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198 BOUNDARY REGULARITY FOR INTEGRO-DIFFERENTIAL EQUATIONS

Then,
u(x) = K(xn)s+

for some constant K ∈ R.

Proof. Given ρ ≥ 1, let vρ(x) = ρ−βu(ρx). Note that for all ρ ≥ 1 the function vρ
satisfies the same growth control (5.1) as u. Indeed,

‖vρ‖L∞(BR) = ρ−β‖u‖L∞(BρR) ≤ ρ−βC(ρR)β = CRβ.

In particular ‖vρ‖L∞(B1) ≤ C and ‖vρ‖L1(Rn,ωs) ≤ C, with C independent of ρ. Hence,
the function ṽρ = vρχB1 satisfies M+ṽρ ≥ −C and M−ṽρ ≤ C in B1/2 ∩ {xn > 0},
and ṽρ = 0 in {xn < 0}. Also, ‖ṽρ‖L∞(B1/2) ≤ C. Therefore, by Proposition 1.1 we
obtain that ∥∥vρ/xsn∥∥Cα(B+

1/4
)

=
∥∥ṽρ/xsn∥∥Cα(B+

1/4
)
≤ C.

Scaling this estimate back to u we obtain[
u/xsn

]
Cα(B+

ρ/4
)

= ρ−α
[
u(ρx)/(ρxn)s

]
Cα(B+

1/4
)

= ρβ−s−α
[
vρ/(xn)s

]
Cα(B+

1/4
)
≤ Cρβ−s−α.

Using that β < s+ α and letting ρ→∞ we obtain[
u/xsn

]
Cα(Rn∩{xn>0}) = 0,

which means u = K
(
xn)s+. �

The previous proposition will be applied to tangential derivatives of a solution to
Iu = 0 as in the situation of Theorem 1.5. It gives that u is in fact a function of xn
alone. To proceed, we need the following crucial lemma It is a Liouville-type result
for the fractional Laplacian in dimension 1, and classifies all functions which are
s-harmonic in R+, vanish in R−, and grow at infinity less than |x|β for some β < 2s.

Lemma 5.2. Let u satisfy (−∆)su = 0 in R+ and u = 0 in R−. Assume that, for
some β ∈ (0, 2s), u satisfies the growth control ‖u‖L∞(0,R) ≤ CRβ for all R ≥ 1.
Then u(x) = K(x+)s.

To establish the lemma, we will need the following result. It classifies all homoge-
neous solutions (with no growth condition) that vanish in a half line of the extension
problem of Caffarelli and Silvestre [17] in dimension 1 + 1.

Lemma 5.3. Let s ∈ (0, 1). Let (x, y) denote a point in R2, and r > 0, θ ∈ (−π, π)
be polar coordinates defined by the relations x = r cos θ, y = r sin θ. Assume that
ν > −s, and qν = rs+νΘν(θ) is even with respect y (or equivalently with respect to
θ) and solves 

div (|y|1−2s∇qν) = 0 in {y 6= 0}
limy→0 |y|1−2s∂yqν = 0 on {y = 0} ∩ {x > 0}
qν = 0 on {y = 0} ∩ {x < 0}.

(5.2)

Then,
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(a) ν belongs to N ∪ {0} and

Θν(θ) = K | sin θ|s P s
ν

(
cos θ

)
,

where P µ
ν is the associated Legendre function of first kind. Equivalently,

Θν(θ) = C

∣∣∣∣cos

(
θ

2

)∣∣∣∣2s 2F1

(
−ν, ν + 1; 1− s; 1− cos θ

2

)
,

where 2F1 is the hypergeometric function.
(b) The functions

{
Θν

}
ν∈N∪{0} are a complete orthogonal system in the subspace

of even functions of the weighted space L2
(
(−π, π), | sin θ|1−2s

)
.

