided into a discussion on FPGA and a description of three types of cores

that we consider in our heterogeneous architecture Scalar Soft Processor core (SSP),

Application Specific Hardware Accelerators (ASHA) and Vector Processor (VP).

1.1.1 Field Programmable Gate Arrays (FPGA)

With the rapidly rising cost, time-to-market of designing state-of-the-art ASICs [17]

and fast prototyping [18], an increasing number of HPC systems are being built using

FPGA platforms [19]. FPGA technology now also mainly used in research and de-

velopment sectors because it provides an environment where designer can build new

architecture using a variety of languages and design flows. It allows designers to in-

tegrate multiple heterogeneous cores into one architecture and test it with real time

7

1. INTRODUCTION

debugging facility. With careful planning and partnering with an experienced Appli-

cation Specific Integrated Circuit (ASIC) vendor, the FPGA based architecture can be

fabricated in ASIC.

There are two possibilities when implementing general purpose codes in FPGA

systems: hard-core processors, that are included in the chip besides the FPGA and of-

fer excellent packaging and communication advantages, and soft-core processors, that

are implemented configuring FPGA resources and offer the advantage of flexibility and

lower part costs. While a soft core cannot easily match the performance/area/power

consumption of a hard processor, processors have several compelling advantages. Many

FPGA vendors are now offering such scalar soft processor/accelerator cores [20; 21;

22; 23] that designers can implement using a standard FPGA. The number of cores can

be varied depending upon the required application and FPGA resources and FPGA

Computer Aided Design (CAD) tools automatically place them within the design to

ease routing. To address the computational requirements introduced by many demand-

ing HPC applications, several research efforts have aimed at implementing HPC appli-

cations for different hardware architectures (Central Processing Unit (CPU), Graphi-

cal Processing Unit (GPU) and FPGA). Each architecture has its design methodology

and specific optimizations for performance. A way to exploit parallelism is to build

a heterogeneous multi-core system on FPGAs using parameterized general purpose

soft-cores and application specific hardware accelerators.

1.1.2 Scalar Soft Processor core (SSP)

As the target design moves towards HPC, the design architecture requires high speed,

programmable and low power architecture. Such architecture should have parame-

terizable processing, memory and communication units that can reconfigure a system

according to the applications needs. The control unit is also required that schedules

and manages the different components and their data movement. A soft parameteriz-

able core is used in the design to support wide range of general purpose applications. A

SSP is a Hardware Description Language (HDL) model of a general purpose processor

that can be customized for a given application and synthesized for an ASIC or FPGA

target. A parameterized soft processor is a processor designed at the Register Transfer

8

1.1 Target Heterogeneous Multi-core Systems

Level (RTL) allowing certain aspects of the architecture to be varied. The RTL de-

sign is expressed using a HDL such as Verilog or Very High Speed Integrated Circuit

HDL (VHSICHDL or VHDL) which contains parameters that can be tuned to alter the

processor architecture in a manner intended by the original designer. The functional-

ity of the processor is guaranteed by the original designer for many combinations of

parameter values.

1.1.3 Application Specific Hardware Accelerator (ASHA)

FPGAs have traditionally been programmed with languages and methodologies that

stem from the Electronic Design Automation (EDA) community. While in HPC, high

level languages such as C and Fortran are used. This design gap between EDA method-

ologies and HPC programmers has slowed the adoption of FPGAs by the HPC com-

munity. Translation of HPC algorithms into hardware is complex and time consuming.

Large applications result in complex systems with a high probability of containing de-

sign errors, and it is challenging to reuse the hardware resources. To overcome these

difficulties, FPGA designers use C-to-hardware High Level Synthesis (HLS) that per-

forms design modeling and validation at a higher level of abstraction. However, this

approach has some limitations. Every application kernel requires its own accelerator.

A scalar processor core is needed to manage Local Memory data and Main Memory

transfers for the accelerators. Every change in the code of the application introduces a

new place-and-route iteration to generate the hardware accelerator. Hence, even sim-

ple changes can lead to dramatic shifts in area usage and clock frequency. All of these

factors make design closure with custom data-path accelerators very difficult.

The HLS design flow consists of a sequence of steps (see Figure 1.3), with each

step transforming the abstraction level of the algorithm into a lower level descrip-

tion. The HLS Parallelism Extraction step extracts the Control and Data Flow Graph

(CDFG) from the application to be synthesized. The CDFGs describe the computa-

tional nodes and edges between the nodes. HLS provides different methods to explore

the CDFG of the input algorithm and generates the data-path structure. The generated

data-path structure may contains the user-defined number of computing resources for

each computing node type and the number of storage resources (registers). The Alloca-

tion and Scheduling step maps the CDFG algorithm onto the computing data-path and

9

1. INTRODUCTION

Figure 1.3: Conventional High Level Synthesis Tool Flow

produces a Finite State Control Machine. The Refining step uses the appropriate board

support package and performs synthesis for the communication network. Finally, the

HDL-RTL Generation step produces the VHDL files to be supplied to the proprietary

synthesis tools for the targeted FPGA.

Over the past few years, HLS tools have been developed that add the necessary

technologies to become truly production-worthy. Initially limited to data path designs,

HLS tools have now started to address complete systems, including control-logic and

complex on-chip, off-chip interconnection. Xilinx Vivado HLS [24] (built on Au-

toESL tool technology [25]) accelerates design implementation. It takes C, C++, or

SystemC as its input and produces device-specific RTL after exploring a multitude of

micro-architectures based on design requirements. Impulse Accelerated Technologies

develops the ImpulseC programming language [26]. The ImpulseC tools comprise a

software-to-hardware compiler that translates individual Impulse C processes to hard-

ware and generates the necessary process-to-process interface logic. Handel-C, devel-

oped by Celoxica [27], is based on the syntax of conventional C language. Programs

written in Handel-C are sequential. To exploit benefits of parallelism from the tar-

get hardware, Handel-C provides parallel constructs such as pipelined communication

and parallel sections. Catapult C, designed by Mentor Graphics [28], is a subset of

10

1.1 Target Heterogeneous Multi-core Systems

C++. The code that is compiled through Catapult C may be general purpose and result

in much different hardware implementations with different timing and resource con-

straints. The Catapult C environment takes constraints and platform details in order

to generate a set of optimal implementations. Ylichron (now PLDA Italia) developed

a source-to-source C to VHDL compiler toolchain targeting system designers called

HCE (Hardware Compiling Environment). The HCE toolchain [29] takes ANSI-C

language as input, which describes the hardware architecture with some limitations

and extensions. ROCCC 2.0 [23] is a free and open source tool that focuses on FPGA-

based code acceleration from a subset of the C language. ROCCC tries to exploit

parallelism within the constraints of the target device, optimize clock cycle time by

pipelining, and minimize area. ROCCC is one of the few HLS tools that does memory

access optimization.

1.1.4 Vector Processor (VP)

FPGA soft processor cores typically decrease system performance compared with

hard-core processors. A way to provide substantial performance improvement, FPGA

based soft vector processors have been proposed [30; 31]. A soft vector processor

comprises a parameterized number of vector lanes, a vector memory bank and a cross-

bar network that shuffles vector operations. Soft vector architecture is very efficient

for HPC applications with Data Level Parallelism (DLP), not only it can process mul-

tiple data elements based on a single vector instruction but also it can reconfigure itself

depending upon the required performance.

A vector processor is also known as a “Single Instruction, Multiple Data” (SIMD)

CPU [32], that can operate on an array of data in a pipelined fashion, one element

at a time using a single instruction. For higher performance multiple Vector Lanes

(VL) can be used to operate in lock-step on several elements of the vector in parallel.

The number of vector lanes determines the number of Arithmetic Logic Units (ALUs)

and elements that can be processed in parallel. The maximum vector length (MVL)

determines the capacity of the vector register files (RF). Increasing the MVL allows a

single vector instruction to encapsulate more parallel operations, but also increases the

vector register file size. The vector processor uses a scalar core for all control flow,

branches, stack, heap, and input/output ports.

11

1. INTRODUCTION

Figure 1.4: A Conventional Memory System Architecture

1.2 A Conventional Memory System

Figure 1.4 shows a conventional memory system having Local Memory and Main

Memory. For each data access request, the Memory System accesses Local Memory

in order to check if it holds the requested data. If it does, a Local Memory hit oc-

curs, and the Memory System bypasses the Main Memory and provides the data to

the processing core. Otherwise, the Main Memory transfers the aligned data block;

the processing core receives the data and the Local Memory stores the whole block.

The Memory System checks both address and data, and updates copy of data in Local

Memory. When a read request is generated for an address location that is in Local

Memory, the Memory System reuses its copy and avoid the Main Memory access. We

first describe the Local Memory System and then the Main Memory System.

1.2.1 Local Memory System

The advantage of an SRAM based local memory (shown in Figure 1.5) is its speed

but they suffer from a very large cell area that limits their density and make them ex-

Figure 1.5: SRAM: Local Memory

12

1.2 A Conventional Memory System

pensive, therefore, small SRAM memory is used to balance the performance and cost.

The performance of the embedded DRAM (eDRAM) technologies are improving have

higher reliability and are expected to dissipate less power but have higher data access

latency than SRAM based Local Memory System. SRAM-based Local Memory System

are popular due to its read/write access time, but the power dissipation and reliability

are primary issues. Therefore, the Local Memory System integrates a small SRAM

memory close to the processing core and uses a number of techniques to improve on-

chip data locality. Two types of Local Memory Systems are Cache and Scratchpad.

1.2.1.1 Cache

Caches are present in most memory systems. The Cache dynamically stores a subset

of the frequently used data. Thus, the timing of a load or store operation depends

on the relationship between its effective address and the effective addresses of earlier

operations. The processor shares an address bus and a data bus with the memory. When

the processing core makes a memory access (read data, or write data), the Memory

System first checks if the cache contains the data. The Cache monitors the access

requests in order to check if it holds the requested data. If it does, a cache hit occurs

and the cache bypasses the Main Memory and provides the data to the processing

core. Otherwise, a cache miss occurs, and the Main Memory provides the data and its

surrounding elements, the processing core receives the data and the cache stores the

whole data elements as a cache line. The time cost of a cache miss is high due to the

latency of the Main Memory accesses. A cache can be direct-mapped, fully-associative

or n-way set associative.

A conventional cache uses byte addressable memory, i.e. each address refers to

a byte. For example 2b is the size of cache in bytes and 2B is byte size of the Main

Memory and Addr is the address of the Main Memory. A single data transfers to/from

the memory hierarchy is called a cache line (CL) or block, NCL is the total number of

CLs and CLS is the cache line size .

A Direct-mapped cache is one of the simplest placement policy for caches. Each

memory location has only one possible location in the cache. The cache address

cacheaddress is gathered by the LSB.

cacheaddress = (cacheaddress[b− 1 : 0])

13

1. INTRODUCTION

=
(addr[B− 1 : 0])

2b
= (addr[b− 1 : 0]) (1.1)

This scheme is easy since there is just one location in the cache to lookup. The

cache only checks if the tag of the cache line has data. The drawback of direct

mapped caches is that they behave inefficiently in case of data request collisions.

However, their access and replacement policy is considerably simpler than the fully

associative caches.

In a fully associative cache, a block can be placed in any cache line. In this case,

the Main Memory address addr is split into two parts: tag and offset. In the case

of a cache miss, a whole CL is transferred from the Main Memory to the cache. The

addresses of consecutive data share the same tag. While processing a request of a

particular data, the most significant bits of its address are compared with the tag of

each of the NCL cache lines. The comparisons have to take place at the same time,

forcing the hardware to comprise NCL comparators, i.e. one per cache line.

The set associate cache tends to conciliate the advantages of direct-mapped and

fully associative caches. It provides a set of possible locations for a cache line. Con-

trarily to fully associative caches, the set is limited to a small integer k, usually, chosen

as a power of 2. The cache is then referred as k-way set associative. It can be seen as

if the cache is divided into k smaller caches, each one of them being direct-mapped.

One can pinpoint that when k = 1 the cache is direct mapped and when k = NCL the

cache is fully associative. The set is given by addr [log2 (k) + CLS - 1 : CLS], so that

tag can be compared with k locations at the same time. The hardware is simpler than

in fully associative cache, and the risk of cache line conflicts is smaller than in direct-

mapped caches, therefore, the set associative caches are often used as a compromise

for processing core caches.

1.2.1.2 Scratchpad

The Scratchpad is a fast directly addressed software managed SRAM memory. The

Scratchpad has better real-time guarantees than caches and by its significantly lower

overheads it is better in access time, energy consumption and area. Recent advances [4]

have made much progress in compiling static structures into scratchpad memory that

14

1.2 A Conventional Memory System

Figure 1.6: Scratchpad Memory Hierarchy

enable several performance enhancements. Instead of using traditional load/store in-

structions the scratchpad uses direct memory-memory operations using DMA. The

Scratchpad memory access uses source and destination address registers, each of which

holds a starting address of the memory.

The Scratchpad memory (shown in Figure 1.6) is designed to keep in view that

the memory data is mapped to the Local Memory. The Scratchpad memory occupies

one distinct part of the memory address space with the rest of the space occupied by

Main Memory. Thus, the running application checks for the availability of the data/in-

struction in the Scratchpad. This eliminates the comparator and the signal miss/hit ac-

knowledging circuitry and due to this, and energy and area consumption are reduced.

On the contrary, the Cache uses an uniform address space. Whereas the Scratchpad

uses the non-uniform address space. The accessed block of data can have data of non-

contiguous memory locations and is placed in the Scratchpad memory known location

and is managed by software. Therefore allocating irregular/complex data structures

(e.g. pointers, linked-lists, etc.) to Scratchpad has proven far more difficult. Scratch-

pad lacks compile-time methods for irregular memory allocation [5], and a number of

techniques are proposed to decide what to place in Scratchpad only at runtime; how-

ever mostly they have not been successful [33]. Accesses to conventional scratchpad

are always as fast as data cache hits. The Scratchpads offer a time-predictable re-

placement for a cache. Accesses outside the Scratchpads are direct accesses to main

memory, incur a large time penalty that is similar to a cache miss.

1.2.2 Main Memory System

A conventional Main Memory System uses an Synchronous DRAM (SDRAM) con-

troller that receives the physical address to be read or written as well as maintaining

15

1. INTRODUCTION

the timing of other signals corresponding to the different phases of the SDRAM access

protocol. The SDRAM controller implementations may have different levels of com-

plexity; some may gather and reorder requests to increase access locality, and others

use simple First In First Out (FIFO) processing of memory requests.

At the highest level, the SDRAM arrays are divided into ranks, typically with one

or two ranks per SDRAM module. Within each rank, the memory is subdivided into

banks and each bank consists of a 2 Dimensional array as shown in Figure 1.7. On an

SDRAM read, bits from the physical address select the rank, bank and row; a set of

sense amplifiers reads the contents of that row and then the results are latched in a row

buffer. Any subsequent access to the same row can bypass the array-read and access

the data directly from the row buffer. A few remaining bits from the physical address

select the column to be read. The data are sent back to the SDRAM controller, which

are later transferred back to the processor.

A conventional Main Memory System uses a Miss Status Handling Register (MSHR)

to store bookkeeping information regarding the Local Memory System missed requests.

The request is buffered in the MSHR and can be rearranged by a scheduler to use open

banks and rows of SDRAM. The scheduler prioritizes the memory requests by keep-

ing the fairness and maximize the offered net bandwidth. The Main Memory can have

many SDRAM modules that can work independently of data processing.

Figure 1.7: DRAM: Main Memory

16

1.3 Problem and Motivation

1.3 Problem and Motivation

In a heterogeneous multi-core environment (see Figure 1.8), a master core (micropro-

cessor) is used to manage the memory addresses and to schedule the data transfer re-

quests of a multi-core system. Non optimized memory management and data transfer

scheduling of application kernels could lead to significant performance degradation.

In such a scenario, efficient management of memory accesses at compile-time as well

as at run-time, across the set of multi-cores is critical to achieve high performance.

This section presents three aspects of memory management in multi-cores: Multi-core

System Delays, Access Patterns and Scheduling.

1.3.1 Multi-core System Delays

The factors that cause performance degradation are categorized into four types: Mem-

ory Management Delay, Bus Delay, Scheduling Delay and Memory Delay.

1.3.1.1 Memory Management Delay

The Memory Management incurs delays while handling data transfers – especially

irregular and complex patterns – and performing address management to access data

locations in memory. A conventional memory system uses a Load Store Unit (LSU)

and Direct Memory Access (DMA) to handle data between multi-cores, local and main

memories.

Figure 1.8: Generic Multi-Core Architecture

17

1. INTRODUCTION

for (start_value; inc=end_value; inc++)

//Addresses Management by Microprocessor

local_memory[inc]=main_memory[inc+offset];

main_memory[inc+offset]=local_memory[inc];

Figure 1.9: Conventional Load Store Access

1.3.1.1.1 Load Store Unit: The LSU is the conventional way to access data from

the memory shown in Figure 1.9. The LSU uses a load queue and a store queue.

The master core is responsible for managing and controlling main memory data move-

ments. In a multi-core processor, all cores request to access main memory the master

core takes memory requests and allow single core to transfer data. Such data transfers

have fine granularity and can access complex access patterns. One load or one store

operation can be issued per clock cycle. A single instruction transfers a single data

element, as the processor running the application performs data management it takes

less time for address generation of memory accesses. The LSU data access has low

throughput each data requires multiple load store instructions.

Read_DMA(local_memory,main_memory,transfer_size);

Write_DMA(main_memory,local_memory,transfer_size);

Figure 1.10: Direct Memory Access

18

1.3 Problem and Motivation

1.3.1.1.2 Direct Memory Access: A Direct Memory Access (DMA) uses a sep-
arate hardware block that transfers blocks of data to/from local memory and main

memory. The processor initiates the transfer by supplying the data transfer description
to the DMA. A single DMA instruction manages one stream of contiguous data. DMA
minimal descriptor contains scratchpad memory, main memory addresses and transfer
size of the memory access with unit stride access that is not efficient to access com-
plex memory patterns. This is shown in Figure 1.10. When accessing non-contiguous
memory locations, the memory system requires multiple DMA requests which gener-
ate address management delays. In such cases, the task of DMA becomes significantly
more complicated.

1.3.1.1.3 Scatter Gather DMA: A Scatter Gather DMA (SGDMA) is used to
transfer complex data accesses. The SGDMA merges non-contiguous memory ac-
cesses to a continuous address space. The core reads a series of DMA instructions
that specify the data to be transferred. In this way, the SGDMA stores the starting
addresses of all the memory accesses. After the DMA transfer operation starts, the
SGDMA core automatically takes the start address of the next data transfers after the
previous transfer of memory is completed. Using SGDMA, the memory system can
transfer efficiently non-contiguous blocks of memory.

1.3.1.2 Bus Delay

The shared communication buses are problematic both in latency and bandwidth. A
shared bus has long electrical wires, and if there are several potential slave units, it
make the bus even slower. Furthermore, the fact that several units share the bus fun-
damentally limits the bandwidth seen by each core. When the number of components
attached to the bus increases, the physical capacitance on the bus wires grows, and, as
a result, its wiring delay grows even further. The multi-core bus unit requires a master
core which manages data movements, complex on-chip/off-chip bus matrix architec-
ture and direct memory controllers. The bus faces delays such as master/slave arbitra-
tion, bus switching time and balancing workload. The Memories are mostly connected
with analog high speed streaming interfaces. Numerous aspects that increase delay
while accessing external memories include interface synchronization, signal quality,
and interface timing.

19

1. INTRODUCTION

1.3.1.3 Scheduling Delay

The Scheduling Delay is generated while executing data transfer requests. This de-
lay includes the time to schedule transfer requests, scheduler wait time and execution
time. Multiple cores may need to use the bus at the same time, so the scheduler decides
which processor core controls the bus. A conventional multi-core scheduler executes
data transfer requests based on the application priority and request arrival time. The
applications having low priority wait until higher priority applications finish and the
applications having same priorities are executed as First In First Out (FIFO) which
affects the fairness. At run-time, the applications having multiple small memory re-
quests generate scheduling delay and stall the system. Whereas an application request
with large data transfer size occupies the whole memory bandwidth and stalls other
applications.

1.3.1.4 Memory Delay

Memory Delay includes Main Memory access time due to address decoding, internal
delays in driving long bit lines, selection and refresh logic of SDRAMs. The parame-
ters n-banks, WM, FME, DR, and BL (shown in Figure 1.11) are used to describe the
SDRAM memory architecture. Where n-banks stands for the number of banks, WM
is the width of the data bus in bytes, FME represents the clock frequency of memory
in MHz, DR defines the number of data words that can be transferred during a clock
cycle, and BL is the word length of programmed burst. To control the SDRAM sys-
tem, specific commands are sent to the memory port according to the protocol. The

Figure 1.11: SDRAM Memory Architecture

20

1.3 Problem and Motivation

SDRAM communications protocol includes six command signals which are activate

(ACKT), read (RD), write (WR), precharge (PRE), refresh (REF), and no-operation

(NOP). The activate command is supplied with a row and a bank as an argument, in-

forms the selected bank to copy the requested row to its row buffer. Once the requested

row is opened, column can be accessed by read and write bursts having different burst

length (BL). The read and write commands involve a separate bank, row, and column

address lines. The precharge command corresponds the activate command to place the

contents of the row buffer back to its location in the memory. An auto-precharge flag

with a read and write command is inserted to automatically precharge at early possible

moment after the data transfer. This has the benefit that the next accessed row will be

opened faster without causing contention on the shared system bus. The accesses to an

SDRAM can be classified into three categories, each with different timing.

• Row hit: When the data is available in the row buffer of SDRAM the Main

Memory System issues only a read (RD) or write (WR) command to the SDRAM

bank.

• Bank hit: When a row is not opened in the row-buffer and Main Memory Sys-

tem needs first to issue an activate (ACKT) command to open the required row,

followed by a read/write command.

• Bank conflict: When data access requires data from a bank that is not opened.

This requires Main Memory System to first open a bank by issuing a precharge

(PRE) command, then activate (ACKT) the required row, and then issue a read-

/write (RD/WR) command.

1.3.2 Access Patterns

The memory access patterns are categorized into regular and irregular access patterns.

1.3.2.1 Regular Access Patterns

Regular access patterns have sequential access pattern, and each transfer has a constant

stride between two consecutive memory addresses (an example is shown in Figure 1.12

(a)). The access pattern addresses are predictable at compile-time and therefore little

21

1. INTRODUCTION

data[1024];

for(int x=y;x<100;x=x++)

{

read=data[x];

compute(read); }

(a)

data[1024];

for(int x=0;x<5;x=x++)

{

read=data[factorial(x)];

compute(read); }

(b)

data[1024];

addr=runtime_input();

for(int x=0;x<5;x++){

read=data[factorial(x)+addr];

compute(read); }

(c)

data[100];

for(int x=0;x<100;x=x++)

{

read=data[read+x];

compute(read); }

(d)

Figure 1.12: Examples of: (a) Regular access pattern (b) Irregular known access pattern
(c) Independent unknown irregular access pattern (d) Dependent unknown irregular access
pattern

processing is required to generate addresses at run-time. A multiple linked strided

stream can be used to access a complex pattern (e.g. 3D stencil, 2D tile etc.).

1.3.2.2 Irregular Access Patterns

The Irregular patterns have no fixed strides and are further divided into three cate-

gories: known, independent unknown and dependent unknown access patterns. The

known data patterns have irregular memory accesses – no fixed stride between con-

secutive accesses – but the address value of each memory access can be determined

at compile-time (an example is shown in Figure 1.12 (b)). Computation and memory

access are performed in parallel for known data patterns. The independent unknown

and dependent unknown are exemplified in Figures 1.12 (c) and 1.12 (d) respectively.

These memory patterns can not be predicted at compile-time and addresses can be gen-

erated at run-time. An address of an independent unknown pattern is not dependent on

the other memory accesses of the pattern. Therefore, independent unknown pattern ad-

dresses are generated in parallel with computation. The dependent unknown pattern is

dependent on a previous memory access from the same pattern. The memory address

22

1.3 Problem and Motivation

is generated by the compute unit. Therefore, the access patterns can not be processed

in parallel with computation, and the memory controller has to wait for the address of

the memory access.

1.3.3 Scheduling

The scheduling strategy of multi-core data transfers are categorized into three types,

Symmetric Scheduling, Asymmetric Scheduling and Run-time Scheduling.

1.3.3.1 Symmetric Scheduling

Symmetric Scheduling strategy queues incoming data transfer requests in the queue

buffer in the order that they arrive and execute the data transfer request in FIFO. The

Symmetric Scheduling strategy treats all available data transfer requests as equal re-

sources. Quality of service (QoS) management is one of the interesting features of

Run-time Scheduling strategy, which relies on monitoring available hardware resources

and prioritizing data transfer requests. The Symmetric Scheduling strategy affects the

QoS since the applications having long data transfers occupy whole bandwidth.

1.3.3.2 Asymmetric Scheduling

Unlike Symmetric Scheduling strategy, Asymmetric Scheduling emphasizes partition-

ing and role specialization for available processor cores. Asymmetric Scheduling deals

with heterogeneous multi-cores with different capabilities, e.g. different instruction

set architectures or different execution speeds. The Asymmetric Scheduling strategy

emphasizes on priority and incoming requests of the data transfer request. The priority

value sets the policy for how to share the system resources among available requesting

core. The scheduling policies are configured statically at program-time and are exe-

cuted by hardware at run-time. Asymmetric scheduler balances the waiting time of

multi-core requests and provides controlled data communication between processors

and memories.

23

1. INTRODUCTION

1.3.3.3 Run-time Scheduling

Multi-core system share multiple hardware resources in the memory subsystem. If
priorities of multi-core system are not appropriate, some applications can be delayed
significantly while others are unfairly prioritized. Asymmetric Scheduling proposed
mechanisms for each resource at compile-time. Such scheduling policies make subop-
timal decisions, leading to low fairness and loss of performance. The application with
multiple irregular requests generates scheduling delay and stalls the system. Whereas
an application request with large data transfer size occupies the whole memory band-
width and stalls other applications. The Run-time Scheduling strategy reorganizes data
transfer requests with respect to run-time specification and available resource and spec-
ification. Like Symmetric and Asymmetric Scheduling strategies Run-time Scheduling

strategy prioritize memory requests at run-time, unlike Symmetric and Asymmetric

Scheduling the prioritizes are assigned at run-time based on system specification (e.g.
transfer size and number of requests).

1.4 Thesis Contributions

In this section the main contributions of this thesis are categorized into four parts with
the list of papers associated with PMC. The first part lists single-core designs with
regular data access patterns. The second part of the work studies the multi-core based
design that supports regular data transfer patterns. The third part describes the single-
core design with irregular and regular data transfer patterns. The last part is based on
the multi-core system with regular and irregular memory pattern support.

1.4.1 Regular Data Access Patterns For Single Core

1.4.1.0.1 —(1)— We propose a Pattern-based Memory Controller (PMC), which
can work with any SoC architecture and stand-alone HPC kernel without modifica-
tions to the microprocessor system. The PMC improves the memory-processor data
access bottlenecks by allowing to fetch complex regular patterns without processor in-
tervention. Furthermore, to improve the on-chip bandwidth, this work proposes hard-
ware tiling based on programmable domain decomposition. The proposed controller
can be programmed by a microprocessor using High Level Language or directly from

24

1.4 Thesis Contributions

an accelerator using a special command interface. This contribution was published in

WRC11 [34] and ARC12 [35].

1.4.1.0.2 —(2)— We introduce PMC based bus controller for low cost and low

power graphics system. The system takes high resolution images and supports video

at higher frame rate without the support of a processor. The PMC graphics system

provides strided, scatter/gather and tiled access pattern that eliminates the overhead

of arranging and gathering address/data. This contribution was initially published in

ARC14 [36]. An extended version of the same work has appeared in IJCAD14 [37].

1.4.1.0.3 —(3)— We have suggested PMC for vector processor architectures that

manages memory accesses without the support of a scalar processor. Furthermore,

to improve the on-chip data access a specialized memory manager are integrated that

efficiently access, reuse, align and feed data to the vector processor. A Multi DRAM

Access Unit is used to improve the main memory bandwidth which manages the mem-

ory accesses of multiple SDRAMs. This work is presented in ASAP14 [38] and [39]

1.4.2 Multi Core System with Regular Data Patterns

1.4.2.0.4 —(1)— We have proposed PMC for multi-ASHA environment. The PMC

improves the HLS based multi-ASHA system performance by reducing accelerator/pro-

cessor and memory speed gap, and schedules/manages complex memory patterns with-

out processor intervention. This work is presented in FPL12 [9]. An extended version

of the same work has appeared in JPDC14 [40].

1.4.2.0.5 —(2)— We have integrated PMC in HLS based multi-ASHA environ-

ment, that handles regular and complex pattern requests of multiple ASHAs. The pro-

posed environment can be programmed by a microprocessor using High Level Lan-

guage (HLL) API or directly from an accelerator using a specific command interface.

The AMC HLS based multi-ASHA system is evaluated with memory intensive accel-

erators. The work is presented in FPT12 [16] and ParCo14 [41].

25

1. INTRODUCTION

1.4.3 Single Core System with Irregular Data Transfer Support

1.4.3.0.6 —(1)— We have suggested support in hardware for both regular and ir-
regular memory access patterns. This is achieved with an on-chip (1D/2D/3D) memory
unit, efficient memory management and a memory access policy to access DRAM for
FPGA architectures. The technique enhances the system performance by reducing the
processor/memory speed gap as well as accessing irregular access patterns and allo-
cating them in local memory without processor intervention. A high-level language
API is provided to program the system. Memory patterns are arranged in descriptors
at program-time, at run-time PMC accesses them without adding memory request and
address generation delay and places them in on-chip Specialized Scratchpad Mem-

ory. This reduces the processor/memory communication cost, improves utilization of
memory hierarchies and efficiently prefetches complex/irregular access patterns. This
contribution is from our paper accepted in HPCS14 [42] and FPGA14 [43]

1.4.4 Multi Core System with Irregular Data Transfer Support

1.4.4.0.7 —(1)— We propose an efficient scheduler and intelligent memory man-
ager in PMC, which proficiently handles data movement and computational tasks. The
proposed PMC system improves performance by managing complex data transfers at
run-time and scheduling multi-cores without the intervention of a control processor nor
an operating system. PMC has been coupled with a heterogeneous system that provides
both general-purpose cores and application specific accelerators. This contribution is
accepted in FPT14 [44].

1.4.4.0.8 —(2)— We propose memory access pattern based scheduling policies in
PMC. The enhanced PMC organizes data accesses in descriptors, prioritizes them with
respect to the number and size of transfer requests and manages DRAM banks. This
contribution is presented in FPL14 [45] and ReConFig14 [46].

1.5 Thesis Organization

This thesis document consists of twelve chapters in total and are subdivided into 6
parts. Part 1 contains chapters 1 and 2. This – first – chapter gives a general intro-

26

1.5 Thesis Organization

duction to the work, discusses the problem and motivation and the chapter 2 explains
proposed architecture. Part 2 includes the chapters 3, 4 and 5 and covers the manage-
ment and generation of regular memory access pattern for single core system. Part 3
covers the details on the regular memory access for heterogeneous multi-core system
and can be found in chapters, 6 and 7. Part 4 includes chapter 8 which contains infor-
mation on the irregular memory patterns for single core system. Part 5 has chapters 9
and 10 and presents irregular memory patterns for multi-core system. Part 6 contains
chapter 11 and 12 which covers the related work, conclusions and the future work
respectively.

27

1. INTRODUCTION

28

2

Proposed Heterogeneous Multi-Core
Memory System

In this work, we present a new high performance intelligent memory controller which

helps the Heterogeneous Multi-Core architecture to make best use of the memory. Our

design is a Pattern based Memory Controller (PMC) that aims at improving the per-

formance of compute intensive applications. The PMC supports regular and irregular

memory access patterns using the memory pattern descriptors. Irregular access pat-

terns are supported by using a specialized data structure that describes irregular pat-

terns and implements a hardware communication protocol between the cores and the

memory system. The design describes regular and irregular access patterns of each pro-

cessing core at program-time using a separate Descriptor Memory, which reduces the

on-chip communication time, run-time address generation overhead and efficiently ac-

cesses data from the main memory. This controller uses complex irregular, strided 1D,

2D, 3D patterns and automated blocking for data accesses. The PMC provides a spe-

cialized on-chip memory to each processing core that improves system performance by

prefetching complete patterns and reduces the on-chip bus switching and network/bus

latencies. PMC can prefetch complete patterns, having multiple scatter/gather oper-

ations, into its scratchpad memories that can be accessed either by a microprocessor

or an accelerator. Our proposed system provides features of parallelism (independent

read/write operation), flexibility (support for irregular/complex access patterns) and

programmability (high level programming language support). The salient features of

the proposed PMC architecture are:

29

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

• The memory system can operate as a stand-alone system, without support of a
master processor or the operating system.

• PMC has support for both regular and irregular memory access patterns using
the memory pattern descriptors thus reducing the impact of memory latency.

• PMC is capable of handling both general purpose processors and application
specific accelerator cores using event driven handshaking methodology.

• PMC uses hardware scheduler that handles memory requests of a heterogeneous
multi-core system provides precise timing and allows scheduling mode to be
changed at run-time.

• The controller intelligently schedules multiple data access requests at run-time
with respect to their data transfer size and memory requests.

• The memory system uses a Specialized Local Memory that tailors local memory
organization and maps complex access patterns.

• PMC memory manager efficiently accesses, reuses and feeds data to the com-
puting unit and handles complex memory accesses at run-time.

• The main memory unit improves the performance and reduces system and exter-
nal bus latencies by efficiently prefetching complex/irregular patterns.

Figure 2.1: PMC based Multi-core Heterogeneous Architecture

30

• The concurrent memory support for multi-core system allows to integrate PMC

in a parallel programming model.

A simplified form of our target architectural model is shown in Figure 2.1, in-

cluding the memory system as well as the Heterogeneous Multi-core System, which

executes the applications. The Multi-core System can have general purpose proces-

sors, application specific accelerator cores, a programmable accelerator such as vector

processors or a combination of all types. The system may include more than one core

of each type. The Bus System provides a link between the Main Memory System and

the Multi-core System. Support for irregular access patterns is provided with a spe-

cialized data structure that describes irregular patterns, and a hardware communication

protocol is implemented between the multi-core system and PMC. The PMC Local

Memory System stores both data and the access pattern descriptors in SSM and De-

scriptor Memory respectively. Each processing core has separate Specialized Local

Memory and Descriptor Memory blocks. Each Specialized Local Memory rearranges

the data-set as required by the corresponding application. The descriptors are pro-

grammed at compile-time with the specialized descriptions of memory access pattern

and the priority of the patterns. Memory accesses are arranged in the pattern descrip-

tors at program- and run-time to reduce Main Memory data access latency. At run-time,

the PMC Scheduler receives multiple memory read/write requests from the Multi-core

System and selects a processing core, depending upon its priority level and scheduling

policy. The Scheduler also performs run-time automated scheduling depending upon

the core data requests and data transfer size. The Scheduler forwards the memory

request to the Memory Manager. The Memory Manager takes a single or multiple de-

scriptors and reads/writes the data pattern. It is divided into the Address Manager and

the Data Manager. The Memory Manager reorganizes data for two reasons: (i) Data

arrangement for distribution in parallel of computation and (ii) Transformation of data

from a memory default arrangement to an application required arrangement. The Main

Memory System is responsible for transferring data between SDRAM and the special-

ized memory. It gathers multiple memory read/write requests and maximizes the reuse

of opened SDRAM banks to decrease the overhead of opening and closing rows. This

chapter is subdivided into two sections: PMC Architecture and Programming Model.

31

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

Figure 2.2: PMC: Front End Interface

2.1 Programmable Memory Controller Architecture

In this section, we explain the PMC architecture. The PMC can have reduced or limited

features for different types of evaluation structure e.g. a single core system with a

regular pattern uses bus arbiter as scheduler (see Section 2.1.3.3). The block diagram

of PMC having all units and connections is shown in Figure 2.3. The PMC reduces

the multi-core system delays and aims at improving the system performance. The

section is further subdivided into sections: Bus System, Local Memory System, Memory

Manager, Main Memory System. and PMC System.

2.1.1 Bus System

The PMC Bus System communicates the cores with main memory. It interfaces gen-

eral purpose (RISC), vector and ASHA cores It provides the pattern based switching

for regular and known irregular access patterns and circuit switching for unknown ir-

regular access pattern. The Bus System is further divided into two sections: Front-End

Interface and On-chip Bus.

2.1.1.1 Front-End Interface

The Front-End Interface demonstrates support of the PMC for different types of inter-

faces.

• Source Synchronous Streaming Interface

32

2.1 Programmable Memory Controller Architecture

• Processor Bus Interface

2.1.1.1.1 Source Synchronous Streaming Interface (SSSI) The Source Synchronous
Streaming Interface (SSSI) shown in Figure 2.2 is used to supply high-speed data to
application specific cores such as hardware accelerators. SSSI uses only address and
data buses. The synchronous handshaking protocol is applied to request and grant

Data. Transfer of Data is performed according to the Main Memory clock.

2.1.1.1.2 Processor Bus Interface (PBI) As the number of processing cores and
the capacity of memory components increase the system requires a high speed bus
interconnection network that connects the general purpose processors and memory
modules. The Processor Bus Interface (PBI) as shown in the Figure 2.2 contains Data

Bus, Address Bus, Control and Status Bus. The Data and Address buses are used to
read/write high-speed data to/from the PMC and the Multi-core System. The PMC PBI

single Data bus has a peak bandwidth of 1.6 GB/s as it can operate at maximum 200
MHz clock having data bus width of 64-bit. The Address Bus is used to identify the
locations to read or write data from memory components or processing cores. The
Address Bus of the functional units is decoded and arbitrated by memory manager.
The Control Bus controls the data movement and carries information of data transfers.
It holds the request/grant & select/ready signals that are used to communicate with
scheduler and memory manager. The bus is also used to move data between PMC de-
scriptors and the Multi-core System registers. The Status Bus holds signals of multiple
sources that indicate data transfer requests, acknowledgement, wait/ready and error/ok
messages.

2.1.1.2 On-Chip Bus System

The On-Chip Bus System (shown in Figure 2.3 provides connection between data ports
of Local Memory and Main Memory. The data buses are unidirectional and address
buses are decoded and arbitrated by Address Manager and Scheduler respectively, both
part of the Memory Manager (see Section 2.1.3). The On-Chip Bus System relies on
the PMC pattern descriptors to connect the data port between different components.
Depending upon the address space of a data access pattern that defines the request-
ing core, the Scheduler creates a link between related processing core and memory

33

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

Figure 2.3: On Chip Bus System

system and store requests of other processing cores units from interrupting the data

transactions.

The shared buses cause inefficient utilization of multi-core system, whereas the

multi-layer bus architecture requires complex interconnections including multi-port

arbiters with long and wide global metal wires, leading to high power consumption.

To manage the performance and power, the On-Chip Bus System can be programmed

for different number of layers and transfer data in the form of patterns. Transferring

data in the form of patterns reduce bus switching and improve on-chip bus throughput.

The On-Chip Bus System can be reconfigured into shared or multi-layer bus system

based on access pattern descriptions. Depending upon the available on-chip data buses

the PMC executes multiple data access pattern requests in parallel and queue the rest

of the requests. For example, if there are two data buses then the PMC executes two

data patterns in parallel.

2.1.2 Local Memory System

The PMC Local Memory consists of Descriptor Memory, Buffer Memory and Special-

ized Local Memory.

34

2.1 Programmable Memory Controller Architecture

2.1.2.1 Descriptor Memory

The PMC uses pattern descriptors to organize the Regular and Irregular access pat-

terns. These pattern descriptors reduce the overhead of run-time address generation

and data management. The PMC regular/Irregular Descriptor Memory contains fixed

length data words with a number of attribute fields that describe the access patterns.

The set of parameters for a regular memory descriptor block (shown in Figure 2.4)

includes Local Address, Main Address, Priority, Size and Stride. The address parame-

ters specify the starting addresses of the source and destination locations. The Priority,

when combined with other priorities, determines the order in which memory access is

entitled to be process. Size defines the number of data elements to be transferred. In

each stream, the first data transfer uses addresses taken by the descriptor unit and for

the rest of the transfer the address is equal to the address of the previous transfer plus

size of strides. Stride indicates the jump between two consecutive Main Memory ad-

dresses of a stream. Strides between two consecutive accesses are handled by the PMC

without generating delay.

The parameters for Irregular Descriptor Memory accesses are also presented in

Figure 2.4. The Type and Offset register fields define the category of irregular pat-

tern and the location of the next element respectively. Thus, irregular patterns are

represented by a chain of multiple descriptors. To reduce the size of the Irregular De-

scriptor Memory for same data pattern, following descriptors hold only Size, Stride

and Offset registers. The Offset is used to point the first element of the access pattern

by adding it to the Main Address. Depending on the data structure to access, there can

be multiple Offset registers per entry in the Descriptor Memory. For example, a sin-

gle Offset register describes a 1D linked list structure and a binary-tree access pattern

uses two Offset registers. The Type register can hold three values which are: NULL,

known and unknown. The NULL type indicates that this is the end of a particular

Figure 2.4: Descriptor Memory Structure: Regular and Irregular Access Patterns

35

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

pattern and signifies that PMC should stop accessing data for this pattern. The known
type indicates that the Offset register holds the address for the next access. These ad-
dresses are generated and placed in the Descriptor Memory at compile-time therefore
it removes the overhead of address generation at run-time. The unknown type tells
PMC to gather the next address at run-time from the processing core. The dependent

unknown patterns are not programmed at compile-time, PMC control bus uses separate
(request and grant) signals (shown in Figure 2.3) to read addresses from the compute
unit. C/C++ calls such as send() and send irregular() are used to program the descriptor
blocks (see Section 2.2).