Proof. We differ the proof to the Appendix. �

We can now give the

Proof of Lemma 5.2. Let

Ps(x, y) =
p1,s

y

1(
1 + (x/y)2

) 1+2s
2

be the Poisson kernel for the extension problem of Caffarelli and Silvestre; see [17, 9].
Given the growth control u(x) ≤ C|x|β at infinity and β < 2s, the convolution

v( · , y) = u ∗ Ps( · , y)

is well defined and is a solution of the extension problem{
div(y1−2s∇v) = 0 in {y > 0}
v(x, 0) = u(x) for x ∈ R.

Since (−∆)su = 0 in {x > 0} and u = 0 in {x < 0}, the function v satisfies

lim
y↘0

y1−2s∂yv(x, y) = 0 for x > 0 and v(x, 0) = 0 for x < 0.

Hence, v solves (5.2).
Let Θν , ν ∈ N ∪ {0}, be as in Lemma 5.3. Recall that rs+νΘν(θ) also solve (5.2).

By standard separation of variables, in every ball B+
R(0) of R2 the function v can be

written as a series

v(x, y) = v(r cos θ, r sin θ) =
∞∑
ν=0

aνr
s+νΘν(θ). (5.3)

To obtain this expansion we use that, by Lemma 5.3 (b), the functions
{

Θν

}
ν∈N∪{0}

are a complete orthogonal system in the subspace of even functions in the weighted
space L2

(
(−π, π), | sin θ|1−2s

)
, and hence are complete in L2

(
(0, π), (sin θ)1−2s

)
.

Moreover, by uniqueness, the coefficients aν are independent of R and hence the
series (5.3) provides a representation formula for v(x, y) in the whole {y > 0}.
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Now, we claim that the growth control ‖u‖L∞(−R,R) ≤ CRβ with β ∈ (0, 2s) is
transferred to v (perhaps with a bigger constant C), that is,

‖v‖L∞(B+
R) ≤ CRβ.

To see this, consider the rescaled function uR(x) = R−βu(Rx), which satisfy the
same growth control of u. Then,

vR = R−βv(R · ) = uR ∗ Ps.
Since the growth control for uR is independent of R we find a bound for ‖vR‖L∞(B+

1 )

that is independent of R, and this means that v is controlled by CRβ in B+
R , as

claimed.
Next, since we may assume that

∫ π
0
|Θν(θ)|2| sin θ|a dθ = 1 for all ν ≥ 0, Parseval’s

identity yields ∫
∂+BR

∣∣v(x, y)
∣∣2ya dσ =

∞∑
ν=0

|aν |2R2s+2ν+1+a,

where ∂+BR = ∂BR ∩ {y > 0}. But by the growth control, we have∫
∂+BR

∣∣v(x, y)
∣∣2ya dσ ≤ CR2β

∫
∂+BR

ya dσ = CR2β+1+a.

Finally, since 2β < 4s < 2s + 2, this implies aν = 0 for all ν ≥ 1, and hence
u(x) = K(x+)s, as desired. �

The following basic Hölder estimate up to the boundary follows from [15, Section
3]. It is also a consequence of Lemma 6.4, which we prove in Section 6.

Lemma 5.4 ([15]). Let s0 ∈ (0, 1) and s ∈ [s0, 1]. Let u be a solution of M+u ≥ 0
and M−u ≤ 0 in B+

1 , u = 0 in B−1 and assume that u ∈ L1(Rn, ωs). Then, for
some α > 0 it is u ∈ Cα

(
B1/2

)
and

‖u‖Cα(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖u‖L1(Rn, ωs)

)
.

The constants α and C depend only on n, s0, and ellipticity constants.

To end this section, we finally prove Theorem 1.5.

Proof of Theorem 1.5. Note that, since β < 2s, the growth control (1.11) yields
u ∈ L1(Rn, ωs).

Given ρ ≥ 1, let vρ = ρ−βu(ρ · ). As in the proof of Proposition 5.1, vρ satisfies
the same growth control as u, namely, ‖vρ‖L∞(BR) ≤ CRβ. Hence,

‖vρ‖L∞(B1) ≤ C and ‖vρ‖L1(Rn,ωs) ≤ C.

Moreover, since u satisfies Iu = 0 in {xn > 0} and I0 = 0 we have that M+u ≥ 0
and M−u ≤ 0 in {xn > 0}. This implies that M+vρ ≥ 0 and M−vρ ≤ 0 in B+

1 .
Then it follows from Lemma 5.4 that

‖vρ‖Cα(B1/2) ≤ C.
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Scaling the previous estimate back to u and setting ρ = R, we obtain

[u]Cα(BR) ≤ CRβ−α.

Next, given τ ∈ Sn−1 with τn = 0 and given h > 0, we consider the “tangential”

incremental quotients v(1)(x) = u(x+hτ)−u(x)
hα

. We have shown that

‖v(1)‖L∞(BR) ≤ CRβ−α.

Moreover, since I is translation invariant, v(1) satisfies M+v(1) ≥ 0 and M−v(1) ≤ 0
in {xn > 0}. Hence, we can apply again the previous scaling argument to v(1) and
obtain

[v(1)]Cα(BR) ≤ CRβ−2α for all R ≥ 1.

Thus, we have a new growth control for v(2)(x) = u(x+hτ)−u(x)
h2α

. We can keep iterating
in this way until we obtain (after a finite number N of iterations)∥∥∥∥u(x+ hτ)− u(x)

h

∥∥∥∥
L∞(BR)

≤ CRβ−1. (5.4)

Now, v(N) = u(x+hτ)−u(x)
h

satisfies M+v(N) ≥ 0, M−v(N) ≤ 0 in {xn > 0} and

v(N) = 0 in {xn < 0}. Moreover, v(N) satisfies the growth control (5.4) with exponent
β − 1 < 2s − 1 < s. Hence, using Proposition 5.1 we conclude that v(N) ≡ 0.
Therefore, u(x + hτ) = u(x) for all h > 0 and for all unit vector τ with τn = 0.
This means that u depends only on the variable xn. That is, u(x) = w(xn) for some
function w : R −→ R.

Now, if ũ is a test function of the form ũ(x) = w̃(xn), Lemma 2.1 yields

M+ũ(x) = sup
L∈L∗

Lũ

= sup
λ≤a≤Λ

1− s
2c1,s

(∫
Sn−1

|θn|2sa(θ) dθ

)
(−∆)sRw̃(xn)

= C
{

Λ
(
−(−∆)sRw̃(xn)

)+ − λ
(
−(−∆)sRw̃(xn)

)−}
.

(5.5)

Similarly,

M−ũ(x) = C
{
λ
(
−(−∆)sw̃(xn)

)+ − Λ
(
−(−∆)sw̃(xn)

)−}
. (5.6)

Finally, recall that u solves Iu = 0 in Rn
+, and I0 = 0. In particular we have M+u ≥ 0

and M−u ≤ 0 in Rn
+ in the viscosity sense. Note that, since u(x) = w(xn), then we

may test the viscosity inequalities using only test functions of the type ũ(x) = w̃(xn).
Hence, using (5.5) and (5.6) we deduce that w is a viscosity solution of (−∆)sw = 0
in R+ and w = 0 in R−. Clearly, w satisfies the growth control ‖w‖L∞(0,R) ≤ CRβ.
Therefore we deduce, using Lemma 5.2, that u(x) = w(xn) = K(x+

n )s. �
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6. Regularity by compactness

In this section we prove the main result of the paper: the boundary regularity in
C1,1 domains for fully nonlinear elliptic equations with respect to the class L∗, given
by Theorem 1.3.

As explained in the Introduction, the following result is the main ingredient in
the proof of Theorem 1.3.

Proposition 6.1. Let s0 ∈ (0, 1), δ ∈ (0, s0/4), ρ0 > 0, and β = 2s0 − δ be given
constants.

Let Γ be a C1,1 hypersurface with radius ρ0 splitting B1 into Ω+ and Ω−; see
Definition 1.2.

Let s ∈ [s0,max{1, s0 + δ}] and f ∈ C(Ω+). Assume that u ∈ C(B1)∩L∞(Rn) is
a solution of Iu = f in Ω+ and u = 0 in Ω−, where I is a fully nonlinear translation
invariant operator elliptic with respect to L∗(s).