2.1.2.2 Buffer Memory

The Buffer Memory architecture implements the following features:

• Data realignment to match different access patterns. It aligns data when input
and output data access elements are not the same.

• Load/reuse/update to avoid accessing the same data multiple times (uses the re-
alignment feature).

• In-order data delivery. In cooperation with the Memory Manager (see Sec-
tion 2.1.3) that prefetches data, it ensures that the data of one pattern is sent
in-order to the processing core.

The Buffer Memory is managed by the Memory Manager. The Buffer Memory holds
three buffers which are the load buffer, the update buffer and the reuse buffer. The
Buffer Memory transfers data to the Multi-core System using the update buffer. The
load and reuse buffers are used to manage the Specialized Scratchpad Memory (SSM)
data (see Section 2.1.2.3). For example, if the core of Multi-core System requests data
that has been written recently then the Buffer Memory performs on-chip data manage-
ment and arrangement.

2.1.2.3 Specialized Scratchpad Memory

The system provides a Specialized on-chip memory that improves system performance
by prefetching complete patterns by using multiple scatter/gather operations. As a con-
ventional Local Memory system, the Specialized Scratchpad Memory (SSM) accesses

36

2.1 Programmable Memory Controller Architecture

the whole data pattern as a cache line and temporarily holds data to speedup later ac-

cesses. Unlike the Cache Memory system, the accessed block can have data of noncon-

tiguous memory locations and is deliberately placed in the SSM at a known location,

rather than automatically cached according to a fixed hardware policy. At run-time,

the PMC allocates a single Descriptor block for each processing core. Unlike the Lo-

cal Memory system which transfers an aligned block of data for each data miss, the

PMC transfers only the missing data by scattering/gathering operation at run-time and

transfers irregular blocks of data.

The PMC SSM is directly connected to the compute unit and provides single cycle

data access. Like a cache, the SSM temporarily holds data to speedup later accesses.

Unlike a cache, data is deliberately placed in the SSM at a specified location, rather

than automatically cached according to a fixed hardware policy. Depending upon the

available block RAMs, the SSM can be organized into multiple banks. Each bank has

two ports (PortA & PortB), that allows the compute unit to perform parallel reads and

writes. In order to exploit parallelism better, the banks of SSM are organized into a

multi dimensional (1D/2D/3D) architecture to map the kernel access pattern on the

SSM.

For example, a generic 3D-stencil structure is shown in Figure 2.5. When n=4,

25 points are required to compute one central point. This means that to compute a

single element 8 points are required in each of the x, y and z directions, as well as

Figure 2.5: 3D-Stencil

37

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

one central point. A 3D SSM architecture1 that accommodates the stencil is shown in

Figure 2.6. The 3D-stencil occupies 9 different banks; the central, x and z points are

placed on the same bank (y), and each y-point needs a separate bank (y+4 to y-4). The

SSM takes 9 cycles (2 points per bank per cycle) to transfer the 17 points of bank (y),

and the points from banks (y+4) to (y-4) are transferred in a single cycle. Each bank

read/write operation is independent of each other and can be performed in parallel.

Therefore, the SSM takes 9 cycles to transfer the 25 points of a single stencil. Whereas

with a regular memory structure, PMC would take a minimum of 25 cycles to transfer

the 25 points of a single stencil. To fully utilize all banks and to reduce access time,

multiple 3D-Stencils are placed on the 3D SSM.

In our current evaluation on Xilinx Virtex-7, the SSM has 64 banks and each bank

holds 128 × 128 Bytes (32 × 32 words) (row × column). Each bank uses a single

BRAM (1x 36 Kb), which is controlled by a separate BRAM controller and has a

different base address. In the current architecture, number of banks is fixed but row

1Please note that we do not refer to 3D-stacked memories but a memory with 3D from the point of
view of access.

Figure 2.6: Buffer Memory Organization and Specialized Memory Structure

38

2.1 Programmable Memory Controller Architecture

and column size can be changed depending upon the third dimensions of the data set.

A single or two dimension data sets are placed in a single bank and can use single or

multiple BRAM/s. For a 3D data set, depending upon the 3rd dimension, up to 64

banks can be used for a single core. Depending upon the dimensions of data set, the

SSM can be arranged by re-programming the PMC Descriptor Memory. The PMC

accesses and places data in tiles if the data set is larger than the SSM structure.

2.1.3 Memory Manager

The PMC Memory Manager organizes and rearranges multiple noncontiguous memory

accesses simultaneously which reduces read/write delay due to the control selection of

SDRAM memory. The PMC Memory Manager applies protection at the access pattern

level e.g. a pattern can be read/written by a core for which it is allocated and not by

the other cores. PMC keeps the knowledge of memory as to whether or not a certain

memory area is in the SSM. This knowledge allows the PMC to manage the place-

ment of memory as well as reuse and share already accessed memory. The Memory

Manager controls the local memory system (descriptor and scratchpad memory). It

Figure 2.7: PMC : Memory Manager

39

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

handles a Descriptor Memory Pointer (DMP) and a SSM Pointer (SSMP) as shown

in Figure 2.7. The DMP holds the address for the next descriptor block and provides

this address to the Descriptor Memory to fetch a descriptor block. After completion of

target data access, the address manager sends an ack signal to the DMP that requests

the next descriptor block. The SSMP is responsible for generating addresses for the

scratchpad memory. Depending on the application (multi-threaded) or hardware ar-

chitecture (multi-ASHA), the scratchpad memory is divided into multiple buffers. The

SSMP takes the source address (Base Address) from the descriptor controller and starts

incrementing in it. The SSMP stops incrementing addresses, when the ack signal is

granted by the Pattern Aware Main Memory Controller (see Section 2.1.4). The Mem-

ory Manager is further divided into three sections which are: the Address Manager,

the Data Manager and the Scheduler.

2.1.3.1 Address Manager

The Address Manager fetches a single or multiple descriptors depending on the access

pattern, translates/reorders in hardware, in parallel with PMC Read/Write operations

and access data patterns of a Processor Core. Strides between two consecutive accesses

are handled by the Address Manager without generating delay. The Address Manager

uses one or multiple descriptors at run-time to describe the data access. Unlike the

cache which always transfers an aligned block of data for each data miss, the PMC

Address Manager accesses only the missed data for scratchpad by gathering address

Figure 2.8: Descriptor Memory: Run-Time Managed Access Patterns

40

2.1 Programmable Memory Controller Architecture

requests at run-time and can transfer irregular blocks of data. The Address Manager

reads compile time generated addresses from Descriptor Memory and accesses com-

plex data pattern. The Address Manager also manages run-time unpredictable memory

accesses and places them in Descriptor Memory (Figure 2.8). The Address Manager

takes memory address requests from a Processor Core, buffers them and compares the

consecutive requesting addresses with the previous one. If the addresses of consecu-

tive memory requests have constant strides, the Address Manager allocates a descrip-

tor block by defining Stride and Size parameters. If the request has variable strides,

then the Address Manager uses the Offset parameter of the descriptor that points at the

random location of the Main Memory.

The structure of run-time Address Manager is shown in Figure 2.9. The Address

Manager Stride Detector takes an address from the address bus and gives it to reg 0 and

comparator 0. The comparator 0 compares current address value (Addresst) with the

previous one (Addresst−1) and generates the stride which is given to Pattern Controller.

The Pattern Controller compares two strides (Stridet and Stridet−1) and checks if they

are same. If they are same then it increment in Size register of Descriptor Memory

Figure 2.9: Address Manager: Run Time Managed Descriptor Block

41

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

and if strides are not same then it generates a start signal. The Descriptor Memory

stores first value of reg 0 and reg 1 in Main Address and Stride respectively. Once a
start signal is generated a new Descriptor Memory block or Offset is allocated for
the requesting source.

2.1.3.2 Data Manager

The PMC data management plays a key role in managing and allocating data for the
application kernel. The Data Manager is used to access non-contiguous data in a
contiguous pattern without generating extra delay. It takes one or multiple descrip-
tor blocks and transfers the appropriate data between the SSM and main memory. At
run-time the Data Manager executes these descriptor blocks in hardware, typically
overlapping address generation and memory requests with computation in the process-
ing unit. For dependent unknown irregular memory accesses the Data Manager uses
the request and grant signals to communicate with the processing unit. The communi-
cation process does not affect the other PMC units, and they keep working in parallel.

In general, the efficient handling of irregular access patterns implies a high over-
head for data and address management, because each data transfer uses a different data
arrangement. The Data Manager manages the access patterns of application kernels
with complex data layouts. The Data Manager reads/writes data from/to the main
memory and keeps information of the data currently stored in the data memory and
reuses data when possible. It increases the c/a ratio (computedelements/accessedelements)
by organizing and managing the complex memory patterns. The Data Manager reads
a single descriptor and accesses its elements using the load buffer (shown in Figure
2.6). The reuse buffers temporarily holds loaded elements for further reuse. For each

Figure 2.10: Load, Update and Reuse of FIR Access Pattern

42

2.1 Programmable Memory Controller Architecture

memory access descriptor, the Data Manager compares the requested elements with

the elements placed in the reuse unit. If the elements are found in the reuse unit, the

Data Manager uses them again and requests the rest. The update buffer transfers the

elements addresses which are not present in the reuse buffer to the Main Memory Sys-

tem (see 2.1.4). The update buffer of the Data Manager rearranges available elements

in the SSM and updates new loaded elements. For example, the Data Manager for an

n-tap FIR filter (shown in Figure 2.10) loads all elements of an access pattern, which

are required for a single Computedelements. After transferring the first memory access

(elements), the Data Manager performs reuse and update operations. The Data Man-

ager keeps reusing previous accessed elements and updates the remaining elements

required. For an FIR filter, if n=16, then 16 elements are required to compute one

point, and without the Data Manager c/a ratio is 1/16 = 0.062. The Data Manager

improves c/a ratio to 1 by reusing accessed points.

2.1.3.3 Scheduler

The PMC Scheduler handles heterogeneous multi-cores and multiple input/output in-

terfaces such as source synchronous streaming interface and bus interface. The design

describes access patterns of each processing core using the Descriptor Memory, which

reduces the input/output interfaces and multi-cores communication time. At run-time,

the PMC Scheduler receives multiple memory read/write requests from the Multi-core

System, selects a core and create a link depending upon its priority level and schedul-

ing policy. The Scheduler also perform run-time automated scheduling depending

upon the core data requests and data transfer size. As conventional multi-core system

scheduling, Scheduler supports the Symmetric and Asymmetric scheduling policies.

The Scheduler also applies a Request, Hold and Grant (RHG) policy to process the

memory requests. The Scheduler can apply RHG policy together with Symmetric and

Asymmetric scheduling policies. This implies that, at run-time the Scheduler improves

the QoS by reorganizing and prioritizing the memory request with respects to number

of requests and transfer size. In this section, we further explain the PMC scheduling

policies.

The PMC Scheduler manages and controls the run-time requests and programmed

priorities of processing cores. Each processing core’s request includes a read and write

43

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

memory operation. At program-time, each processing core is assigned a priority value

along with the Local Address (Task ID), which are placed in the Program-Time Priority

Descriptor (shown in Figure 2.11 (b)). The processing cores are categorized into three

states, busy (core is processing on local buffer), requesting (core is idle), and request &

busy. In the request & busy state the core is assumed to have double or multi buffers.

During this state, the core is processing the data of one buffer while making requests

to fill another buffer.

To provide multi-buffer support in the current developed platform, a state controller

(Figure 2.11 (a)) is instantiated with each core that handles the states of the core using a

double/multi buffering technique. The state controller manages the processing core’s

request & grant signals and communicates with the scheduler. The state controller

can manages multiple buffers. For example, if there are two buffers (Buff0 & Buff1)

(a)
(b)

(c)

Figure 2.11: PMC: (a) State Controller (b) Scheduler (c) Scheduling Example

44

2.1 Programmable Memory Controller Architecture

attached with the state controller, it provides a link to transfer Buff0 data and allows

processing core to process Buff1. Once the core finishes processing Buff1 the state

controller swaps Buff1 with Buff0. The state controller gives access of Buff0 to the

processing core and requests PMC to transfer Buff1 data. Once the request is accepted,

the PMC transfers the state controller buffer data to/from main memory.

PMC Scheduler supports three scheduling policies of the requests of the Multi core

System. Two are static, i.e. provided by the programmer, symmetric and asymmetric

and the third is an adaptive policy, Request, Hold and Grant (RHG).

The Symmetric and Asymmetric are programmed scheduling policies that are

defined at compile-time and are executed by hardware at run-time. In Symmetric
multi-core strategy, the PMC Task Placer manipulates the incoming requests in FIFO

(First in First out) and places them in the Dispatch Descriptor (Figure 2.11 (b)). The

Asymmetric strategy emphasizes on priority and incoming requests of the processing

cores. Each core is assigned a fixed priority at program-time which is placed in the

Program-Time Priority Descriptor (shown in Figure 2.11 (b)). At run-time, the Sched-

uler accumulates requests from the Multi-core System. The Comparator and Task

Placer maintain them in the Dispatch Descriptor. The Comparator takes requests

from multiple processing cores, compares them with programmed priorities and for-

wards results to the Task Placer. The Task Placer places the requests in the Dispatch

Descriptor and executes requests only the are ready to run, and there are no higher pri-

ority cores that are in a ready state. The Dispatch Descriptor executes processing core

requests one by one. For example, different requests (A1 to A5) are generated in con-

current order from multiple sources (shown in Figure 2.11 (c)). The Scheduler takes

the first request (A1) as it is from Dispatch Descriptor, remaining requests are exe-

cuted according to the priority level defined in Program-Time Priority Descriptor. The

requests A4 and A3 are generated while A5 is not finished. The PMC selects A4 due

to its highest priority level defined in Program-Time Priority Descriptor. Depending

upon the scheduling policies and Program-Time Priority Descriptor, the PMC selects

the next core from Dispatch Descriptor. If same priorities are assigned for more than

one processing core, PMC scheduler executes them using the FIFO method.

The Address Manager of PMC has particular Descriptor Memory (register set) for

each core. These descriptors are masked with interrupt and request signals. Once a

request is generated, the Address Manager starts memory operation for the requested

45

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

Figure 2.12: PMC: Request, Hold and Grant Policy

processing core using its descriptors. After completion of memory read/write opera-

tion, the PMC scheduler receives an interrupt (ack) signal from the memory manager

unit. This signal informs the scheduler about the selection of the next core to process.

The scheduler captures the ack signal from the memory manager and assigns the grant

signal to the appropriate processing core.

The Scheduler applies an adaptive run-time managed (RHG) policy to process the

memory requests, Figure 2.12 shows an example. The RHG depends upon the number

of data access requests and transfer sizes. The RHG uses three parameters for schedul-

ing which are the Minimum Transfer, the Maximum Transfer and the Hold Transaction.

The transfer parameters specify the minimum and maximum size of a data transfer re-

quest on which the Scheduler applies the RHG policy. The Scheduler immediately

grants all requests which are greater than Minimum Transfer and less than Maximum

Transfer. It splits the transfers longer than Maximum Transfer and holds transfer re-

quests of size less than Minimum Transfer, merging several of them into a single larger

request. Hold Transaction is the number of requests for which the Scheduler holds

a request. 128B, 4KB and 8 are the default values of Minimum Transfer, Maximum

Transfer, and Hold Transaction respectively. These parameters are programmed at

compile-time. If, at run-time, the Scheduler receives data transfer requests of 32B

(smaller than Minimum Transfer) form the core-A, the Scheduler holds the requests

46

2.1 Programmable Memory Controller Architecture

and keep merging it with the next transfers. In this case the Scheduler requires four re-

quests from core-A of 32B to process data transfer. In the same way, if core-A has data

transfer size 16KB (larger than Maximum Transfer), the Scheduler splits the request

into four transfer each having 4KB of data transfer size.

A conventional bus controller uses an arbiter that manages the data bus and ex-

ecutes a data access based on the application priority and request arrival time. The

application’s priorities are programmed at compile-time. The applications having low

priority wait until higher priority applications finish and the applications having same

priorities are executed as First In First Out (FIFO) which affects the fairness. At run-

time, the applications having multiple small memory requests generate scheduling de-

lay and stall the system. Whereas an application request with large data transfer size

occupies the whole memory bandwidth and stalls other applications. Unlike the con-

ventional bus controller, in our proposal the PS prioritizes access pattern requests at

run-time, using the application memory access descriptors. The PMC Scheduler rear-

ranges access pattern requests at run-time as shown in Figure 2.12. In the example, A,

B and C are different applications and B0, C1 to B9 are their memory requests. The

numbers represent the order of generation of the requests. The application A has a

data transfer size greater than the Minimum Transfer size, so the Scheduler grants the

request by placing it in the request queue. The application B has multiple memory re-

quests of data transfer size less than the Minimum Transfer, so the Scheduler holds the

data transfers B0, B2 and B4 merging their memory requests. When the total transfer

size of the accumulated request of the application exceeds the Minimum Transfer size,

the Scheduler places the merged access request in the request queue. For the applica-

tion C with a request that has a data transfer size larger than Maximum Transfer, the

Scheduler splits the transfer into multiple transfer requests (C10, C11 and C12) of size

Maximum Transfer. If there are requests in the request queue, then after transferring

data for the C10 request, the Scheduler holds the C11 and C12 requests and grants

the bus to the waiting requests. Once the waiting requests (A3, B0, B2, B4 and A6)

of the request queue finish, the Scheduler grants the holding transfer (C11). In order

to avoid starvation, after a number of Hold Transaction of requests available in the

request queue, the Scheduler steals a transfer and executes the application with data

transfer size less than Minimum Transfer. Once descriptors are in the request queue, a

FIFO policy is used.

47

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

2.1.4 Main Memory System

The PMC Main Memory System uses Pattern Aware Main Memory Controller (PAMMC)

(shown in Figure 2.13) to transfer data to/from the Main Memory. The PAMMC uses

descriptors for access patterns which improve the memory bandwidth by transferring

descriptors to the memory controllers, rather than individual references and by access-

ing data from the Main Memory. Unlike a conventional main memory controller, the

PAMMC uses descriptors to access data. At run-time PAMMC takes descriptors for an

access pattern from Memory Manager, decodes it and generates bank, row and column

addresses. If the access pattern has unit stride and requires data from a single bank,

then the PAMMC opens the row buffer of the appropriate bank, transfers data in burst

mode and keeps the same bank open and keeps pre-charged contiguous rows.

The PAMMC, takes memory access descriptions from the Memory Manager. It is

responsible for transferring data to/from the Main Memory. The PAMMC deals with

Figure 2.13: PMC: Pattern Aware Main Memory Controller

48

2.1 Programmable Memory Controller Architecture

the Address, Stream and Stride registers of pattern descriptors. It takes a pattern de-

scriptor and translates it into main memory addresses. Each address is split into Bank,

Row and Column of SDRAM addresses. Strides between two consecutive accesses are

handled by the PAMMC without generating delay. For each data transfer, the first data

transfer uses an address taken by the descriptor unit and for the rest of the transfers, the

address is equal to the address of the previous transfer plus the size of the stride. The

PAMMC uses separate data lines labeled as Data In and Data Out. It enables the data

pattern to be written at the appropriate location of the main memory by generating the

write–enable along with the write–data and mask–data control signals. The source of

the data stream can be a Source Synchronous Streaming Interface, a Processor Bus In-

terface or a contiguous Specialized Scratchpad Memory. The PAMMC supports 64-bit

data bus and 8-bits mask bus. For every 8 bits of data bus, there is a mask bit.

The PAMMC supports two possible modes of operation for bank management: the

single-bank mode and the multi-bank mode. In the single bank mode, the controller

keeps one bank and row combination open at any given time. In the multi-bank mode,

the controller keeps multiple banks open at any given time. This mode is used when

the data access patterns of an application require data from different banks at the same

time. The PAMMC Bank Manager is integrated with the design to reduce the mem-

ory access time and power by managing either the single- or the multi-bank mode

according to the memory access pattern descriptions. The multi-bank mode is used

for complex data patterns having long strides that access data from multiple banks in

parallel. At run-time PAMMC takes descriptors for an access pattern from the Mem-

ory Manager, decodes them and generates bank, row and column addresses. If the

access pattern has unit stride and requires data from a single bank then the PAMMC

opens the row buffer of the appropriate bank, transfers data in burst and keeps the same

bank open and if required keeps precharged contiguous rows. This type of access pat-

terns is very common in the MAPC system because access patterns are organized in

descriptors and occurs for around 70% of all memory patterns. Depending upon the

SDRAM banks, the PAMMC processes in parallel multiple patterns, each accessing

a single bank. For example, in our current evaluation environment SDRAM has 4

banks, therefore, PAMMC processes up to four access patterns in parallel. Depending

upon the type of access pattern, the PAMMC decides when its associated bank and row

49

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

should be precharged. If the access pattern has a stride larger than bank length then the

PAMMC precharges multiple banks and row buffers for the requesting access.

2.2 Programming Model

When using the PMC model, the programmer does not need to worry about the hard-

ware related programming and configuration constraints. By using PMC, the memory

load/store operations are shaped into patterns and are scheduled in parallel with com-

pute operations. The PMC supports complex irregular, strided 1D, 2D, 3D and au-

tomated blocking for data access operations to transfer data between Local and Main

memories. The memory access operations optimize complex/irregular memory ac-

cesses, provide memory bandwidth performance by accessing only useful data at a

fine granularity, and offload memory access overhead by supporting address calcula-

Table 2.1: C/C++ Device Drivers to Program/Operate PMC System

API Function Description

PMC SEND (Local Address, Vectorizing Regular Data Access
Main Address, Stride defines type of Vector Data Access
Size, Stride, Based on Stride value the PMC transfers
Priority) a row, column or diagonal vectors

SEND TILE, RECEIVE TILE, Block/Tiled Data Access
PMC MEMCPY (SCRATCHPAD MEMORY

SCRATCHPAD MEMORY, indicates Local Memory buffer
DATA SET, Priority) DATA SET indicates Main Memory data set

3D STENCIL, 3D STENCIL VECTOR(Specialized Data Transfer
SPECIALIZED MEMORY, SPECIALIZED MEMORY indicates SSM structure
DATA SET, Priority) DATA SET indicates Main Memory data set

SEND POINTER, SEND TREE Irregular Data Access e.g. Pointer, Linked List
(Local Address, Offset register for 1D pointer
Main Address, Offset Left & Offset Right registers
Size, Stride, Priority, point the address of next left and right
Offset Left, Offset Right) nodes respectively of tree data structure

50

2.2 Programming Model

tion, data shuffling, and format conversion. The regular descriptor is used to transfer

complex run-time known access patterns. The Unknown Independent and Dependent

access patterns are supported by using a irregular descriptor that describes unpre-

dictable patterns and leverage hardware communication protocol between the multi-

cores and memory system to gather the information not known until run-time. The

Multi-core System communicate with PMC through a group of commands, controls,

status and data registers and signals.

2.2.1 Descriptors and Data Structures

PMC supports regular data access patterns such as strided vector and 1D/2D/3D auto

tiling. A single descriptor can hold the information of a complex access pattern, e.g.

Row, Column, Diagonal vector, etc. For example, a FIR and FFT application kernels

have streaming and 1D tiled access pattern respectively with unit stride. To access data

patterns for the FIR and FFT application kernels, the PMC uses PMC SEND() (shown

in Table 2.1) function call that utilizes a single descriptor. 3D stencil memory requires

three descriptors for accessing row, column and bank vectors, each descriptor with a

stride of one, row size and row size × column size length respectively.

Irregular data structures (pointer, linked-list, tree, etc.) contain a hierarchical re-

lationship between elements. The overall structure of a Linked List is described by

using Offset registers to connect all its elements together such as the links in the chain.

If the data structure is identified at program-time the PMC Linked List data structure

allocates space for each data element separately using the Irregular Descriptor Mem-

ory through a linked list descriptor. The Offset register is set to Known or Unknown

accordingly. A Tree data structure Descriptor Memory is similar to the linked list De-

scriptor Memory except that instead of a single Offset register per descriptor there can

be multiple Offset registers.

The PMC uses commands, controls and status registers to synchronize the Multi-

core System with PMC. The proposed system provides comprehensive support for the

C and C++ languages. Figure 2.14 shows the C structure that is used to describe

the PMC SSM and main memory data set. The structure is used to define the Local

Memory SMM and the Main Memory data set of an application kernel. The address

values indicates starting address of SSP buffer and Main Memory data set. Parameters

51

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

//Specialized Scratchpad

typedef struct

SPECIALIZED_SCRATCHPAD

{ int ADDRESS;

int WIDTH;

int HEIGHT;

int PLANE;

} PMC_SCRATCHPAD

// Main Memory (SDRAM)

typedef struct

PMC_MAIN_MEMORY

{ int ADDRESS;

int WIDTH;

int HEIGHT;

int BANK;

} MAIN_MEMORY

// Main Program

PMC_SCRATCHPAD SSM_1D;

PMC_SCRATCHPAD SSM_2D;

PMC_SCRATCHPAD SSM_3D;

MAIN_MEMORY DATASET_1D;

MAIN_MEMORY DATASET_2D;

MAIN_MEMORY DATASET_3D;

// Part I : 1D Memory

// 1024 Scratchpad Buffer

SSM_1D.ADDRESS=0X00000000;

SSM_1D.WIDTH=1024;

SSM_1D.HEIGHT=1;

SSM_1D.BANK=1;

// 4096 Data Set

DATASET_1D.ADDRESS=0X10000000;

DATASET_1D.WIDTH=4096;

DATASET_1D.HEIGHT=1;

DATASET_1D.BANK=1;

// Part II : 2D Memory

// 1024x1024 Buffer

SSM_2D.ADDRESS=0X00000400;

SSM_2D.WIDTH=128;

SSM_2D.HEIGHT=128;

SSM_2D.BANK=1;

// 4096x4096 Data Set

DATASET_2D.ADDRESS=0X10001000;

DATASET_2D.WIDTH=1024;

DATASET_2D.HEIGHT=1024;

DATASET_2D.BANK=1;

// Part III : 3D Memory

// 32x32x32 SSM

SSM_3D.ADDRESS=0X00010000;

SSM_3D.WIDTH=32;

SSM_3D.HEIGHT=32;

SSM_3D.BANK=32;

// 4096x4096 Data Set

DATASET_3D.ADDRESS=0X10100000;

DATASET_3D.WIDTH=128;

DATASET_3D.HEIGHT=128;

DATASET_3D.BANK = 128;

Figure 2.14: Examples of Specialized Scratchpad Memory and Main Memory Data Struc-
ture

52

2.2 Programming Model

Width, Height of SSP and Main Memory define structure of 1D or 2D buffer (shown in
Figure 2.14. The parameters Plane and Bank of SSP and Main Memory respectively
define 3D specialized memory structure.

2.2.2 Working Examples

Different applications exhibit different data access patterns, forcing the hardware de-
signers to facilitate software programming by keeping a generic interface between the
memory management unit and the compute units. This results in a compromise on
the achievable performance because of the generic way of describing data transac-
tions. An alternative to achieve higher performance is to avoid the generic interface
and manually arrange memory accesses. PMC programming model aims to remove
the programmer effort of manually arranging memory accesses but meet the perfor-
mance requirements of HPC applications. PMC provides a wrapper library that offers
function calls to describe the application complex access patterns. The programmer

/*Instance of the DMA driver*/

static XDmaCentral DmaCentral;

/* Pointer to local buffer */

int *SrcBuffer;

SrcBuffer = (int *) 0

x00000000;

/* Pointer to Dataset */

int *DestBuffer;

DestBuffer = (int *) 0

x000010000;

/* Transfer Size in Bytes */

int Bytesize=1024;

/* Single Transfer */

XDma_Central_Transfer(

DmaInstance, SrcBuffer,

DestBuffer, Bytesize);

(a)

/*Local Memory and Main Memory

*/

PMC_SCRATCHPAD SSM;

MAIN_MEMORY DATASET;

/* Pointer to SSM */

SSM.ADDRESS=0X11100000;

/* Pointer to Dataset */

DATASET.ADDRESS=0X10100000;

SSM.SIZE = 1024;

int STRIDE = 4;

int OFFSET=0x20000000;

int PRIORITY = 1;

/* PMC DMA Transfer */

PMC_SEND(SSM.ADDRESS , DATASET

.ADDRESS, SSM.SIZE, STRIDE,

OFFSET, PRIORITY);

(b)

Figure 2.15: DMA Transfer Function Calls: (a) Conventional DMA (b) PMC

53

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

only needs to identify the appropriate function call to the library and the PMC sys-

tem automatically transfers the data pattern to the local memory of the compute unit.

The function calls improve the performance of application kernels by marshaling data

according to the application needs. For the complex memory patterns, a single or mul-

tiple descriptors are used at compile-time to reshape and unfold data patterns. At run-

time, these descriptors help PMC to transfer memory patterns between the processing

cores and the main memory with minimum delay. PMC decouples data accesses from

execution, prefetches complex data structures and prevents FPGA stalls. The proposed

PMC system provides C and C++ language support. The system can be managed by

C based device drivers. Figure 2.15 shows transfer examples in systems with a con-

ventional DMA-based memory controller, and PMC. The conventional DMA system

transfers data between main memory and the local memory of the processing core us-

ing DMA. DMA transfers are specified using the XDma Central Transfer func-

tion call. Figure 2.15 (a) shows how it is used to transfer 1024 bytes of data stream

from local buffer SrcBuffer to main memory DestBuffer. To transfer a noncontiguous

block of data, such a strided memory access pattern, the conventional DMA system

uses multiple XDma Central Transfer calls. In PMC, the PMC SEND function

call is used to specify descriptors that will be placed in the Descriptor Memory. Fig-

ure 2.15 (b) shows an example where send is used to set up a descriptor to access

1024 bytes of data with stride of 4 bytes between two consecutive elements. Since el-

ement size is 4 bytes, PMC will access 1024 consecutive bytes. The SSM.ADDRESS

and DATASET.ADDRESS parameters hold the start address of local (data) memory and

main memory data set respectively. The parameters SIZE and STRIDE define the type

of memory access. The PMC PMC SEND function call has the OFFSET parameter to

provide information of the following transfer at run-time without affecting the com-

putation process. In the example of Figure 2.15 (b), OFFSET indicates that the next

transfer is unknown until run-time. For more complex memory accesses, the PMC pro-

vides the SEND IRREGULAR function call that can have multiple OFFSET registers.

In both systems (Conventional DMA and PMC) the programmer has to describe the

main memory data sets and the local buffer size of application kernels.

A conventional example of 3D stencil access pattern is shown in Figure 2.16. A

3D stencil (n=4 see Section2.1.2.3) memory access has three (row, column and plane)

54

2.2 Programming Model

// Stencil Structure

#define Sten_size 4

// 128x128x128 Main Memory Data Set

#define WIDTH 128

#define HEIGHT 128

#define BANK 128

main () {

int X,Y,Z;

X = WIDTH;

Y = WIDTH*HEIGHT;

Z =0;

float Sten[WIDTH*HEIGHT*BANK];

for (k = Stencil_size ; k < BANK - Sten_size ; k++)

for (j = Stencil_size ; j < HEIGHT - Sten_size ; j++)

for (i = Stencil_size ; i < WIDTH - Sten_size ; i++)

{Z = k*(WIDTH*HEIGHT) + (j*WIDTH) + i;

Sten[i+j*X+(k-1)*Y] + Sten[i+j*X+(k+1)*Y] +

Sten[i+j*X+(k-2)*Y] + Sten[i+j*X+(k+2)*Y] +

Sten[i+j*X+(k-3)*Y] + Sten[i+j*X+(k+3)*Y] +

Sten[i+j*X+(k-4)*Y] + Sten[i+j*X+(k+4)*Y] +

Sten[Z] +

Sten[i+(j-4)*X+k*Y] + Sten[i+(j+4)*X+k*Y] +

Sten[i+(j-3)*X+k*Y] + Sten[i+(j+3)*X+k*Y] +

Sten[i+(j-2)*X+k*Y] + Sten[i+(j+2)*X+k*Y] +

Sten[i+(j-1)*X+k*Y] + Sten[i+(j+1)*X+k*Y] +

Sten[(i-4)+j*X+k*Y] + Sten[(i+4)+j*X+k*Y] +

Sten[(i-3)+j*X+k*Y] + Sten[(i+3)+j*X+k*Y] +

Sten[(i-2)+j*X+k*Y] + Sten[(i+2)+j*X+k*Y] +

Sten[(i-1)+j*X+k*Y] + Sten[(i+1)+j*X+k*Y];}

}

Figure 2.16: Conventional Load/Store Stencil Access Pattern

55

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

#define stencil_size 4

#define PRIORITY1 1

#define PRIORITY2 2

// Main Program

PMC_SCRATCHPAD STENCIL;

PMC_SCRATCHPAD SSM_3D;

MAIN_MEMORY DATASET_3D;

// Part I : Local SSM

// Single Stencil Buffer

STENCIL.ADDRESS=0X10000000;

STENCIL.WIDTH=9;

STENCIL.HEIGHT=3;

STENCIL.BANK=1;

// 3D 32x32x32 SSM

SSM_3D.ADDRESS=0X11000000;

SSM_3D.WIDTH=32;

SSM_3D.HEIGHT=32;

SSM_3D.BANK=32;

// Part II : Main Memory

// 3D-Data set

DATASET_3D.ADDRESS=0X00100000;

DATASET_3D.WIDTH=128;

DATASET_3D.HEIGHT=128;

DATASET_3D.BANK=128;

//PART III : DATA TRANSFER

3D_STENCIL (STENCIL, DATASET_3D, PRIORITY1);

3D_STENCIL_VECTOR (SSM_3D, DATASET_3D, PRIORITY2);

Figure 2.17: PMC 3D Stencil Access Pattern

vectors. PMC removes the programmer effort of manually arranging memory ac-

cesses by using descriptors that reduce address operations and perform address man-

agement in hardware. A PMC example of a 3D stencil access is shown in Figure 2.17.

56

2.2 Programming Model

// Main Program

PMC_SCRATCHPAD SSM_2D;

PMC_SCRATCHPAD SSM_3D;

MAIN_MEMORY DATASET_2D;

MAIN_MEMORY DATASET_3D;

#define PRIORITY1 1

#define PRIORITY2 2

// Part I : Local SSM

// 2D 32x32 Buffer

SSM_2D.ADDRESS=0X00000000;

SSM_2D.WIDTH=32;

SSM_2D.HEIGHT=32;

SSM_2D.BANK=1;

// 3D 32x32x32 SSM

SSM_3D.ADDRESS=0X10000000;

SSM_3D.WIDTH=32;

SSM_3D.HEIGHT=32;

SSM_3D.BANK=32;

// Part II : Main Memory

// 2D-Data set

DATASET_2D.ADDRESS=0X00001000;

DATASET_2D.WIDTH=256;

DATASET_2D.HEIGHT=256;

DATASET_2D.BANK=1;

// 3D-Data set

DATASET_3D.ADDRESS=0X00100000;

DATASET_3D.WIDTH=128;

DATASET_3D.HEIGHT=128;

DATASET_3D.BANK=128;

//PART III : DATA TRANSFER

PMC_MEMCPY (SSM_2D,

DATASET_2D, PRIORITY1);

3D_STENCIL_VECTOR (SSM_3D,

DATASET_3D, PRIORITY2);

// PART IV:

//PROCESSING MULTI-CORES

LAPLACIAN (SSM_2D);

STENCIL (SSM_3D);

Figure 2.18: PMC Programming Example of 2D and 3D Applications

A single stencil can be accessed by using the 3D STENCIL() function call. The

3D STENCIL() function requires Local Memory and Main Memory data set informa-

tion. The PMC uses three descriptors that transfer the three stencil vectors: row, col-

umn and plane. PMC reduces address management by initializing different strides (see

Section 2.2.4) for each vector access. PMC improves performance and reduces main

loop computation by access stencil in the form of vectors. A 3D STENCIL VECTOR()

call is used to transfer multiple stencil vectors by using multiple 3D STENCIL()

function calls. This function call requires Specialized Scratchpad Memory and Main

Memory data set information.

A multi-core programming example of PMC is shown in Figure 2.18. The multi-

cores are initialized with the data structures and the scheduling policy priorities. Like

57

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

Pthread scheduling policies the PMC, scheduler initializes priorities at compile time.

Unlike Pthread, the PMC executes requests at run-time in hardware. If the same prior-

ity is assigned to multiple cores, the PMC scheduler processes the cores in symmetric

mode. The PMC automatically adjusts the data set into appropriate SSP sizes, to be

processed by the processing core. The minimum requirement of each access pattern is

that the programmer has to describe the main memory data sets and the size of SSM for

the application kernel. An example used to program the PMC based multi-core system

is shown in Figure 2.18. The program initializes two ASHAs and their 2D and 3D tiled

data pattern. Part I of Figure 2.18 defines a 2D and 3D SSM (SCRATCHPAD) of 32x32

and 32x32x32 elements respectively. Part II identifies main memory data sets infor-

mation. Part III initializes 2D and 3D data transfers. The PMC uses PMC MEMCPY

function call to read/write dense data structure and access pattern. The minimum re-

quirement of each access pattern using PMC MEMCPY function call is that the pro-

grammer has to describe main memory data sets, specialized memory buffer size and

priority of data transfer Part IV initializes Laplacian and 3D-Stencil processing cores.

The Laplacian kernel requires 2D block of data to process and 3D-Stencil complex 3D

access pattern.

2.2.3 Access Patterns

The access patterns in PMC are managed with functions call shown in Table 2.1. Spe-

cialized function calls are provided for complex patterns such as 2D/3D tile, binary

tree, etc. In order to elaborate the functionality of PMC two types of data access pat-

terns are discussed in this section: Vector Access Pattern and Tiling Access Pattern.

2.2.3.1 Vector Access Pattern

A vector access has 1D data access pattern. The PMC system allows to access vector

patterns, using PMC SEND() function call. Each call is associated to a single de-

scriptor block. SoA data access requires unit-stride, whereas the AoS requires strided

access. The stride is determined by the size of the working set. Figure 2.19 presents

three different vector accesses (x[n][0], y[0][n] and z[n][n]) for a n×n ma-

trix where vector x corresponds to the contiguous row having unit stride, vector y

58

2.2 Programming Model

Figure 2.19: PMC Vector Access Patterns

belongs to column access with stride equal to row length and vector z is a diagonal

vector pattern. Stride of z[n][n] row length+1.

For example, a 3D stencil access requires three descriptors. Each descriptor ac-

cesses a separate (x, y and z) vector in a different dimension, as shown in Figure 2.20.

By combining these descriptors, the PMC exchanges 3D data between the main mem-

ory and the SSM (Figure 2.21). The value NX, NY and NZ define the width (row size),

height (column size) and length (plane size) respectively of the 3D SSM. The 3D-

Stencil has x, z and y vectors having direction of row, column and plane respectively.

The vector x has unit stride, the vector z has stride equal to row size and the vector y

Figure 2.20: 3D Stencil Vector Access

59

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

Figure 2.21: 3D Specialized Memory Structure

has stride equal to the size of one plane, i.e. row size × column size.

2.2.3.2 Tiling Access

The tiling access transfer the data in the form of block/tile. Each block of data can

have multiple non-contiguous vector accesses. The tiling technique is employed to im-

prove system performance. It is widely used for exploiting data locality and improving

parallelism.

Single Tile Access: The data accesses inside a tile can be arranged into one or

multiple descriptors. By combining these descriptors, the PMC exchanges tiled data

Figure 2.22: PMC Tiling Example

60

2.2 Programming Model

between the Main Memory and SSM. To read/write a single tile, the send tile()

and receive tile() calls are used to initialize the Descriptor Memory blocks.

Each call requires two input parameters Local Address and Main Address. Parameter

Local Address indicates the starting address of the scratchpad memory where the tile

is read/written. Main Address holds the start address of the working data set.

Multi-Tiling Access: The PMC multi-tiling method attempts to derive an effective

tiling scheme. It requires information about the Main Memory Tiled Data set (MN)

and the Buffer’s Tile size (mn) of the computing engine. Where (M,m) represents width

and (N,n) represents dimension of each tile. Depending on the structure of the buffer

memory, the PMC partitions the Main Memory into multiple tiles. The number of tiles

for a multidimensional memory access is given by Equation 2.1, assuming an even

number of dimensions.

Number of Tiles =
⌈
MN

mn

⌉
=

⌈
DataSet WidthDimension

LocalBuffer WidthDimension

⌉
(2.1)

An example of PMC (4×4) 2D-tile access is shown in Figure 2.22. The PMC uses 4

descriptors to access a single tile. Descriptor 0 takes descriptor 0 from Descrip-

tor Memory and accesses data starting at location Physical Address with unit-stride

and n-stream (row width) size. Depending on the size of the main memory data set

(MN), different strides (address) are used between transfers. The starting address of

the next transfer is dependent on Equation 2.2. Descriptor 1 starts right after the

completion of Descriptor 0. Descriptor 3 is the last transfer. After comple-

tion of Descriptor 3 transfer, PMC generates an interrupt signal indicating to the

external source that the tile data transfer has finished. The PMC will move ahead to

the next tile and restart processing.