Then, for all z ∈ Γ ∩B1/2 there is a constant Q(z) with |Q(z)| ≤ CC0 for which∣∣∣u(x)−Q(z)
(
(x− z) · ν(z)

)s
+

∣∣∣ ≤ CC0|x− z|β for all x ∈ B1,

where ν(z) is the unit normal vector to Γ at z pointing towards Ω+ and

C0 = ‖u‖L∞(Rn) + ‖f‖L∞(Ω+).

The constant C depends only on n, ρ0, s0, δ, and ellipticity constants.

The proof of Proposition 6.1 is by contradiction, using a blow up and compactness
argument. In order to fix ideas, we prove first the following reduced version of the
statement.

Let u ∈ C(B1)∩L∞(Rn) be a viscosity solution of Iu = 0 in B+
1 and

u = 0 in B−1 . Then, given β ∈ (s, 2s), there are Q ∈ R and C > 0
such that ∣∣u(x)−Q(xn)s+

∣∣ ≤ C|x|β for all x ∈ B1. (6.1)

The constant C is independent of x, but it could depend on everything
else, also on u.

We next prove (6.1) by contradiction. If (6.1) were false then it would be (by the
contraposition of Lemma 6.2 below)

sup
r>0

r−β
∥∥u−Q∗(r)(xn)s+

∥∥
L∞(Br)

= +∞,

where

Q∗(r) := arg minQ∈R

∫
Br

(
u(x)−Q(xn)s+

)2
dx =

∫
Br
u(x) (xn)s+ dx∫
Br

(xn)2s
+ dx

. (6.2)

Then, a useful trick is to define the monotone in r quantity

θ(r) = sup
r′>r

(r′)−β max
{∥∥u−Q∗(r′)(xn)s+

∥∥
L∞(Br′ )

, (r′)s
∣∣Q∗(2r′)−Q∗(r′)∣∣} ,
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which satisfies θ(r)↗∞ as r ↘ 0. Then, there is a sequence rm ↘ 0 such that

(rm)−β max
{∥∥u−Q∗(rm)(xn)s+

∥∥
L∞(Brm )

, (rm)s
∣∣Q∗(2rm)−Q∗(rm)

∣∣} ≥ θ(rm)

2
.

(6.3)
We then consider the blow up sequence

vm(x) =
u(rmx)− (rm)sQ∗(rm)(xn)s+

(rm)βθ(rm)
.

Note that (6.3) is equivalent to

max

{
‖vm‖L∞(B1) ,

∣∣∣∣∣
∫
B2
vm(x) (xn)s+ dx∫
B2

(xn)2s
+ dx

−
∫
B1
vm(x) (xn)s+ dx∫
B1

(xn)2s
+ dx

∣∣∣∣∣
}
≥ 1/2. (6.4)

Also, by definition of Q∗(rm), we have∫
B1

vm(x)(xn)s+ dx = 0, (6.5)

which is the optimality condition of “least squares”.
In addition, by definition of θ, we have

(r′)s−β|Q∗(2r′)−Q∗(r′)|
θ(r)

≤ 1 for all r′ ≥ r.

Thus, for R = 2N we have

rs−β|Q∗(rR)−Q∗(r)|
θ(r)

≤
N−1∑
j=0

2j(β−s)
(2jr)s−β|Q∗(2j+1r)−Q∗(2jr)|

θ(r)

≤
N−1∑
j=0

2j(β−s) ≤ C2N(β−s) = CRβ−s.

Moreover, vm satisfy the growth control

‖vm‖L∞(BR) =
1

θ(rm)(rm)β
∥∥u−Q∗(rm)(xn)s+

∥∥
L∞(BrmR)

≤ Rβ

θ(rm)(rmR)β
∥∥u−Q∗(rmR)(xn)s+

∥∥
L∞(BrmR)

+

+
1

θ(rm)(rm)β
|Q∗(rmR)−Q∗(rm)| (rmR)s

≤ Rβθ(rmR)

θ(rm)
+ CRβ

≤ CRβ,

(6.6)

for all R ≥ 1, where we have used the definition θ and its monotonicity.
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In addition, since M+(xn)s+ = M−(xn)s+ = 0 in {xn > 0}, and Iu = 0 in B+
1 , we

obtain that

Ĩmvm = 0 in B+
1/rm

,

for some Ĩm translation invariant and elliptic with respect to L∗. It follows, using
the basic Cα estimate up to the boundary of Lemma 5.4 that (up to taking a
subsequence)

vm −→ v locally uniformly in Rn.