Start Address = Dataset Base AddressT ile + Buffer WidthT ile ∗ Descriptor number

(2.2)

2.2.4 Programming PMC

At compile time PMC uses wrapper library that contains information of the applica-

tion’s complex access patterns using function calls, e.g. PMC MEMCPY, 3D STENCIL,

etc. The programmer only needs to identify the appropriate function call to the library

61

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

and the PMC automatically transfers data pattern to local memory of compute unit. A

PMC API is used to parse the annotated code and then program the PMC Descriptor

Memory. The PMC API takes parameters from the code and automatically rearranges

and parallelizes access patterns in software and program the PAC Descriptor Memory.

PMC API rearranges and parallelizes access pattern based on available and required

size of local and main memories. For example, the Laplacian and Stencil applications

have 32x32 and 32x32x32 Local Scratchpad Memory and 256x256 and 128x128x128

data set size of Main Memory respectively. The PMC API converts the Main Memory

data set into tiles based on Local Scratchpad Memory size. For each 2D and 3D access

pattern 64 tiles are generated. The PMC API organizes it in Descriptor Memory by al-

locating different different Main Memory Address parameters (shown in Figure 2.23).

Later PMC software and or hardware mechanism optimizes Descriptor Memory and

uses only the Offset address to access multiple tiles, which reduces the Descriptor

Memory size. For the complex memory patterns having load/store access, the pro-

grammer parallelizes the code by hand using functions such as PMC POINTER, or

PMC TREE. The reasons for requiring hand parallelization are: the access patterns are

complex and have address dependencies. Equivalent process is applied to parallelize

the access pattern of generic (non PMC) application kernels. While using this PMC

model, the programmer does not need to worry about the hardware related program-

ming and configuration constraints. By using PMC, the memory load/store operations

are shaped into patterns and are scheduled in parallel with compute operations. More-

over, the optimal scheduling of operations does not depend upon memory latencies

and therefore does not effect the scheduling of computations. Compared to the work

presented here, the alternative is to do everything manually in order to accelerate the

program on FPGA using an accelerator; in this case the programmer needs similar an-

notated code but having much complex arrangement and explicit scheduling of DMA

function calls. PMC avoids all this complexity. The PMC program flow is shown in

Figure 2.23: PMC Program Flow

62

2.2 Programming Model

Figure 2.24: PMC Descriptor Memory

Figure 2.24. The PMC program code is compiled using the GCC compiler. The mem-
ory access information is included in the PMC header file and provides function calls
(e.g. PMC MEMCPY(), and PMC STENCIL(), etc.) that require basic information
of the local memory and the data set. The programmer has to annotate the code using
PMC function calls. The API takes the code (shown in Figure 2.18), pipelines and
overlaps the PMC operations and then programs the Descriptor Memory.

63

2. PROPOSED HETEROGENEOUS MULTI-CORE MEMORY SYSTEM

64

Part II

Uni-core Memory System for Regular
Data Pattern

65

3

PPMC: A Programmable Pattern
Based Memory Controller

The current trend in the design of HPC systems is shifting towards the integration of

microprocessors with accelerators [47] in order to achieve the increasing performance

targets. However, high-performance microprocessor/accelerator systems are of little

use if the memory hierarchy is unable to provide the necessary data bandwidth. The

efficient management of memory accesses by timely prefetching across the set of accel-

erators and microprocessors in such a scenario are critical for performance. However,

it is also very challenging. This chapter deals with the PMC based single core system

and regular access patterns. The system supports one core simultaneously either SSP

and ASHA. The main contribution of this chapter is the description of the hardware

implementation of a Pattern-based Programmable Memory Controller (PPMC) which

takes a data access description (descriptor blocks) and provides 1D, 2D and 3D data in

streaming mode. This chapter discusses the evaluation architecture of PPMC and Base-

line memory controller and their implementation on a Xilinx Virtex 5 FPGA (ML505

development board), including its integration with a Xilinx MicroBlaze processor. We

also show how PPMC can be attached to ASHA. We evaluate application kernels on a

MicroBlaze-based SoC Architecture using PPMC. This shows that the PPMC system

is equally usable as a stand alone component within a reconfigurable system, and also

as a slave in a system with a general purpose processor. The results are compared with

1
Chapter 3 is based on the publications : [34] and [35].

67

3. PPMC: A PROGRAMMABLE PATTERN BASED MEMORY
CONTROLLER

Figure 3.1: PPMC: Programmable Pattern based Memory Controller

a system that lacks the pattern based controller, showing great benefits from the usage

of PPMC.

3.1 System Architecture

To demonstrate the operation of PPMC, we first depict its internal architecture in Fig-

ure 3.1, which also briefly shows the interconnection with the external processing

units. Similar to PMC the PPMC system is comprised of four units with minimal

features, which are the Font-End Interface (Section 2.1.1), the Local Memory System

(Section 2.1.2) the Memory Manager (Section 2.1.3), and the Main Memory System

(Section 2.1.4). The Front-End interface includes two separate interfaces, the PBI and

the SSSI, to link with the SSP and the ASHA respectively. The Local Memory System

consists of the Descriptor Memory along with the Scratchpad Buffer Memory. The

PPMC Memory Manager uses an Address Manager to manage Regular Patterns and a

Bus Arbiter instead of Scheduler to control and arbitrate data transfer requests.

3.2 Evaluation Architecture

In this section, we describe and evaluate the PPMC-based SoC architecture for the FIR,

Thresholding, FFT, Laplacian solver, Matrix Multiplication and 3D-Stencils applica-

tion kernels. In order to evaluate the performance of the PPMC System, the results are

compared with a similar system that does not feature a PPMC unit.

68

3.2 Evaluation Architecture

Figure 3.2: ROCCC-based Hardware Accelerator

In our evaluations, Matrix Multiplication and Thresholding applications are tested
on the MicroBlaze SSP while the other kernels are tested on an ASHA. Both systems
are configured with and without support of PPMC.

3.2.1 MicroBlaze SSP

MicroBlaze [20] is a 3 stage pipelined RISC soft-core. The processor is implemented
with a Harvard memory architecture where instruction and data accesses have separate
32-bit address spaces. The data access to input/output memory is memory mapped.
The processor has two bus interfaces for memory accesses: the Local Memory Bus
(LMB) and the Processor Local Bus (PLB). Local memory is used for data and pro-
gram storage and is implemented by using Block RAM. The local memory is con-
nected to MicroBlaze through the LMB, and the BRAM Interface Controllers. Mi-
croBlaze instruction prefetcher improves the system performance by using the instruc-
tion prefetch buffer and instruction cache streams. The system consumes 7612 flip-
flops, 4988 LUTs and 14 BRAMs on a V5-Lx110T device.

3.2.2 ROCCC ASHA

The ASHA (shown in Figure 3.2) is generated by the ROCCC [23] compiler for each
of the evaluated application kernels. These dedicated accelerators have the low power
consumption and provide high performance. To balance the workload, each acceler-
ator is equipped with two read/write data memories (double-buffers). The ASHA has

69

3. PPMC: A PROGRAMMABLE PATTERN BASED MEMORY
CONTROLLER

two interfaces that read and write data to/from read buffer and write buffer respec-

tively. The control signals manage the data movement and carry information of buffer

memories data transfers. In this evaluation environment, ASHAs are executed at 100

Mhz of clock frequency and the highest bandwidth required is 400 MB for c/a=1. To

manage on-chip data for computationally intensive window operations, ROCCC based

ASHA can generate smart buffers. These smart buffers can reuse data through loop

transformation-based program restructuring. The impact of this transformation on the

size of generated hardware is high, i.e. generated hardware consumes approximately

three times more FPGA logic. Therefore in our current evaluation, such transforma-

tion is not used. The PPMC itself performs off-chip and on-chip data management

and supports complex memory accesses. The current evaluation supports complex

memory accesses and can provide 3D data to the processing core with a single cycle

of latency. The access patterns can be rearranged by re-programming the Descriptor

Memory which does not require re-synthesis of PPMC.

Figure 3.3: Test Environment: PPMC based SoC with Reconfigurable Hardware Accel-
erator

70

3.2 Evaluation Architecture

3.2.3 PPMC based SoC

The PPMC based system is shown in Figure 3.3. In this architecture, dual-port mem-
ory controllers are used to share the Descriptor Memory between the MicroBlaze and
the PPMC. The MicroBlaze is connected with the PPMC for programming PPMC’s
Descriptor Memory, to execute applications (more information in Table 3.1) and to
display results using a serial link. The PPMC is connected to the reconfigurable hard-
ware accelerator using PPMC’s SSSI and a state controller. The PPMC state controller,
shown in Figure 2.11 (a), is used to control the hardware accelerator and the buffer
memory. A 256 MByte (32M x 16) of DDR2 SDRAM having SODIMM I/O module
is used in the design with a peak main memory bandwidth of 1600MB/s, as it has a
clock frequency of 100MHz, and a data bus width of 64 bits. Four memory buffers
(two read and two write) are specified to accesses tiled data to/from main memory.
The system consumes 4280 flip-flops, 3581 LUTs and 10 BRAMs on a V5-Lx110T
device. Due to the light weight of PPMC, the proposed architecture consumes 38%
less slices than the baseline MPMC based SoC, that is described below.

3.2.4 Baseline MPMC based SoC

A Xilinx FPGA based state of the art High Performance Multi-Port Memory Controller
(MPMC) system is used (Figure 3.4) as a baseline. The architecture has 64 kB and 4

Figure 3.4: Test Environment: MPMC based SoC with Reconfigurable Hardware Accel-
erator

71

3. PPMC: A PROGRAMMABLE PATTERN BASED MEMORY
CONTROLLER

kB of data and instruction cache respectively. The design uses Xilinx Cache Links

(IXCL/DXCL) for I-Cache and D-Cache memory accesses. MPMC is a fully param-

eterizable memory controller, providing an efficient interfacing between the processor

and SDRAM using the IBM CoreConnect Processor Local Bus (PLB) bus interface.

By default, MPMC uses the PLB interface to transfer data from/to SDRAM. PLB sup-

ports fixed-burst data transfers, and 8-word cache line read/write transfers. The MPMC

controller (like other memory controllers) takes data transfer instructions from the Mi-

croBlaze processor and performs memory operations. A modular DDR2 SDRAM [48]

controller (with the PLBv46 Wrapper) is used with the MPMC system to access main

memory. The controller accesses data from main memory and performs the address

mapping from physical address to SDRAM address. A 256 MByte (32M x 16) of

DDR2 SDRAM having SODIMM I/O module is connected with the DDR2 memory

controller. The DDR2 controller has a peak main memory bandwidth of 1600MB/s

as it has a clock frequency of 100MHz, and a data bus width of 64 bits. The MPMC

system can also use Video Frame Buffer Controller (VFBC) and Central Direct Mem-

ory Access (CDMA) direct memory access controllers. The VFBC and CDMA are

optional and are used to improve the performance of the DDR2 SDRAM controller by

managing complex patterns in hardware. For each application, the controller (VFBC

or CDMA) that better suits the application access pattern is included in the design.

MicroBlaze SSP is used to control the system. The target architecture has a single pre-

cision floating point unit, 16 KB of each instruction and data cache. The design uses

9612 flip-flops, 9388 LUTs and 14 BRAMs in a Xilinx V5-Lx110T device. Xilinx

SDK is used to compile the application kernels using the library generator (libgen) and

a platform-specific gcc/g++ compiler and generate the final executable object file, with

optimization level (-O2).

3.2.5 Test Applications

The application kernels used to validate the design are shown in Table 3.1. These ker-

nels are chosen to characterize different data access patterns. The results are validated

by comparing the execution time of these kernels on a MicroBlaze system with PPMC

and MPMC support. FIR, FFT and Laplacian kernels are executed in an ASHA core.

72

3.3 Results and Discussion

Table 3.1: Brief description of application kernels

Application Kernel Description Access Pattern Executed By

Thresholding An application of image segmentation, Streaming SSP
which takes streaming 8-bit pixel data
and generates binary output.

Finite Impulse Response Calculates the weighted sum Streaming ASHA
of the current and past inputs.

Fast Fourier Transform Used for transferring a time-domain 1D Block ASHA
signal into corresponding
frequency-domain signal.

Laplacian solver Applies discrete convolution 2D Tiling ASHA
filter that can approximate
the second order derivatives.

Matrix Multiplication X = Y × Z 2D Tiling SSP

3D-Stencil An algorithm that averages nearest
Decomposition [49] neighbor points in 3D. 3D Tiling SSP

In order to give a standard interface to ROCCC IPs with the PPMC system, the state

controller presented in Section 2.1.3.3 is used.

3.3 Results and Discussion

Figure 3.5 shows a plot with Read/Write data accesses for MPMC and PPMC based

systems. The X-axis presents 1D/2D/3D datasets that are read and written from/to the

main memory and the scratchpad memory. The Y-axis of the plot represents the num-

ber of clock cycles consumed while accessing the tiled dataset with the logarithmic

scale. The MicroBlaze with MPMC has load/store (see Section 1.3.1.1.1) data access

patterns, whereas PPMC accesses multiple noncontiguous streams using patterns. The

results show that PPMC memory access times are 10 times faster than a generic mem-

ory controller.

Figure 3.6 shows the execution time (clock cycles) for the application kernels, ex-

ecuted on MPMC and PPMC based systems. The X and Y axis represent application

kernels and number of clock cycles, respectively. By using our PPMC system, the re-

73

3. PPMC: A PROGRAMMABLE PATTERN BASED MEMORY
CONTROLLER

Figure 3.5: Clock Cycles: PPMC and MicroBlaze Read/Write data to/from Main Memory

sults show that the Thresholding and FIR application kernels respectively achieve 32x

and 22x of speed-up. Both applications kernels have a streaming data access pattern.

The results confirm that PPMC reduces the Main Memory data access delay and that

it decreases memory request/grant time by overlapping it with application execution

time. The FFT application kernel reads a 1D block of data, processes it and then writes

it back to the Main Memory. This application observes an 8.2x speed-up. The Matrix

Thresholding

Finite Impulse Response

Fast Fourier Transform

Laplacian Filter

Matrix Multiplication

Applications

10
00

10
00

0

10
00

00

10
00

00
0

10
00

00
00

Cl
oc

k
Cy

cl
es

SoC: Application Execution
MicroBlaze without PPMC
MicroBlaze with PPMC

Figure 3.6: Execution time (clock cycles) of the applications

74

3.4 Conclusion

16
2x

10
0x

19
2

16
2x

12
5x

19
2

24
3x

17
0x

19
2

24
3x

20
0x

38
4

32
4x

22
5x

38
4

32
4x

26
0x

38
4

40
5x

30
0x

38
4

40
5x

32
5x

38
4

Input Volume Dimensions --->

0

500

1000

1500

2000
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

 --
->

3D-Stencil Execution Time

3DS with M.Blaze based Decomposition
PPMC Based Decomposition

Figure 3.7: Execution time for various volume sizes with domain decomposition done by
the host processor and tiling done by the PPMC for the 3D-Stencil

Multiplication and Laplacian applications respectively achieve speed-ups of 6.4x and

9.6x. Both applications have 2D-Data access and both use data tiling.

Figure 3.7 shows the execution time for the 3D-Stencil for various sizes of input

volumes. This shows the scalability of MPMC and PPMC with large input data sets.

The stencil runs for 500 time steps. The usage of PPMC for directly handling the tiling

for 3D volumes improves around 5x the performance of the stencil kernel as compared

to software based volume decomposition. In our evaluations for the 3D-stencil, the

accelerator directly writes the tiling commands to the PPMC.

3.4 Conclusion

The key to efficiency for many applications is to maximize data reuse, thus fetching

input data only once. This is also true for the compute-intensive problems having

complex access patterns. To improve the memory-processor data access bottlenecks,

a simplified PMC controller is used, called PPMC. The PPMC Descriptor Memory

handles regular and complex access patterns. The PPMC based SoC supports a sin-

gle core (ASHA or SSP) at a time. The PPMC uses an arbiter instead of scheduler

75

3. PPMC: A PROGRAMMABLE PATTERN BASED MEMORY
CONTROLLER

that processes access pattern requests of a single core using Address Manager. A sim-
ple Scratchpad Buffer Memory is used to store on-chip data with no Data Manager.
PPMC can be programmed by the microprocessor using HLL or directly from the ac-
celerator using a special command interface. The experimental evaluations based on
the Xilinx MicroBlaze accelerator system demonstrate that the PPMC based approach
improves utilization of hardware resources and efficiently accesses the Main Memory.
The PPMC is implemented and tested on a Xilinx ML505 Evaluation Platform with a
65 nm Virtex-5 XC5VLX110 FPGA. In order to prove the effectiveness of the proposed
controller, we compared the results with non-PPMC based system which uses a state
of the art memory controller that relies on the MicroBlaze softcore as a host processor.
The evaluation uses six memory intensive application kernels: Laplacian solver, FIR,
FFT, Thresholding, Matrix Multiplication, and 3D-Stencil. The results show that the
PPMC system achieves at least 10x of speed-up for 1D, 2D and 3D memory accesses
and improves application performance between 6.4x and 32x over a non-PPMC based
setup.

76

4

A Bus Controller for Graphics System

In this era graphics system have shown a great impact in our lives not only as a com-

modity itself but also for specialized use like medical imaging, defense, communica-

tion systems, etc. We have witnessed a major change in graphics applications that

are being investigated and developed. Various powerful and expensive platforms to

support graphical applications appeared in recent years. All these platforms require

a high performance core that manages and schedules the high speed data of graphics

peripherals (camera, display, etc.) and an efficient on chip scheduler.

Multimedia graphics hardware has been evolving rapidly from simple architecture

to the complex hybrid system. The first color graphics adapter CGA was introduced

in the early 80s by IBM. The mobile industry started integrating graphics applications

in their products in early 90s using software algorithms of PCs and workstations. The

graphics processors have been evolving from a fixed-function unit to a massively pow-

erful computing machine, and they are becoming a common component for hand-held

devices. The complexity of graphics processor rises as consumers demand more func-

tionality and diverse performances from such devices. On the other hand, deploying

latest features in graphics system increases the cost and power of the system.

A typical system on chip system (SoC) (shown in Figure 4.1) comprises one or two

processor cores (master core and graphic core), a programmable crossed bus arbitra-

tion module [50], an interrupt and direct memory control module along with control

bus and data bus. The low power devices have a single processor and perform camera

1
Chapter 4 is based on the publications : [36] and [37].

77

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

Figure 4.1: Generic Graphics System on Chip

processing in software. The single core itself performs data transfer, data manage-

ment and computation which affects the system performance. In dual core system,

the master core can be used for real time operation, and the graphic core is reserved

for image signal processing. To improve performance of graphics system, an intelli-

gent controller is needed that has efficient on-chip specialized memory and memory

system, intelligent front-end/back-end scheduler, fast I/O link and which supports pro-

gramming model that manages memory accesses in software so that hardware can best

utilize them. We propose such graphic system in PMC called Programmable Graphics

Controller (PGC).

In this work, we integrated PMC with graphics system using low-power and high-

performance bus controller called the Programmable Graphics Controller for SoC. The

PGC resides in on-chip Bus Unit and holds data transfer pattern and control instruc-

tions in its Descriptor Memory. The PGC Scheduler provides on-chip and off-chip

bus interconnects and controls data transfer without the support of complex bus matrix

and master processor. The approach reduces the master/slave arbitration delay, bus

switching time, gives promising interconnection approach for multi-peripherals with

the potential to exploit parallelism while coping the memory/network latencies and bal-

ances the work load. PGC bus Scheduler uses FIFO policy that deals single core data

transfer requests and provides low-cost and simple control characteristics. The Address

78

4.1 PGC Graphics System Specification

Figure 4.2: PGC : Internal Structure

Manager with no Data Manager arranges multiple bus access requests and communi-

cates with integrated processing units. We integrated dedicated hardware accelerators

in the design as they have low power consumption and provide high performance. The

PGC supports multi-peripherals (camera, display) and processor core without support

of the master core and operating system (OS). The integration of PGC with periph-

erals facilitates the graphics system to overcome wire (interconnection) and memory

read/write delays and improves the performance of application kernels by arranging

complex on-chip data transfers.

4.1 PGC Graphics System Specification

Architectural investigation for graphics system ranges from high level system archi-

tecture to analog and circuit-level design. The PGC architecture covers the reuse of

processing elements, data parallelism and the network architecture. In this section, we

describe the specification of the PGC system and design its architecture. The section

is further categorized into four subsections: Overview of PGC System, the Processing

Units, the Memory Unit and the Bus Unit.

79

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

Figure 4.3: PGC : Flowchart

4.1.1 Overview of PGC System

The PGC inner architecture is shown in Figure 4.2, which shows the interconnection

with the processing units and memory. The system uses combined hardware/software

solution that includes hardware accelerators and an RISC processor core. The camera

control unit (CCU) and display control unit (DCU) are custom hardware accelerators

and control the camera sensor and the display unit respectively. The local memory

holds the CCU/DCU data for basic image/video processing using the Processor Core.

To store high resolution images the Main Memory is integrated. The Descriptor Mem-

ory is used to hold CCU/DCU program description and data transfer information. De-

pending upon the data transfer the Address Manager takes single or multiple descriptor

from Descriptor Memory and schedules the data movement for CCU and DCU. The

PGC Scheduler handles the concurrent bus request by the CCU and DCU and rear-

ranges multiple bus access requests and arbitrates data transfer without creating bus

contention.

We define two use cases of graphic system (shown in Table 4.1); the video mode

and the snapshot mode. The processing is used to perform filtering, compression,

transformation, etc. on input image. Each use case has two variants: with-processing

and without-processing. The resolution of video mode is selected to fit in local mem-

ory of the target device. In current design, the video Mode supports resolution image

up to 640×480. It reads multiple frames (images) per second (fps) from the camera

sensor and transfers them to display unit. The video mode is further divided into two

80

4.1 PGC Graphics System Specification

Table 4.1: Graphics System: Use Case, Mode of Operations

Use Case Processing PixelDepth Resolution frame/sec (fps)

Video-Mode
Single-Camera Video With/Without 24-bit VGA = 640×480 variable

Dual-Camera Video With 24-bit VGA = 640×480 up to 150

Snapshot Mode With/Without 24-bit QSXGA = 2560×2048 1

modes. The single-camera video uses a single image sensor and dual-camera video

supports two image sensors. A dual or multi-camera graphics system can be used

for 3D-graphics using geometric transformation and projection plane [51]. The snap-

shot mode of operation takes a still image from the image sensor, performs software

processing if required and writes to Main Memory. The snapshot mode supports a

maximum resolution of 2560×2048 with 24-bit pixels (16 Mega colors) depth.

The working operation of the PGC system is shown in Figure 4.3. During programming-

time, the Descriptor Memory and program memories of PGC and CCU/DCU are ini-

tialized. The program memory holds the instructions of CCU/DCU program registers

and data transfer. During the initialization, the PGC programs the CCU and DCU

according to the different use cases.

4.1.2 Processing Unit

The PGC uses two types of cores: the ASHA and the processor core. Camera Control

Unit (CCU) and Display Control Unit (DCU) ASHA are used in the design to control

camera and display units respectively. The CCU grabs raw data from Image sensor

processes it and transfers it to the system via on-chip bus. The major function blocks

of CCU are Camera Interface Front-End, Image Signal Processor, Color processing,

Scaling, Compression, and Bus controller. The hardware utilization of each function

block in term of memory and logic elements is shown in Figure 4.4. Each CCU block

has memory mapped internal registers (shown in Figure 4.4) that can be initialized and

programmed by the processor core. The DCU is used to control and display image

data on LCD panel. The DCU supports LCD 16bpp up to 24bpp colors and user

defined resolution from VGA to QSXGA. Programming is done by register read/write

81

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

(a)

(b)

Figure 4.4: Camera Control Unit: (a) Resource Utilization (b) Reduced Memory Map

transactions using a slave interface. The DCU consumes 425 registers and 312 LUTs

on a V5-Lx110T FPGA device.

The CCU and DCU data rate is given by Formula Outputdata rate (shown in Fig-

ure 4.5). The Analog Interfacewidth represents the analog port width of Image sensor

and display. Both CCU and DCU supports 32-bit parallel interface (Analog Interfacewidth)

to communicate with image sensor and display (LCD). Each hardware block of DCU

& CCU is invoked by the processor using memory mapped register sets that change

the operation of internal hardware architecture.

A low power and light weight RISC processor core is used to provide programma-

bility, flexibility and software data processing. The processor core changes the fea-

tures by programming the PGC system using a software interface API. The API can

be used to correct design errors, update the system to a new graphic standard and to

add more features to the graphics system. The proposed processor core has 16-bit data

bus, 16-general purpose registers, custom instruction set, non-pipelined Load/Store ac-

cess, hardwired control unit, 64KByte address space, total 16-interrupts and memory

mapped I/Os. 1KByte of memory is allocated for display and camera control units

using chip select. On a V5-Lx110T FPGA device, the core uses 481 registers, 1496

82

4.1 PGC Graphics System Specification

LUTs and 4 Brams.

Outputdata rate = Resolution ∗ fps ∗
PixelDepth

Analog Interfacewidth

Figure 4.5: CCU and DCU Data Rate

The PGC Local Memory is shared between the processor, CCU and DCU. During

video mode, two frames buffers are required, one for processing and other for dis-

playing. Each VGA frame has 900KByte of size, therefore, almost 2MBytes of local

memory are reserved. To save the image for snapshot mode we use main memories.

The slowest type of memory in the graphics system is Main Memory and is accessi-

ble by the whole system. The Main Memory may use SDRAM, SD/SDHC cards, etc.

interfaces to read/write data.

4.1.3 Bus Unit

Two buses are used in the graphics system which are the Graphics Bus and the System

Bus. The Graphics Bus is used as on-chip bus for internal communication between

the processing units and Local Memory. The System Bus is used to communicate with

external peripherals such as main memories. Both buses can operate in parallel. The

Bus Unit is further divided into three sections: the Bus Specification, the Bus Control

Unit and the Bus Interconnect Network.

4.1.3.1 Bus Specification

It is important to calculate the required data-rate for each use case before selecting

and configuring the Bus Unit. This section is further divided into three subsections:

Graphics Bus Specification, System Bus Specification and Bus Usage.

4.1.3.1.1 Graphics Bus Specification The clock of the camera and display is di-

rectly synchronized with the output data hence define the bandwidth of the graphics

bus. The actual theoretical data rate of the graphics bus (GBB) is the total bandwidth

of master sources (shown in Figure 4.6). For example, during video mode without-

processing the PGC reads streaming data from CCU and writes directly to DCU. For

83

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

GBB =
max∑
n=1

Master Source Bandwidthn

GBBSC=Image Sensor[PixelDepth ∗Resolutionmax ∗ fpsmax]

GBBSC=Image Sensor[24 ∗ 640× 480 ∗ 150]

' 1.05Gb/s ' 132MB/s

GBBSCP ' 264MB/s

GBBDC =Image Sensora + Image Sensorb

' 2.1Gb/s ' 264MB/s

SBBSN =Image Sensor[24 ∗ 2560× 2048 ∗ 1]

' 120Mb/s ' 15MB/s

Percentage of Bususage =
SourceBandwidth

MasterBusfreq
∗ 100

Figure 4.6: Graphics Bus Required Bandwidth

video mode with-processing, the PGC takes video frames from CCU, writes it to local
memory for processing and then transfers the processed frame to DCU. In this case the
PGC operates CCU and DCU in parallel, and therefore, the bandwidth of the graphics

bus is the sum of CCU and DCU data-rates. For dual camera, the PGC takes two video
frames and transfers them to CCU. The required graphics bus bandwidth (shown in
Figure 4.6) with a single camera without processing and with processing is given by
the formula GBBSC and GBBSCP respectively. Figure 4.6 also presents the bandwidth
of dual camera GBBDC . The local memory provides high bandwidth and has 2 cycles
of latency for individual transfer. The graphics bus manages multiple read/write ac-
cess transactions in a single transfer and pipeline the multiple stream that reduces the
overhead of local memoryLatency and improves the bus performance. After calculating
bus bandwidth and considering the different use cases, we selected a bus with 100 Mhz
of clock speed and 32 bit-width.

4.1.3.1.2 System Bus Specification The System Bus manages the data transfer dur-
ing snapshot mode. The PGC reads data from image sensor and writes it to main

84

4.1 PGC Graphics System Specification

Figure 4.7: Bus Unit Timing Cycles

memory. The bandwidth requirements of System Bus for snapshot-mode is given by

the Formula SBBSN (shown in Figure 4.6).

4.1.3.1.3 Bus Usage Figure 4.7 shows the bus timing and bus usage information for

the video and snapshot modes. The finalized graphics bus has 400 MB/s of bandwidth

that means it takes 10 nsec to transfer 1 (32bit) pixel of data. For example, the graph-

ics bandwidth for video of 30 fps (without-processing) is 9 Mega pixels per second.

This means each pixel takes 111 nsec and occupies graphics bus for 9% of its time,

given by the formula Percentage of Bususage (shown in Figure 4.6). For video mode

with-processing, the Graphics Bus takes 111 nsec to transfer one pixel from CCU to

local memory, and the same time is taken while transferring it to display accelerator.

Similarly, video mode needs 18 Mega pixels of bus bandwidth, that takes 56 nsec to

transfer a pixel between image and display accelerators. The display camera interface

for video mode utilizes the graphics bus for approximately 14% of total bus time and

relinquishes bus for another period of time. The snapshot mode requires bus band-

width of 5 Mega pixels to transfer one image of QSXGA resolution from the CCU to

the Main Memory.

85

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

4.1.3.2 Bus Control unit

The PGC control unit uses Descriptor Memory, Scheduler and Address Manager, to

manage the processing units and memory units. The Descriptor Memory holds De-

scriptors that define the data movement between CCU/DCU, processor core and mem-

ory unit. The Descriptors allow the programmer to describe the shape of memory

patterns and its location in memory. A single Descriptor is represented by the param-

eters source address, destination address, stream and stride. The address parameters

specify the master and slave cores. Stream defines the number of pixels to be trans-

ferred. Stride indicates the distance between two consecutive memory addresses of a

stream. C/C++ function calls are provided to define a complex pattern in software.

The PGC bus Scheduler along with Address Manager (shown in Figure 4.7) arrange

requests coming from single or multi-bus masters and arbitrate master processing units.

A bus master provides address and control information to initiate read and write oper-

ations. A bus slave responds to a transfer that is initiated by one of the master’s core.

The Address Manager holds the address and control information of bus slaves. The

Scheduler’s interrupt controller reads requests from master cores and routes them to

the slave. The Address Manager’s decoder determines for which slave a transfer is

destined for. The PGC bus holds two types of status registers: the source status and

the slave status registers. The status registers indicate the states of each master and

slave, such as request, ready, busy and grant. The Scheduler and Address Manager

administer the status register of master and slave cores respectively.

At run-time, a master core generates a request, the interrupt controller reads the

request and updates its status registers. The Scheduler reads data transfer information

of the master and slave cores from Descriptor Memory and transfer slave core infor-

mation to the Address Manager. The PGC Address Manager decodes the address of

each transfer and provides a select signal for the slave that is involved in the transfer

and provides a control signal to the multiplexers. A single master-to-slave multiplexer

(MUX) is controlled by the Scheduler. The master-to-slave MUX multiplexes the write

data bus and allocates the data bus for corresponding master after getting a response

signal from a slave-to-master MUX. A slave-to-master MUX multiplexes the read data

bus and response signals from the slaves to the master. Multiple master-to-slave and

slave-to-master multiplexers can be added to implement a multi-layer Bus Unit. The

86

4.1 PGC Graphics System Specification

PGC Bus Unit can be programmed up to eight layer bus which requires eight pairs of

master-to-slave and slave-to-master multiplexers.

4.1.3.3 Bus Interconnect

To connect the graphics components together, a bus interconnection is described (shown

in Figure 4.8). We select a double layer Bus Interconnect (System Bus and Graphics

Bus) for the design due to its design simplicity and low power consumption. Each

layer is controlled by a pair of master-to-slave and slave-to-master multiplexers. The

PGC Scheduler and Address Manager control the pairs of multiplexers. The bus is

used to read/write high resolution image to/from main memories. The Graphics Bus

is employed to provide high speed link between the CCU, DCU, processor and local

memory components. Current PGC Graphics Bus has 5 Masters and 4 Slaves, there-

fore, the Bus Unit is configured accordingly. The proposed Bus Unit provides standard

Figure 4.8: PGC Graphics Bus Unit

87

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

communication protocol and implements the features required for high-performance.

4.2 Experimental Framework

In this section, we describe and evaluate the PGC based graphics system. In order to

evaluate the performance of the PGC system, the results are compared with a generic

graphics system managed by the MicroBlaze processor. The Xilinx Integrated Soft-

ware Environment and Xilinx Platform Studio are used to design the graphic systems.

The power analysis is done by Xilinx Power Estimator (XPE). A Xilinx ML505 [52]

development board is used to test the systems. For the implementation of graphics

system the THDB-D5M Camera and the TRDB-LTM LCD Touch Panel by Terasic

have been chosen. This section is divided into two subsections: the MicroBlaze based

Graphics System and the PGC based Graphics System.

4.2.1 MicroBlaze based Graphics System

The FPGA based MicroBlaze system is proposed (Figure 4.9) to operate graphics sys-

tem. The design (without CCU & DCU) uses 8047 flip-flops, 6643 LUTs and 51

BRAMs in a Xilinx V5-Lx110T device. The system architecture is further divided

into the Processor Core and the Bus Unit.

The Processor Unit: Two MicroBlaze cores [20] are used in the graphics system

which are the Master core and the Graphics Core. The Master core is used to pro-

gram, schedule and manage the system components. The camera and display hardware

Figure 4.9: MicroBlaze based Graphics System

88

4.2 Experimental Framework

Figure 4.10: PGC: Graphics System

scheduling and data memory management are controlled by Graphics processor. Both

cores use local memory Bus (LMB) [53] to link with local-memory (FPGA BRAM)

that offers single clock cycle access to the local BRAM.

The Bus Unit: In the design, a Processor Local Bus (PLB) [54] provides connec-

tion between peripheral components and microprocessors. The PLB has 32 bit-width

and is connected to a bus control unit, a watchdog timer, separate address read/write

data path units, and an optional DCR (Device Control Register) slave interface that

provides access to bus error status registers. The Bus is configured for single master

(MicroBlaze) and multi slaves. The PLB provides maximum of 400 MBytes of band-

width while operating at 100Mhz and 32-bit width, with byte enables to write byte and

half-word data.

4.2.2 PGC based Graphics System

The PGC based graphics system is shown in Figure 4.10 having components similar

to the MicroBlaze based graphic system. The implementation details of PGC based

graphics system are addressed in Section 4.1. The main difference between PGC and

MicroBlaze based systems is that PGC system takes descriptors during initialize-time

and at run-time it manages and schedules data transfer without the support of the pro-

cessor. The processor core and System Bus remain free for the use cases which do not

involve processing. The design (without CCU and DCU) uses 4547 flip-flops, 3843

LUTs and 35 BRAMs in a Xilinx V5-Lx110T device.

89

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

4.3 Results and Discussion

This section analyzes the results of different experiments conducted on the different

graphic systems. The experiments are classified into four subsections: Bus Perfor-

mance, Snapshot Mode Performance, Applications Performance and Area & Power.

4.3.1 Bus Performance

To measure the bus performance, the graphic systems are executed on Video Mode

(without-processing) having fixed resolution (640×480) and variable frame rate (frame

per second - fps). The image sensor is programmed to transfer a variable number of

frames (fps), and each frame has VGA quality. Inside DCU, we have integrated a

controller that detects the fps and the speed at which frames are coming. A hardware

timer is added to the on-chip bus controller that measures clocks used to transfer frames

between master to slave peripherals. This section discusses results for Single-Camera

Bus Bandwidth and Multi-Camera Bus Bandwidth.

Figure 4.11: Single and Dual Camera Systems: Bandwidth For Different Frame Rate

90

4.3 Results and Discussion

4.3.1.1 Single-Camera Bus Bandwidth

In this section, we compare the bus performance of graphic systems while using single

image and display units. Figure 4.11 shows the on-chip data bus transfer speed of

PGC and MicroBlaze systems for different video frame rates. A single THDB-D5M

image sensor is used. It can operate up to 150 fps with VGA resolution. The X-axis

presents video of different fps. The Y-axis shows measured bandwidth for different

videos frame rates. To measure the bandwidth we calculate the time to transfer video

from CCU to DCU. Theoretically the PLB and the graphic bus support video of VGA

quality more than 100 fps. In practice, there are on-chip bus arbitration and request

grant time delays. By using the PGC system, the results show that the system manages

video for higher fps. While the MicroBlaze based graphic system supports video up to

40 fps, with higher fps the video starts flicking. The system uses a separate processor

core that manages the data movement of CCU and DCU. The PGC allows graphics

system to operate Video Mode up to 85 fps. The PGC control unit controls the CCU

and DCU without the intervention of the processor core which reduces the master/slave

request/grant time.

4.3.1.2 Multi-Camera Bus Bandwidth

In this section, two THDB-D5M image sensors are used that generate two separate si-

multaneous video streams and apply Alpha blending application to evaluate the perfor-

mance of the dual camera system. Each camera is operating at VGA color resolution.

The video of dual image sensors is combined into a single stream, processed by the

graphics core and then displayed. The key issue of the dual-camera system is receiv-

ing the images synchronously, in the right format and on the right bus. The graphic

system sends the configuration data to both image sensors and ensures that they are

properly configured and synchronized. Once both sensors are set up and synchronized,

both sensors begin to transmit image data. The graphic system looks for the appropri-

ate control characters, so it recognizes the start of the frame and start of a line for each

sensor. The PGC system performs it by looking for a control character and sequence

of sensors commands. Alpha blending is applied to give a translucent effect to the in-

coming video stream. The application blends the color value of the consecutive pixels

of image sensors of the same position. This blending is done according to the alpha

91

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

value associated with the pixel. After blending, the result color value is updated to the

frame buffer of the DCU. Results show (Figure 4.11) that PGC system handles dual

camera system and support system up to 30 fps. The MicroBlaze based dual-camera

graphics system supports videos only up to 15 fps. The PGC on-chip scheduler and

decoder update multi-camera information in status register. This allows both cameras

to synchronize without using extra clocks.

4.3.2 Snapshot Mode Performance

In this section, the performance is measured by executing PGC and MicroBlaze sys-

tems in Snapshot Mode. During Snapshot Mode the system reads one still image of

QSXGA resolution from CCU using Graphics Bus and writes it to Main Memory using

System Bus. The MicroBlaze based system and PGC take 22.17M and 7.07M clocks

respectively to transfer an image. The Snapshot Mode results show that the PGC sys-

tem achieves 3.1x of speed compared to MicroBlaze based system. The PGC directly

controls the Graphics Bus, System Bus, CCU and Main Memory, therefore it takes

less clocks to read data from CCU to synchronize different units, transfer data from

Graphics Bus to System Bus and write data to Main Memory. The MicroBlaze based

system uses a separate bus controller that controls bus system and a DMA controller

that transfers data from CCU to Main Memory.

4.3.3 Applications Performance

In this section, we execute some application kernels that perform image processing.

The image is saved in Main Memory (SDRAM), the processor core reads the 4KBytes

Figure 4.12: Application Performance

92

4.3 Results and Discussion

image, performs computation and then writes it back to Main Memory. To achieve low

power, the application kernels are executed by a 16-bit processor core on PGC system.

Alternatively, a 32-bit MicroBlaze core is also used with PGC system to get higher per-

formance. Figure 4.12 shows time (clock cycles) to process application kernels. The

X and Y axis represent application kernels and number of clock cycles, respectively.

The Y-axis has logarithmic scale. Each bar represents the application kernel’s execu-

tion time with 16/32 bit cores and memory access time. By using the PGC system

with 16-bit and 32-bit cores, the results show that thresholding (Thresh) applications

achieve 4.6x and 4.7x of speedup respectively over the MicroBlaze-based graphics

system. This application kernel requires single pixel element and very few operations,

and therefore, it achieves almost the same performance on 16-bit and 32-bit cores. The

FIR application has streaming data access pattern and performs multiplication and ad-

dition. The PGC 16-bit and 32-bit cores achieve 3.4x and 4.7x of speedup respectively.

The FFT application kernel reads a 1D block of data, perform complex computation

and writes it back to Main Memory. This application achieves 4.4x and 4.8 of speedup.

The Laplacian application processes over 2D block of data and achieve 5.2x and 7.4x

of speedup. The PGC places access patterns on Descriptor Memory at program-time

and are programmed in such a way that few operations are required for generating ad-

dresses at run-time. The MicroBlaze based system uses multiple load/store or DMA

calls to access complex patterns. The speedups are possible because PGC can manage

data transfers with a single descriptor. At run-time, PGC takes descriptor from De-

scriptor Memory and manages them, whereas the baseline system is dependent on the

processor core that feeds data transfer instructions. The stand-alone working operation

of PGC removes the overhead of processor/memory system request/grant delay.

4.3.4 Power

In comparison with on-chip power in a Xilinx V5-Lx110T device, the MicroBlaze

based system dissipates 3.45 watts and the PGC system 2.7 watts. Results show that

PGC system consumes 42% fewer slices than the MicroBlaze system. While compar-

ing on-chip static power of MicroBlaze graphics system with the PGC, results show

that PGC system consumes 22% of less on-chip static power.

93

4. A BUS CONTROLLER FOR GRAPHICS SYSTEM

4.4 Conclusion

With the increase of image resolution, the graphics system demands low power, low
cost and high performance architecture. In this work, we applied PMC in a low cost
and low power graphics system that include a display sensor and multiple image sen-
sors, called PGC. The PGC supports Scheduler which handles single core data transfer
requests. It takes high resolution images and supports video at higher frame rate with-
out the support of the processor. The PGC system uses Address Manager to handle
strided, scatter/gather and tiled access pattern that eliminates the overhead of arrang-
ing and gathering address/data. The PGC based system is implemented and tested on
a Xilinx ML505 FPGA board. The performance of the PGC is compared with the Mi-
croBlaze processor based system having conventional on-chip CoreConnect PLB bus.
When compared with the MicroBlaze based system, the results show that the PGC
captures video at 2.5x of higher frame rate and achieves 3.4x to 7.4x of speedup while
executing different image processing applications.

94

5

PVMC: Programmable Vector
Memory Controller

Data Level Parallel (DLP) accelerators such as GPUs [55] and Vectors [56; 57; 58], are
getting popular due to their high performance per area. DLP accelerators are very effi-
cient for HPC scientific applications because they can simultaneously process multiple
data elements with a single instruction. Due to the reduced number of instructions,
the Single Instruction Multiple Data (SIMD) architectures decrease the fetch and de-
code bandwidth and exploit DLP for data intensive applications e.g. matrix & media
oriented, etc. While hard-core architectures offer excellent packaging and communi-
cation advantages, a soft vector core on FPGA offers the advantage of flexibility and
lower part costs. A soft vector architecture is very efficient for HPC applications, be-
cause it can be scaled depending upon the required performance and available FPGA
resources. Therefore, the number of FPGA based soft vector processors have been
proposed [30; 31]. A soft vector unit typically comprises a parameterized number of
vector lanes, a vector register file, a vector memory unit and a crossbar network that
shuffles vector operands.

Typically, the vector processor is attached to the cache memory that manages data
access instructions. In addition, the vector processors support a wide range of vector
memory instructions that can describe different memory access patterns. To access
strided and indexed memory patterns the vector processor needs a memory controller
that transfers data with high bandwidth. The conventional vector memory unit incurs in

1
Chapter 5 is based on the publications : [39] and [38].

95

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

delays while transferring data to the vector processor from local memory using a com-
plex crossbar and bringing data into the local memory by reading from DDR SDRAM.
To get maximum performance and to maintain the parallelism of HPC applications on
vector processors, an efficient memory controller is required that improves the on/off-
chip bandwidth and feeds complex data patterns to processing elements by hiding the
latency of DDR SDRAM.

In this chapter, we used PMC in vector architecture called programmable vector
memory controller (PVMC). The PVMC efficiently accesses complex memory pat-
terns using a variety of memory access instructions. The PVMC manages memory
access patterns in hardware using Address Manager and Data Manager thus improves
the system performance by prefetching complex access patterns in parallel with com-
putation and by transferring them to the vector processor without using a complex
crossbar network. This allows a PVMC-based vector system to operate at higher clock
frequencies. The PVMC includes a Scratchpad Memory unit that holds complex pat-
terns and efficiently accesses, reuses, aligns and feeds data to a vector processor. The
PVMC Scheduler supports multiple data buses that increase the local memory band-
width and reduce on-chip bus switching. The design uses a Multi DRAM Access Unit

that manages memory accesses of multiple SDRAM modules.
We integrated the proposed system with an open source soft vector processor,

VESPA [30] and used an Altera Stratix IV 230 FPGA device. We compare the per-
formance of the system with vector and scalar processors without PVMC. When com-
pared with the baseline vector system, the results show that the PVMC system transfers
data sets up to 2.2x to 14.9x faster, achieves between 2.16x to 3.18x of speedup for 5
applications and consumes 2.56 to 4.04 times less energy.

5.1 Vector Processor

The structure of a vector processor is shown in Figure 5.1. Modern vector memory
units use local memories (cache or scratchpad) [31] and transfer data between the
main memory and the VLs. The vector system has memory instructions for describing
consecutive, strided, and indexed memory access patterns. The index memory patterns
can be used to perform scatter/gather operations. A scalar SSP core is used to initialize
the control registers that hold parameters of vector memory instructions such as the

96

5.2 Programmable Vector Memory Controller

Figure 5.1: Generic Vector Processor

base address or the stride. The memory crossbar (MC) is used to route each byte of

the cache line (CL) accessed simultaneously to any lane. The vector memory unit can

take requests from each VL and transfers one CL at a time. Several MCs can be used

to process memory requests concurrently. The memory unit of the vector system first

computes and loads the requested address in the Memory Queue (MQ) for each lane

and then transfers the data to the lanes. If the number of switches in the MC is smaller

than the number of lanes, this process will take several cycles. Vector chaining [59]

sends the output of a vector instruction to a dependent vector instruction, bypassing the

vector register file, thus avoiding serialization, thus allowing multiple dependent vector

instructions to execute simultaneously. Vector chaining can be combined with increas-

ing the number of VLs. It requires available functional units; having a large MVL

improves the impact on performance of vector chaining. When the loop is vectorized,

and the original loop count is larger than the MVL, a technique called strip-mining is

applied [60]. The body of the strip-mined vectorized loop operates on blocks of MVL

elements.

97

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

Figure 5.2: PVMC: Vector System

5.2 Programmable Vector Memory Controller

The Programmable Vector Memory Controller (PVMC) architecture is shown on Fig-
ure 5.2, including the interconnection with the vector lanes and the main memory.
PVMC is divided into the Bus System, the Memory Hierarchy, the Memory Manager

and the PAMMC. The Bus System transfers control information, address and data be-
tween processing and memory components. The Data Bus is used to transmit data
to/from SDRAM modules. To minimize the data access latency the PVMC scales data
bus bandwidth by using multiple data buses, with respect to the performance of the
vector core and the capacity of the memory module (SDRAMs). The required and
available bandwidths of the vector system are calculated by using the formulas 5.1 and
5.2. Vectorclock, VectorLanes and Lanewidth define the vector system clock, the number
of lanes and the width of each lane respectively. SDRAMnumber, Controllerclock and
SDRAMbus width represent the number of separate SDRAM modules, the clock speed of
each SDRAM controller and the data width of SDRAM controller respectively. To re-
duce the impact of the memory wall, PVMC uses a separate data bus for each SDRAM

module and local memory (i.e. Scratchpad Memory , see Section 2.1.2.3). To improve
bus performance, the bus clock can be increased up to a certain extent. The address bus
is shared between multiple SDRAM modules. The chip select signal is used to enable a
specific SDRAM module. The control, status and address buses are connected between
PVMC and SDRAM modules.

The Memory Hierarchy includes the Descriptor Memory, the Buffer memory, the
Scratchpad Memory, and the Main memory. The Descriptor Memory is used to hold
data transfer information while the rest keep data. Depending upon the data transfer
the Address Manager takes single or multiple instructions from the Descriptor Memory

98

5.2 Programmable Vector Memory Controller

and transfers a complex data set to/from the Scratchpad Memory and Main Memory.

The Data Manager is used to rearrange the output data of vector lanes for reuse or

update. The data memory uses the reuse, update and load buffers (shown in Figure 5.3)

to load, rearrange and write vector data. When input and output vectors are not aligned

the data manager rearranges/shuffles data between lanes. In the case of strip mining,

the data manager reduces the loop overhead by accessing the incremented data and

reuses previous data when possible. For example, if the increment is equal to 1 the

data manager shifts one data element and requests one element to load from the main

memory. The incremented address is managed by the address and data managers that

align vector data if required. The Buffer Memory architecture implements the following

features:

• It aligns data when input and output vector elements are not the same.

• It handles the increment of the base address, thus reducing loop overhead when

applying strip-mining.

• This is used to implement vector chaining from/to vector memory instructions.

Double-buffering can be used to overlap almost completely computation and memory

transfer for each read and write Scratchpad Memory. In the case of double-buffering,

the PVMC prefetches data from main memory into the Scratchpad Memory without

interrupting the data path of the vector lanes. In the meantime, vector lanes keep

working on data from the Scratchpad Memory that has already been accessed. The

PAMMC reads/writes data from/to multiple SDRAM modules of Main Memory. There

is a chip-select network that connects the PAMMC to each SDRAM module. Each bit

of chip select operates a separate SDRAM module. PAMMC can integrate multiple

PAMMCs using separate data buses, which increases the memory bandwidth.

RequiredBandwidth = V ectorclock × V ectorLanes × Lanewidth (5.1)

AvailableBandwidth = SDRAMnumber × Controllerclock × SDRAMbus width (5.2)

99

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

5.3 PVMC Functionality

In this section, we discuss the important challenges faced by the memory unit of soft
vector processors and explain our solution.

5.3.1 Memory Hierarchy

The proposed soft vector (such as VESPA [30]) core system uses the cache hierarchy
to improve the data locality by providing and reusing the required data set to func-
tional units. With a high number of vector lanes, the vector memory unit does not
satisfy the data spatial locality. PVMC improves the data spatial locality by accessing
more data elements than MVL into its SSM and later transferring them using the buffer

memory. Non-unit stride accesses do not exploit spatial locality offered by cache re-
sulting in considerable waste of resources. PVMC manages non-unit stride memory
accesses similar to unit-stride. Like a cache of soft vector processor, the PVMC SSM

temporarily holds data to speed up later accesses. Unlike a cache, data is deliberately
placed in the SSM at a known location, rather than automatically cached according to
a fixed hardware policy. The PVMC memory manager along with the Buffer Memory

hold information of unit and non-unit strided accesses, update and reuse it for future
accesses.

To load and store data in a conventional vector system, the vector register file is
connected to the data cache through separate read and write crossbars. When the input
to the vector lanes is mismatched the vector processor needs an extra instruction that

Figure 5.3: Data Memory Buffers: Load, Reuse & Update

100

5.3 PVMC Functionality

aligns the vector data. The PVMC uses the Buffer Memory to transfer data to the

vector register file which is simpler than using crossbar and data alignment. The Buffer

Memory aligns data when input and output vector elements are not the same. It also

reuses and updates existing vector data and loads data which is not present in the SSM.

5.3.2 Address Registers

The vector processor uses address registers to access data from main memory. The

memory unit uses address registers to compute the effective address of the operand

in main memory. A conventional vector processor supports unit-stride, strided, and

indexed accesses. In our current evaluation environment, the PVMC system uses a

separate register file to program the Descriptor Memory using data transfer instructions

to comply with the MIPS ISA. The PVMC Descriptor Memory can perform accesses

longer than the MVL without modifying the instruction set architecture. PVMC uses

a single or multiple descriptors to transfer various complex non-stride accesses.

5.3.3 Main Memory Controller

The conventional Main Memory Controller (MMC) uses a direct memory access (DMA)

or Load/Store unit to transfer data between main memory and cache memory. Thus,

the vector memory unit uses a single DMA request to transfer one unit-stride access be-

tween main memory and a cache line. But for complex or non-unit strided accesses the

memory unit uses multiple DMA or Load/Store requests which require extra time to

initialize addresses, synchronise on-chip buses and SDRAMs. The PVMC MMC uses

a single descriptor for unit and non-unit stride accesses which improve the memory

bandwidth by transferring descriptors to the memory controllers, rather than individ-

ual references and by accessing data from multi-SDRAM devices.

5.3.4 Programming Vector Accesses

Figures 5.4 (a) and (b) show vector loops (with MVL of 64) for a conventional vector

architecture and the PVMC, including the PVMC memory transfer instructions re-

spectively. The VLD.S instruction transfers data with the specified stride from main

memory to vector registers using cache memory. For long vector accesses and a high

101

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

(a) (b)

Figure 5.4: (a) Vector Loop (b) PVMC Vector Loop

number of vector lanes, the memory unit generates delay when data transfers do not

fit in a cache line. This also requires complex crossbars and efficient prefetching sup-

port. Delay and power increase for complex non-stride accesses and crossbars. The

PVMC VLD instruction uses a single or multiple descriptors to transfer data from the

main memory to the SSM. PVMC rearranges and manages accessed data in the Buffer

Memory and transfers it to vector registers. In Figure 5.5, PVMC prefetches vectors

longer than MVL in the SSM. After completing the first transfer of MVL, the PVMC

sends a signal to the vector processor that acknowledges that the register is available

for processing. In this way PVMC pipelines the data transfers and parallelizes compu-

tation, address management and data transfers.

A common concern, when using soft vector processors, is compiler support. A

soft core vector processor typically requires in-line assembly code that translates vec-

tor instructions with a modified GNU assembler. In order to describe how PVMC is

used, the supported memory access patterns are discussed in this section. We provide

Figure 5.5: PVMC Data Transfer Example

102

5.4 Experimental Framework

C macros which ease the programming of common access patterns through a set of

function calls, integrated with an API. The memory access information is included in

the PVMC header file and provides function calls (e.g. 3D STEN(), 3D TILE(), etc.)

that require basic information of the local memory and the data set. The programmer

has to annotate the code using PVMC function calls. The function calls are used to

transfer the complete data set between main memory and SSM. PVMC supports com-

plex data access patterns such as strided vector accesses and transfers complex data

patterns in parallel with vector execution. For multiple or complex vector accesses,

PVMC prefetches data using function calls (e.g. 3D-Stencil, etc.), arranges them ac-

cording to the predefined patterns and buffers them in the SSM. The PVMC memory

manager efficiently transfers data with long strides, longer than MVL size and feeds it

to the vector processor.

5.4 Experimental Framework

In this section, we describe the PVMC and VESPA vector systems as well as the Nios

scalar system. The Altera Quartus II version 13.0 and the Nios II Integrated Develop-

ment Environment (IDE) are used to develop the systems. The systems are tested on

an Altera Stratix-IV FPGA based DE4 board. The section is further divided into three

subsections: the VESPA system, the PVMC system and the Nios system.

5.4.1 The VESPA System

The FPGA based vector system is shown in Figure 5.6 (a). The system architecture is

further divided into the Scalar core, the Vector core and Memory System.

5.4.1.1 SSP

An SPREE [22] scalar processor is used to program the VESPA system and perform

scalar operations. The SPREE is a 3-stage MIPS pipeline with full forwarding core

and has a 4K-bit branch history table for branch prediction. The SPREE core keeps

working in parallel with the vector processor with the exception of control instructions

and scalar load/store instructions between the two cores.

103

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

5.4.1.2 Vector Processor

A soft vector processor called VESPA (Vector Extended Soft Processor Architec-

ture) [30] is used in the design. VESPA is a parameterizable design enabling a large

design space of possible vector processor configurations. The vector core uses a max-

imum vector length (MVL) of 128.

5.4.1.3 Memory System

The baseline VESPA vector memory unit (shown in Figure 5.6 (a)) includes an SDRAM

controller, cache and bus crossbar units. The SDRAM controller transfers data from

(a)

(b)

Figure 5.6: (a) Baseline VESPA System (b) PVMC System

104

5.4 Experimental Framework

Table 5.1: Brief description of application kernels

Application FIR 1D Tri- Matrix Gaussian Motion 3D-
Filter Diagonal Multiplication Estimation Stencil

Access Stream 1D Diagonal Row & 2D 2D 3D-
Pattern Block Column Block Block Tiling

main memory (SDRAM modules) to the local cache memory. The Vector core can ac-

cess only one cache line at a time that is determined by the requesting lane with the

lowest lane identification number. Each byte in the accessed cache line can be simulta-

neously routed to any lane through the bus crossbar. Two crossbars are used, one read

crossbar and one write crossbar.

5.4.2 The Proposed PVMC System

The PVMC based vector system is described in Sections 5.1 and 5.2 and shown in

Figure 5.6 (b). The major difference between the PVMC and VESPA systems is the

memory system. The PVMC system manages on-chip data and off-chip data move-

ment using the Buffer Memory and the Descriptor Memory. The memory crossbar of

VESPA is replaced in PVMC with the Buffer Memory which rearranges and transfers

data to the vector lanes. The Scratchpad Memory is used instead of a cache memory.

5.4.3 The Baseline Nios System

The Nios II SSP [21] is a 32-bit embedded-processor architecture designed specifi-

cally for the Altera family of FPGAs. The Nios II architecture is an RISC soft-core

architecture which is implemented entirely in the programmable logic and memory

blocks of Altera FPGAs. Two types of systems having different Nios cores are used;

the Nios II/e and the Nios II/f. The Nios II/e system is used to achieve the smallest

possible design consuming less FPGA logic and memory resources. The core does not

support caches and saves logic by allowing only one instruction to be in-flight at any

given time which eliminates the need for data forwarding and branch prediction logic.

The Nios II/f system has a fast Nios processor for high performance that implements

a barrel shifter with hardware multipliers, branch prediction and 32Kbyte Data and

105

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

Instruction caches. An Altera Scatter-Gather DMA (SD-DMA) along with SDRAM

controller is used that handles multiple data transfers efficiently.

5.4.4 Applications

Table 5.1 shows the application kernels which are executed on the vector systems along

with their memory access patterns. The set of applications covers a wide range of

patterns allowing us to measure the behaviour and performance of data management

and data transfer of the systems in a variety of scenarios.

5.5 Results and Discussion

In this section, the resources used by the memory and bus systems, the application

performance, the dynamic power and energy and the memory bandwidth of the PVMC

vector system are compared with the results of the non-PVMC vector system and the

baseline scalar systems.

5.5.1 Memory & Bus System

Multiple memory hierarchies and different bus system configurations of PVMC &

VESPA systems are compiled using Quartus II to measure their resource usage, maxi-

mum operating frequency and leakage power.

Table 5.2 (a) presents the maximum frequency of the memory system for 1 to 64

vector lanes with 32kB of cache/scratchpad memory. The VESPA system uses cross-

bars to connect each byte of the cache line to the vector lanes. Increasing the number

Vector Lanes 1 2 4 16 32 64
VESPA fmax 142 130 125 115 114 110
PVMC fmax 195 187 187 185 182 180

(a)

Sys Bus 1 Layer 2 Layer
VESPA 157 -
PVMC 292 282

(b)

Table 5.2: (a) Local Bus Maximum Frequency (MHz) (b) Global Bus Maximum Fre-
quency (MHz)

106

5.5 Results and Discussion

Table 5.3: Resource Utilization of the Memory Hierarchy

Local Memory 32KB Main Memory Leakage
Line Size Reg, LUT Memory Bits Controller Reg, LUTs Power

VESPA 128 1489, 3465 304400 1 2271, 1366 1.02
256 1499, 5529 305632 1 2271, 1366 1.15

PVMC 128 90, 1030 613134 1 1742, 1249 0.70
256 108, 1047 615228 2 3342, 2449 0.80

of lanes requires more crossbars and a larger multiplexer that routes data between vec-

tor lanes and cache lines. This decreases the operating frequency of the system. For

the VESPA vector processor, results show that by increasing the number of vector

lanes from 1 to 64 requires larger crossbar multiplexer switches and operates at lower

frequency. The PVMC Scratchpad Memory uses separate read and write scratchpad

memories that reduce the switching bottleneck. The vector lanes read data from read

Scratchpad Memory for processing and transfer it back to the write Scratchpad Mem-

ory . The on-chip data alignment and management is done by the Data Manager and

the buffer memory. This direct coupling of the Scratchpad Memory and vector lanes

using the update buffer is very efficient and allows the system to operate at a higher

clock frequency. Table 5.2 (b) presents the maximum frequency for the data bus to

operate multiple memory controllers. The PVMC data bus supports a dedicated bus

for each SDRAM controller which increases the bandwidth of the system. The data

bus of VESPA system supports only a single SDRAM controller.

Table 5.3 shows the resource utilization of the memory hierarchy of the VESPA

and PVMC systems. The memory hierarchy is compiled for 64 lanes with 32KB of

memory and several line sizes. Column Line Size presents cache line and update buffer

size in bytes of the VESPA and PVMC systems respectively. The VESPA system cache

memory uses cache lines to transfer each byte to the vector lanes. The PVMC update

buffer is managed by the data manager and is used to transfer data to the vector lanes.

Column Reg, LUT shows the resources used by the cache controller and the mem-

ory manager of the VESPA and PVMC systems respectively. Column Memory Bits

presents the number of BRAM bits for the local memory. The PVMC memory system

uses separate read and write scratchpad memories, and, therefore, it occupies twice

107

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

Figure 5.7: Speedup of PVMC and VESPA over Nios II/f

the number of BRAM bits. The data manager of the PVMC memory system occupies
3 to 5 times less resources than the VESPA memory system. Column Main Memory

presents the resource utilization of the SDRAM controllers. The VESPA system does
not support dual SDRAM controllers. Column Power shows leakage power in watts for
the VESPA and PVMC memory systems. The leakage current of the VESPA system is
higher than in PVMC, because it requires a complex crossbar network to transfer data
between the cache and the vector lanes and requires more multiplexers.

5.5.2 Performance Comparison

For performance comparisons, we use the applications of Table 5.1. We run the appli-
cations on the Nios II/e, Nios II/f and VESPA systems and compare their performance
with the proposed PVMC vector system. Nios II/e, VESPA and PVMC systems run
at 100 MHZ. The VESPA and the PVMC systems are compiled using 64 lanes with
32kB of cache and SSM respectively. The Nios II/f system operates at 200 Mhz using
data and instruction caches of 32KB each. All systems use a single SDRAM controller
to access the main memory.

Figure 5.7 shows the speedups of VESPA and PVMC systems over Nios II/f. Re-
sults show that vector execution with the PVMC is 8.3x and 31.04x faster than the Nios
II/f. Results for Nios II/e are not shown in Figure 5.7). When compared with the Nios

108

5.5 Results and Discussion

Figure 5.8: Vector & Scalar Systems: Application Kernels Execution Clocks

II/e, the PVMC improves speed between 90x and 313x which shows the potential of

vector accelerators for high performance.

In order to discard that the speed ups over the scalar processor NIOS are caused by

using SPREE as the scalar unit of the vector processor, we execute FIR, Matrix Mul-

tiplication and 3D-Stencil application kernels on a SPREE scalar processor, i.e. with

the vector processor disabled. While comparing performance of FIR, Matrix Multi-

plication and 3D-Stencil kernels on SPREE, Nios II/e and Nios II/f scalar processors,

the results show that SPREE improves speed between 5.2x and 8.6x over Nios II/e,

whereas against Nios II/f the SPREE is not efficient. The Nios II/f achieves speedups

between 1.27x and 1.67x over SPREE scalar processor. The results show that Nios II/f

performs better than Nios II/e and SPREE scalar processors.

By using the PVMC system, the results show (Figure 5.8) that the FIR kernel

achieves 2.37x of speedup over VESPA. The application kernel has streaming data

accesses and requires a single descriptor to access a stream that reduces the address

generation/management time and on-chip request/grant time. The 1D Filter accesses

a 1D block of data and achieves 3.18x of speedup. The Tri-diagonal kernel processes

the matrix with sparse data placed in diagonal format. The application kernel has a

diagonal access pattern and attains 2.68x of speedup. The Matrix Multiplication ker-

nel accesses row and column vectors. PVMC uses two descriptors to access the two

vectors. The row vector descriptor has unit stride whereas the column vector has a

stride equal to the size of a row. The application yields 3.13x of speedup. The Mo-

109

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

tion Estimation and Gaussian applications take 2D block of data and achieve 2.67x

and 2.16x of speedup respectively. The PVMC system manages addresses of row and

column vectors in hardware. The 3D-Stencil data uses row, column and plane vec-

tors and achieves 2.7x of speedup. The vectorized 3D-stencil code for VESPA always

uses the whole MVL and unit-stride accesses and accesses vector data by using vector

address registers and vector load/store operations. The VESPA system multi-banking

methodology requires a larger crossbar that routes requests from load/store units to

cache banks and another one from banks back to ports. This also increases the cache

access time but reduces the simultaneous read and write conflicts.

5.5.3 Dynamic Power & Energy

To measure voltage and current the DE4 board provides a resistor to sense current/volt-

age and 8-channel differential 24-bit analogue to digital converters. Table 5.4 presents

dynamic power and energy of different systems using a filter application kernel with

System @MHz Lanes Reg, LUTs Dynamic Power and Energy

FPGA Core SDRAM Total Energy

Nios II/e @100 7034 , 7986 1.47 1.76 3.23 581.17

Nios II/e @200 8612 , 8076 1.65 2.26 3.91 342.46

Nios ll/f @100 9744 , 10126 2.086 1.686 3.760 82.56

Nios ll/f @200 12272 , 10256 3.109 2.513 5.822 48.379

VESPA @100 1 7227 , 7878 1.54 2.24 3.78 101.99

4 7867 , 12193 1.874 2.24 4.17 60.04

16 10090 , 31081 3.191 2.24 5.353 14.36

32 13273 , 57878 4.666 2.24 6.29 9.42

64 19641 , 103857 5.57 2.25 7.78 7.026

PVMC @100 1 5227 , 5587 1.1 2.11 3.23 39.85

4 5856 , 6193 1.30 2.11 3.51 20.08

16 8817 , 21261 1.91 2.11 4.32 4.16

32 10561 , 45658 2.86 2.11 4.97 2.54

64 15564 , 88,934 4.01 2.11 6.13 1.75

Table 5.4: Systems: Resource, Power and Energy utilization

110

5.5 Results and Discussion

2M Byte of input data set, 1D block (64 elements) of data access and 127 arithmetic

operations on each block of data. Column System@MHz shows the operating fre-

quency of the Nios II/e and Nios II/f cores and the VESPA and PVMC systems. The

vector cores execute the application kernel using different numbers of lanes while the

clock frequency is fixed to 100 MHz. To control the clock frequencies all systems use

a single phase-locked loop (PLL). Columns Reg, LUTs and Mem Bits show the amount

of logic and memory in bits respectively utilized by each system. The Nios II/e does

not have a cache memory and only uses program memory. Column Dynamic Power

and Energy presents run time measured power of scalar and vector systems while exe-

cuting the filter application kernel and calculated energy for power and execution time.

Column FPGA Core includes the power consumed by on-chip FPGA resources and

PLL power. Column SDRAM power presents the power of the SDRAM memory de-

vice. The power of Nios II/e and Nios II/f increases with frequency. Results show that

the PVMC draws 21.2% less power and 4.04x less energy than the VESPA system,

both using 64 lanes. For a single lane configuration, PVMC consumes 14.55% less

power and 2.56x less energy. This shows that PVMC improves system performance

and handles data more efficiently results improve with a higher number of lanes. The

PVMC using a single lane and operating at 100 MHz draws 14%, 44% less power

and 14.5x, 8.5x less energy than a Nios II/f core operating at 100 MHz and 200 MHz

respectively. Whereas, when compared to a Nios II/e core at 100 MHz and 200 MHz,

the PVMC system draws .03% and 17.3% less power respectively and consumes and

2.07x, 1.21x times less energy.

5.5.4 Bandwidth

In this section, we measure the bandwidth of the PVMC, VESPA and Nios ll/f systems

by reading and writing complex memory patterns. The PVMC with a single SDRAM

controller is also executed on a Xilinx Virtex-5 ML505 FPGA board, and results are

very similar. The processing cores have 32 bit on-chip data bus operating at 100 MHZ

that provides a maximum bandwidth of 400 MB. The PVMC can achieve maximum

bandwidth by using data transfer size equal to the data set. In order to check the effects

of memory, bus and address management units over the system bandwidth, we transfer

data between processor and memory using different pattern and transfer sizes. The

111

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

X-axis presents random load/store, streaming, a 2D and 3D tiled data sets of 2MB

that are read and written from/to the main memory. The load/store access patterns

read/write 4B from a random location. A single streaming access pattern accesses

1KB of stream and a 2D access pattern reads/writes a 2D block with row and column

size of 1KB. The 3D tiled benchmark reads a 3D tile of 128x128x128 bytes (rows,

column and plane) and writes it back to the main memory. The Y-axis shows the

bandwidth in MB per second for single and double SDRAM Controller(s). Figure 5.9

shows a bar chart of different data transfers for the PVMC, VESPA and Nios ll/f -

based systems. While using single and double SDRAM Controller(s), the results show

that PVMC random load/store data transfers are 2.2x, 3.4x and 3.5x, 2.3x times faster

than VESPA and Nios ll/f systems respectively. The load/store data transfers require

large control information (e.g. bus and memory initialization, etc.) that limits the

bandwidth. The data transfer is further improved up to 4.9x, 9.95x and 4.5x, 4.8x

times while transferring streaming data. While transferring 2D tiled data, the PVMC

achieves 8.8x, 14.9x and 8.2x, 8.94x of speedup. For complex data transfers, PVMC

improves bandwidth 10.3, 9.8 and 16.4, 12 times. The VESPA system uses a single

data bus to transfer to/from main memory; therefore, it is unable to get the benefit from

double SDRAM Controllers. The Nios ll/f system uses an SG-DMA controller that

transfers data using unit-stride and forces to follow bus protocol. The PVMC system

Figure 5.9: Vector & Scalar Systems: Memory Bandwidth

112

5.6 Conclusion

has a dedicated data bus for each SDRAM controller therefore, it efficiently accesses
data from single- or multi- main memories and manages multi-SDRAM Controller(s)
without support of a microprocessor. The PVMC complex patterns use few descriptors
that reduce run-time address generation and address request/grant delay. For 3D tiled
data transfer, PVMC improves bandwidth by managing addresses at compile-time and
by accessing data from multi-DRAM devices and multiple banks in parallel.

5.6 Conclusion

The memory unit can easily become a bottleneck for vector accelerators. In this chap-
ter, we suggested PMC for vector processor architectures called PVMC, that manages
memory accesses without the support of a scalar processor and complex crossbar net-
work. A Scratchpad Memory and a Data Manager are integrated that efficiently ac-
cess, reuse, align and feed data to the vector processor. A Multi DRAM Access Unit

is used to improve the main memory bandwidth which manages the memory accesses
of multiple SDRAMs. We implemented and validated the proposed PVMC system on
an Altera DE4 Development board with 40 nm Stratix IV EP4SGX230 FPGA family.
We compare the performance of our proposal with a vector system without PVMC as
well as a scalar only system. The experimental evaluation based on the VESPA vector
system with conventional cache memory system, demonstrates that the PVMC based
approach improves the utilization of hardware resources and efficiently accesses main
memory data. The benchmarking results show that PVMC achieves between 2.16x
to 3.18x of speedup for 5 applications, consumes 2.56 to 4.04 times less energy and
transfers different data patterns up to 2.2x and 14.9x faster than the baseline vector
system.

113

5. PVMC: PROGRAMMABLE VECTOR MEMORY CONTROLLER

114

Part III

Multi-core Memory System for
Regular Data Pattern

115

6

PMSS: A Programmable Memory
System and Scheduler for Complex
Memory Patterns

Deep research has been conducted to improve the performance of HPC systems. One

way to improve the performance is to build a multi-ASHA/core system [61; 62], man-

age/schedule [63; 64] its hardware and memory [65; 66] resources efficiently and

write parallel code [67; 68] to execute on the system. A task-based programming

model [69; 70] is useful and convenient for such architectures, as it identifies the tasks

in software that can be executed concurrently.

The effects of the memory wall can be observed in the multi-processor systems hav-

ing transaction-based workloads [71], where processors remain stall during 80% of the

time [9; 35] (Figure 6.1). The load and store stall time include delay while reading and

writing data to external memories. The stall time is mainly dependent on the resource

scheduling, Input/output synchronization, and memory accesses. Figure 6.1 shows that

a major portion of system time is consumed by memory load/store accesses. Efficient

management of the system memory recourses can improve performance of the overall

system. Integrating multi-core platforms while using low clock frequencies can bal-

ance the ratio between clock speed of processor and memory. However, the cumulative

memory bandwidth requirement of all processing elements is still increasing, adding a

1
Chapter 6 is based on the publications : [9] and [40].

117

6. PMSS: A PROGRAMMABLE MEMORY SYSTEM AND SCHEDULER
FOR COMPLEX MEMORY PATTERNS

new dimension to the problem. Integrating more memory controllers [72; 73] on the

system platform can increase bandwidth, but it has drawbacks that are as follow.

• An SDRAM controller is an expensive component both in terms of area and

power dissipation.

• A higher number of Input/output pins is required.

Modern platforms often contain multiple accelerators and memory controllers, to

provide a good balance between performance, cost, power consumption and flexi-

bility. Hence, multiple memory controllers are often not an option, emphasizing to

use the existing SDRAM bandwidth as efficiently as possible. To improve perfor-

mance of the system we implemented a PMC based memory controller in hardware

called Programmable Memory System and Scheduler (PMSS) which handles multiple

ASHAs. The PMSS Scheduler applies Symmetric and Asymmetric scheduling polices

(Section 2.1.3.3) on multi-ASHAs. The PMSS arranges data/address in hardware and

schedules computation tasks of multi-ASHAs without intervention of processor (Mas-

ter) core and operating system. We further parameterize Scratchpad Memory for multi-

ple ASHAs to allow the designer to more powerfully trade area for performance scaling

for data parallel applications. By combining all the functions into one chip, the system

becomes faster and less power consuming. The support of standard C/C++ language

for high level data access pattern decreases the complexity of writing applications.

Figure 6.1: System Stall Time

118

6.1 PMSS Architecture

These calls support specialized ASHA IPs which are integrated with the system. Some
salient features of the proposed PMSS architecture are included below:

• PMSS handles multiple ASHA cores using event driven handshaking methodol-
ogy without support of the master core or OS.

• The controller gathers multiple memory read/write requests of multi-ASHA sys-
tem and maximizes utilization of SDRAM open banks. This removes the over-
head from opening and closing rows as well as idle cycles on the data bus.

• PMSS Scheduler along with Address Manager improves performance of the sys-
tem by efficiently prefetching and managing complex patterns.

• Due to the light weight of PMSS the system consumes less power.

• As a consequence, PMSS increases the effective bandwidth achieved by the sys-
tem.

6.1 PMSS Architecture

Programmable Memory System and Scheduler (PMSS) is based on high level data
patterns that simplify programming of HPC applications while ensuring high perfor-
mance and efficiency. To present the functioning of PMSS, we first depict its inner
architecture in Figure 6.2, which also briefly shows the interconnection with the ex-
ternal processing units. PMSS design supports multiple ASHAs using special event
driven handshaking methodology. Each ASHA has local Scratchpad Memory to oper-
ate. Therefore, other data transfer requests cannot affect the execution process.

During compile-time an API is used to provide information, which separates, pipelines,
overlaps and schedules memory read/write operations and generate executable PMSS
binary file. At initialize-time (a), the PMSS uses Program Line to write PMSS bi-
nary file to the Descriptor Memory (Section 2.1.2.1). At run-time (b), the Memory

Manager accesses memory patterns from Descriptor Memory. During step (c), the
Memory Manager (Section 2.1.3) takes scheduling information from the Scheduler

(Section 2.1.3.3) and prioritize memory accesses appropriately. The Scheduler keeps
gathering regular data transfer memory requests from external sources and places them

119

6. PMSS: A PROGRAMMABLE MEMORY SYSTEM AND SCHEDULER
FOR COMPLEX MEMORY PATTERNS

Figure 6.2: PMSS Architecture

in the local Scratchpad Memory buffer. The PMSS Descriptor Memory holds the infor-

mation of multi-ASHA memory access patterns and scheduling methodology. The pri-

orities are assigned by the programmer and at run-time PMSS applies symmetric and

Asymmetric Scheduling polices (Section 2.1.3.3). During step (d and e), the Pattern

Aware Main Memory Controller (PAMMC) (Section 2.1.4) takes a single descriptor

from Memory Manager and read/write data to/from SDRAM memory. During step (f),

the Scheduler provides a link to the external processing core to access Data Memory.

6.1.1 Memory Manager

The Memory management performs the key role in PMSS multi-ASHA system. It

improves the command and data efficiency of the system by arranging/managing ad-

dress/data signals. The ASHA address (scratchpad memory) and physical address

(main memory) information is placed in PMSS ASHA Descriptor Memory. The mem-

ory space allocated to an ASHA as part of one request can be addressable through

single or multiple descriptors. The Memory Manager loads blocks of data to the local

ASHA buffer. Once the ASHA finishes processing, it writes back the processed data

to main memory. The Memory Manager also manages run-time generated memory

120

6.1 PMSS Architecture

accesses using the Descriptor Memory. At run-time, the Memory Manager allocates a

single descriptor block for each processing core. The Memory Manager takes mem-

ory requests from a processing core, buffers them and compares consecutive requests.

If the addresses of consecutive memory requests have constant strides, the Memory

Manager allocates a descriptor block by defining stride and size parameters. If the re-

quest has variable strides then, the Memory Manager uses the multiple descriptors that

can access complex pattern. The memory hierarchy of PMSS includes the following

features.

6.1.1.1 Scheduling

The PMSS Scheduler manages read, write and execute data transfer operations of mul-

tiple ASHA . PMSS supports two scheduling policies, Symmetric and Asymmetric, that

execute ASHAs efficiently. In Symmetric multi-ASHA strategy, the PMSS scheduler

manipulates the available ASHA ’s request in FIFO (First In First Out). The task buffer

(shown in Figure 2.11 (b)) manages the ASHA ’s request in FIFO order. The Asym-
metric strategy emphasizes on priority and incoming requests of the ASHAs. Like

Figure 6.3: PMSS:Memory Manager

121

6. PMSS: A PROGRAMMABLE MEMORY SYSTEM AND SCHEDULER
FOR COMPLEX MEMORY PATTERNS

Xilinx Xilkernel 1 scheduling model, the PMSS scheduling policies are configured at
program-time. Unlike Xilkernel, the PMSS executes requests in hardware at run-time.
The number of priority levels can be configured for asymmetric scheduling.

6.1.1.2 Memory Organization

PMSS core holds information of Main Memory and local memory address space that
is partitioned into patterns (Figure 6.3). The patterns are organized, in the same way,
as the program is written. PMSS provides protection at the pattern level i.e. segment
can be read/written by the ASHA for which it is allocated but not by others. Multiple
noncontiguous accesses of memory lead to a high degree of read/write delay due to the
control selection of SDRAM memory. PMSS overcomes this problem by organizing
multiple noncontiguous memory accesses together.

6.1.1.3 Locality and Isolation

The PMSS provides isolation by allocating separate Descriptor Memory and scratch-
pad (local) buffers for each ASHA . This guarantees that no other ASHA can access the
memory belonging to a given ASHA. PMSS keeps the knowledge of memory whether
a certain memory area is in the ASHA ’s local scratchpad. This knowledge allows the
PMSS to manage the placement of memory as well as reusing and sharing already ac-
cessed memory. As the dataset access pattern and size description is known at program
time, PMSS efficiently utilizes these access patterns at run time.

6.1.1.4 Programmability

The PMSS provides functions to allocate and map application kernel local memory
buffer and physical dataset. A PMSS MEMCPY instruction is created which read-
s/writes a block of data from the Main Memory to the ASHA ’s local memory buffer. By
managing read/write command PMSS reduces delay occurred by other commands that
are already issued in the access cycle. PMSS gathers consecutive read/write commands
that increase the burst length, as smaller bursts result in more activate and precharge
commands that degrade the command efficiency.

1The Xilkernel is a small, robust, and modular kernel with the features of the operating system. It
supports the embedded kernel, with a POSIX API.

122

6.2 Evaluation Architecture

6.2 Evaluation Architecture

In this section, we describe and evaluate the PMSS-based multi-ASHA system having

Thresholding, Radian Converter, FIR, FFT, Matrix Multiplication, Smith Waterman,

Laplacian solver, and 3D-Stencils application kernels. In order to evaluate the perfor-

mance of the PMSS System, the results are compared with a similar system having

MicroBlaze master core. The Xilinx Integrated Software Environment [74] and Xilinx

Platform Studio [75] are used to design the systems. Xilinx Power Estimator [76] is

used to analyze the system power. A Xilinx ML505 evaluation FPGA board [52] is

used to test the multi-ASHA system.

6.2.1 MicroBlaze based Multi-ASHA System

A MicroBlaze based Multi-ASHA system is proposed (Figure 6.4). The MicroBlaze

soft-core processor is used that controls the resources of the system. The Real-Time

Operating Systems (RTOS) Xilkernel [77] is executed on the MicroBlaze soft pro-

cessor. The Xilkernel has POSIX support and can declare threads at program time

that start with the kernel. From the main, application is spawned as multiple parallel

threads using the pthread library. Each thread controls a single ASHA and its memory

accesses. The Xilinx Multi-Port Memory Controller (MPMC) is employed as it pro-

vides an efficient means of interfacing the processor to SDRAM. MicroBlaze accesses

memory either through its Local Memory Bus (LMB) port or the On-chip Peripheral

Bus (OPB). The LMB provides fast access to on-chip block RAM (BRAM) memories.

The OPB provides a general purpose bus interface to on-chip or off-chip memories

Figure 6.4: Test Architectures: MicroBlaze based multi-ASHA

123

6. PMSS: A PROGRAMMABLE MEMORY SYSTEM AND SCHEDULER
FOR COMPLEX MEMORY PATTERNS

as well as other non-memory peripherals. The target architecture has 16 KB of each

instruction and data cache. The design (excluding ASHAs) uses 7225 flip-flops, 6842

LUTs and 14 BRAMs.

6.2.2 PMSS based multi-ASHA System

The PMSS based multi-ASHA system is shown in Figure 6.5. PMSS schedules multi-

ASHA similar to the Xilkernel scheduling model. Scheduling is done at the ASHA

event level. The PMSS provides a hardwired scheduler whereas Xilkernel performs

scheduling in software while using fewer hardware resources. In the current (PMSS

and MicroBlaze) designs, each ASHA is equipped with two read/write buffers to bal-

ance the workload. The read/write buffers are connected with PMSS via SSSI and a

state controller (Figure 2.11 (a)). In the current implementation of PMSS, on a Xilinx

ML505 evaluation FPGA board, a 256 MByte (32M x 16) of DDR2 memory having

SODIMM I/O module is connected. The system (excluding ASHAs) consumes 4786

flip-flops, 3830 LUTs, 10 BRAMs.