Moreover, since all the vm’s satisfy the growth control (6.19), and β < 2s, by the
dominated convergence theorem we obtain that∫

Rn

∣∣vm − v∣∣(x)ωs(x) dx→ 0.

Also, by Theorem 42 in [15] a subsequence of Ĩm converges weakly to some translation
invariant operator Ĩ elliptic with respect to L∗. Hence, the stability result in [15]
yields

Ĩv = 0 in {xn > 0} and v = 0 in {xn < 0}.
Furthermore, passing to the limit the growth control (6.19) we obtain ‖v‖L∞(BR) ≤
Rβ for all R ≥ 1. Thus, the Liouville type Theorem 1.5 implies

v(x) = K(xn)s+.

Passing (6.5) to the limit (using uniform convergence) we find∫
B1

v(x)(xn)s+ dx = 0.

But passing (6.4) to the limit, we obtain a contradiction. �
To prove Proposition 6.1 we will need a more involved version of this argument,

but the main idea is essentially contained in the previous reduced version. Before
proving Proposition 6.1, let us give some preliminary results.

The following lemma is for general continuous functions u, not necessarily solu-
tions to some equation.

Lemma 6.2. Let β > s and ν ∈ Sn−1 be some unit vector. Let u ∈ C(B1) and
define

φr(x) := Q∗(r) (x · ν)s+, (6.7)

where

Q∗(r) := arg minQ∈R

∫
Br

(
u(x)−Q(x · ν)s+

)2
dx =

∫
Br
u(x) (x · ν)s+ dx∫
Br

(x · ν)2s
+ dx

.

Assume that for all r ∈ (0, 1) we have∥∥u− φr∥∥L∞(Br)
≤ C0r

β. (6.8)
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Then, there is Q ∈ R satisfying |Q| ≤ C
(
C0 + ‖u‖L∞(B1)

)
such that∥∥u−Q(x · ν)s+

∥∥
L∞(Br)

≤ CC0r
β

for some constant C depending only on β and s.

Proof. We may assume ‖u‖L∞(B1) = 1. By (6.8), for all x′ ∈ Br we have∣∣φ2r(x
′)− φr(x′)

∣∣ ≤ ∣∣u(x′)− φ2r(x
′)
∣∣+
∣∣u(x′)− φr(x′)

∣∣ ≤ CC0r
β.

But this happening for every x′ ∈ Br yields, recalling (6.7),∣∣Q∗(2r)−Q∗(r)∣∣ ≤ CC0r
β−s.

In addition, since ‖u‖L∞(B1) = 1, we clearly have that

|Q∗(1)| ≤ C. (6.9)

Since β > s, this implies the existence of the limit

Q := lim
r↘0

Q∗(r).

Moreover, using again β − s > 0,∣∣Q−Q∗(r)∣∣ ≤ ∞∑
m=0

∣∣Q∗(2−mr)−Q∗(2−m−1r)
∣∣ ≤ ∞∑

m=0

CC02−m(β−s)rβ−s ≤ CC0r
β−s.

In particular, using (6.9) we obtain

|Q| ≤ C(C0 + 1). (6.10)

We have thus proven that for all r ∈ (0, 1)∥∥u−Q(x · ν)s+‖L∞(Br) ≤ ‖u−Q∗(r)(x · ν)s+‖L∞(Br) +

+ ‖Q∗(r)(x · ν)s+ −Q(x · ν)s+‖L∞(Br)

≤ C0r
β + |Q∗(r)−Q|rs ≤ C(C0 + 1)rβ.