Figure 6.5: Test Architectures: PMSS based multi-ASHA

124

6.3 Results and Discussion

6.2.3 Test Applications

The application kernels that are used in the design are shown in the Table 6.1. These

kernels are selected to test the performance of the system for different data access

patterns. The results are validated by comparing the execution time of these kernels on

the PMSS system and with the MicroBlaze based system. Separate ROCCC generated

ASHA cores are used to execute the kernels. In order to give a standard control and

interface to ASHA cores with the PMSS system, the state controller is used.

6.3 Results and Discussion

This section analyses the results of different experiments conducted on PMSS and Mi-

croBlaze based systems. The experiments are divided into four subsections: Memory

Access, Application Performance, System Performance and Power

Table 6.1: Brief description of application kernels

Application Kernel Description Access Pattern Registers , LUT Operations
Radian Converter Converts degree into radian Load/Store 68, 67 2
Thresholding An application of image segmentation, Load/Store 2289, 2339 1

which take streaming 8-bit pixel data
and generates binary output.

Finite Impulse Response Calculates the weighted sum Streaming 3953, 2960 31
of the current and past inputs.

Fast Fourier Transform Used for transferring a time-domain signal 1D Block 4977, 2567 48
into corresponding frequency-domain signal.

Matrix Multiplication Output= Row[Vector] × Column[Vector] Column and 2925, 1719 62
X = Y × Z Row Vector

Smith Waterman Determining optimal local alignments Tiled 6205, 2853 12
between nucleotide or protein sequences

Laplacian solver Applies discrete convolution filter that can 2D Tiling 3380, 2616 17
approximate the second order derivatives.

3D-Stencil An algorithm that averages nearest
Decomposition [16] neighbor points (size 8x9x8) in 3D. 3D-Tiling 6977, 5567 37

125

6. PMSS: A PROGRAMMABLE MEMORY SYSTEM AND SCHEDULER
FOR COMPLEX MEMORY PATTERNS

6.3.1 Memory Bandwidth

We compared PMSS systems bandwidth with MicroBlaze processor based system by

executing thresholding application having load/store memory access pattern. Figure

6.6 shows a plot with Read/Write data accesses. The X-axis presents data sets that are

read and written by the image thresholding application from/to the main memory. The

Y-axis of the plot represents the number of clock cycles consumed while accessing the

dataset. The main memory single access latency on a 125MHz MicroBlaze processor

with 125MHz DDR SDRAM is measured to be almost 50 cycles. The results show

that PMSS system while accessing complex memory accesses is 1.4 times faster than

MicroBlaze based system. The reason of this speed up that is PMSS manages address

in the hardware. The memory access speed up is further improved, up-to 33x, for

tiled access patterns. This is because PMSS manages complex patterns independently

without support of processor/OS and uses few descriptors that reduce run-time address

generation and (on-chip) address request/grant delay.

6.3.2 Application’s Performance

The application kernels are executed on PMSS and MicroBlaze based systems. Fig-

ure 6.7 shows the execution time (clock cycles) of the application kernels. Each bar

represents the application kernel’s computation time on ASHA and execution time on

Figure 6.6: DataSet Read /Write Time by different System

126

6.3 Results and Discussion

Figure 6.7: Multi-ASHA system execution

the system. The application kernel time contains task execution, scheduling (request/-
grant) and data transfer time. The X and Y axis represent application kernels and
number of clock cycles, respectively. The results show that by using PMSS system,
Thresholding and Radian converter applications achieves 3.5× speed-ups compared
to the MicroBlaze based system. These applications have load/store memory access
pattern and achieve less speed-up compared to other application kernels. The FIR ap-
plication has streaming data access pattern with 26.5× speed-up. The FFT application
kernel reads a 1D block of data, processes it and writes it back to Main Memory. This
application achieves 11.9× speed-up. The Matrix Multiplication kernel accesses row
and column vectors. The application attains 14× speed-up. The Laplacian and Smith
Waterman applications take 2D block of data and achieve 36× and 38× speed-ups
respectively. The 3D-Stencil data decomposition achieves 52× speed-up. This speed-
up is gained because PMSS stores 3D access patterns in Descriptor Memory which
reduces address generation time.

6.3.3 System Performance

In the multi-ASHA system, the total execution time includes multiple delays such as
interconnect, memory architecture, cache coherence and memory consistency proto-

127

6. PMSS: A PROGRAMMABLE MEMORY SYSTEM AND SCHEDULER
FOR COMPLEX MEMORY PATTERNS

Figure 6.8: Memory Access and Scheduling of multi-ASHA System

cols, bus arbitration, on-chip/off-chip bus translation and flow control. Figure 6.8

illustrates the execution time of the system and categorizes execution time into two

factors: arbitration (request/grant) time among the scheduling, and the memory man-

agement (bus delay and memory access) time. The computation time of application

kernels in both systems overlap under the scheduling and memory access time (shown

in Figure 6.7). In the PMSS system memory management, time is dominant, and the

PMSS overlaps scheduling and computation under memory access time. The complete

PMSS multi-ASHA system achieves 18.6× speed-up.

6.3.4 Static Power

Studies [78] have shown that discrete GPUs can offer performance higher than CPUs

and FPGAs. However, a compute-capable discrete GPU can draw more than 200 watts

by itself. The On-Chip Static Power in a Xilinx V5-Lx110T device is 1.97 watts while

running MicroBlaze based system. PMSS system draws 1.33 watts on-chip static

power on a V5-Lx110T device. Due to the light weight of PMSS, the architecture

consumes 38% less slices and 32% less on-chip power than the MicroBlaze based

system.

6.4 Conclusion

In this work, we have proposed PMSS, which is the result of integrating PMC in a

system with multiple ASHAs. The PMSS Scheduler efficiently handles multi-ASHAs

using Symmetric and Asymmetric scheduling policies. The Address Manager improves

128

6.4 Conclusion

the multi-ASHA system performance by managing the resources in a more efficient
way, that results in reducing the impact of the ASHA and memory performance gap.
The proposed PMSS system is implemented and tested on a Xilinx ML505 evalua-
tion FPGA board. The performance of the system is compared with a microprocessor
based system that has been integrated with the Xilinx Xilkernel operating system. The
experimental evaluations based on the Xilinx MicroBlaze multi-ASHA system having
Xilkernel (RTOS) demonstrates that PMSS based multi-ASHA system best utilizes
hardware resources and efficiently accesses the physical data. Results show that the
modified PMSS based multi-ASHA system consumes 38% less hardware resources,
32% less on-chip power and achieves approximately a 19x speedup compared to the
MicroBlaze based system.

129

6. PMSS: A PROGRAMMABLE MEMORY SYSTEM AND SCHEDULER
FOR COMPLEX MEMORY PATTERNS

130

7

AMC: Advanced Multi-accelerator
Controller

The rapid advancement, use of diverse architectural features and introduction of High
Level Synthesis (HLS) tools in FPGA technology have enhanced the capacity of data
level parallelism on a chip. A generic FPGA based HLS multi-ASHA system requires a
microprocessor (master core) which manages memory and schedules accelerators. In a
real environment, such HLS multi-ASHA system does not give the perfect performance
due to the memory bandwidth issues. Thus, system demands a memory manager and
a scheduler, that improves performance by managing and scheduling multi-ASHA’s
memory access patterns efficiently.

In last few years density of FPGAs [11; 79] and performance per watt [80] have
improved, which allows High Performance Computing (HPC) industry to increase and
provide more functionalities on a single chip. 3D ICs [81] open another dimension in
HPC industry that emulates three-dimensional stacked chips by rapidly reconfiguring
their two-dimensional fabrics in third spatial dimension of time/space. Such devices
have the power to reconfigure their fabric up-to 1.6 billion times per second [81].
The Stacked Silicon Interconnect (SSI) [82] technology provides another dimension to
high density FPGAs which satisfies the needs of on-chip resources for HPC system.
SSI combines two or more FPGAs for larger and complex systems. As the designs
grow larger and complex, the chances of error and complexity increase, thus demands
an abstract level design methodology.

1
Chapter 7 is based on the publications : [16] and [41].

131

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

Current emerging technologies and application requirements are indeed changing

the way HPC systems are designed. HPC industry wants to execute multi-applications

with high performance and low power. This demands a design environment which has

dense, and flexible hardware, consumes less power and has abstract level program-

ming tool. Reducing design time and the size of the team are crucial. Numerous

architectures (RISC, CISC), design methodologies (SoC, MPSoc), and programming

tools (OpenMP, MPI) are available in HPC domain. These systems do not give the

perfect performance due to the processor memory speed gap [83; 84] given by the for-

mula

A L = Prob ∗ On Chip Memoryt + (1 − Prob) ∗ [On/Offchipbus + DRAM]t.

The Access Latency (AL) depends upon the probability (Prob) to access data from dif-

ferent units such as On Chip Memoryt (On-Chip data arrangement and probability

of reuse), on/offchipbus (flow control, arbitration, translation, interconnection) and

DRAMt (bank, column and row selection).

As has been mentioned in Chapter 1, HLS tools have been strengthened and be-

come truly production-worthy [16] by supporting fundamental technologies such as

pipelining and FSM. Initially confined to data path designs, HLS tools are now com-

menced to address complete systems, including control logic and complex on-chip,

off-chip interconnection. The HLS [85] tools provide design modeling, synthesis, and

validation at a higher level of abstraction. This makes computation tasks easy to pro-

gram and less power hungry, thus enabling more sophisticated system design for com-

plex HPC applications. The HLS based multi-ASHA system always require a master

processor core which performs memory management, data transfer and scheduling of

multi-ASHAs. The master core adds overhead of address/data management, bus re-

quest/grant and external memory access time.

To improve HLS based multi-ASHA system performance an intelligent controller

is needed that has efficient on-chip Scratchpad Memory and Data Manager, intelli-

gent front-end/back-end Scheduler, fast SSSI link and supports programming model

that manages memory accesses in software so that hardware can best utilize them. A

PMC based controller with the above mentioned features is integrated with an HLS

HCE [29] tool called Advanced Multi-accelerator Controller (AMC). AMC permits

HLS programmers to write ASHA with data access patterns that eliminate the require-

ment of extra core for data transfer and data management. AMC multi-ASHA works

132

7.1 Architecture

Figure 7.1: Architecture of Advanced Multi-Accelerator Controller Based System

as a standalone system that manages local memory data, handles main memory ac-

cess patterns and perform automatic parallelization of multiple ASHAs. Some salient

features of the proposed AMC architecture are given below:

• The AMC Address Manager and Data Manager performs data management for

complex and regular patterns that efficiently accesses, reuses and feeds patterns

to HLS ASHAs without support of extra master core.

• The AMC Scheduler supports multiple HLS hardware accelerator IPs using

event driven handshaking methodology, and this decreases the time-to-market

and complexity of hardware.

• The AMC schedules requests from multi-ASHAs taking into account both the

processing and memory requirements defined at program-time. At run-time,

the AMC back-end scheduler reorders accelerator’s memory requests consid-

ering SDRAM open banks. This removes the overhead from opening/closing

rows/banks and idle cycles on the data bus.

7.1 Architecture

In this section, we describe the Advanced Multi-Accelerator Controller (AMC) system

(shown in Figure 7.1) for HLS tool. The architecture is based on four units: the SSSI,

the Local Memory System, the Memory Manager, and the Main Memory System.

133

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

Figure 7.2: Memory Hierarchy of AMC System

The SSSI provides an interface between AMC and HLS ASHA unit. The SSSI (see

Section 2.1.1.1.1) is used to read/write high-speed data to/from local memory of HLS

multi-ASHA. Transfer of data is accomplished according to the system clock. The state

controller takes accelerator data requests and manages multiple buffers using request

and grant signals. The AMC Local Memory System uses the Register Memory, the

Scratchpad Memory and the Descriptor Memory.

To achieve maximum memory bandwidth, the AMC organizes complex access pat-

terns in single or multiple descriptors at compile-time. At run-time, the AMC Memory

Manager transfers complete pattern to/from the main memory and Specialized Mem-

ory in multiple noncontiguous strided streams. The AMC Memory Manager has a

view of main memory address space that is partitioned into data sets (shown in Figure

7.2). Each segment contains a single or multiple descriptors that hold the information

of specialized and main memory for each accelerator.

Figure 7.3: AMC: Back-End Scheduler Lookup Table

134

7.1 Architecture

The AMC Memory Manager applies protection at the segment level e.g. a segment

can be read/written by the accelerator for which it is allocated. Within a segment,

AMC organizes and rearranges multiple noncontiguous memory accesses simultane-

ously that reduces read/write delay due to the control selection of SDRAM memory.

To reduce false sharing, the Specialized Memory is by default dedicated to a single

accelerator unit. AMC keeps the knowledge of memory as to whether or not a certain

memory area is in the accelerator’s Specialized Memory. This knowledge allows the

AMC to manage the placement of memory as well as reuses and shares already ac-

cessed memory. The Memory Manager is further divided into three parts which are:

the Scheduler the Address Manager the Data Manager.

The AMC scheduler manages read/write memory accesses and controls operations

of multiple accelerators. The scheduler is divided into two sections, the Front-End

Scheduler and the Back-End Scheduler. AMC Front-End Scheduler supports two

scheduling policies, symmetric and asymmetric that execute accelerators efficiently.

The AMC Back-End Scheduler employs a strategy that gathers multiple memory re-

quests, manages them with respect to physical addresses (SDRAM) and maximizes

the reuse of open SDRAM banks that decrease the overhead of opening and closing

of rows. This strategy imposes conditions on the arrangement of the memory accesses

and affects the worst-case latency and gross/net bandwidth of external memory. The

scheduling of memory accesses is dependent upon the physical address of current and

next transfer. At run-time the Back-End Scheduler gathers memory requests from

multi-ASHA and places them in the Address Look-up Table (shown in Figure 7.3).

The Address Look-up Table contains unordered memory access requests. Each mem-

ory access is categorized into four parts i.e. ID, Bank, Row and Column. The ID holds

the information of an accelerator and its local memory. The Bank, Row and Column

belongs to the Main Memory address space. At run-time, the Back-End Scheduler

schedules memory accesses of multiple accelerators by giving highest priority to the

bank and row address. The lookup table executes the AMC policy called bank/row

address management policy. The policy manages addresses in a lookup table so that it

accesses SDRAM memory that is available in the row buffer or have the same bank.

The fastest memory access occurs when accessing the same row buffer as the previ-

ous access and only requires column access. The longest memory access (when Bank

conflicts) requires a pre-charge signal, followed by row and column accesses. The

135

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

Figure 7.4: N-Stencil Vector Load & Update Points

Memory Manager (Section 2.1.3) of AMC has separate Descriptor Memory (register

set) for each accelerator unit, shown in Figure 7.2. These descriptors are masked with

interrupt and request signals. Once a request is generated the Memory Manager starts

memory operation for the requested accelerator using its descriptors. After completion

of memory read/write operation, the AMC scheduler receives an interrupt (ack) signal

from the Memory Manager unit. This signal informs the scheduler about the selection

of the next ASHA to execute. The scheduler captures the ack signal from the Memory

Manager and assigns the grant signal to the appropriate accelerator unit.

The Address Manager fetches single or multiple descriptors depending on the ac-

cess pattern, translates/reorders in hardware, in parallel with AMC Read/Write oper-

ations. The Data Manager improves the (computedpoint / accessedpoint) (c/a) ratio by

organizing and managing the memory accesses. For an accelerator generating single

computedpoint, the maximum achievable (ideal) c/a ratio is 1. To provide efficient data

access and reuse, the Data Manager is further divided into three units: the Load Unit,

the Update Unit and the Reuse Unit. The Load unit accesses all points of an access

pattern, which are required for a single Computedpoint. After accessing the pattern

once (points), the memory manager transfers control to Reuse unit and Update unit.

The Reuse unit keeps reusing input points as much as possible. The Update Unit is re-

sponsible to update remaining memory access (points) (not already accessed) required

for the application kernels.

For example, a generic stencil structure (shown in Figure 2.5) when n=4, requires

25 points to compute one central point. This means the computedpoint/accesspoints (c/a)

136

7.1 Architecture

ratio is 0.04. To improve the (c/a) ratio the Data Manager is deployed to increase

data reuse by feeding data efficiently to the computation engine. The Data Manager

accesses multiple stencils from the input volume in the form of a stencil vector. This

is shown in Figure 7.4. (N × (1+(n× 4)) + (n × 2)) represents the size of a single

3D-Stencil vector. Here, N represents the number of planes. Since the 3D-stencil’s

output is generated by processing consecutive neighboring points in 3 dimensions, a

large amount of data can be reused with an efficient data management. The Load unit

accesses the 3D-Stencil vector at the start of each row of the 3D-Memory volume. For

the following vector access, the Load unit transfers control to the Update unit. For a

single 3D-Stencil volume, the number of accessed points is dependent on the number of

planes and the stencil size. In this case, a single Stencil vector (Figure 7.4) needs 600

points. The load unit reduces these numbers by reusing the points in the y-dimension.

These points (pointy) are reused when they are part of a neighboring plane of the

stencil vector. The number of Load unit points is mentioned in Equation 7.1, where

Ghost pointz refers to the points of the extended base volume and Pointc indicates

the central point.

Load Unit Points = (Planes × (Pointx + Pointz + Pointc)) + Ghost Pointz (7.1)

After reading the first stencil vector, the Memory Manager shifts the control to the

Update Unit. For each new access, the Update unit slides the stencil vector towards the

x-direction and accesses further points while reusing neighboring points. The number

of points required by the Update Unit for a stencil vector is presented in Equation 7.2.

Update Unit Points = (Planes × (Pointx + Pointc)) + Ghost Pointsz (7.2)

After accessing the first row, the Reuse unit accesses the rest of the volume. This unit

accesses only the central point and generates a stencil vector while reusing the existing

rows and columns as mentioned in Equation 7.3.

Reuse Unit Points = (Planes × Pointc) + Ghost Pointsz (7.3)

The Memory Manager improves 3D-Stencil (c/a) ratio. The Memory Manager uses a

single input point 25 times before discarding it from the internal memory. In practice,

this is not achievable due to the ghost points (i.e. points belonging to a neighboring tile

137

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

that are necessary for the current computation) present on the boundaries of the input

volume. The Memory Manager improves data reuse ratio for large base volumes.

In the current AMC design, the SDRAM device uses four banks of memory per

device therefore 2 address bits are used to select the memory bank. For the selection

of the appropriate row and column within that row of memory 13 and 10 address lines

are used respectively that completes the address mapping from physical address to the

memory address. The PAMMC has a peak bandwidth of 3.2 GB/s since it has a clock

frequency of 200 MHz, a data rate of 2 words per clock cycle, and a data bus width of

64 bits.

7.2 Evaluation Architecture

In this section, we describe the AMC based HLS multi-ASHA system. In order to eval-

uate the performance of the AMC system, the results are compared with a MicroBlaze

and Intel core based HLS multi-ASHA systems. The Xilinx Integrated Software Envi-

ronment [74] and Xilinx Platform Studio [75] are used to design the HLS multi-ASHA

system. The power analysis is done by Xilinx Power Estimator [76]. A Xilinx ML505

evaluation FPGA board [52] is used to test the multi-ASHA systems. The section is

divided into four sub-sections, the Intel based HLS multi-ASHA System, the MicroB-

laze based HLS multi-ASHA System, the AMC based HLS multi-ASHA System and the

HLS multi-ASHA Kernels.

7.2.1 Intel based HLS multi-ASHA System

The Intel system with HLS multi-ASHA is shown in Figure 7.5 (a). The system archi-

tecture is further divided into three sections the Master Core, the Programming API,

and the Bus Unit.

7.2.1.1 The Master Core

The Intel Core i7 CPU is used to manage the memory system and schedule the HLS

multi-ASHA. To achieve the maximum performance the HLS multi-ASHA system is

executed on an optimized multi-threaded reference implementation, written in C++,

138

7.2 Evaluation Architecture

(a) (b)

Figure 7.5: HLS multi-ASHA Systems: (a) Intel Core System (b) MicroBlaze System

compiled with g++ with optimization -O3, and executed on system having a quad-

core Intel Core i7-2600, 3.4 GHz, with 16 GB RAM, 1333 MHz bus. The system

uses Ubuntu 11.04 OS with Linux kernel version 2.6.3. These higher memory base-

lines are required to enable sufficient memory for the HLS multi-ASHA kernels. In

the current system, Performance Application Programming Interface (PAPI) hardware

performance counter used to collect execution clock cycles for each accelerator kernel.

7.2.1.2 The Programming API

OpenMP (Open Multiprocessing) is an API that caters multi-platform shared memory

systems and extend it beyond real HPC systems that contain embedded systems, real

time systems, and ASHAs. Tasks-based execution is a significant feature of OpenMP

3.0. OpenMP 3.0 task pragmas make it compatible with the idea of using an HLS

multi-ASHA. The shared memory parallelism is specified by C/C++ program using a

set of compiler directives and runtime routines that improve the run-time performance

of the system. OpenMP executes them independently ensures that all defined acceler-

ators and data transfer tasks are completed at some point.

139

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

7.2.1.3 The PCI Bus Unit

Intel core manages data movement between On Chip Memory Controller (OCMC) and

multi-ASHA by using PCI bus. The PCI bus has multiple DMA channels which man-

age the data transfer requests. The data transfer requests issued to PCI DMA channels

are according to available Send/Receive interfaces which forward them to the appropri-

ate DMA channel. The XpressLite2 IP [86] is used in the design to manage 8 separate

data flows using DMA channels. The PCI Express XpressLite2 IP transfers the data

sets from the host machine to multi-ASHA. The PCI Express IP is programmed to

work at 1 G Byte/s using a 125 MHz clock speed and a 64-bit data bus.

7.2.2 MicroBlaze based HLS multi-ASHA System

The FPGA based MicroBlaze system is proposed (Figure 7.5 (b)) to execute HLS

multi-ASHA kernels. The design (excluding hardware accelerators) uses 7225 flip-

flops, 6142 LUTs and 15 BRAMs. A MicroBlaze SSP is used in the HLS multi-ASHA

system that perform scheduling and data memory management.

In the design, a Processor Local Bus (PLB) [54] provides connection between hard-

ware accelerators and microprocessor. The PLB has 128 bit-width and connected to

a bus control unit, a watchdog timer, separate address/read/write data path units, and

an optional DCR (Device Control Register) slave interface that provides access to a

bus error status registers. Bus is configured for single masters (MicroBlaze) and multi

slaves (HLS multi-ASHAs). An arbiter is used to grant access to the ASHA. The In-

put/Output (I/O) Module [87] is a light-weight implementation of a set of standard

(I/O) functions commonly used in a MicroBlaze processor sub-system. The (I/O) bus

provides access to external modules using MicroBlaze Load/Store instructions. The

Input/Output Bus is mapped in the MicroBlaze memory space, with the I/O bus ad-

dress directly reflecting the byte address used by MicroBlaze Load/Store instructions.

The PLB provides a maximum of 2 GByte of bandwidth while operating at 125MHz

and 128-bit width, with byte enables to write byte and half-word data.

The target architecture has 32 KB of each instruction and data cache. To access data

from main memory, a parameterizable Multi-Port Memory Controller (MPMC) [88]

is employed. (MPMC) provides an efficient interfacing between the processor and

140

7.2 Evaluation Architecture

SDRAM. The MPMC connects SDRAM with MicroBlaze processors using IBM Core-

Connect Processor Local Bus (PLB). A DDR2 controller is used with MPMC to access

data from DDR2 SDRAM memory. The supported DDR2 memory has a peak band-

width of 1 GByte/s as it has a clock frequency of 125MHz, and a data bus width of 64

bits.

A small light-weight easy-to-use Real-Time Operating System (RTOS) Xilkernel

[77] is employed on the MicroBlaze soft processor. Xilkernel is highly integrated

into the design tools of Xilinx, which makes it possible to configure and build an em-

bedded system using MicroBlaze and Xilkernel. Xilkernel API performs scheduling,

inter-process communication and synchronization with a Portable Operating System

Interface POSIX interface. The Xilkernel POSIX support statically declares threads

that start with the kernel. From the main function, application is spawn into multiple

parallel threads using pthread library. Each thread controls a single HLS accelerator

and its memory access. The software application consists of Xilkernel and application

kernel threads executing on top of the main program.

MicroBlaze system uses Xilinx Software Development Kit (SDK) [89] that com-

piles the application kernels using library generator (libgen) [90] and a platform-specific

gcc/g++ compiler and generates the final executable object file. The Xilinx library

generator (libgen) is used to produce libraries and header files necessary to build an

executable file that controls HLS multi-ASHA. Libgen parses the system hardware

and sets up drivers, interrupt handling, etc. and creates libraries for the system. The

libraries are then used by the MicroBlaze GCC compiler to link the program code for

the MicroBlaze based HLS multi-ASHA system. The object files from the application

and the Software Platform are linked together to generate the final executable object

file.

7.2.3 AMC based HLS multi-ASHA System

The AMC based HLS multi-ASHA System is shown in Figure 7.6. AMC controls the

HLS multi-ASHA and performs scheduling and memory management without inter-

vention of microprocessor or operating system (OS). In the current implementation of

AMC, on a Xilinx ML505 evaluation FPGA board, a 256 MByte (32M x 16) of DDR2

memory having SODIMM I/O module is connected with AMC. The main memory has

141

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

Figure 7.6: HLS multi-ASHA Systems: AMC System

a peak bandwidth of 1GByte/s since it has a clock frequency of 125MHz, a data rate of

2 words per clock cycle, and a data bus width of 32 bits. The system (excluding HLS

accelerators units) consumes 4986 flip-flops, 4030 LUTs, 12 BRAMs.

7.2.4 HLS multi-ASHA Kernels

The application kernels that are used in the design are shown in Table 7.1. The ASHAs

are generated by the HLS ROCCC[23] compiler for the evaluated application kernels.

A wrapper module and a state controller (Figure 2.11 (a)) is integrated with each hard-

ware accelerator to manage multiple buffers and makes it feasible to be integrated in the

AMC, MicroBlaze and Intel core based systems. Column Access pattern of Table 7.1

presents memory access patterns of the application kernels. Each color represents a

separate memory access pattern. The column Reg, LUT describes the slices (Registers,

LUTs) utilized by HLS based hardware accelerators on Virtex-5 ML505 device. The

column Points shows a number of inputs (accesspoint) required to generate a single

output.

7.3 Results and Discussion

This section analyzes the results of different experiments conducted on AMC, MicroB-

laze and Intel based systems. The experiments are classified into four subsections:

Application Performance, System Performance, Memory Access Unit, and Area and

Power.

142

7.3 Results and Discussion

Table 7.1: Brief description of application kernels

7.3.1 Application Performance

The application kernels (Table 7.1) are executed individually on AMC, MicroBlaze

and Intel based systems. The section is further divided into two subsections that are:

Application Performance without On-Chip Memory and Application Performance with

On-Chip Memory.

7.3.1.1 Applications Performance without On-Chip Memory

This section presents execution time (clock cycles) of each application kernel by dis-

abling on-chip (specialized/cache) memories of the systems (shown in Figure 7.7).

Each bar represents the application kernel’s computation time and memory access

time. The application kernel computation time contains the HLS accelerator process-

143

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

Figure 7.7: Application Kernels Execution Time Without On-chip Memory Support

ing time for 4KByte of data. Memory access time holds address/data management and

request/grant time from main memory unit. X and Y axis represent application kernels

and number of clock cycles, respectively. The vertical axis has logarithmic scale in the

Figure 7.7. By using the AMC system, the results show that Radian converter achieves

3.94x and 1.75x of speed-up compared to the MicroBlaze and Intel based systems re-

spectively. The Thresholding application achieves 7.1x and 1.89x of speed-up. These

applications have load/store memory access pattern. The FIR application has stream-

ing data access pattern with 43.2x and 32x of speed-up. The AMC system requires

only one descriptor block to access the data pattern thus reduces address generation/-

management and on-chip communication time. The FFT application kernel reads a 1D

block of data, processes it and writes it back to the Main Memory. This application

achieves 22x and 20x of speed-up. The Matrix Multiplication kernel accesses row and

column vectors. The AMC system manages complex data patterns of the application

Table 7.2: AMC: computedpoint/accesspoint Ratio of Local Memory System

144

7.3 Results and Discussion

Figure 7.8: Application Kernels Execution Time with On-chip Memory Support

in hardware and attains 29x and 19.9x of speed-up. The Smith Waterman application

achieves 10.4x and 8.7x of speed-up. The Laplacian filter achieves 6.15 and 14.83 of

speed-up. Both Laplacian and Smith-Waterman applications have 2D Tiled (block)

access pattern. The 3D-Stencil data decomposition achieves 3.6x and 3.3 of speed-up.

Results show that Intel system data transfer is always faster than MicroBlaze system

due to its efficient prefetching and data handseling support. The AMC system man-

ages data transfers in patterns and reuse it in local memory that improves the system

bandwidth and overall system performance.

7.3.1.2 Applications Performance with On-Chip Memory

In this section, we calculate computedpoint/accesspoint (c/a) ratio of AMC system for

each application kernel and compare the performance with MicroBlaze and Intel sys-

tems. The column c/a without memory manager of Table 7.2 represents data elements

required to generate a single output. Radian Converter and Thresholding kernels have

load/store access pattern with 1 c/a ratio, it means only a single element from main

memory is required to the computing unit. Due to irregular data access pattern both

applications are unable to get the benefit from on-chip memory. As shown in Table 7.2

and Figure 7.8 the application FIR, FFT, Matrix Multiplication, Smith Waterman, 2D

Laplacian, and 3D-Stencil need more than a single data element for each computations.

A 128-Tap FIR filter requires 128 number of inputs to generate a single output. The

145

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

AMC Data Manager improves c/a ratio of FIR and 2D Laplacian Kernel to 1 by reusing

accessed points. FFT and Smith Waterman kernel’s data elements are not reused by

AMC system due to complex access pattern. Matrix Multiplication application kernel

takes 32 element wide row and column vector to generate a single element. The AMC

system reuses row vector and accesses only column vector for each multiplication. For

generic stencil (n=4) application kernel, 25 points are required to compute one cen-

tral point. This means the computedpoint/accesspoint (c/a) ratio is 0.04. The AMC

memory system improves the (c/a) ratio by reusing and feeding data efficiently to the

computation engine. The AMC Memory system keeps updating/using all memories,

so that memory accesses do not affect the performance of the system. When execut-

ing application on the system by enabling on-chip (cache/specialized) memory units

results show that Radian converter and Thresholding applications do not improve per-

formance due to their irregular memory pattern and having no temporal data locality.

While executing FIR application, the results show that AMC system achieves 26.5x

and 14.4x of speed-up compared to MicroBlaze and Intel systems respectively. The

FIR application has streaming data access pattern with maximum sequential data lo-

cality. The FFT application kernel reads a 1D block of data, processes it and writes it

back to the main memory. This application achieves 11x and 8.5x of speed-ups. The

Matrix Multiplication kernel accesses row and column vectors. The application attains

14x and 9.6x of speed-up. The Smith Waterman and Laplacian application have 2D

block/tiled data access pattern. The Smith Waterman application has no data local-

ity and achieves 36.3x and 14.3x of speed-up. The Laplacian filter has temporal data

locality and achieves 38.8 and 18.73 of speed-up. The 3D-Stencil application kernel

has 3D tiled memory access pattern with complex data locality. The AMC system’s

3D data and Descriptor Memory manages/reuses 3D-Stencil data and 3D tiled access

pattern respectively and achieves 58x and 53.7 of speed-up.

7.3.2 System’s Performance

The system performance is measured by executing HLS multi-ASHA kernels all to-

gether on AMC, MicroBlaze and Intel based systems. All application kernels are

executed simultaneously with the different set of priorities. At run time, AMC sys-

tem and baseline systems manage executions and pipeline/overlap data transfer where

146

7.3 Results and Discussion

Figure 7.9: HLS multi-ASHA Systems Execution Time

possible. Figure 7.9 illustrates the execution time of the system and categorizes exe-

cution time into three factors: computation (application processing) time, arbitration

(request/grant) time among the scheduling, and the memory management (bus delay

and memory access) time. The computation time of application kernels in all systems

is overlapped under the scheduling, and memory access time (shown in Figure 7.7);

therefore, it is not shown in Figure 7.9. The Intel based system holds PCI bus com-

munication which takes extra time to access data from the Main Memory. In the AMC

system, memory management time is dominant, and the AMC overlaps scheduling and

computation under memory access time. While running all HLS accelerator kernels to-

gether, the results show that the AMC based system achieves 10.4x and 7x of speed-up

compared to MicroBlaze and Intel Core based systems. The AMC system efficiently

schedules multi-ASHA and manages memory access patterns.

7.3.3 Area and Power

In this section, we measured the static power of AMC, MicroBlaze and Intel systems

without having HLS multi-ASHA system. The Intel Core i7 CPU (4 Cores) with a

system clock of 2.4 GHz and 8 GByte of global memory consumes 15.80 watts static

power [91]. The MicroBlaze and AMC systems without having HLS multi-ASHA

consume 2.75 and 2.1 watts respectively on Xilinx V5-Lx110T FPGA device. Both

systems have a system clock of 125 MHz and 256 MByte of global memory. Due to

the light weight of AMC, the system consumes 32% fewer slices and 23% less on-chip

power than the MicroBlaze based system.

147

7. AMC: ADVANCED MULTI-ACCELERATOR CONTROLLER

7.4 Conclusion

HLS based multi-ASHA system suffers from poor performance on FPGA architectures
due to processor memory speed gap. A generic HLS multi-ASHA system requires a
master core (microprocessor) that controls multi-ASHA and manages the memory sys-
tem. In this work, we integrate PMC in HLS based multi-ASHA environment called
AMC, which handles regular and complex pattern requests of multiple ASHAs. The
AMC Address Manager and Data Manager improve the HLS based multi-ASHA sys-
tem performance by managing complex memory patterns. The AMC Scheduler applies
Symmetric and Asymmetric scheduling policies that handles multiple ASHAs requests
without the support of processor and operating system. The proposed environment
can be programmed by the microprocessor using High Level Language (HLL) API
or directly from an accelerator using a specific command interface. The AMC sys-
tem is evaluated with memory intensive accelerators – High Performance Computing
(HPC) applications – implemented and tested on a Xilinx ML505 evaluation FPGA
board. The experimental evaluations based on the MicroBlaze and Intel based HLS
multi-ASHA systems with Xilkernel (RTOS) and Linux kernel respectively demon-
strates that AMC based HLS multi-ASHA system best utilizes hardware resources and
efficiently accesses physical data. The performance of the system is compared with
the microprocessor based systems that have been integrated with the operating sys-
tem. Results show that the AMC based HLS multi-ASHA system achieves 10.4x and
7x of speed-up compared to the MicroBlaze and Intel core based HLS multi-ASHA
systems.

148

Part IV

Uni-core Memory System for
Irregular Data Pattern

149

8

APMC: Advanced Pattern based
Memory Controller

There have been a number of techniques proposed to overcome the problem of the

memory wall. Cache memories [3] are very effective but only if the working set fits

in the cache hierarchy and there is locality. In many HPC applications, the data sets

can be large and have irregular patterns, thus reducing the spatial locality. Hardware

prefetching [6] is effective in hiding the memory latency when the accesses are known

in advance, but it cannot be tailored for data-dependent accesses, e.g. lists, trees, etc.

Adaptive software prefetching [7] can be utilized to change prefetch distances during

runtime, but it is difficult to insert prefetch information for irregular access patterns

at runtime. A number of intelligent and high-performance memory systems [8; 9]

exist to manage the processor/memory speed gap. Unfortunately, these memory con-

trollers rely on a master processor and are typically limited to applications with regular

memory access patterns thereby prohibiting the acceleration of applications with irreg-

ular patterns. Due to limited support of irregular access patterns in existing memory

controllers, the FPGA systems are normally not capable of effectively leveraging code

with pointer-based data structures [10].

In this chapter, we use a PMC based single core system with regular and irregular

access patterns support. We propose the Advanced Pattern based Memory Controller

(APMC), a technique to accelerate both regular and irregular memory access patterns

1
Chapter 8 is based on the publications : [43] and [42].

151

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

by rearranging memory access patterns to minimize access latency based on the in-
formation provided by pattern descriptors. APMC operates independently from the
master core at run-time. APMC keeps pattern descriptors in a separate memory and
prefetches the complete data structure into a Specialized Scratchpad Memory (Sec-
tion 2.1.2.3). Memory accesses are arranged in the pattern Descriptor Memory at
program- and run-time to reduce access latency. APMC manages data movement be-
tween the main memory and the Specialized Scratchpad Memory, data present in the
on-chip memory is reused and/or updated when accessed by several patterns. Support
for irregular access patterns is provided with a specialized data structure that describes
irregular patterns, and a hardware communication protocol is implemented between
the compute unit and APMC. The salient contributions of the proposed APMC archi-
tecture are:

• Support for both regular and irregular memory access patterns using the memory
pattern descriptors thus reducing the impact of memory latency.

• A Specialized Scratchpad Memory that tailors local memory organization and
maps complex access patterns.

• A Data Manager that efficiently accesses, reuses and feeds irregular data access
patterns.

• Data management and handling of unpredictable, irregular memory accesses at
run-time, without the support of a processor or the operating system.

• When compared to the baseline system implemented on the Xilinx FPGA, APMC
transfers regular and irregular data sets up to 20.4x and 3.4x faster respectively
and achieves between 3.5x to 52x and 1.4x to 2.9x of speedup for regular and
irregular applications respectively.

8.1 APMC Architecture

The APMC supports complex regular and irregular memory access patterns and re-
duces run-time overhead of address management. It includes an on-chip specialized
memory unit that efficiently accesses, reuses and feeds data to the computing unit. The

152

8.1 APMC Architecture

APMC reduces memory access latency by arranging memory addresses at compile-

time using descriptors and run-time in hardware.

The main units of APMC are shown in Figure 8.1. The Compute Unit executes

the application and can be either a processor or an accelerator. The Front-End Inter-

face provides a link between APMC and the Compute Unit. It includes two distinct

links, the Program Line and the Data Line. The Program Line of the front-end in-

terface is used to program the Descriptor Memory. The Data Line is used to move

data patterns between the compute units and the Specialized Scratchpad Memory (see

Section 2.1.2.3). The Local Memory System stores both data and the access pattern

descriptors, in the SSM and Descriptor Memory respectively. The Data Manager takes

a single or multiple descriptors and transfers data patterns. It is divided into the Load

Unit, the Reuse Unit, and the Update Unit. The Main Memory System is responsible

for transferring data to/from main memory (SDRAM). The Memory Access System

provides a high-speed source-synchronous interface and transfers data on both edges

of the clock cycle. The units of APMC operate independently in parallel with different

descriptors/requests.

Figure 8.1: APMC: Block Diagram With Data Flow

153

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

8.1.1 APMC Working Operation

Figure 8.1 presents the control- and data-flow between units of APMC, divided into
run-time steps from (a) to (e). The Program Line transfers the APMC binary file to the
Descriptor Memory during initialization time.

(a) The Load Unit of the Data Manager reads complex and irregular memory pat-
terns from the Descriptor Memory. Depending upon the access pattern the Data

Manager takes a single or multiple descriptors from the Descriptor Memory and
reads/writes data to/from the Specialized Scratchpad Memory and the Main Mem-

ory System.

(b) The Reuse Unit holds the information of accessed data and requests formerly un
accessed data.

(c) The Main Memory System takes memory addresses from the Load Unit and trans-
fers data between the Update Unit and SDRAM.

(d) The Data Manager reuses or updates data in the Specialized Scratchpad Memory

and when possible skips (c).

(e) The compute unit uses the bus link to access the Specialized Scratchpad Memory

(SSP).

In our current evaluation on Xilinx Virtex-5, the SSM has 32 banks and each bank
holds 128 × 128 Bytes (32 × 32 words) (row × column). Each bank uses a single
BRAM (1x 36 Kb), which is controlled by a separate BRAM controller and has a
different base address. In the current architecture, the number of banks is fixed but
row and column size can be changed depending upon the dimensions of the data set.
A single or two dimension data sets are placed in a single bank and can use single
or multiple BRAM/s. For a 3D data set, depending upon the 3rd dimension, up to
32 banks can be used. Depending upon the dimensions of data set, the SSM can be
arranged by re-programming the APMC Descriptor Memory. The APMC accesses
and places data in tiles if the data set is larger than the SSM structure.

The APMC uses Regular/Irregular Descriptor Memory to transfer complex and ir-
regular access patterns. For each memory access descriptor, the Data Manager (shown

154

8.2 Experimental Setup

Figure 8.2: APMC: Data Manager: (a) Load, Update & Reuse Units

in Figure 8.2 compares the requested elements with the elements placed in the reuse

unit. If the elements are found in the reuse unit, the Data Manager uses them again

and requests the rest. The update unit transfers the elements addresses which are not

present in the reuse unit to the Main Memory System. The update unit of the Data

Manager rearranges available elements in the SSM and updates new loaded elements.

8.2 Experimental Setup

In this section, we describe the APMC based system and the applications with regular

and irregular memory access patterns used to evaluate it. In order to evaluate the per-

formance of the APMC system, the results are compared with a baseline system having

the same compute (e.g. MicroBlaze and Hardware Accelerators) and bus units but a

different memory access controller. The Xilinx Integrated Software Environment and

Xilinx Platform Studio are used to design the systems. Xilinx Software Development

Kit and Xilinx Power Estimator are used to implement the software application and

analyze the system on-chip power respectively. A serial terminal (RS232) is used to

debug, initialize data sets and display clock cycles consumed by the systems. We use

a Xilinx Virtex-5 ML505 evaluation FPGA board to test the APMC system. To com-

pare the bandwidth and power of the APMC system, an Altera Scatter-Gather DMA

(SGDMA) based system is used. The SGDMA system is tested on an Altera Stratix-IV

FPGA based development kit.

155

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

(a)

(b)

Figure 8.3: (a) MPMC based System Architecture (b) APMC based System Architecture

8.2.1 Baseline MPMC System

A Xilinx FPGA based state of the art High Performance Multi-Port Memory Controller

(MPMC) system is used (Figure 8.3 (a)) as a baseline. The architecture has 64 kB and

4 kB of data and instruction cache respectively. The design uses Xilinx Cache Links

(IXCL/DXCL) for I-Cache and D-Cache memory accesses. MPMC is a fully param-

eterizable memory controller, providing an efficient interfacing between the processor

156

8.2 Experimental Setup

Figure 8.4: MPMC & APMC Systems Resource Utilization

and SDRAM using the IBM CoreConnect Processor Local Bus (PLB) bus interface.

By default, MPMC uses the PLB interface to transfer data from/to SDRAM. PLB sup-

ports fixed-burst data transfers, and 8-word cache line read/write transfers. The MPMC

controller (like other memory controllers) takes data transfer instructions from the Mi-

croBlaze processor and performs memory operations. A modular DDR2 SDRAM [48]

controller (with the PLBv46 Wrapper) is used with the MPMC system to access main

memory. The DDR2 controller has a peak main memory bandwidth of 800MB/s as it

has a clock frequency of 100MHz, and a data bus width of 64 bits. Figure 8.4 shows

the resources of the MPMC system. The MPMC system can also use Video Frame

Buffer Controller (VFBC) and Central Direct Memory Access (CDMA) direct mem-

ory access controllers. The VFBC and CDMA are optional and are used to improve

the performance of the DDR2 SDRAM controller by managing complex patterns in

hardware. For each application, the controller (VFBC or CDMA) that better suits the

application access pattern is included in the design.

8.2.2 APMC based System

The APMC based system is shown in Figure 8.3 (b). Memory components are sim-

ilar to the baseline system. The major difference between APMC and the baseline

system is that the APMC uses the specialized memory and manages data transfers

without support of the processor core. MicroBlaze works as a slave in the APMC sys-

157

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

tem and does not have local memory nor cache memories. It is used only to initialize

and program the Descriptor Memory. The working operation of the APMC system is

subdivided into two modes using the Mode select line: the Program mode and the Exe-

cution mode. During the Program mode the APMC is attached only to the MicroBlaze

processor. MicroBlaze via the Program Line initializes the Descriptor Memory of the

APMC system. During the Execution mode, APMC is connected with the compute

unit and performs memory management. The computation part is executed either by

Table 8.1: Application kernels with Regular access patterns

158

8.2 Experimental Setup

Table 8.2: Application kernels with Irregular access patterns

(b)

MicroBlaze or a hardware accelerator. APMC allocates a separate Descriptor Memory

for each compute unit. At run-time, APMC takes memory requests from the compute

unit and transfers data patterns to its SSM. Separate data links (Link A (PBI) and Link

B (SSSI)) are used to transfer data of the processor and the accelerator. The resource

utilization of the APMC system is shown in Figure 8.4.

8.2.3 Test Applications

The application kernels executed with regular access patterns are shown in Table 8.1.

Access pattern presents the application’s memory accesses. Each color represents a dif-

ferent memory access sequence and pattern. Reg, LUT describes the slices utilized by

hardware accelerators over Virtex-5 devices. The application kernels having irregular

access patterns are shown in Table 8.2. Regular & Irregular describes the percentage

of data access and class of the application kernels. The application kernels with regular

159

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

and irregular access patterns are executed on separate ASHA generated by ROCCC and

MicroBlaze SSP respectively. In our current designs, ASHA are executed at 100 Mhz

of clock frequency and the highest bandwidth required is 400 MB for c/a=1.

8.3 Results and Discussion

This section analyzes the results of different experiments conducted on the APMC and

MPMC systems. The experiments are classified into three subsections: Application

Performance, Bandwidth and Power.

8.3.1 Application Performance

All application kernels are executed on the MPMC and APMC based systems. Fig-

ure 8.5 shows the execution time (clock cycles) for regular and irregular application

kernels. The X and Y axis represent application kernels and clock cycles, respec-

tively. Regular and irregular application kernels have different vertical logarithmic

scales. Each bar represents the application kernel’s computation time and memory ac-

cess time (lower is better). The APMC memory access bar is further divided into two

segments: one shows the results of the default APMC with the Data Manager and the

other shows the additional cycles spent when the Data Manager is disabled.

Figure 8.5: Application Execution Time

160

8.3 Results and Discussion

By using the APMC system, the results show the Rad Con, and Thresh applica-

tions achieve 3.5x of speed-up over the MPMC based system. These application ker-

nels have several memory access requests with no data locality which requires multiple

descriptors and no use of on-chip SSM, and achieve less speed-up compared to other

application kernels. FIR has a streaming data access pattern and achieves 26.5x of

speed-up. The APMC requires only one descriptor to access a stream. This reduces

the address generation/management time and on-chip request/grant time. FFT reads a

1D block of data, processes it and writes it back to main memory and achieves 11.9x

of speed-up. The Mat Mul kernel accesses row and column vectors and attains 14x

speed-up. The APMC system manages addresses of row and column vectors in hard-

ware. The Smith W and Lapl applications take 2D blocks of data and achieve 38x

and 36x of speed-up respectively. The 3D-Stencil data decomposition achieves 52x of

speed-up. The APMC takes 2D and 3D block descriptors and manages them in hard-

ware. The speed-ups are possible because APMC can manage complex access patterns

with a single descriptor. The FIR and FFT applications require a single descriptor for

data transfer whereas Mat Mul, Smith W and 3D-Stencil take more than one descriptor.

The MPMC system uses CDMA for FIR, FFT and Mat mul applications, which allows

full-duplex, high-bandwidth, bus interfaces into memory. The VFBC is used to transfer

a complete tile/frame for Smith W and 3D-Stencil applications to/from main memory.

VFBC is a two-dimensional DMA core that has high latency but high throughput op-

eration for very long bursts. At run-time, APMC takes several of these descriptors

independently and manages them in parallel, whereas the MPMC is dependent on the

MicroBlaze processor that feeds data transfer instructions. The stand-alone working

operation of APMC removes the overhead of processor/memory system request/grant

delay.

The c/a ratio improvement due to the APMC Data Manager unit is presented in

Table 8.3. Not all the applications improve c/a ratio due to data irregularity or locality

issues. Due to the load/store memory accesses with no data locality the performance of

Rad Con and Thresh applications do not benefit from the Data Manager, as Figure 8.5

shows. While executing FIR, FFT, Mat Mul, Smith W, Lapl and 3D-Stencil applica-

tions on the APMC system, the system achieves 1.15x, 1.11x, 1.25x, 1.28x, 1.23x, and

1.97x of additional speed-ups respectively from the Data Manager. For regular access

patterns both cache and APMC data manager improve c/a ratio. The data manager also

161

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

Table 8.3: APMC: ComputedPoint/AccessedPoint Ratio

c/a Ratio FIR Mat Mul Lapl 3D-Sten
APMC Without Data Manager 0.0078 0.01538 0.1 0.04
APMC with Data Manager 1 0.031 1 0.125

improves c/a ratio for applications with complex and dense access pattern such as the

3D-Stencil, column vector or diagonal vector access patterns.

The CRG, Huffman, In Rem and N-Body applications have irregular memory pat-

terns; therefore, these applications are executed on the MicroBlaze soft processor. The

CRG and Huffman applications have long unknown memory access patterns with no

data locality. While executing these applications on the APMC system, the system

achieves 1.4x, 1.5x of speed-up respectively over the MPMC system. The In Rem

application has both known and unknown memory access patterns with no data local-

ity hence achieves 1.9x of speed-up. The N-Body application includes irregular data

patterns with data locality. While running on the APMC system, it achieves 2.9x of

speed-up over the MPMC system. The APMC system utilizes the SSM and the Data

Manager that reduces processor execution and access time (shown in Figure 8.5).

One reason irregular applications achieve less speed-up than regular applications

on the APMC system is that there are still on-chip communication delays due to the

use of the microprocessor and compute unit. We measure the impact of this delay

by integrating a dummy hardware accelerator which removes on-chip communication

delay. The accelerator sends random memory accesses. Each memory access is fully

dependent on a previously loaded value which is unknown at compute-time (last ac-

cessed data defines the next address, val=array[val]). The experiments show

that as a result of random patterns executed by the hardware accelerator and the Mi-

croBlaze processor on the APMC system, the APMC system achieves 5.7x and 1.1x of

speed-up respectively compared to the MPMC system using the MicroBlaze processor.

The speed-up can further be improved by executing real application kernels on hard-

ware accelerators with non-random accesses, which helps to apply effectively memory

access scheduling and prefetching.

162

8.3 Results and Discussion

Figure 8.6: Dataset Read/Write Bandwidth

8.3.2 Bandwidth

In this section we compare the APMC, SGDMA and MPMC system’s bandwidth. We

use Xilinx Virtex-5 to implement APMC, MPMC systems and Altera Stratix-IV FP-

GAs to implement the SGDMA system as one of the most advanced memory controller

available for FPGA. Both systems are connected to a 256 MByte (32M x 16) of DDR2

SDRAM having SODIMM I/O module operating at 100 MHz clock. Figure 8.6 shows

data transfer bandwidth for APMC-, SGDMA- and MPMC-based systems. The X-axis

presents random load/store, streaming, 2D and 3D tiled data sets of 32 MByte that are

read and written from/to the main memory. The Y-axis shows bandwidth in MBytes

per second (higher is better). The load/store access pattern reads and writes 4 Bytes

from random locations. A single streaming access pattern accesses 1KByte of stream

and 2D access pattern reads/writes 2D blocks with row and column size of 1KByte.

The 3D tiled reads 128x128x32 Bytes of 3D tile (rows, column and plane) and wrote

it back to main memory. The results show that APMC random load/store and stream-

ing data transfers are 3.4x and 8.3x times faster respectively than the MPMC system.

APMC gets improvement by utilizing on-chip and off-chip bus interconnects and con-

trols data transfer without the support of a master processor. The data transfer rate of

APMC system is further improved up to 15.3x and 20.4x while transferring 2D and

3D tiled data respectively. The APMC improves the memory bandwidth by transfer-

163

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

ring descriptors to the memory controllers, rather than individual references that utilize

the open banks of SDRAM device. While comparing with SGDMA results show that

APMC achieves 4.3x, 5.9x, 13.3x and 16.4x of speed-ups for load-store, 1D, 2D, and

3D data accesses respectively. However, SGDMA data transfer uses a microprocessor

to fill the descriptors and forces to follow bus protocol. The APMC manages complex

patterns independently and uses few descriptors that reduce run-time address genera-

tion and address request/grant delay. The APMC 3D tiled transfer is faster than 2D

because 3D tiled requires data from multiple banks and the APMC accesses the data

from multiple banks in parallel.

8.3.3 Power

On-chip static power in a Xilinx Virtex-5 device dissipates 2.75 watts while running

the MPMC based system. The APMC system draws 2.1 watts of on-chip static power

on a V5-Lx110T device. While comparing APMC and MPMC systems with the Mi-

croBlaze processor and without accelerators, results also indicate that the APMC sys-

tem consumes 17% fewer slices and 32% less on-chip power than the MPMC system.

APMC provides low-power and simple control characteristics by rearranging data ac-

cesses and utilizing hardware units efficiently.

8.4 Conclusion

HPC applications with irregular memory access patterns suffer from limited perfor-

mance on FPGA based systems. In this work we have presented PMC single core

system that supports both regular and irregular memory access patterns, called APMC.

The APMC system uses an on-chip memory unit (for 1D, 2D and 3D data sets), effi-

cient memory management and a memory access policy to access DRAM. The APMC

Scheduler handles single core (ASHA or SSP) one at a time using FIFO scheduling

policy. The Address Manager improves system performance by accessing regular and

irregular access patterns and allocating them in SSP without processor intervention.

Memory patterns are arranged in descriptors at program-time, at run-time APMC ac-

cesses them without adding memory request and address generation delay and places

them in on-chip SSM. The Address Manager handles dependent unknown irregular

164

8.4 Conclusion

accesses at run-time using Control Bus. The Data Manager efficiently access, reuse,
align and feed data to single core system. In order to prove the effectiveness of the pro-
posed controller, we implemented and tested it on a Xilinx ML505 FPGA board. The
experimental evaluations based on the Xilinx MPMC coupled with the MicroBlaze
processor demonstrate that the APMC system efficiently accesses irregular memory
patterns in addition to regular access patterns. In order to prove that our controller is
efficient in a variety of scenarios, we used several benchmarks with different memory
access patterns. The benchmarking results show that our controller consumes 17% less
hardware resources, 32% less static power and achieves a maximum speedup of 52x
and 2.9x for regular and irregular applications respectively.

165

8. APMC: ADVANCED PATTERN BASED MEMORY CONTROLLER

166

Part V

Multi-core Memory System for
Irregular Data Pattern

167

9

AMMC: Advanced Multi-core
Memory Controller

Latest multi-core architectures require both programmability and performance and
combine different types of cores, becoming heterogeneous systems. To get programma-
bility, a part of the program is executed on general-purpose cores. To achieve per-
formance and to increase power efficiency, compute intensive tasks are mapped into
separate hardware accelerators or application-specific processors. The dedicated ap-
plication specific accelerator cores have low footprint and low power consumption and
feature high performance [92].

Many data intensive applications running on heterogeneous multi-core systems are
by nature irregular. They may present irregular data structures, irregular control flow or
irregular communication. Current hardware accelerator-based multi-core systems are
designed to access regular streaming data. Executing irregular applications on them
requires a separate control unit (a master processor) which accesses irregular data,
and feed it to processing cores in regular format. The master processor core performs
initial data processing and data management before the compute-intensive tasks are
off-loaded. This needs substantial effort, and often leads to poor performance.

To overcome the memory wall and to reduce the system power, a memory system is
needed that supports low frequency, low complexity cores, has efficient local memory
and data management, with an intelligent scheduler while supporting a programming
model that manages memory accesses in software so that hardware can best utilize

1
Chapter 9 is based on the publication : [44].

169

9. AMMC: ADVANCED MULTI-CORE MEMORY CONTROLLER

them. In this work, we integrated PMC with a heterogeneous multi-core system having

ASHA and SSP, that we term AMMC (Advanced Multi-core Memory Controller).

Some salient features of the proposed AMMC architecture are given below:

• The AMMC based system handles heterogeneous (SSP and ASHA) cores using

Symmetric and Asymmetric scheduling policies, without the support of a master

core and operating system.

• Regular and irregular access patterns of heterogeneous multi-cores are described

using a separate Descriptor Memory, which reduces the on-chip communication

time and run-time address generation overhead.

• The AMMC Address Manager and Scheduler handles regular and irregular pat-

tern requests of a heterogeneous multi-core system, provides precise timing and

allows scheduling mode to be changed at runtime.

9.1 AMMC Architecture

In this section, we describe the Advanced Multi-core Memory Controller (AMMC)

system. The architecture (shown in Figure 9.1) is divided into five units: the Bus Sys-

tem (A), the Local Memory Unit (B), the Memory Manager (C), the Scheduler (D) and

the SDRAM Controller (E).

Figure 9.1: Architecture of Advanced Multi-core Memory Controller

170

9.1 AMMC Architecture

Overview of AMMC: The regular and irregular access patterns are the same as de-

scribed in Chapters 3 and 8. The basic structure of the multi-core system is based on

what is described in Chapters 7 and 6, with the difference the current architecture sup-

port both ASHA and general purpose SSP, for execution of irregular kernels. The main

units of AMMC are shown in Figure 9.1, as well as the Multi-core System, that exe-

cutes the applications. The Multi-core System can have general purpose SSP, ASHA

cores or a combination of both types. The Bus System provides PBI and SSSI links

between AMMC and the Multi-core System having ASHA and SSP cores. The AMMC

Memory Unit stores both data and the access pattern descriptors in SSM and Descriptor

Memory respectively. Each processing core has separate SSM and Descriptor Memory

blocks. The descriptors are programmed at compile-time with memory access patterns

and scheduling priority. At run-time, the AMMC scheduler receives multiple mem-

ory read/write requests from the Multi-core System and selects a processing core, de-

pending upon its priority level and scheduling policy. The Scheduler implements both

Symmetric and Asymmetric scheduling policies for ASHA and SSP cores. The

scheduler forwards the memory request to the Memory Manager. It is divided into the

Address Manager and the Data Manager. The Memory Manager takes single or mul-

tiple descriptors and reads/writes the data pattern. The Address Manager takes Local

Memory address (Task ID) of ASHA SSP from the scheduler and fetches its Descriptor

Memory. Depending on the access pattern the address manager uses single or multiple

descriptors, maps and rearranges addresses in hardware. The Address Manager saves

mapped addresses into its Address Buffer for further reuse. The Main Memory System

is responsible for transferring data between main memory and the specialized mem-

ory. The Main Memory System take memory addresses from the Memory Manager,

performs the address mapping from physical address to the memory address and read-

s/writes data to/from the Main Memory. The memory address holds the memory bank,

the row address, column address and chip select. The AMMC Main Memory System

gathers multiple memory requests, manages SDRAM banks with respect to physical

(SDRAM) addresses and maximizes the reuse of open SDRAM banks.

171

9. AMMC: ADVANCED MULTI-CORE MEMORY CONTROLLER

(a) (b)

Figure 9.2: MicroBlaze-based multi-core system: (a) Block Diagram (b) Resource Uti-
lization

9.2 Experimental Framework

In this section, we describe the MicroBlaze- and AMMC-based Multi-core Systems and

the rest of our experimental setup. A Xilinx ML505 evaluation FPGA board is used to

test the Multi-core Systems. The Xilinx Integrated Software Environment and Xilinx

Platform Studio are used to design the Multi-core Systems. Xilinx Power Estimator

does the power analysis. The section is divided into two subsections: the MicroBlaze

based Multi-Core System and the AMMC based Multi-Core System.

There are two type of cores in our heterogeneous system: ASHA cores execute ap-

plication kernels with regular memory accesses while SSP MicroBlaze cores execute

application kernels with irregular memory access patterns. As has been described in

Section 2.1.3.3, a state controller is used to manage multiple buffers (see Figure 2.11

(a)). Most cores integrate a state controller to manage multiple buffers. Tables 8.18.2

list all applications used in our experiments. The exception is when applications run-

ning on them use a single buffer (Rad Con, Thresh, CRG and In Rem). In our exper-

iments, CRG and In Rem are executed in the same MicroBlaze core, which does not

have a state controller.

172

9.2 Experimental Framework

9.2.1 MicroBlaze-based Multi-Core System

The MicroBlaze-based Multi-core System is used as baseline (Figure 9.2 (a)). The

detailed design summary of the MicroBlaze based multi-core system is shown in Fig-

ure 9.2 (b). Each general purpose core has 16KB and 32KB of instruction and data

cache respectively, and that is implemented using BRAM. MicroBlaze instruction

prefetcher improves the system performance by using the instruction prefetch buffer

and instruction cache streams. A MicroBlaze SSP (Core 0, Figure 9.2 (a)) is the master

core and is used to schedule the memory requests and to manage data transfers between

multi-cores and main memory (SDRAM). We use IBM CoreConnect Processor Local

Bus (PLB) [20] configured for a single master and multiple slaves to connect compu-

tation units and shared peripherals. It provides maximum of 2 GByte of bandwidth

while operating at 125MHz and 128-bit width. The Mutex core (shown in Figure 9.2

(a)) is used to provide synchronization when accessing shared resources. The core

has a configurable number of mutexes and has a write to lock scheme. The Mailbox

core uses interrupt line to pass messages between Multi-core System. The core handle

interrupts in FIFO order.

To access data from main memory MPMC is employed. The MPMC connects the

SDRAM with the MicroBlaze processors using PLB. An SDRAM (DDR2) controller

is used with MPMC to access data from (SDRAM) main memory. The supported

DDR2 memory has a peak bandwidth of 1 GByte/s as it has a clock frequency of

125MHz, and a data bus width of 64 bits.

The MicroBlaze cores use Xilkernel [77] that performs scheduling, inter-process

communication and synchronization with POSIX threads (pthreads). From the main

function, application spawns into multiple statically declared threads using the pthread

library. Each thread controls a single application kernel and manages its memory pat-

terns. We use the Xilinx SDK to compile the application kernels using a library gener-

ator (libgen) and a MicroBlaze-specific gcc/g++ compiler and generate the final object

file.

9.2.2 AMMC based Multi-Core System

Figure 9.3 (a) shows the implementation of an AMMC-based Multi-core System. Gen-

eral purpose cores do not integrate any cache but use the local memory provided by

173

9. AMMC: ADVANCED MULTI-CORE MEMORY CONTROLLER

(a) (b)

Figure 9.3: AMMC-based multi-core system: (a) Block Diagram (b) Resource Utilization

AMMC. Similarly, there is no need for an RTOS like Xilkernel. In the current imple-

mentation of AMMC, on a Xilinx ML505 evaluation FPGA board, a 256 MByte (32M

x 16) of DDR2 memory having SODIMM I/O module is connected with AMMC Main

Memory System. The resource consumed by each AMMC unit is shown in Figure 9.3

(b). The Main Memory System has a peak bandwidth of 1 G Byte/s since it has a clock

frequency of 125 MHz, a data rate of 2 words per clock cycle, and a data bus width of

32 bits.

9.3 Results and Discussion

This section analyzes the results of experiments conducted on AMMC and MicroB-

laze based systems. The experiments are characterized into three subsections:System

Performance, and Area & Power.

(a) (b)

Figure 9.4: Symmetric System Performance: (a) AMMC (b) MicroBlaze Pipeline and
Overlap Time Period

174

9.3 Results and Discussion

Table 9.1: Asymmetric Scheduling Priority Policies

Kernels FIR FFT Mat Mul Lapl 3D-Sten CRG Huffman In Rem N-Body Speed-ups
Symmetric I 1 1 1 1 1 1 1 1 5.47x
Asymmetric
Group I 1 4 5 3 2 6 7 8 9 6.84x
Group II 2 3 4 5 1 8 6 9 7 5.83x
Group III 9 6 5 4 8 4 3 2 1 3.45x
Architecture 1 1 1 1 1 2 2 2 2 5.42x

9.3.1 Multi-Core System Performance

The system performance is measured by executing application kernels simultaneously

using different scheduling policies, on AMMC and MicroBlaze based systems. Due to

the confined FPGA resources, 5 hardware accelerator and 2 processor cores are inte-

grated with the Multi-core System. The execution time of both systems is categorized

into four factors: scheduling time (Ts), memory management time (Tm), data trans-

fer time (Tt) and computation time (Tc). Ts holds the arbitration (request, grant and

wait) time among the on-chip scheduling. Tm defines the address generation and data

management time. Tt presents the data access time from external memory. It includes

address mapping from physical address space to SDRAM address space, interface tim-

ing and synchronization. Tc holds the computation time of the application kernels.

To measure the overlap and processing time, each application kernel is assigned four

timers which count Ts, Tm, Tt and Tc clock cycles. While counting the number of

cycles, each timer counts the other working timers that are used to measure pipeline

and overlap time.

In the Symmetric Scheduling policy, the requests are treated with the FIFO method,

which removes the scheduling time. Figures 9.4 (a) and (b) present the overlapped

/ pipelined time of AMMC and MicroBlaze systems respectively. While running the

Multi-core System using symmetric scheduling, the results show that the AMMC sys-

tem achieves 5.47x of speed-up. The current Multi-core System contains application

kernels with different access patterns. The Symmetric Scheduling policy gives higher

priority to application kernels with many memory requests. These requests add on-

chip bus and memory access delays therefore, AMMC system is not fully overlap Tm

& Tt. These delays can be decreased by executing Multi-core System with Asymmetric

Scheduling policy.

175

9. AMMC: ADVANCED MULTI-CORE MEMORY CONTROLLER

(a) (b)

Figure 9.5: Asymmetric System Applications Performance: (a) AMMC (b) MicroBlaze

To operate the Multi-core System simultaneously, we categorize the Asymmetric

Scheduling policy into two types; the memory access (Mem Acc) based asymmet-

ric policy and the architecture based asymmetric policy (shown in Table 9.1). The

memory access based asymmetric policy assigns priorities to the application kernels

with respect to their access patterns and is further categorized into three groups. In

Group I, the highest priorities (1) are allocated to application kernels having fewer

memory requests and dense access patterns. For example, the applications having

multiple read/write requests are given low priorities. To check the sensitivity of Asym-

metric Scheduling execution, the priorities of Group I are slightly varied in Group II.

In Group III, the priorities are assigned to check the critical performance of asymmet-

ric execution. For example, the highest priority (1) is allocated to application kernels

having maximum memory requests. Like MicroBlaze Xilkernel scheduling model, the

AMMC scheduling policies and memory accesses are configured statically at program-

time and are executed by hardware at run-time. The memory access based asymmetric

policy performs load balancing reduces on-chip communication and memory manage-

ment delay.

Figures 9.5 (a) & (b) present clock cycles, while executing application kernels si-

multaneously using memory access based Asymmetric Scheduling policy. X (logarith-

mic scale) and Y axis present clock cycles and application kernels, respectively. Each

bar represents Ts, Tm, Tt and Tc. While running all application kernel together us-

ing the asymmetric scheduling, the results show that the scheduling, memory manager

and memory transfer of AMMC based system are 21x, 2.9x and 7.1x faster respec-

tively, compared to the MicroBlaze based system. The computation units execution

176

9.3 Results and Discussion

time (Tc) remains the same for both systems. Figures 9.6 (a) and (b) present the over-

lapped/pipelined time of AMMC and MicroBlaze systems respectively. The Tc of

all application kernels is overlapped (shown in Figure 9.6 (a) & (b)). In the AMMC

system, Tt and Tm are dominant for the regular and irregular application kernels re-

spectively. As all AMMC units operate in parallel, AMMC overlaps all other units

under the unit that consumes more time. For example for regular application kernels

Ts, Tm and Tc are overlapped under Tt. The MicroBlaze based system overlaps Tc

& Ts completely and partially overlaps Tm and Tt (shown in Figure 9.6 (b)). While

running all application kernel together using the Asymmetric Scheduling with priorities

of Group I, the results show that the AMMC based system achieves 6.84x of speed-

up compared to MicroBlaze based system. While executing application kernels with

priories of Group II and Group III, the AMMC based system achieves 5.83 and 3.45x

of speed-ups respectively. The AMMC Asymmetric Scheduling policy manages sys-

tem resources (Application code, On-Chip Off-Chip Memory) of Multi-core system

without the support of the operating system.

In architecture based asymmetric policy, the processing cores are assigned prior-

ities depending upon their instruction set architecture, execution and communication

(request/grant) speed. The architecture based asymmetric priorities are shown in Ta-

ble 9.1. All the cores of one type get the same priority. The priority 1 executes hard-

ware accelerator core requests with higher priority. Requests having same priorities

are executed in FIFO order. While running Multi-core Systems using the architecture

based Asymmetric Scheduling policy, the results show that the AMMC based system

achieves 5.42x of speed-up compared to MicroBlaze based system. For performance

evaluations, we analyzed that the priority based scheduling has the potential for sup-

(a) (b)

Figure 9.6: Asymmetric System: (a) and (b) AMMC and MicroBlaze Systems Pipeline
and Overlap Time Period

177

9. AMMC: ADVANCED MULTI-CORE MEMORY CONTROLLER

porting scalability and load balancing and improve performance while assigning prior-
ities according to the characteristics of memory access patterns.

9.3.2 Area & Power

In comparison, on-chip power in a Xilinx V5-Lx110T device dissipates 3.15 watts
while running the MicroBlaze based system. The AMMC system draws 2.27 watts
of on-chip static power on a V5-Lx110T device. While comparing the AMMC and
MicroBlaze systems without slave units (accelerators and processor), results show that
AMMC system consumes 21% fewer slices and 27.9% less on-chip static power than
the MicroBlaze system. The AMMC provides low-power and simple control charac-
teristics by rearranging data accesses and utilizing hardware units efficiently.

9.4 Conclusion

In this work, we have proposed a version of PMC controller called AMMC, that sched-
ules multi-core operations while taking processing, scheduling, memory management
and memory transfer into account. AMMC has been coupled with ASHA and SSP

based heterogeneous system. The AMMC Descriptor Memory and Address Man-

ager improves the system performance by reducing address management time of reg-
ular and irregular patterns. The AMMC system holds information of each processing
core’s access patterns in a separate Descriptor Memory. The AMMC Address Manager

supports regular, irregular known, independent unknown irregular and dependent un-

known irregular memory accesses that eliminates the overhead of arranging and gath-
ering address/data by the master cores (i.e. microprocessor). The Scheduler manages
complex memory patterns using Symmetric and Asymmetric scheduling policies. The
AMMC system is implemented and tested on a Xilinx ML505 evaluation FPGA board.
The performance of the system is compared with a microprocessor based system that
has been integrated with the Xilkernel operating system. Results show that the AMMC
based multi-core system consumes 21% fewer hardware resources, 27.9% less on-chip
power and achieves 6.8x of speed-up compared to the MicroBlaze-based multi-core
system.

178

10

MAPC: Memory Access Pattern based
Controller

The shared communication buses of heterogeneous systems are problematic both in
latency and bandwidth. A shared bus has long electrical wires, and if there are several
potential slave units – in a multi-core processor all cores and the memory sub-system
act as a master and slave respectively – the load makes the bus even slower. Further-
more, the fact that several units share the bus fundamentally limits the bandwidth seen
by each core. When the number of components attached to the bus increases, the phys-
ical capacitance on the bus wires grows, and, as a result, its wiring delay grows even
further. The multi-core bus unit also suffers from on-chip and off-chip bus intercon-
nects and handles data transfers that require a complex bus matrix architecture, direct
memory controllers and master core which manages data movements. The bus faces
delays such as master/slave arbitration and bus switching time.

The latencies generated by the memory operations are determined by the memory
access time, which is smaller than the processor clock cycle time. As the number of
processor memory requests increases the latency of memory accesses also increases.
With the increase of memory capacity, the memory access time also increases due to
address decoding, internal delays in driving long bit lines, selection logic and the need
to use a small amount of charge per bit. Integrating more memory controllers [73]
on a system platform can increase bandwidth but requires an intelligent controller that
manages and schedules the data accesses. Results have shown [35] that management

1
Chapter 10 is based on the publication : [45] and [46].

179

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

of data transfers according to the application specified patterns reduces the bus delays
and memory access latencies and improves the system performance.

In this chapter, we evaluate the PMC multi-cores with a run-time scheduling pol-
icy and run-time pattern manager called Memory Access Pattern based Controller
(MAPC). The MAPC Address Manager (Section 2.1.3.1) handles multi-core irregu-
lar unknown access patterns and arranges them at run-time in the Descriptor Memory.
MAPC uses access pattern descriptors to program, manage and execute data trans-
fers and provides all features described in Chapter 2. MAPC is based on three major
approaches:

• Compile- and run-time data pattern management.

• Run-time rearrangement and prioritization of patterns.

• Management of SDRAM rows/banks based on access patterns.

The MAPC Pattern Descriptor Unit manages complex memory patterns into its De-

scriptor Memory at compile- and run- time. The Pattern Descriptor Unit improves the
bandwidth by transferring access pattern descriptors to the memory controller, rather
than individual references. The MAPC Pattern Scheduler applies a run-time data ac-
cess prioritizing policy that rearranges access patterns according to data transfer re-
quest and size. The Pattern Aware Main Memory Controller decodes access pattern
descriptors and manages DRAM open banks and rows with respect to the access pat-
tern.

The main contribution of this chapter is a mechanism that reduces the impact of
regular and irregular memory access management and transfer time for a multi-core
system by applying run-time scheduling policy. To achieve this, we also propose a
Pattern Descriptor Unit that organizes data accesses into patterns at compile- and run-
time. Moreover, we propose a Pattern Scheduler that applies fair data transfer policy
on applications having huge transfer requests or size and improve fairness for data de-
pendent and time critical execution. The Pattern Scheduler prioritizes access patterns,
helping MAPC to utilize SDRAM open banks and rows. The design uses a Pattern

Aware Main Memory Controller that efficiently accesses data from SDRAM single-
or multi- banks. The experimental results show that MAPC transfers different data
sets up to 1.95x faster than the baseline system with a conventional but state of the

180

10.1 MAPC Architecture

Figure 10.1: MAPC: Block Diagram With Data Flow

art Scatter Gather Direct Memory Access (SGDMA). When compared to the baseline

system, the MAPC system achieves between 1.13x to 3.6x of speedup for different

applications and consumes 28% fewer hardware resources, 13% less dynamic power.

While running applications concurrently in a multi-core environment, the MAPC sys-

tem achieves up to 5.34x of speedup.

10.1 MAPC Architecture

Main features of MAPC is already described in Chapter 2. MAPC supports and sched-

ule complex memory access patterns to reduce run-time overhead of data access man-

agement and data transfer. MAPC reduces the memory access latency and improves

fairness by arranging the memory accesses in patterns, by scheduling patterns with

respect to data transfer requests and size and by using adaptive SDRAM banks man-

agement.

The main units of MAPC are shown in Figure 10.1, as well as the Processor Cores,

which execute the applications. The Address bus is used to program the Pattern De-

scriptor Unit. The Data Bus is used to transfer data patterns to the memory of the

Processor Cores. The Pattern Scheduler takes a single or multiple descriptors and pri-

oritizes data accesses with respect to data transfer size and requests. The Pattern Aware

Main Memory Controller is responsible for data transfers to/from SDRAM. The units

of MAPC operate independently in parallel with different data access patterns.

10.1.1 MAPC Working Operation

Figure 10.1 presents control- and data-flow between units of MAPC, divided into run-

time steps from (a) to (d).

181

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

Figure 10.2: MAPC: Request, Hold and Grant Policy

(a) The Pattern Descriptor Unit manages compile and run -time generated data trans-
fer requests of the Processing Cores and organizes them in the form of descriptors.
MAPC uses the Pattern Descriptor Unit (PDU) to hold the information of complex
memory access patterns in descriptors. The PDU uses one or multiple descriptor
blocks to describe the access data patterns of a Processor Core. The PDU also
manages run-time memory accesses as described in the descriptor block. At run-
time the PDU allocates a single descriptor block for each processing core. The
PDU takes memory requests from a Processor Core, buffers them and compares
consecutive requests. If the addresses of consecutive memory requests have con-
stant strides, the PDU allocates a descriptor block by defining stride and size pa-
rameters. If the request has variable strides then the PDU uses the offset parameter
of the descriptor that points a random location (shown in Figure 10.3).

(b) The Pattern Scheduler reads multiple descriptors from the Pattern Descriptor Unit

and prioritizes data patterns at run-time with respect to transfer size and requests.
The Pattern Scheduler applies a Request, Hold and Grant (RHG) policy to pro-
cess the memory requests, Figure 10.2 shows an example. The RHG depends
upon the number of data access requests and transfer sizes. The RHG uses three
parameters for scheduling which are the Minimum Transfer, the Maximum Trans-

fer and the Hold Transaction. The transfer parameters specify the minimum and

182

10.2 Experimental Framework

Figure 10.3: MAPC:: Pattern Descriptor and Pattern Scheduler

maximum size of the data transfer request on which the Pattern Scheduler applies

the RHG policy. The Pattern Scheduler immediately grants all requests which

are greater than Minimum Transfer and less than Maximum Transfer. It splits the

transfers longer than Maximum Transfer and holds transfer requests of size less

than Minimum Transfer, merging several of them into a single larger request. The

Hold Transaction is the number of requests for which the Pattern Scheduler holds

a request. 128B, 4KB and 8 are the default values of Minimum Transfer, Maximum

Transfer, and Hold Transaction respectively. These parameters are programmed at

compile-time.

(c) The Main Memory System uses PAMMC takes pattern requests from the Pattern

Scheduler, decodes the data access patterns and manages SDRAM banks, rows

and columns.

(d) The PAMMC transfers data between the Processing Cores and SDRAM.

10.2 Experimental Framework

To evaluate the proposed hardware, in this section, we describe the Nios- and MAPC-

based Multi-core Systems. The Altera Quartus II version 13.0 and the Nios II Inte-

grated Development Environment (IDE) are used to develop the systems. An Altera

DE4 FPGA board is used to test the systems. In the current implementation on an

Altera DE4 evaluation FPGA board, a DDR2 memory having SODIMM I/O module

183

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

(a) (b)

Figure 10.4: Multi-Core Systems: (a) Nios (b) MAPC

is connected. DDR2 SSDRAM device is used. The SDRAM memory has a capacity

of 1GB and a peak bandwidth of 1.6GB since it has a clock frequency of 100MHz, a

data rate of 2 words per clock cycle, row buffer of 32KB and a data bus width of 64

bits. This section is divided into three subsections: the Multi-core and Applications,

the Nios Multi-core System, and the MAPC Multi-core System.

10.2.1 Multi-core System and Applications

We propose a Nios processor based Multi-core system having eight Nios II/f cores

(shown in Figure 10.4 (a) and (b)). The Nios II/f is an RISC soft processor archi-

tecture, optimized and implemented with FPGA resources. The Nios II/f has a high

performance barrel shifter with hardware multipliers and branch prediction. Each core

has 16KB of Data and 8KB Instruction cache memory.

Figure 10.5 shows the application kernels which are executed on Multi-core. Each

processor core executes a single application kernel, thus evaluating the system with a

wide range of patterns. Each application kernel has different memory access patterns.

They have been selected to measure the behaviour and performance of data manage-

ment and data transfer in a variety of scenarios. Column Min BW (minimum band-

184

10.2 Experimental Framework

Figure 10.5: Brief description of application kernels

width) presents data required (in bytes) for the processor core after each computation

without applying techniques such as pipelining, overlapping, etc. The Tri-Diagonal ap-

plication has a diagonal access pattern with unknown variable transfer size, therefore,

its minimum bandwidth requirement is not predefined. While operating at 100Mhz

the minimum required bandwidth is calculated with Equation 10.1. The operating fre-

quency is the clock at which the processing core operates on accessed elements. The

consume cycles are the clock cycles taken by a processing core to generate a single

output element. When executing independent kernels in each of the core that access

Figure 10.6: Control Data Flow Graph of RTM

185

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

its own data set, the behavior of the memory system can be very different from that

observed when multiple cores execute different parts of the same application and share

data, at least partially. In order to consider this scenario, we also execute MPAC with

a Reverse Time Migration (RTM) application that runs on multiple cores. The control

data flow graph of the RTM application is shown in Figure 10.6. The application ker-

nel uses three data sets with different data transfer sizes, and the output of each data

set is dependent on each other. For each output the RTM application needs 108 Bytes

(27 elements), 100 Bytes from data set 1 and 4 Bytes each from data set 2 and data

set 3.

MinimumBandwith =
Operating Frequency × Access Elements

Consume Cycles
(10.1)

10.2.2 Nios Multi-core System

The Nios Multi-core System shown in Figure 10.4 is used as baseline. The Nios

Multi-core System uses a separate additional Nios II/f as master core that manages

on-chip bus transactions, memory read/write requests between the multi-core system

and SDRAM memory. An Altera Scatter-Gather DMA (SGDMA) is used that han-

dles multiple data transfers efficiently. The Nios Multi-core System uses a hardware

mutex core to share resources of multiple cores and prevent system conflicts. Before

accessing shared peripherals each Nios core checks that the mutex is available, if it is

free the processor acquires the right to use shared resources and locks the mutex core

so that no other processor can access peripherals. The Altera mutex core has two 32-

bit memory mapped mutexes and reset registers. Nios Multi-core System uses Avalon

bus that manages data movement between the Multi-core System and SDRAMs. The

Avalon bus is programmed to work at 400MB while using a 100MHz clock speed and

a 32-bit data bus. The Nios Multi-core System uses 22,784 flip-flops, 22,416 ALUTs

and 877,672 memory bits.

10.2.3 MAPC Multi-core System

Figure 10.4 (b) shows the implementation of a MAPC based multi-core system. The

major difference between Nios Multi-core System and this is that at run-time MAPC

186

10.3 Results and Discussion

Figure 10.7: Single-Core Results: Execution Time

manages multi-core memory transfers and SDRAM memory without support of a sep-

arate Nios processor, complex on-chip bus controller and high performance DMA con-

troller, as explained in previous Sections. The MAPC Multi-core System uses 16,904

flip-flops, 15,308 ALUTs and 767,672 memory bits.

10.3 Results and Discussion

This section analyzes the results of different experiments conducted on the MAPC and

Nios Multi-core Systems.

10.3.1 Single-Core Performance

In this section, we measure the performance of test applications shown in Figure 10.5

using MAPC and Nios Single-core Systems. Either MAPC or the master core handles

address management and data transfers for the application. To measure performance,

a single application is executed at a time on a Nios II/f core. Multiple hardware timers

are added to measure the Computation, Access Management and Data Transfer times

for each application kernel. The Total Time shown in Figure 10.7 (a) is the sum of

Access Management, Data Transfer and Computation time of each application. Access

Management refers to the time needed to manage and schedule access pattern and Data

Transfer to the time required to read/write data to/from SDRAM. The X and Y axis

represent application kernels and number of clock cycles, respectively. The Y axis has

logarithmic scale (lower is better).