�

The following lemma will be used in the proof of Theorem 1.3 to obtain compact-
ness for sequences of elliptic operators of variable order. Its proof is almost the same
as the proof of Lemma 3.1 of [48].

Lemma 6.3. Let s0 ∈ (0, 1), sm ∈ [s0, 1], and Im such that

• Im is a fully nonlinear translation invariant operator elliptic with respect to
L∗(sm).
• Im0 = 0.

Then, a subsequence of sm → s ∈ [s0, 1] and a subsequence of Im converges weakly
(with the weight ωs0) to some fully nonlinear translation invariant operator I elliptic
with respect to L∗(s).
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Proof. We may assume by taking a subsequence that sm → s ∈ [s0, 1]. Consider the
class L =

⋃
s∈[s0,1] L∗(s). This class satisfies Assuptions 23 and 24 of [15]. Also, each

Im is elliptic with respect to L. Hence using Theorem 42 in [15] there is a subsequence
of Im converging weakly (with the weight ωs0) to a translation invariant operator I,
also elliptic with respect to L. Let us see next that I is in fact elliptic with respect
to L∗(s) ⊂ L. Indeed, for test functions u and v that are quadratic polynomials in
a neighborhood of x and that belong to L1(Rn, ωs0), the inequalities

M−
smv(x) ≤ Im(u+ v)(x)− Imu(x) ≤M+

smv(x)

pass to the limit to obtain

M−
s v(x) ≤ I(u+ v)(x)− Iu(x) ≤M+

s v(x).

�

The following lemma will be used to obtain a Cγ estimate up to the boundary
for solutions to fully nonlinear integro-differential equations. This estimate will be
useful in the proof of Proposition 6.1. It is essentially a consequence of the proof
of Theorem 3.3 in [15]. Note that, in contrast with Proposition 6.1, in this lemma
the assumption of regularity of the domain is only “from the exterior”. Namely, we
only assume that the exterior ball condition is satisfied.

Lemma 6.4. Assume that B1 is divided into two disjoint subdomains Ω1 and Ω2

such that B1 = Ω1 ∪Ω2. Assume that Γ := ∂Ω1 \ ∂B1 = ∂Ω2 \ ∂B1 is a C0,1 surface
and that 0 ∈ Γ. Moreover assume that, for some ρ0 > 0, all the points on Γ ∩ B3/4

can be touched by a ball of radius ρ0 ∈ (0, 1/4) contained in Ω2.
Let s0 ∈ (0, 1) and s ∈ [s0, 1]. Let α ∈ (0, 1), g ∈ Cα

(
Ω2

)
, and u ∈ C(B1) ∩

L1(Rn, ωs) satisfy in the viscosity sense

M+u ≥ −C0 and M−u ≤ C0 in Ω1, u = g in Ω2.

Then, there is γ ∈ (0, α) such that u ∈ Cγ
(
B1/2

)
with the estimate

‖u‖Cγ(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖g‖Cα(Ω2) + ‖u‖L1(Rn,ωs) + C0

)
.

The constants C and γ depend only on n, s0, α, ρ0, and ellipticity constants.

Proof. Let ũ = uχB1 . Then ũ satisfies M+ũ ≥ −C ′0 and M−ũ ≤ C ′0 in Ω1 ∩ B3/4

and ũ = g in Ω2, where C ′0 ≤ C
(
C0 + ‖u‖L1(Rn,ωs)

)
. Here, the constant C depends

only on n, s0, and ellipticity constants.
The proof consists of two steps.
First step. We next prove that there are δ > 0 and C such that for all z ∈ Γ∩B1/2

it is
‖ũ− g(z)‖L∞(Br(z)) ≤ Crδ for all r ∈ (0, 1), (6.11)

where δ and C depend only on n, s0, C ′0, ‖u‖L∞(B1), ‖g‖Cα(Ω2), and ellipticity con-
stants.

Let z ∈ Γ ∩ B1/2. By assumption, for all R ∈ (0, ρ0) there yR ∈ Ω2 such that a
ball BR(yR) ⊂ Ω2 touches Γ at z, i.e., |z − yR| = R.