Results show that MAPC improves Access Management time for Thresholding,

Huffman and Matrix Multiplication up to 3.2x, 12.8x and 15.38x respectively over

187

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

the Nios Single-core System. These applications have access patterns with variable

and unknown strides that the MAPC PDU manages at run-time. The Finite Impulse

Response (FIR) application has a streaming data transfer pattern and achieves 5.66x

of speedup. The MAPC PDU requires only one descriptor to access the FIR pat-

tern. This reduces the address generation/management time and on-chip request/grant

time. The Fast Fourier Transform (FFT) application kernel reads a 1D block of data

pattern, processes it and writes it back to SDRAM. This application achieves 18x of

speedup. The Tri-Diagonal application has diagonal 1D data access and achieves 17.5x

of speedup. Laplacian Solver takes 2D block of data and achieves 39.4x of speedup.

The 3D-Stencil application achieves 78.16x of speedup with the MAPC PDU and Pat-

tern Scheduler that take 2D and 3D block descriptors and manage them in hardware.

For Thresholding, Huffman and Matrix Multiplication applications the MAPC PAMMC

improves Data Transfer time up to 4.07x, 9.95x and 20.34x over the Nios Single-core

System. These application kernels have several memory access requests with fewer

data locality, use less open banks and rows of SDRAM memory. FIR requires a contigu-

ous SDRAM Data Transfer pattern and allows PAMMC to access data from SDRAM

open row-buffers, achieving 8.14x of speedup. FFT kernel requires multiple data pat-

terns of 1D blocks. Each 1D block of data uses different row buffers. A single 1D

access pattern utilizes one open row-buffer, and multiple data blocks require to open

multiple row-buffers. The MAPC PAMMC improves 25.02x Data Transfer time. The

Tri-Diagonal application achieves 20.14x of speedup. The Laplacian Solver appli-

cation takes a 2D block of data and achieves 34x of Data Transfer speedup. The

3D-Stencil application achieves 50.34x of speedup. The 3D-Stencil requests data from

multiple banks, the MAPC PAMMC applies multi-bank policies and keep multi-row

buffer open which improves Data Transfer time. The PAMMC also processes access

patterns in parallel with respect to available DRAM banks.

Results show that MAPC improves the overall performance of application kernels

over the Nios Single-core System, including also Computation time into account. The

Thresholding and Huffman achieve 3.6x and 3.1x of overall speedup respectively. The

Matrix Multiplication, Finite Impulse Response, Fast Fourier Transform, Tri-Diagonal

and Laplacian and 3D-Stencil applications achieve 1.74x, 2.8x, 1.17x, 1.37x, 3.13x

and 3.2x of speedup respectively. The Matrix Multiplication, Finite Impulse Response,

188

10.3 Results and Discussion

Table 10.1: MAPC System Speedups, Power and Energy for different Scheduling Policies

Scheduling min max Hold Speed Power Energy Imprrovement
Policies Tx Tx Tx up
NIOS - FIFO 5.75 25.47 1
MAPC- FIFO - - 1 2.45 4.97 9.54 2.66

RHG-32:4K:8 32 4K 8 2.71 5.15 10.1 2.51
RHG-128:4K:8 128 4K 8 3.25 5.1 7.1 3.63
RHG-256:4K:8 256 4K 8 3.6 5.05 6.1 4.20
RHG-512:4K:8 512 4K 8 3.8 5.03 5.8 4.35

RHG-128:1K:8 128 1K 8 2.62 5.22 10.3 2.46
RHG-128:2K:8 128 2K 8 2.81 5.19 9.1 2.79
RHG-128:8K:8 128 8K 8 4.01 5.1 6.04 4.21
RHG-128:16K:8 128 16K 8 4.45 4.9 5.22 4.87

RHG-128:4K:2 128 4K 2 2.53 5.01 9.39 2.71
RHG-128:4K:4 128 4K 4 2.74 5.08 9.14 2.78
RHG-128:4K:16 128 4K 16 3.20 5.13 8.02 3.17
RHG-128:4K:32 128 4K 32 3.22 5.16 7.95 3.20

RHG-16:1K:8 16 1K 8 2.41 5.08 9.3 2.73
RHG-1K:16K:4 1K 16K 4 4.29 5.19 5.35 4.75
RHG-1K:16K:8 1K 16K 8 5.34 5.28 4.37 5.82
RHG-1K:16K:16 1K 16K 16 5.22 5.26 4.46 5.70
RHG-2K:16K:8 2K 16K 8 5.14 5.2 4.47 5.69
RHG-1K:32K:8 1K 32K 8 5.28 5.16 4.32 5.88
RHG-2K:32K:8 2K 32K 8 4.98 5.14 4.56 5.57

Fast Fourier Transform and Tri-Diagonal applications are CPU bound, therefore ben-

efit less from MAPC Access Management and Data Transfer.

10.3.2 Multi-Core Performance

In this section, we execute applications simultaneously using different scheduling poli-

cies on the multi-core systems. In order to isolate the effect of the RHG policy, first

189

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

the applications are evaluated using a FIFO policy which serve the data transfer re-

quests with the order of arrival time. While executing application kernels using FIFO

policy, results show that MAPC system achieves 2.45x of speedup over Nios Multi-

core System. The applications with a high number of requests cause bus arbitration

delays. The FIFO policy gives them high priority, thus affecting the system fairness

and starving other applications for long time periods. In order to determine the fairness

of the MAPC system, the applications are executed using different RHG data transfer

and transaction parameters (shown in Table 10.1). Fairness is discussed in Section

10.3.4, columns Min Tx, Max Tx and Hold Tx present Minimum, Maximum Transfer

Size and Hold Transactions respectively. Column Speedup shows MAPC speedups

having different data access scheduling policies over Nios FIFO data transfer policy.

MAPC achieves a minimum of 2.41x and a maximum of 5.34x speedup while

using RHG-16:1K:8 and RHG-1K:16K:8 scheduling policies respectively. The RHG-

16:1K:8 policy holds 16B and 1KB values for the Minimum and Maximum Transfer

parameters respectively. The RHG-16:1K:8 executes data transfer requests greater

than 16B and splits data accesses into multiple 1KB transfers having size greater than

1KB. The RHG-1K:16K:8 has high values for the Minimum and Maximum Transfer

parameters. For a Minimum Transfer of 1KB size, the MAPC RHG-1K:16K:8 policy

gathers multiple requests and the PDU tailors it in single descriptor block. This avoids

multiple request grant time and allows MAPC to transfer the data in one transaction.

Having Maximum Transfer size of 16KB avoids MAPC to split data transfers, and the

PAMMC maximize the utilization of SDRAM open row buffer. Increasing Minimum

Transfer beyond 1K affects the performance. RHG-2K:16K:8 scheduling policy holds

input data transfer requests until accumulates a transfer size of 2KB. The scheduling

forces applications to wait which affects the fairness. Results show that MAPC RHG

scheduling policy improves system performance and handles data more efficiently. The

Nios Multi-core System uses multiple load/store or Scatter/Gather DMA calls to access

complex patterns. The speedups are possible because MAPC can manage complex

access patterns in descriptors and execute them without the support of extra hardware

such as a microprocessor, bus controller or DMA. At run-time, MAPC takes infor-

mation of complex access patterns from PDU independently and manages them in

parallel, whereas the Nios Multi-core System is dependent on the master processor that

190

10.3 Results and Discussion

Figure 10.8: Fairness: Single-Core Hold Time

feeds data transfer instructions. The stand-alone working operation of MAPC removes
the overhead of processor/memory system request/grant delay.

10.3.3 Resource and Total Power

While comparing the MAPC Multi-core System with the Nios Multi-core System, re-
sults show that the MAPC system consumes 28% fewer logic elements. To measure
the total dynamic power, the DE4 board provides a resistor to sense current/voltage
and 8-channel differential 24 bit analogue to digital converter. Table 10.1 also presents
dynamic power and energy of the MAPC and Nios Multi-core Systems executing ap-
plications concurrently at 100Mhz clock frequency, and each application processes a
2MB data set. Column Power presents measured dynamic power. Columns Energy

and Impr. show respectively measured energy and improvement over the baseline, i.e.
reduction of energy consumption over NIOS-FIFO. While using different scheduling
policies results show that MAPC draws between 8.1% to 13.5% less power and 2.6x
and 5.8x times less energy than the Nios Multi-core System respectively.

10.3.4 Fairness

To check the fairness of MAPC, we measure the hold time of each application for
RHG-128:4K:8, RHG-16:1K:8 and RHG-1K:16K:8 scheduling policies having mini-
mum, average and maximum system performance respectively (shown in Figure 10.8).
The hold time includes the request initialization and management time for which the
application core and MAPC remain stalled. The results show that the MAPC schedul-
ing policies fairly prioritize applications having both small and large data transfers

191

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

and avoid applications to starve. While increasing the minimum and maximum data

transfer sizes for RHG scheduling policies results show that MAPC improves the per-

formance as well as decreases the hold time of the applications. Results show that the

RHG-1K:16K:8 policy provides the best fairness as well as system throughput.

In the experiments explained above all core execute independent kernels. In order

to evaluate the impact of RHG in speedup and fairness when cores are not independent,

we use the RTM application. Two processor cores are used to execute one instance of

RTM, the 3D-Stencil unit is executed on core1, and the rest of data processing is done

on core2. 3D-Stencil kernel is programmed to process a 24x24x24 (55296B) 3D data

block. For the RHG policy, the MAPC system uses 128B and 55296B for Minimum

and Maximum Transfer respectively. While executing a single instance of RTM using

FIFO and RHG policies, results show that the MAPC system achieves 4.53x and 4.89x

of speedup respectively over a Nios Multi-core System. Four instances of RTM having

12 different data sets are executed on MAPC and Nios Multi-core Systems. While

executing four RTM applications together, the performance of MAPC improves up

to 10.1x and 12.5x. This shows that MAPC improves performance of time-critical

applications that contain computational steps that must be implemented efficiently.

10.3.5 Bandwidth

In this section, we measure the bandwidth of MAPC and Nios Multi-core Systems for

different number of cores by reading and writing two types of patterns. The X-axis

Figure 10.9: MAPC and Nios Multi-core Systems: Memory Bandwidth

192

10.4 Conclusion

(shown in Figure 10.9) presents two types of data transfers and number of cores. Each
data transfer reads and writes a data set of 2MB from/to the SDRAM. The type Short

Transfer contains data transfers that have a maximum transfer size of 128B and the type
Long Transfer has a transfer size of 4KB. Therefore, a single core has 32768 and 1024
read after write requests of Short Transfers and Long Transfers respectively. The re-
quests increase with the number of processor cores. While using 1, 2, 4 and 8 processor
cores for Short Transfer type, results show that the MAPC Multi-core System transfers
data 1.40x, 1.68x, 1.88x and 1.95x times faster respectively than the Nios Multi-core

System. While transferring data with the Long Transfer type, the MAPC Multi-core

System improves bandwidth 1.07x, 1.13x, 1.16x and 1.17x times. Results show that
the Nios Multi-core System reduces the aggregated bandwidth for Short Transfers when
increasing the number of cores. The Nios Multi-core System uses the SGDMA con-
troller that forces to follow the bus protocol and requires a processor that provides data
transfer instructions. For multiple cores, the Nios Multi-core System uses multiple in-
structions to initialize SGDMA. SGDMA can begin a new transfer before the previous
data transfer completes with a delay called pipeline latency. The pipeline latency in-
creases with the number of data transfers. Each Data Transfer requires bus arbitration,
address generation and SDRAM bank/row management. The MAPC Short Transfer

type uses few descriptors that reduce run-time address generation and address request/-
grant delay and improve bandwidth by managing addresses at compile-time and by
accessing data from multi-DRAM devices and multi-banks in parallel.

The most recent microprocessor and DRAM subsystems (e.g. DDR3, DDR4, etc.)
give more bandwidth by running the system at higher clock speed but generate higher
latency. The idea of MAPC is to reduce address management by organizing accesses
into patterns, add fairness by scheduling patterns with respect to transfer size and uti-
lize SDRAM banks and rows with respect to access patterns.

10.4 Conclusion

This chapter shows results for a system called MAPC, which implements all the fea-
tures of PMC, as described in Chapter 2. MAPC enhances the application’s perfor-
mance by organising run-time complex access patterns in descriptors, schedules these
access patterns with respect to access transfer size and requests, manages SDRAM

193

10. MAPC: MEMORY ACCESS PATTERN BASED CONTROLLER

open banks/rows and executes access patterns without processor intervention. The
Nios Multi-core System is used as the baseline. The baseline system uses a separate
additional Nios II/f as master core that manages on-chip bus transactions, memory
read/write requests between the multi-core system and SDRAM memory. The sys-
tem uses an Altera Scatter-Gather (see Section 11.3.2) DMA (SGDMA) is used that
handles multiple data transfers efficiently. The experimental evaluations based on the
Altera FPGA coupled with the Nios Multi-core System demonstrate that an MAPC
based multi-core system efficiently manages complex memory patterns at compile
time as well as at run-time. When compared to the baseline multi-core system, the
MAPC based system achieves between 2.41x to 5.34x of speedup for different ap-
plications. While using different scheduling policies results show that MAPC draws
between 8.1% to 13.5% less power and 2.6x and 5.8x times less energy than the Nios

Multi-core System respectively.

194

Part VI

Related Work, Conclusions and
Future Research Directions

195

11

Related Work

A number of memory systems have been proposed by research groups of academia and

industry. A Memory System is selected by considering application’s data access pat-

tern and required performance. While executing the real applications having complex

access patterns, a Memory System confronts difficulties while generating addresses

and aligning streams for complex access patterns. A conventional memory system

is categorized with respect to their usage, which are the Local Memory System, the

Memory Management and the Main Memory System.

11.1 Local Memory System

11.1.0.1 Scratchpad

Scratchpad is a low latency memory that is tightly coupled to the CPU [93]. Therefore,

it is a popular choice for on-chip storage in real-time embedded systems. The alloca-

tion of code/data to scratchpad memory is performed at compile time leading to pre-

dictable memory access latencies. Panda et al. [94] developed a complete allocation

strategy for scratchpad memory to improve the average-case program performance.

The strategy assumes that the access patterns are known at compile time. Suhendra et

al. [95] aims at optimizing memory access tasks worst-case performance. However,

in that study, scratch-pad allocation is static having static and predictable access pat-

terns that do not change at run-time, raising performance issue when the amount of

code/data is much larger than scratchpad size. Dynamic data structure management

197

11. RELATED WORK

using scratchpad techniques are more effective in general because they may keep the

working set in scratchpad. This is done by copying objects at predetermined points

in the program in response to execution [96]. Dynamic data structure management

requires a dynamic scratchpad allocation algorithm to decide where copy operations

should be carried out. A time-predictable dynamic scratchpad allocation algorithm has

been described by Deverge and Puaut [96]. The program is divided into regions, each

with a different set of objects loaded into the scratchpad. Each region supports only

static data structures. This restriction ensures that every program instruction can be

trivially linked to the variables it might use. Udayakumaran et al. [97] proposed a dy-

namic scratchpad allocation algorithm that supports dynamic data structures. It uses a

form of data access shape analysis to determine which instructions can access which

data structures, and thus ensures that accesses to any particular object type can only

occur during the regions where that object type is loaded into the scratchpad. However,

the technique is not time-predictable, because objects are spilled into external memory

when insufficient scratchpad space is available. PMC address manager arranges un-

known memory access at run-time in the form of pattern descriptors. PMC performs

data management and handles complex memory accesses at run-time using 1D/2D/3D

Scratchpad Memory.

11.1.1 Cache

Numerous research groups in academia and industry have studied how to improve local

memory address/data management and speed of irregular memory accesses. G. Stitt et

al. [66] presented a traversal data cache structure that dynamically serializes pointer-

based traversal data structure into the FPGA local memory and feeds the corresponding

data to FPGA accelerators in a streaming fashion. This idea is based on exploiting the

opportunity of repeated traversals for a branch of a tree with the assistance from a

microprocessor. For traversing the tree data, especially for the case of Barnes-Hut tree,

Coole et al. [98] extended the idea of traversal data caches [66] by prefetching multiple

branches of data into the FPGA and keeping them accessible by the compute block thus

exploiting repeated traversals and parallel execution of multiple traversals whenever

possible. For large data sets, this implementation requires a slightly larger address

space due to the complexity of the traversal data cache framework. The support of

198

11.1 Local Memory System

specialized memory and data access in hardware allows PMC to manage pointer-based

data structures without a microprocessor core. This PMC reduced memory address

space by transforming large and irregular address spaces into a few descriptor blocks

and map them to the cache framework.

Mellor-Crummey et al. [99] studied the impact of reordering on data reuse at differ-

ent levels in the memory hierarchy, and introduced an architecture independent multi-

level blocking approach for irregular applications which performs data and computa-

tion reordering. Diniz et al. [100] described the mapping of traversals for Sparse-mesh

and Quad-tree data structures to FPGA-based smart memory engines. This design

supports the relocation of data in memory for improved locality. The work suggests

that reconfigurable logic when combined with data reorganization can lead to signif-

icant performance improvements. The work focuses over spatial pointer-based data

structures for specific data structures (Sparse-mesh and Quad-tree). PMC on-chip spe-

cialized memory unit maps and allocates different types of applications with irregular

memory patterns. PMC on-chip memory unit improves performance by prefetching

irregular patterns and providing them to the compute unit as a regular pattern, which

hides latency and maximizes reuse ratio.

Application specific hardware accelerators with different data transfer modes use

combination of scratchpad and cache memories. Yu et al. propose VIPERS [101],

a vector architecture that consists of a scalar core to manage data transfers, a vector

core for processing data, an address generation logic, and a memory crossbar to con-

trol data movement. Chou et al. present the VEGAS [31] vector architecture with

a scratchpad to read and write data and a crossbar network to shuffle vector opera-

tions. VENICE [102] is an updated version of VEGAS, with scratchpad and DMA

that reduces data redundancy. VENICE has limitations of rearranging complex data

with scatter/gather support. Yiannacouras et al. propose the VESPA [30] processor

that uses a configurable cache and hardware prefetching of a constant number of cache

lines to improve the memory system performance. The VESPA system uses wide pro-

cessor buses that match the system cache line sizes. VIPERS and VEGAS require a

scalar Nios processor that transfers data between the scratchpad and the main memory.

A crossbar network is used to align and arrange on-chip data. PMC eliminates the

crossbar network and the limitation of using a scalar processor for data transfer. PMC

manages addresses in hardware with the pattern descriptors and accesses data from

199

11. RELATED WORK

main memory without support of a scalar processor core. The PMC data manager re-
arranges on-chip data using the buffer memory without a complex crossbar network,
which allows the vector processor to operate at higher clock rates.

11.2 Memory Manager

A Memory Manager lies in between the Local Memory System and the Main Memory

System that manages on-chip data and controls off-chip accesses.
The snoop control unit (SCU) maintains the coherence of the Local Memory System

in the multi-core systems. The SCU is responsible for managing the interconnect arbi-
tration, communication, Local Memory System and Main Memory System data trans-
fers and cache coherence for the multi-core system. The SCU communicates with each
of the processor core through a Local Memory System coherency bus and manages the
coherency between the L1 and the L2 caches. The block implements duplicated 4-way
associative tag RAMs acting as a local directory that lists coherent cache lines held in
the Memory System L1 data caches. The directory allows the SCU to check if data is
in the L1 data caches with great speed and without interrupting the processors. Also,
accesses can be filtered only to the processor that is sharing the data. The SCU can also
copy clean data from one processor cache to another and eliminate the need for Main

Memory System data accesses to perform this task. S. Zhuravlev et al. [103] presented
an intelligent scheduler that is aware of underlying caches and schedules applications
with respect to memory access demands. The proposed scheduler generates the hard-
ware caches contentions between threads. The PMC system overcomes this problem
by scheduling task operations while taking into account the programmed priorities, and
on-chip specialized memories and run-time memory accesses patterns.

To solve on-chip bus bandwidth bottleneck, there have been several types of high-
performance on-chip buses proposed. The multi-layer AHB (ML-AHB) bus-matrix
proposed by ARM [104] has been used in many SoC designs due to its simplicity,
simple architecture and low power. The ML-AHB bus-matrix interconnection scheme
provides parallel access paths between multiple masters and slaves in a system. The
PLB crossbar switch (CBS) from IBM [105] allows communication between masters
on one PLB and slaves on the other. The CBS supports concurrent data transfers on
multiple PLB buses along with a prioritization method to hold multiple requests to a

200

11.2 Memory Manager

generic slave port. Like other on-chip Bus Units, AHB (ML-AHB) and PLB (CBS)

use a master core that manages on-chip bus transactions.

Marchand et al. [106] have developed software and hardware implementations of

the Priority Ceiling Protocol that control the multiple-unit resources in a uniprocessor

environment. Yan et al. [107] has designed a hardware scheduler to assist the syner-

gistic processor cores task scheduling on heterogeneous multi-core architecture. The

scheduler supports first come first service (FCFS) and dynamic priority scheduling

strategies. It acts as helper engine for separate threads working on the active cores.

The idea of scouting hardware threads [108; 109] was developed by Sun as part of the

design of their latest processor called Rock (canceled since). The scout thread idea

clearly targeted the conventional memory wall problem, trying to mask the latency of

Main Memory System accesses. Helper threads also used this algorithm that improves

the efficiency of Local Memory System usage. A separate core (hardware thread) is

used that monitors the memory traffic between a specific core, records memory ac-

cess patterns. By using this information whenever the same data access is observed

again the helper core begin fetching data from the Local Memory System. If the data

is already in the Local Memory System, the helper core makes sure that it stays there,

and no unnecessary write-backs would occur. This method tends to reduce both la-

tency, but also optimize memory bandwidth usage: if the prediction is correct, valu-

able memory traffic is prioritized, and unimportant one can be avoided. Thread level

speculation [110] support in hardware is quite similar to the scouting thread concept:

the processor is capable of performing run-ahead execution on certain branches, using

private copies of data and registers, at the end either validating or discarding the result.

The PMC holds information of memory patterns in the form of Descriptor Memory.

Currently, accessed patterns are placed in the address manager of PMC. The PMC

monitors the access patterns without using a separate core and reuses these patterns for

multiple cores if required.

Several DRAM access scheduling techniques [111; 112] have been proposed and

evaluated to optimize throughput, reduce the average memory latency and improve

bandwidth utilization for streaming applications as well as general-purpose applica-

tions. Kim et al. [113] proposed DRAM scheduling algorithms for multiple memory

controllers that perform thread prioritization decisions by tracking long term memory

201

11. RELATED WORK

intensity of threads and utilize this information to reduce bandwidth limitations, mem-

ories contention, and enforce bank/port/channel/bus conflicts. Nazm et al. [114] pre-

sented a programmable memory controller (PARDIS) in hardware that maps existing

proposed DRAM scheduling algorithms through dedicated command logic. PARDIS

takes memory requests from the last-level cache and generates commands to arrange

data transfers between the processor and main memory system. APEX [115] uses a

library that first extracts the most active patterns exhibited by the application when ac-

cessing data structures, and explores the memory module configurations to match the

needs of these access patterns. The PMC Pattern Descriptor Unit not only determines

access patterns at compile-time but also manages at run-time complex patterns which

are difficult to predict.

Corbal et al. [116] proposed the Command Vector Memory System (CVMS) which

decreases the processor to memory address bandwidth usage by transferring com-

mands (descriptors) to the memory controllers, rather than individual references. A

CVMS descriptor includes a base and a stride which is extended into the suitable se-

quence of references by each off-chip memory bank controller. The bank controllers

in the CVMS utilize a row/closed scheduling policy among commands to improve

the bandwidth and latency of the SDRAM. PMC improves on-chip communication

bandwidth by managing both compile- and run- time generated access pattern descrip-

tors. The PMC descriptor block has uses offset parameter that align complex transfers,

each transfer with variable stride. The PMC Pattern Aware Main Memory Controller

manages SDRAM by using a bank management policy selected by run-time access

patterns.

11.3 Main Memory System

Increasing the SDRAM Controller bus width increases the bandwidth but it is primarily

limited up to a set limit by the pin counts, as well as the area requirements. Increas-

ing clock frequency of the system bus is also very difficult due to the long, heavily

capacitative PCB traces. Complex and irregular memory accesses generate latencies

to initialize rows and banks of main memories. To overcome the latency of the Main

Memory System a number of memory access techniques are proposed.

202

11.3 Main Memory System

11.3.1 Prefetching

Prefetching is one way to overlap/interleave memory access management under other

instruction this reduce application execution time. A lot of research has been done in

the past to build efficient prefetchers. The ever increasing disparity between the proces-

sor and memory speeds continually add to the importance of latency hiding techniques

such as software data prefetching. Software prefetching is useful for multiprocessor

systems that can issue many memory requests. It is an attractive strategy for reduc-

ing the effect of long memory latencies without notably increasing the bandwidth re-

quired to support traffic between main memory and cache. Porterfield et al. [117; 118]

presents a compiler algorithm for inserting prefetches. The technique is implemented

as a preprocessing that introduced prefetching into the source code. Previous propos-

als prefetch all array references in inner loops one step before. Porterfield presents

that such scheme was issuing too many superfluous prefetches and offered a smarter

scheme supported by dependence vectors and overflow iterations. Since the simu-

lation happened at a fairly conceptual level, the prefetching overhead is predictable

rather than presented. Porterfield [117] also presents software prefetching approach

that reduces cache missing latencies. By providing a non-blocking prefetch instruc-

tion that accesses data from specific memory address to be brought into the cache, the

compiler overlaps the memory latency with other computation. Klaiber et al. [119]

extended the Porterfield’s work by recognizing the requirement to prefetch additional

to a single iteration ahead. They incorporated multiple memory system parameters in

the equation for how much iteration ahead to prefetch, and placed prefetches by hand

at the assembly code level. They proposed prefetching into a separate fetch buffer

rather than directly into the cache. Their results have confirmed that prefetching di-

rectly into the cache can provide significant speedups, and without the drawback of

cache size reduction to house a fetch buffer. Gornish et al. [120; 121] presented an

algorithm for determining the initial instance when it is safe to prefetch shared data in

a multiprocessor by software controlled cache coherency. This work is focusing on a

block prefetch instruction, rather than a single line prefetches. Doshi et al. [7] intro-

duce a software data prefetching technique that improves the performance of programs

that suffer many cache misses at several levels of the memory hierarchy. This tech-

nique utilizes register rotation and prediction method to hide latency such as software

203

11. RELATED WORK

data prefetching and it delivers a performance improvement due to optimized prefetch

scheduling. PMC manages software prefetching by using known Descriptor Memory.

The PMC Descriptor Memory manages memory accesses at compile-time and prefetch

them at run-time before computation. The PMC has ability to access chain of complex

and irregular data transfers where each data transfer can have variable stride.

As software controlled prefetching schemes need support from both hardware and

software, various methods have been proposed that are strictly following hardware

based prefetching. Hardware based prefetching have better dynamic information, and

therefore can recognize things for instance cache conflicts that are difficult to predict

in the software based schemes during compile time. Hardware based prefetching do

have overhead to initialize hardware block at run-time. Porterfield [118] evaluated sev-

eral cache line based hardware prefetching schemes. In a few cases (known memory

accesses), they were fairly efficient at reducing miss rates, but at the for unknown ac-

cesses, they offer a significant increase in memory traffic. Lee et al. [122] proposed a

complex lookahead method for prefetching in a multiprocessor system where shared

data is unachievable. They found that the efficiency of the method is dependent on

branch prediction and synchronization. Baer and Chen [6] projected a scheme that

uses a history buffer to sense strides. In their scheme, a lookahead PC’ theoretically

scans through the program ahead of the usual PC having branch prediction. When the

look ahead PC finds a similar stride entry in the table, it issues a prefetch. Ganusov et

al. [123] proposed the Efficient Emulation of Hardware Prefetchers via Event Driven

Helper Threading (EDHT) that discovers the idea of using accessible general pur-

pose cores in a chip multiprocessor environment as helper engines for separate threads

working on the active cores. The EDHT framework uses lightweight hardware sup-

port for efficient event communication. Extra cores are used to execute prefetching

threads that emulate the behavior of complex outcome prediction based prefetching

algorithms using the EDHT framework. The EDHT framework is used for efficient

event driven software emulation of complex hardware accelerators and describes the

implementation of the EDHT framework for a range of prefetching techniques that

reduced contention for shared resources. Gornish et al. [124] presented integration

of data prefetching scheme that tries to improve software and hardware prefetching.

Software schemes calculate address calculation instructions and a prefetch instruction

for each cache line that needs to be prefetched. Hardware schemes can detect data

204

11.3 Main Memory System

access streams and strides by using complex hardware. In the integrated scheme, the

compiler calculates the values for the prefetching offsets and the number of prefetches

to issue for each access stream. Simple hardware is then provided to handle the bulk of

the remaining accesses. Roth et al. [125] introduced a prefetching scheme that collects

pointer loads along with the dependency relations. A separate prefetch engine takes

the access description and executes load accesses in parallel with the original program.

However, finding dependencies for linked data structures is easy compared to sparse

matrices and index tree based data structures. The address flow of pointer access is ir-

regular and predictable that remains unchanged through registers and transfers to/from

memory. Dynamic prefetching [126; 127] is introduced when the microprocessor is de-

signed to run a wide variety of workloads of which it is agnostic during the design. In

comparison, the PMC Memory Manager dynamically initializes the Descriptor Mem-

ory for known and unknown memory access patterns. PMC also schedules the sparse

vector, linked list, tree, etc. based access patterns at compile or runtime and prefetch

them dynamically.

11.3.2 Scatter Gather Controllers

A scatter gather controller takes noncontiguous data requests reorders them and trans-

fers data between main memory and local memory [128].

Wen et al. [129] explain FT64 and Multi-FT64 based system for High Performance

Computing with streams. FT64 is a programmable 64bit stream processor, working

as coprocessor of an Itanium2 processor to accelerate numerical code. The work de-

scribes a multiprocessor (multi-FT64) system architecture having the Network Inter-

face on each FT64 to connect stream register file to other FT64, using the program

Stream-LUCAS as an example. Wen et al. [130] present an FT64 based on chip mem-

ory sub system that combines software/hardware managed memory structure. Chai

et al. [131] present a configurable stream unit for providing streaming data to hard-

ware accelerators. The stream unit is situated in the system bus, and it prefetches

and align data based on streams descriptors. The descriptor unit presents a method to

let the programmer specify data movement explicitly by describing their memory ac-

cess patterns. These descriptors also define data shape and location of stream. As the

stream unit installed inside on chip bus unit. Internal and external bus delays remain

205

11. RELATED WORK

present while transferring data. DC.Gou et al. [132] employ the extended Single Af-

filiation Multiple Stride (SAMS) synchronous memory scheme at an appropriate level

in the memory hierarchy. SAM memory provides both Arrays of Structures (AoS) and

Structure of Arrays (SoA) views for the structured data to the processor, appearing to

have maintained multiple layouts for the same data. This memory hierarchy is used

to achieve best SIMDization. PMC handles complex and irregular streams for HPC

heterogeneous system. The type of transfer (e.g. row, column, diagonal, etc.) can

be managed by defining the size of the stride. The PMC uses Specialized Scratchpad

memory which handles complex data transfers and feed them to processing cores.

The XPS Channelized DMA Controller [90] provides simple Direct Memory Ac-

cess (DMA) services to peripherals and memory devices on the Processor Local Bus

(PLB). Lattice Semiconductor Scatter/Gather Direct Memory Access Controller IP [133]

and ALTERA Scatter/Gather DMA Controller core [134] provide data transfers from

noncontiguous block of memory to another by means of a series of smaller contiguous

transfers. Both Scatter/Gather cores read a series of descriptors that specify the data

to be transferred. Each Data transfer contains a unit stride that is not suitable for ac-

cess complex unknown memory patterns. These DMA controllers are forced to follow

microprocessor instructions and bus protocol. This introduces onchip/offchip bus de-

lay as well as delay caused by microprocessor during address generation, management

and arrangement. The data transfer of these controllers is regular and is managed/-

controlled by a microprocessor (Master core) using a bus protocol. PMC extends this

model by enabling the memory controller to access complex (regular and irregular)

memory patterns and by working stand-alone in microprocessor or accelerator envi-

ronment.

McKee et al. [135] introduce a Stream Memory Controller (SMC) system that de-

tects and combines streams together at program-time and at run-time prefetches read-

streams, buffers write-streams, and reorders the accesses to use the maximum available

memory bandwidth. The SMC system describes the policies that reorder streams with

a fixed stride between consecutive elements. McKee et al. also proposed the Impulse

memory controller [8; 136] that supports application-specific optimizations through

configurable physical address remapping. The Impulse memory controller [8] supports

application-specific optimizations through configurable physical address remapping.

By remapping physical addresses, applications can control the data to be accessed and

206

11.3 Main Memory System

cached. The Impulse controller works under the command of the operating system
and relies on cache for local memory management. Impulse performs physical address
remapping in software, which may not always be suitable for HPC applications using
hardware accelerators. PMC remaps and produces physical addresses in the hardware
unit without the overhead of operating system intervention. Based on its C/C++ lan-
guage support, PMC can be used with any operating system that supports the C/C++
stack.

207

11. RELATED WORK

208

12

Conclusions and Future Research
Directions

This chapter presents the conclusions of the research pursued during this thesis work.
Moreover, it also throws some light on subsequent future research.

12.1 Conclusions

The ever-increasing complexity of high-performance computing applications limits the
performance due to memory constraints in heterogeneous multi-core systems. In this
thesis, we propose a novel access pattern-based multi-core memory architecture called
PMC that improves the processor-memory performance gap. PMC supports both reg-
ular and irregular memory access patterns for heterogeneous multi-core system using
memory pattern descriptors to reduce the impact of memory latency. Regular and ir-
regular access patterns of multi-cores are described using a separate Descriptor Mem-

ory, which reduces the on-chip communication time and run-time address generation
overhead. The memory architecture uses the Specialized Scratchpad Memory that tai-
lors local memory organization and maps complex access patterns and uses a memory
manager that efficiently accesses, reuses and feeds data access patterns to the multi-
core system. Furthermore, to improve the on-chip data access a Memory Manager

is integrated that efficiently accesses, reuses, aligns and feeds data to the multi-core
heterogeneous system. The Memory Manager organizes and rearranges multiple non-
contiguous memory accesses simultaneously which reduces the read/write delay due

209

12. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

to the control selection of SDRAM memory. The memory architecture applies a run-

time data access prioritizing policy by using the Scheduler which rearranges access

patterns according to data transfer request and size. The Pattern Aware Main Memory

Controller decodes access pattern descriptors and manages DRAM open banks and

rows with respect to the access pattern.

A conventional memory system accesses data using singled or a multiple load/s-

tore and DMA calls. These data transfer calls transfer single or block of regular data

elements. If the access patterns are complex and irregular then the task of program-

ming these accesses becomes significantly more difficult. The PMC memory system

accesses data in the form of patterns/shapes based on application requirements using

specialized data transfer calls. These data transfers not only reduce the programmers

effort of manually arranging memory accesses, but meet the performance requirements

of HPC applications with complex and irregular patterns. A conventional Local Mem-

ory System faces issues while handling complex and irregular data with no data locality.

Unlike the Local Memory structure, the PMC Specialized Scratchpad Memory has a

parameterizable 3D structure that arranges data of noncontiguous memory locations

and deliberately places them at a known location, rather than on fixed 2D structure

according to a fixed hardware/software policy. The Specialized Scratchpad Memory

accesses the whole data pattern as a cache line and temporarily holds data to speedup

later accesses. Unlike a scratchpad memory system which uses a processor core to

handle data transfers and accesses an aligned block of data for each data miss, the

PMC Address Manager handles complex patterns and if there is a data miss it accesses

only the missed data pattern. The PMC Data Manager along with the Address Man-

ager efficiently reuse data patterns already available in Specialized Scratchpad Mem-

ory. A conventional on-chip/off-chip bus system uses multiple requests for complex

data transfers. The PMC Memory Manager improves on-chip/off-chip bus bandwidth

by organizing data transfer requests in descriptor commands that reduce bus switch-

ing and improve address bus bandwidth. The Memory Manager arranges and aligns

data patterns using the Data Manager and the Buffer Memory and feeds patterns to

the multi-core system without using a complex crossbar network. The Main Memory

System reduces external memory delays and improves the data bus performance by uti-

lizing the already open row buffers and uses a multi-bank mode for complex patterns

that enables multiple row buffers and read/write data in parallel.

210

12.1 Conclusions

The PMC system is successfully applied in several different scenarios including
vectors processors, high level synthesis accelerators, graphics system, single-core and
multi-core including heterogeneous multi-cores with general purpose processor and
application specific hardware accelerators. The PMC system is tested and verified on
different types of FPGAs; we have targeted the Xilinx ML505 Evaluation Platform
with a 65 nm Virtex-5 LX FPGA. Figure 12.1 shows maximum operating frequency
of different PMC units on Virtex-5 LX FPGA. The board has 128 Block RAMs and a
single DDR2 SDRAM of 256 MB capacity. On the ML505 board, the PMC system
can operate at a maximum of 260 MHz. The PMC design has been evaluated also
on the Xilinx Virtex-7 FPGA VC707 Evaluation Kit with XC7VX485T 28 nm FPGA.
The board has 68Mb BRAM and 1GB DDR3 SDRAM. The PMC is also tested on
the Altera DE4 Development board with 40 nm Stratix IV EP4SGX230 FPGA fam-
ily. The focus of FGPA based PMC system is for low volume production; whereas
the design can be ported to an ASIC if the demand is high. PMC is written in register
transfer level (RTL) VHDL code, so we can synthesize the design to an application
specific integrated circuit (ASIC) with a vendor library. The PMC design of a tradi-
tional standard cell ASIC device will involve tasks such as; placement and physical
optimization, clock tree synthesis, signal integrity analysis, and routing using different
EDA software tools.

On the ML505 board, the PMC-based multi-core system consumes 21% fewer
hardware resources, 27.9% less on-chip power and achieves 6.8x of speed-up com-

Figure 12.1: PMC : Maximum Operating Frequency of Each Unit on ML505 FPGA

211

12. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

pared to the MicroBlaze-based multi-core system. Using a single core, PMC transfers
regular and irregular data sets up to 20.4x and 3.4x faster, respectively. When com-
pared to the MicroBlaze based multi-core system implemented on the VC707 Kit,
PMC transfers memory patterns up to 4.65x faster. While using the Altera DE4 De-
velopment board, the PMC based Nios Multi-core system achieves between 2.41x to
5.34x of speedup for different applications over conventional Nios Multi-core System.
Results show that PMC draws between 8.1% to 13.5% less power and 2.6x and 5.8x
times less energy than the Nios Multi-core System respectively. PMC transfers differ-
ent data sets up to 1.40x and 1.95x faster for single core and multi-core respectively
than the baseline system with a conventional but state-of-the-art Scatter Gather Direct
Memory Access (SGDMA).

12.2 Future Research Directions

The most recent microprocessor and memory subsystems (e.g. DDR3, DDR4, etc.)
provide higher bandwidth by running the system at higher clock speed but as a conse-
quence, experience higher latency. The idea of our memory architecture is (i) to reduce
the address management overhead by organizing memory accesses into patterns, (ii)
add fairness by scheduling patterns with respect to transfer size and, (iii) utilize mem-
ory banks and rows with respect to access patterns. Recent and emerging technolo-
gies such as Ferroelectric RAM (FeRAM), Phase-Change RAM (PCRAM), Magnetic
RAM (MRAM), Flash, and Memristor, have shown promise, and some of them are
already being considered for implementation into emerging products. FeRAM is a
non-volatile memory offering low power consumption but are poorly scalable [137].
MRAMs [138] and PCRAMs also have poor scalability and require large program-
ming currents [139] during a write cycle that increases power dissipation per bit and
makes voltage scaling difficult. FLASH memories suffer from both slow write/erase
times and low endurance cycles [140]. Memristors [141] however, have demonstrated
promising results in terms of the write operation voltage scaling. But their read/write
access times are much higher than conventional SRAMs and DRAMs. These emerging
memory technologies show promise for ultra-high density memories, but are not feasi-
ble for HPC heterogeneous multi-core memory systems due to their higher read/write
access latencies [142]. For this reason, we expect PMC to be applicable to emerging

212

12.2 Future Research Directions

#pragma CSS task

[input (parameters)] \

[output (parameters)] \

[inout (parameters)] \

[target device([CELL, SMP,

CUDA])] \

[implements (task name)] \

[reduction (parameters)] \

[high priority]

(a)

#pragma PMC task

[input (descriptors)] \

[output (descriptors)] \

[inout (descriptors)] \

[target device([Heterogeneous

Multi-core PMC])] \

[implements (Core Name)] \

[reduction (parameters)] \

[high priority]

(b)

Figure 12.2: Programming Model Data Transfer Example: (a) StarSs (b) PMC

memory technologies. However, we consider that there is significant work to be done

to fully understand how to optimize PMC to manage the actual characteristics of these

new memories.

Virtualization of computer hardware resources is currently one of the main re-

search topics of HPC. Virtualization hides the physical characteristics of the current

computing platform from users and shows an abstract computing platform. Hetero-

geneous multi-core architectures using reconfigurable computing fabrics have shown

great potential in many high-performance applications that benefit from hardware cus-

tomization, while still relying on some amount of programming effort. Applications

are programmed for a given fixed-size hardware. The resulting configuration cannot

be reused to program a device of a different type or size. The key to overcoming

this limitation is to combine hardware virtualization with the pattern-based memory

architecture. By adding more features in Descriptor Memory with a description of

the data flow (bus communication paths between different cores) and the control flow

(sequencing of operators) a hardware virtualization model can be defined.

Parallel Programming Models [70; 143] permit programmers to write sequential

applications, utilize the concurrency and use the heterogeneous components for au-

tomatic parallelization at run time. The idea is to replace the parallel programming

model data transfer calls (e.g. StarSs in Figure 12.2 (a)) with PMC calls (see example

213

12. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

in Figure 12.2 (b)) that can simplify the optimization and rearrangement of memory
transfers by the programmers. The integration of PMC calls in a programming model
will facilitate programmers to write their code without going into hardware details.
The programming model can embed a set of specialized data access patterns inside
PMC API (using Descriptor Memory) that would effectively eliminate the require-
ment of explicitly programming data transfers for a range of applications. Using PMC
function calls, the programming model identifies the functions that will be executed
as tasks on a specialized core (e.g. VP, ASHA , SSP, etc.) and transfers complex reg-
ular/irregular and specialized data patterns. These tasks can potentially be executed
in parallel with defined inputs and outputs using PMC descriptors. The current PMC
performs data transfer synchronization, load balancing, scheduling to optimize data lo-
cality, etc. of multi-cores running on a single cluster and connected to PMC using PBI

and SSSI. A network interface (e.g. Fast/Gigabit ethernet) is required in the PMC archi-
tecture to communicate with multi-core machines running on a different cluster. In this
scenario, the PMC can best utilize the multi-cluster hardware resources, manage and
control different heterogeneous components e.g. memories, processors/accelerators,
etc. Such PMC extensions to Parallel Programming Models will also make easier the
programming of reconfigurable heterogeneous HPC systems and their implementation
in a prototype runtime system.

214

Publications

215

I Publications

I Publications

1. Reconfigurable Memory Controller with Programmable Pattern Support; Tas-

sadaq Hussain, Miquel Pericas, Nacho Navarro, Eduard Ayguade; The 5th HiPEAC

Workshop on Reconfigurable Computing, (WRC 2011).

2. Implementation of a Reverse Time Migration Kernel using the HCE High Level

Synthesis Tool; Tassadaq Hussain, Miquel Pericas, Nacho Navarro, Eduard Ayguade;

The 2011 International Conference on Field-Programmable Technology IIT Delhi

New Delhi, India (FPT 2011).

3. PPMC : A Programmable Pattern based Memory Controller; Tassadaq Hus-

sain,Muhammad Shafiq, Miquel Pericas, Nacho Navarro, Eduard Ayguade; The

8th International Symposium on Applied Reconfigurable Computing (ARC 2012).

4. PPMC : Hardware Scheduling and Memory Management support for Multi Hard-

ware Accelerators; Tassadaq Hussain, Miquel Pericas, Nacho Navarro, Eduard

Ayguade; The 22nd International Conference on Field Programmable Logic and

Applications (FPL 2012).

5. APMC: Advanced Pattern based Memory Controller; Tassadaq Hussain, Os-

car Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguade, Mateo Valero and

Rethinagiri Santhosh Kumar; 22nd ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA 2014).

6. Stand-alone Memory Controller for Graphics System; Tassadaq Hussain, Oscar

Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguade and Mateo Valero; The

10th International Symposium on Applied Reconfigurable Computing (ARC

2014).

7. Memory Controller for Vector Processor; Tassadaq Hussain, Oscar Palomar,

Adrian Cristal, Osman Unsal, Eduard Ayguade and Mateo Valero; The 25th

IEEE International Conference on Application-specific Systems, Architectures

and Processors (ASAP 2014).

217

8. Advanced Pattern based Memory Controller for FPGA based Applications; Tas-

sadaq Hussain, Oscar Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguade

and Mateo Valero; International Conference on High Performance Computing

and Simulation (HPCS 2014).

9. PGC: a pattern-based graphics controller; Tassadaq Hussain and Amna Haider;

International Journal of Circuits and Architecture Design (IJCAD).

10. MAPC: Memory Access Pattern based Controller; Tassadaq Hussain, Oscar

Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguade and Mateo Valero; The

24th International Conference on Field Programmable Logic and Applications

(FPL 2014).

11. PMSS: A programmable memory system and scheduler for complex memory

patterns; Tassadaq Hussain, Amna Haider and Eduard Ayguade; ScienceDirect:

Journal of Parallel and Distributed Computing 2014.

12. AMMC: Advanced Multi-core Memory Controller; Tassadaq Hussain, Oscar

Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguade and Mateo Valero; 2014

International Conference on Field-Programmable Technology (FPT 2014).

13. PAMS: Pattern Aware Memory System For Embedded Systems; Tassadaq Hus-

sain, Nehir Sonmez. Oscar Palomar, Adrian Cristal, Osman Unsal, Eduard

Ayguade and Mateo Valero; 2014 International Conference on ReConFigurable

Computing and FPGAs (ReConFig 2014).

14. AMC: Advanced Multi-accelerator Controller; Tassadaq Hussain, Amna Haider,

Shakaib A. Gursal and Eduard Ayguade; ScienceDirect: Journal of Parallel

Computing 2014.

15. Advanced Memory Controller for Vector Processor; Tassadaq Hussain, Oscar

Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguade and Mateo Valero; To

appear in Journal of Signal Processing Systems (JSPS) 2015.

218

II Other Papers and Extended Abstracts

II Other Papers and Extended Abstracts

1. Streaming Scatter Gather DMA Controller for Hardware Accelerators; Tassadaq
Hussain, Miquel Pericas, Nacho Navarro, Eduard Ayguade; Advanced Computer
Architecture and Compilation for Embedded Systems (ACACES 2010); ISBN
978-90-382-1631-7, Terrassa, Spain, July 2010.

2. RTM Kernel Implementation on FPGA using High Level Synthesis Tool; Tas-
sadaq Hussain, Paolo Palazzari and Koen De Bosschere; HiPEAC PhD Intern-
ship Project Report: 2012; isbn : 978-3659557651

3. PhD Internship Report; Tassadaq Hussain; Appeared in HiPEAC info (issue 29):
January 2012

4. Programmable Memory Controller for Vector System-on-Chip; Tassadaq Hus-
sain; The seventh Microsoft Research Summer School, Microsoft Research in
Cambridge, U.K., from 2 July to 6 July 2012.

5. PPMC: On Chip Memory Manager and Scheduler for Vector Processor; Tas-
sadaq Hussain; Appeared in HiPEAC info (issue 32): October 2012.

6. PGC: Programmable Graphics Controller; Tassadaq Hussain and Amna Haider;
Appeared in HiPEAC info (issue 38): April 2014.

7. Supporting Scatter/Gather Tasks in Manycore architectures; Tassadaq Hussain;
1st BSC Doctoral Symposium in Barcelona Supercomputing Center: May 2014.

219

220

References

[1] Kim Jung-Sik et al., “A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM With 4 128
I/Os Using TSV Based Stacking,” Solid-State Circuits, IEEE Journal of. 4

[2] Kho, Rex et al., “A 75 nm 7 Gb/s/pin 1 Gb GDDR5 graphics memory device with
bandwidth improvement techniques.” 4

[3] Monica S. Lam, et al., “The Cache Performance and Optimizations of Blocked Algo-
rithms,” in ASPLOS’91. 4, 151

[4] Banakar Rajeshwari, Steinke Stefan, Lee Bo-Sik, Balakrishnan M, Marwedel Peter,
“Scratchpad memory: design alternative for cache on-chip memory in embedded sys-
tems,” in Proceedings of the 10th international symposium on Hardware/software code-
sign. ACM, 2002. 4, 14

[5] Udayakumaran Sumesh, Dominguez Angel and Barua Rajeev, “Dynamic allocation for
scratch-pad memory using compile-time decisions,” ACM Transactions on Embedded
Computing Systems (TECS), 2006. 4, 15

[6] J. Baer and T-F. Chen., “An effective on-chip preloading scheme to reduce data access
penalty.” in SC’91. 4, 151, 204

[7] Gautam Doshi, et al., “Optimizing Software Data Prefetches with Rotating Registers,”
in PACT’01. 4, 151, 203

[8] Zhang. Lixin et al., “The impulse memory controller,” IEEE Transactions on Comput-
ers, 2001. 4, 151, 206

[9] Tassadaq Hussain, Miquel Pericas, Nacho Navarro and Eduard Ayguade, “PPMC: Hard-
ware Scheduling and Memory Management support for Multi Hardware Accelerators.”
in FPL 2012. 4, 25, 117, 151

221

REFERENCES

[10] Diniz Pedro, et al., “Data search and reorganization using FPGAs: application to spatial
pointer-based data structures,” in FCCM’03. 5, 151

[11] Xilinx Virtex-7, “Leading FPGA System Performance and Capacity,” 2012. [Online].
Available: http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm 5,
131

[12] Bhole Mayur, Kurude Aditya and Pawar Sagar, “3D Tri-Gate Transistor Technology and
Next Generation FPGAs.” 5

[13] Leiserson Charles E and Mirman Ilya B, “How to survive the multicore software revo-
lution (or at least survive the hype),” Cilk Arts, Cambridge, 2008. 6

[14] Shan Yi, Hao Yuchen, Wang Wenqiang, Wang Yu, Chen Xu, Yang Huazhong, Luk
Wayne, “Hardware Acceleration for an Accurate Stereo Vision System Using Mini-
Census Adaptive Support Region,” ACM Transactions on Embedded Computing Systems
(TECS), 2014. 6

[15] Yiu Ka Fai Cedric, Li Zhibao, Low Siow Yong and Nordholm Sven, “FPGA multi-filter
system for speech enhancement via multi-criteria optimization,” Applied Soft Comput-
ing, 2014. 6

[16] Tassadaq Hussain, Miquel Pericas, Nacho Navarro and Eduard Ayguade, “Implementa-
tion of a Reverse Time Migration Kernel using the HCE High Level Synthesis Tool,”
FPT 2012. 6, 25, 125, 131, 132

[17] Kuon Ian and Rose Jonathan, “Measuring the gap between FPGAs and ASICs,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
2007. 7

[18] Wen Xingzhi and Vishkin Uzi, “Fpga-based prototype of a pram-on-chip processor,” in
Proceedings of the 5th conference on Computing frontiers. ACM, 2008. 7

[19] Athanas Peter, Pnevmatikatos Dionisios and Sklavos Nicolas, Embedded Systems De-
sign with FPGAs. Springer, 2013. 7

[20] Embedded Development Kit EDK 10.1i, MicroBlaze Processor Reference Guide. 8, 69,
88, 173

[21] “Nios II: Processor Reference Handbook,” 2009. 8, 105

222

http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm

REFERENCES

[22] Yiannacouras Peter et al., “The microarchitecture of FPGA-based soft processors,” in In-
ternational conference on Compilers, architectures and synthesis for embedded systems
2005. 8, 103

[23] Villarreal Jason, Park Adrian, Najjar Walid and Halstead Robert, “Designing modular
hardware accelerators in C with ROCCC 2.0,” in The 18th Annual International IEEE
Symposium on Field-Programmable Custom Computing Machines. FCCM2010. 8, 11,
69, 142

[24] Feist Tom, “Vivado design suite,” Xilinx, White Paper Version, vol. 1, 2012. 10

[25] “AutoESL High-Level Synthesis Tool.” [Online]. Available: http://www.xilinx.com/
tools/autoesl.htm 10

[26] “Impulse CoDeveloper Overview,” 3,April 2011. [Online]. Available: http://www.
impulseaccelerated.com/ 10

[27] Matthew Bowen, “Handel-C Language Reference Manual.” 10

[28] Graphics, Mentor, “Catapult C synthesis overview,” 2012. 10

[29] Alessandro Marongiu and Paolo Palazzari, “The HARWEST Compiling Environment:
Accessing the FPGA World through ANSI-C Programs.” CUG 2008 Proceedings, 2008.
11, 132

[30] Yiannacouras, et al., “VESPA: portable, scalable, and flexible FPGA-based vector pro-
cessors,” in CASES 2008, Proceedings of international conference. 11, 95, 96, 100, 104,
199

[31] Chou Christopher H et al., “VEGAS: soft vector processor with scratchpad memory,” in
Proceedings of the international symposium on FPGA 2011. 11, 95, 96, 199

[32] Russell Richard M, “The CRAY-1 computer system,” Communications of the ACM
1978. 11

[33] Dominguez Angel, Udayakumaran Sumesh and Barua Rajeev, “Heap Data Allocation
to Scratch-pad Memory in Embedded Systems,” J. Embedded Comput. 15

[34] Tassadaq Hussain, Miquel Pericas, Nacho Navarro and Eduard Ayguade, “Reconfig-
urable Memory Controller with Programmable Pattern Support,” HiPEAC Workshop on
Reconfigurable Computing, Jan, 2011. 25, 67

223

http://www.xilinx.com/tools/autoesl.htm
http://www.xilinx.com/tools/autoesl.htm
http://www.impulseaccelerated.com/
http://www.impulseaccelerated.com/

REFERENCES

[35] Tassadaq Hussain, Muhammad Shafiq, Miquel Pericas, Nacho Navarro and Eduard
Ayguade, “PPMC: A Programmable Pattern based Memory Controller,” in ARC 2012.
25, 67, 117, 179

[36] Tassadaq Hussain, Oscar Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguady, Ma-
teo Valero and Amna Haider, “Stand-alone Memory Controller for Graphics System,” in
The 10th International Symposium on Applied Reconfigurable Computing (ARC 2014).
ACM, 2014. 25, 77

[37] Tassadaq Hussain and Amna Haider, “PGC: A Pattern-Based Graphics Controller,” Int.
J. Circuits and Architecture Design, 2014. 25, 77

[38] Tassadaq Hussain, Oscar Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguady and
Mateo Valero, “Memory Controller for Vector Processor,” in The 25th IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors. IEEE
ASAP 2014 Conference, 2014. 25, 95

[39] Tassadaq Hussain, “Programmable Memory Controller for Vector System-on-Chip,”
The seventh Microsoft Research Summer School, Microsoft Research in Cambridge,
U.K, 2012. 25, 95

[40] Tassadaq Hussain, Amna Haider and Eduard Ayguade, “PMSS: A programmable mem-
ory system and scheduler for complex memory patterns,” ScienceDirect Journal of Par-
allel and Distributed Computing, 2014. 25, 117

[41] Tassadaq Hussain, Amna Haider, Shakaib A. Gursal and Eduard Ayguade;, “AMC:
Advanced Multi-accelerator Controller,” ScienceDirect Journal of Parallel Computing,
2014. 25, 131

[42] Tassadaq Hussain, Oscar Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguady and
Mateo Valero, “Advanced Pattern based Memory Controller for FPGA based Appli-
cations,” in International Conference on High Performance Computing & Simulation.
ACM, IEEE, 2014, p. 8. 26, 151

[43] Tassadaq Hussain, Oscar Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguady, Ma-
teo Valero and Rethinagiri, Santhosh Kumar, “APMC: Advanced Pattern based Memory
Controller,” 22nd ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA 2014), 2014. 26, 151

224

REFERENCES

[44] Tassadaq Hussain, Oscar Palomar, Adriyn Cristal, Osman Unsal, Eduard Ayguady and
Mateo Valero, “AMMC: Advanced Multi-core Memory Controller,” in 2014 Interna-
tional Conference on Field-Programmable Technology (FPT 2014). IEEE. 26, 169

[45] Tassadaq Hussain, Oscar Palomar, Adrian Cristal, Osman Unsal, Eduard Ayguady and
Mateo Valero, “MAPC: Memory Access Pattern based Controller,” in International
Conference on Field Programmable Logic and Applications (FPL2014). IEEE. 26,
179

[46] Tassadaq Hussain, Nehir Sonmez, Oscar Palomar, Adriyn Cristal, Osman Unsal, Ed-
uard Ayguady and Mateo Valero, “PAMS: Pattern Aware Memory System for Embed-
ded Systems,” in International Conference on Reconfigurable Computing and FPGAs
(ReConFig 2014). IEEE, 2014. 26, 179

[47] Cong Jason, Ghodrat Mohammad Ali, Gill Michael, Grigorian Beayna and Reinman
Glenn, “CHARM: a composable heterogeneous accelerator-rich microprocessor,” in
Proceedings of the 2012 ACM/IEEE international symposium on Low power electronics
and design. ACM, 2012. 67

[48] Xilinx, Memory Interface Solutions, December 2, 2009. 72, 157

[49] M. Shafiq, M. Pericas, and R., “Exploiting memory customization in fpga for 3d stencil
computations.” 73

[50] Chen Chang-San, “Programmable multi-level bus arbitration apparatus in a data pro-
cessing system,” US Patent 5,528,767. 77

[51] Hartley Richard and Zisserman Andrew, Multiple view geometry in computer vision.
Cambridge Univ Press, 2000, vol. 2. 81

[52] “Xilinx University Program XUPV5-LX110T Development System.” [Online].
Available: http://www.xilinx.com/univ/xupv5-lx110t.htm 88, 123, 138

[53] Xilinx LogiCORE IP, Local Memory Bus (LMB), December, 2009. 89

[54] Embedded Development KitEDK 10.1i, MicroBlaze Processor Reference Guide. 89,
140

[55] “Visual computing technology from NVIDIA,” http://www.nvidia.com/. 95

[56] Espasa Roger et al., “Vector architectures: past, present and future,” in 12th interna-
tional conference on Supercomputing, 1998. 95

225

http://www.xilinx.com/univ/xupv5-lx110t.htm
http://www.nvidia.com/

REFERENCES

[57] Kozyrakis C. et al., “Overcoming the limitations of conventional vector processors,” in
ACM SIGARCH Computer Architecture News, 2003. 95

[58] Lee Yunsup et al., “Exploring the tradeoffs between programmability and efficiency in
data-parallel accelerators,” 2011 booktitle=. 95

[59] Cheng Hui, “Vector pipelining, chaining, and speed on the IBM 3090 and cray X-MP.”
97

[60] Weiss Michael, “Strip mining on SIMD architectures,” in Proceedings of the 5th inter-
national conference on Supercomputing. ACM, 1991. 97

[61] X. Gu, J. Yang, X. Wu, C. H. and P. Liu, “An efficient architectural design of hardware
interface for heterogeneous multi-core system,” in Proceedings of the 8th IFIP interna-
tional conference on Network and parallel computing. Springer-Verlag, 2011. 117

[62] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An fpga-based soft multiprocessor
system for ipv4 packet forwarding,” 2005. 117

[63] C .Boneti, R. Gioiosa, F. Cazorla, and M. Valero, “A dynamic scheduler for balancing
HPC applications,” in Proceedings of the 2008 ACM/IEEE conference on Supercomput-
ing, 2008. 117

[64] Cedric Augonnet, et al., “Data-Aware Task Scheduling on Multi-accelerator Based Plat-
forms,” in ICPADS’10. 117

[65] Chun Liu, Anand Sivasubramaniam and Mahmut Kandemir, “Organizing the Last Line
of Defense before Hitting the Memory Wall for CMPs,” High-Performance Computer
Architecture, International Symposium on, 2004. 117

[66] Stitt, Greg, et al., “Traversal caches: a first step towards FPGA acceleration of pointer-
based data structures,” in CODES+ISSS’08. 117, 198

[67] Krishnamurthy A., Culler D. E., Dusseau, A., Goldstein, S. C., Lumetta S., von
Eicken T. and Yelick K., “Parallel programming in Split-C,” in Proceedings of the 1993
ACM/IEEE conference on Supercomputing, 1993. 117

[68] Hatcher P. J., Quinn M. J., Lapadula A. J., Seevers B. K., Anderson R. J. and Jones R.
R., “Data-Parallel Programming on MIMD Computers,” IEEE Trans. Parallel Distrib.
Syst. 117

226

REFERENCES

[69] A. Cedric, Clet-Ortega, J. Thibault, S. Namyst and Raymond, “Data-Aware Task
Scheduling on Multi-accelerator Based Platforms,” in Proceedings of the 2010 IEEE
16th International Conference on Parallel and Distributed Systems, 2010. 117

[70] Meenderinck C. and Juurlink Ben, “A Case for Hardware Task Management Support
for the StarSS Programming Model,” in Proceedings of the 2010 13th Euromicro Con-
ference. IEEE Computer Society, 2010. 117, 213

[71] Sally A. McKee, “Reflections on the memory wall,” in In Proceedings of the 1st confer-
ence on computing frontiers, , 2004. 117

[72] Awasthi Manu, Nellans David W., Sudan Kshitij, Balasubramonian Rajeev and Davis
Al, “Handling the problems and opportunities posed by multiple on-chip memory con-
trollers,” in Proceedings of the 19th international conference on Parallel architectures
and compilation techniques, 2010. 118

[73] Nuvacon Corporation, Multi-DRAM Controller, 2004. [Online]. Available: www.
nuvacon.com 118, 179

[74] “Xilinx Integrated Software Enviroment Design Suite (ISE) Version 11.” [Online].
Available: http://www.xilinx.com/support/techsup/tutorials/tutorials11.htm 123, 138

[75] “Xilinx Platform Studio (XPS) Version 11.” [Online]. Available: http://www.xilinx.
com/support/documentation/dt edk edk11-1.htm 123, 138

[76] “Xilinx Power Estimator (XPE) Version 14.3.” [Online]. Available: http://www.xilinx.
com/ise/power tools 123, 138

[77] Xilinx , “Xilkernel,” December , 2006. [Online]. Available: www.xilinx.com/ise/
embedded/edk91i docs/xilkernel v3 00 a.pdf 123, 141, 173

[78] Scogland, et al., “A first look at integrated GPUs for green high-performance comput-
ing,” Computer Science - Research and Development. 128

[79] “Stratix IV GX FPGA Development Kits.” [Online]. Available: http://www.altera.com/
products/devkits/altera/kit-siv-gx.html 131

[80] Xilinx Artix-7, “Leading System Performance per Watt for Cost Sensitive Applica-
tions,” 2012. [Online]. Available: http://www.xilinx.com/products/silicon-devices/fpga/
artix-7/index.htm 131

227

www.nuvacon.com
www.nuvacon.com
http://www.xilinx.com/support/techsup/tutorials/tutorials11.htm
http://www.xilinx.com/support/documentation/dt_edk_edk11-1.htm
http://www.xilinx.com/support/documentation/dt_edk_edk11-1.htm
http://www.xilinx.com/ise/power_tools
http://www.xilinx.com/ise/power_tools
www.xilinx.com/ise/embedded/edk91i_docs/xilkernel_v3_00_a.pdf
www.xilinx.com/ise/embedded/edk91i_docs/xilkernel_v3_00_a.pdf
http://www.altera.com/products/devkits/altera/kit-siv-gx.html
http://www.altera.com/products/devkits/altera/kit-siv-gx.html
http://www.xilinx.com/products/silicon-devices/fpga/artix-7/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/artix-7/index.htm

REFERENCES

[81] Halfhill T.R., “Tabula’s time machine,” Microprocessor Report, 2010. 131

[82] Kirk Saban, “Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough
FPGA Capacity, Bandwidth, and Power Efficiency,” in White Paper: Virtex-7 FPGAs,
2011. 131

[83] Wulf Wm. A. and McKee Sally A., “Hitting the memory wall: implications of the obvi-
ous,” SIGARCH Comput. Archit. News, 1995. 132

[84] Sally A. McKee, “Reflections on the memory wall,” ACM: Proceedings of the 1st con-
ference on Computing frontiers, 2004. 132

[85] M.C.McFarland, A.C.Parker, and R.Camposano, “The high-level synthesis of digital
systems,” Proc. IEEE, vol. 78, no. 2, 1990. 132

[86] PLDA, PCI Express XpressLite2 Reference Manual, February 2010. [Online].
Available: http://www.plda.com/prodetail.php?pid=102 140

[87] Xilinx, LogiCORE IP I/O Module, October, 2012. 140

[88] Xilinx LogiCORE IP, Multi-Port Memory Controller (MPMC), March 2011. 140

[89] “Xilinx Software Development Kit (SDK).” [Online]. Available: http://www.xilinx.
com/tools/sdk.htm 141

[90] “Embedded System Tools Reference Manual EDK 13.1.” [Online]. Available:
www.xilinx.com/support/documentation/sw manuals/xilinx13 2/est rm.pdf 141, 206

[91] “SiSoftware Sandra 2013.” 147

[92] Vajda, András and Brorsson, Mats and Corcoran, Diarmuid, Programming many-core
chips. Springer, 2011. 169

[93] Steinke Stefan, Grunwald Nils, Wehmeyer Lars, Banakar Rajeshwari, Balakrishnan M,
Marwedel Peter, “Reducing energy consumption by dynamic copying of instructions
onto onchip memory,” in System Synthesis, 2002. 15th International Symposium on.
197

[94] Panda Preeti Ranjan, Dutt Nikil D and Nicolau Alexandru, Memory issues in embedded
systems-on-chip: optimizations and exploration. Springer, 1999. 197

228

http://www.plda.com/prodetail.php?pid=102
http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com/tools/sdk.htm
www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/est_rm.pdf

REFERENCES

[95] Suhendra Vivy, Mitra Tulika, Roychoudhury Abhik and Chen Ting, “WCET centric data
allocation to scratchpad memory,” in Real-Time Systems Symposium, 2005. RTSS 2005.
26th IEEE International. 197

[96] Deverge J-F and Puaut Isabelle, “WCET-directed dynamic scratchpad memory alloca-
tion of data,” in Real-Time Systems, 2007. ECRTS’07. 19th Euromicro Conference on.
198

[97] Udayakumaran Sumesh, Dominguez Angel and Barua Rajeev, “Dynamic allocation for
scratch-pad memory using compile-time decisions,” ACM Transactions on Embedded
Computing Systems (TECS). 198

[98] James Coole, John Wernsing and Greg Stitt, “A Traversal Cache Framework for FPGA
Acceleration of Pointer Data Structures: A Case Study on Barnes-Hut N-body Simula-
tion,” in ReConFig’09. 198

[99] Mellor-Crummey et al., “Improving memory hierarchy performance for irregular appli-
cations,” In ICS ’99. 199

[100] C. Pedro and P. Joonseok, “Data Search and Reorganization Using FPGAs: Application
to Spatial Pointer-based Data Structures.” 199

[101] Yu, Jason et al., “Vector processing as a soft processor accelerator,” ACM Transactions
on Reconfigurable Technology and Systems, 2009. 199

[102] Severance Aaron et al., “VENICE: A compact vector processor for FPGA applications,”
in International Conference on Field-Programmable Technology 2012. 199

[103] Zhuravlev Sergey, Blagodurov Sergey and Fedorova Alexandra, “Addressing shared re-
source contention in multicore processors via scheduling,” in ACM SIGARCH Computer
Architecture News, 2010. 200

[104] “AMBA 4 AXI,” http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ihi0022e/index.html, 2013. 200

[105] IBM CoreConnect, “PLB Crossbar Arbiter Core,” 2001. 200

[106] P. Marchand and P. Sinha, “A hardware accelerator for controlling access to multiple-
unit resources in safety/time-critical systems.” Inderscience Publishers, April 2007.
201

229

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html

REFERENCES

[107] L. Yan, W. Hu, T. Chen, Z. Huang, “Hardware Assistant Scheduling for Synergistic
Core Tasks on Embedded Heterogeneous Multi-core System,” in Journal of Information
& Computational Science (2008). 201

[108] Lu Jiwei, Das Abhinav, Hsu Wei-Chung, Nguyen Khoa and Abraham Santosh G, “Dy-
namic helper threaded prefetching on the Sun UltraSPARC® CMP processor,” in Mi-
croarchitecture, 2005. MICRO-38. Proceedings. 38th Annual IEEE/ACM International
Symposium on. IEEE, 2005, pp. 12–pp. 201

[109] Chaudhry Shailender et al., “Simultaneous speculative threading: a novel pipeline ar-
chitecture implemented in sun’s rock processor,” ACM, 2009. 201

[110] Steffan J Greggory, Colohan Christopher B, Zhai Antonia and Mowry Todd C, A scal-
able approach to thread-level speculation. ACM, 2000. 201

[111] Rixner Scott et al., “Memory access scheduling,” in ACM SIGARCH Computer Archi-
tecture News, 2000. 201

[112] Shao Jun et al., “A burst scheduling access reordering mechanism,” in High Performance
Computer Architecture, HPCA 2007. 201

[113] Kim, Yoongu et al., “ATLAS: A scalable and high-performance scheduling algorithm
for multiple memory controllers,” in HPCA, 2010. 201

[114] Bojnordi Mahdi Nazm and Ipek Engin, “PARDIS: a programmable memory controller
for the DDRx interfacing standards.” 202

[115] Grun Peter et al., “APEX: access pattern based memory architecture exploration,” in
14th international symposium on Systems synthesis, 2001. 202

[116] Jesus Corbal, et al., “Command Vector Memory Systems: High Performance at Low
Cost,” in PACT’01. 202

[117] D. Callahan, K. Kennedy, and A. Porterfield., “Software prefetching,” In Proceedings
of the Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 203

[118] A. K. Porterfield., “Software Methods for Improvement of Cache Performance on Su-
percomputer Applications,” PhD thesis, Department of Computer Science, Rice Uni-
versity,. 203, 204

230

REFERENCES

[119] A. C. Klaiber and H. M. Levy., “ Architecture for software-controlled data prefetching.”
In Proceedings of the 18th Annual International Symposium on Computer Architecture.
203

[120] E. H. Gornish., “ Compile time analysis for data prefetching,” Master’s thesis, Univer-
sity of Illinois at Urbana-Champaign. 203

[121] E. Gornish, E. Granston and A. Veidenbaum., “ Compiler-Directed Data Prefetching in
Multiprocessors with Memory Hierarchies.” In International Conference on Supercom-
puting,. 203

[122] R. L. Lee., “The Effectiveness of Caches and Data Prefetch Buffers in Large-Scale
Shared Memory Multiprocessors.” PhD thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, May 1987. 204

[123] Ganusov Ilya and Burtscher Martin, “Efficient emulation of hardware prefetchers via
event-driven helper threading,” in Proceedings of the 15th international conference on
Parallel architectures and compilation techniques, 2006. 204

[124] Gornish Edward H. and Veidenbaum Alexander, “An Integrated Hardware/Software
Data Prefetching Scheme for Shared-Memory Multiprocessors;,” International Journal
of Parallel Programming, 1999. 204

[125] Roth, Amir and Moshovos, Andreas and Sohi, Gurindar S., “Dependence based
prefetching for linked data structures,” in ASPLOS’98. 205

[126] Keith I. Farkas, Norman P. Jouppi and Paul Chow, “How Useful Are Non-blocking
Loads, Stream Buffers, and Speculative Execution in Multiple Issue Processors?” 1994.
205

[127] Norm Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” 28-31 May 1990. 205

[128] McGowan Steven, “Scatter gather emulation,” 2013, US Patent 8,510,759. 205

[129] M Wen, N Wu, C Zhang, W Wu, Q Yang and C Xun, “FT64: Scientific Computing with
Streams,” High Performance Computing HiPC 2007. 205

[130] M Wen, N Wu, C Zhang, Q Yang, J Ren, Y He, W Wu, J Chai, M Guan, C Xun, “On-
Chip Memory System Optimization Design for the FT64 Scientific Stream Accelerator,”
Micro IEEE 2008. 205

231

REFERENCES

[131] Sek M. Chai, N. Bellas, M. Dwyer and D. Linzmeier, “Stream Memory Subsystem
in Reconfigurable Platforms.” 2nd Workshop on Architecture Research using FPGA
Platforms, 2006. 205

[132] Gou, Chunyang, Kuzmanov Georgi and Gaydadjiev Georgi N., “SAMS multi-layout
memory: providing multiple views of data to boost SIMD performance,” 2010. 206

[133] Lattice Semiconductor Corporation, Scatter-Gather Direct Memory Access Controller
IP Core Users Guide, October 2010. 206

[134] A. Corporation, Scatter-Gather DMA Controller Core, Quartus II 9.1, November 2009.
206

[135] Sally A. McKee, et al., “Dynamic Access Ordering for Streamed Computations,” IEEE
Trans. Computer. November 2000. 206

[136] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang, Erik Brunvand,
Al Davis,Chen-Chi Kuo, Ravindra Kuramkote,Michael Parker, Lambert Schaelicke, and
Terry Tateyama, “Impulse: Building a Smarter Memory Controller,” Fifth International
Symposium on High Performance Computer Architecture (HPCA-5), January 1999. 206

[137] Pellizzer Fabio and Bez Roberto, “Non-volatile semiconductor memories for nano-scale
technology,” in Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on. 212

[138] Satyamoorthy Prateeksha and Parthasarathy Sonali, “MRAM for Shared Memory in
GPGPUs,” Captured from http://www. cs. virginia. edu/˜ sp5ej/MRAM. pdf, 2010. 212

[139] Ren Wanchun, Jing XZ, Xiang YH, Xiao HB, Zhang BC, Liu B, Song ZT, Rao F, Xu
J, Wu GP et al., “(Invited) Thin Film Challenges of Phase Change Random Access
Memory,” ECS Transactions, 2013. 212

[140] Eshraghian Kamran, Cho Kyoung-Rok, Kavehei Omid, Kang Soon-Ku, Abbott Derek
and Kang Sung-Mo Steve, “Memristor MOS content addressable memory (MCAM):
Hybrid architecture for future high performance search engines,” Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, 2011. 212

[141] Choi Yoonsuk and Latifi Shahram, “Future prospects of DRAM: emerging alternatives,”
International Journal of High Performance Systems Architecture, 2012. 212

[142] “European Technology Platform for High Performance Computing ,” http://www-hpc.
cea.fr/docs/2013/ETP4HPC book singlePage.pdf, 2011. 212

232

http://www-hpc.cea.fr/docs/2013/ETP4HPC_book_singlePage.pdf
http://www-hpc.cea.fr/docs/2013/ETP4HPC_book_singlePage.pdf

REFERENCES

[143] “Cell Superscalar (CellSs) User Manual (Barcelona Supercomputing Center),” May
2009. 213

233

REFERENCES

234

Declaration

I herewith declare that I have produced this work without the prohibited
assistance of third parties and without making use of aids other than those
specified; notions taken over directly or indirectly from other sources have
been identified as such. This work has not previously been presented
in identical or similar form to any other Spanish or foreign examination
board.

The thesis work was conducted from September 2009 to December
2014 under the supervision of Prof. Eduard Ayguadé, Prof. Mateo Valero,
Dr. Adrian Cristal, Dr. Osman S. Ünsal and Dr. Oscar Palomar.

Tassadaq Hussain,
Barcelona, December 2014.

	List of Figures
	List of Tables
	I Introduction and Research Proposal
	1 Introduction
	1.1 Target Heterogeneous Multi-core Systems
	1.1.1 Field Programmable Gate Arrays (FPGA)
	1.1.2 Scalar Soft Processor core (SSP)
	1.1.3 Application Specific Hardware Accelerator (ASHA)
	1.1.4 Vector Processor (VP)

	1.2 A Conventional Memory System
	1.2.1 Local Memory System
	1.2.1.1 Cache
	1.2.1.2 Scratchpad

	1.2.2 Main Memory System

	1.3 Problem and Motivation
	1.3.1 Multi-core System Delays
	1.3.1.1 Memory Management Delay
	1.3.1.2 Bus Delay
	1.3.1.3 Scheduling Delay
	1.3.1.4 Memory Delay

	1.3.2 Access Patterns
	1.3.2.1 Regular Access Patterns
	1.3.2.2 Irregular Access Patterns

	1.3.3 Scheduling
	1.3.3.1 Symmetric Scheduling
	1.3.3.2 Asymmetric Scheduling
	1.3.3.3 Run-time Scheduling

	1.4 Thesis Contributions
	1.4.1 Regular Data Access Patterns For Single Core
	1.4.2 Multi Core System with Regular Data Patterns
	1.4.3 Single Core System with Irregular Data Transfer Support
	1.4.4 Multi Core System with Irregular Data Transfer Support

	1.5 Thesis Organization

	2 Proposed Heterogeneous Multi-Core Memory System
	2.1 Programmable Memory Controller Architecture
	2.1.1 Bus System
	2.1.1.1 Front-End Interface
	2.1.1.2 On-Chip Bus System

	2.1.2 Local Memory System
	2.1.2.1 Descriptor Memory
	2.1.2.2 Buffer Memory
	2.1.2.3 Specialized Scratchpad Memory

	2.1.3 Memory Manager
	2.1.3.1 Address Manager
	2.1.3.2 Data Manager
	2.1.3.3 Scheduler

	2.1.4 Main Memory System

	2.2 Programming Model
	2.2.1 Descriptors and Data Structures
	2.2.2 Working Examples
	2.2.3 Access Patterns
	2.2.3.1 Vector Access Pattern
	2.2.3.2 Tiling Access

	2.2.4 Programming PMC

	II Uni-core Memory System for Regular Data Pattern
	3 PPMC: A Programmable Pattern Based Memory Controller
	3.1 System Architecture
	3.2 Evaluation Architecture
	3.2.1 MicroBlaze SSP
	3.2.2 ROCCC ASHA
	3.2.3 PPMC based SoC
	3.2.4 Baseline MPMC based SoC
	3.2.5 Test Applications

	3.3 Results and Discussion
	3.4 Conclusion

	4 A Bus Controller for Graphics System
	4.1 PGC Graphics System Specification
	4.1.1 Overview of PGC System
	4.1.2 Processing Unit
	4.1.3 Bus Unit
	4.1.3.1 Bus Specification
	4.1.3.2 Bus Control unit
	4.1.3.3 Bus Interconnect

	4.2 Experimental Framework
	4.2.1 MicroBlaze based Graphics System
	4.2.2 PGC based Graphics System

	4.3 Results and Discussion
	4.3.1 Bus Performance
	4.3.1.1 Single-Camera Bus Bandwidth
	4.3.1.2 Multi-Camera Bus Bandwidth

	4.3.2 Snapshot Mode Performance
	4.3.3 Applications Performance
	4.3.4 Power

	4.4 Conclusion

	5 PVMC: Programmable Vector Memory Controller
	5.1 Vector Processor
	5.2 Programmable Vector Memory Controller
	5.3 PVMC Functionality
	5.3.1 Memory Hierarchy
	5.3.2 Address Registers
	5.3.3 Main Memory Controller
	5.3.4 Programming Vector Accesses

	5.4 Experimental Framework
	5.4.1 The VESPA System
	5.4.1.1 SSP
	5.4.1.2 Vector Processor
	5.4.1.3 Memory System

	5.4.2 The Proposed PVMC System
	5.4.3 The Baseline Nios System
	5.4.4 Applications

	5.5 Results and Discussion
	5.5.1 Memory & Bus System
	5.5.2 Performance Comparison
	5.5.3 Dynamic Power & Energy
	5.5.4 Bandwidth

	5.6 Conclusion

	III Multi-core Memory System for Regular Data Pattern
	6 PMSS: A Programmable Memory System and Scheduler for Complex Memory Patterns
	6.1 PMSS Architecture
	6.1.1 Memory Manager
	6.1.1.1 Scheduling
	6.1.1.2 Memory Organization
	6.1.1.3 Locality and Isolation
	6.1.1.4 Programmability

	6.2 Evaluation Architecture
	6.2.1 MicroBlaze based Multi-ASHA System
	6.2.2 PMSS based multi-ASHA System
	6.2.3 Test Applications

	6.3 Results and Discussion
	6.3.1 Memory Bandwidth
	6.3.2 Application's Performance
	6.3.3 System Performance
	6.3.4 Static Power

	6.4 Conclusion

	7 AMC: Advanced Multi-accelerator Controller
	7.1 Architecture
	7.2 Evaluation Architecture
	7.2.1 Intel based HLS multi-ASHA System
	7.2.1.1 The Master Core
	7.2.1.2 The Programming API
	7.2.1.3 The PCI Bus Unit

	7.2.2 MicroBlaze based HLS multi-ASHA System
	7.2.3 AMC based HLS multi-ASHA System
	7.2.4 HLS multi-ASHA Kernels

	7.3 Results and Discussion
	7.3.1 Application Performance
	7.3.1.1 Applications Performance without On-Chip Memory
	7.3.1.2 Applications Performance with On-Chip Memory

	7.3.2 System's Performance
	7.3.3 Area and Power

	7.4 Conclusion

	IV Uni-core Memory System for Irregular Data Pattern
	8 APMC: Advanced Pattern based Memory Controller
	8.1 APMC Architecture
	8.1.1 APMC Working Operation

	8.2 Experimental Setup
	8.2.1 Baseline MPMC System
	8.2.2 APMC based System
	8.2.3 Test Applications

	8.3 Results and Discussion
	8.3.1 Application Performance
	8.3.2 Bandwidth
	8.3.3 Power

	8.4 Conclusion

	V Multi-core Memory System for Irregular Data Pattern
	9 AMMC: Advanced Multi-core Memory Controller
	9.1 AMMC Architecture
	9.2 Experimental Framework
	9.2.1 MicroBlaze-based Multi-Core System
	9.2.2 AMMC based Multi-Core System

	9.3 Results and Discussion
	9.3.1 Multi-Core System Performance
	9.3.2 Area & Power

	9.4 Conclusion

	10 MAPC: Memory Access Pattern based Controller
	10.1 MAPC Architecture
	10.1.1 MAPC Working Operation

	10.2 Experimental Framework
	10.2.1 Multi-core System and Applications
	10.2.2 Nios Multi-core System
	10.2.3 MAPC Multi-core System

	10.3 Results and Discussion
	10.3.1 Single-Core Performance
	10.3.2 Multi-Core Performance
	10.3.3 Resource and Total Power
	10.3.4 Fairness
	10.3.5 Bandwidth

	10.4 Conclusion

	VI Related Work, Conclusions and Future Research Directions
	11 Related Work
	11.1 Local Memory System
	11.1.0.1 Scratchpad
	11.1.1 Cache

	11.2 Memory Manager
	11.3 Main Memory System
	11.3.1 Prefetching
	11.3.2 Scatter Gather Controllers

	12 Conclusions and Future Research Directions
	12.1 Conclusions
	12.2 Future Research Directions

	Publications
	I Publications
	II Other Papers and Extended Abstracts

	References