BOUNDARY REGULARITY FOR INTEGRO-DIFFERENTIAL EQUATIONS 207

Let ϕ1 and ε > 0 be the supersolution and the constant in Lemma 3.3. Take

ψ(x) = g(yR) + ‖g‖Cα(Ω2)

(
(1 + ε)R

)α
+
(
C ′0 + ‖u‖L∞(B1)

)
ϕ1

(
x− yR
R

)
.

Note that ψ is above ũ in Ω2∩B(1+ε)R. On the other hand, from the properties of ϕ1,

it is M+ψ ≤ −
(
C ′0 + ‖u‖L∞(B1)

)
R−2s ≤ −C ′0 in the annulus B(1+ε)R(yR) \ BR(yR),

while ψ ≥ ‖u‖L∞(B1) ≥ ũ outside B(1+ε)R(yR). It follows that ũ ≤ ψ and thus we
have

ũ(x)−g(z) ≤ C
(
Rα+(r/R)s

)
for all x ∈ Br(z) and for all r ∈ (0, εR) andR ∈ (0, ρ0).

Here, C denotes a constant depending only on n, s0, C ′0, ‖u‖L∞(B1), ‖g‖Cα(Ω2), and

ellipticity constants. Taking R = r1/2 and repeating the argument up-side down we
obtain

|ũ(x)− g(z)| ≤ C
(
rα/2 + rs/2

)
≤ Crδ for all x ∈ Br(z) and r ∈ (0, ε1/2)

for δ = 1
2

min{α, s0}. Taking a larger constant C, (6.11) follows.
Second step. We now show that (6.11) and the interior estimates in Theorem 2.5

imply ‖u‖Cγ(B1/2) ≤ C, where C depends only on the same quantities as above.
Indeed, given x0 ∈ Ω1 ∩B1/2, let z ∈ Γ and r > 0 be such that

d = dist (x0,Γ) = dist (x0, z).

Let us consider

v(x) = ũ

(
x0 +

d

2
x

)
− g(z).

We clearly have

‖v‖L∞(B1) ≤ C and ‖v‖L1(Rn,ωs) ≤ C.

On the other hand, v satisfies

M+v(x) = (d/2)2sM+ũ(x0 + rx) ≤ C ′0 in B1

and

M−v(x) = (d/2)2sM−ũ(x0 + rx) ≥ −C ′0 in B1.

Therefore, Theorem 2.5 yields

‖v‖Cα(B1/2) ≤ C

or equivalently

[u]Cα(Bd/4(x0)) ≤ Cd−α. (6.12)

Combining (6.11) and (6.12), using a similar argument as in the proof of Propo-
sition 1.1, we obtain

‖u‖Cγ(Ω1∩B1/2) ≤ C,

as desired. �

We can now give the
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Proof of Proposition 6.1. The proof is by contradiction. Assume that there are se-
quences Γk, Ω+

k , Ω−k , sk, fk, uk, and Ik that satisfy the assumptions of the proposition.
That is, for all k ≥ 1:

• Γk is a C1,1 hyper surface with radius ρ0 splitting B1 into Ω+
k and Ω−k .

• sk ∈ [s0,max{1, s0 + δ}].
• Ik is translation invariant and elliptic with respect to L∗(sk).
• ‖uk‖L∞(Rn) + ‖fk‖L∞(Ω+

k ) = 1 (by scaling we may assume C0 = 1).

• uk is a solution of Ikuk = fk in Ω+
k and uk = 0 in Ω−k .

Suppose for a contradiction that the conclusion of the proposition does not hold.
That is, for all C > 0, there are k and z ∈ Γk ∩ B1/2 for which no constant Q ∈ R
satisfies ∣∣∣uk(x)−Q

(
(x− z) · νk(z)

)sk
+

∣∣∣ ≤ C|x− z|β for all x ∈ B1. (6.13)

Above, νk(z) denotes the unit normal vector to Γk at z, pointing towards Ω+
k .

In particular, noting that sk ∈ [s0, s0 + δ] and β ≥ s0 + 2δ by assumption, and
using Lemma 6.2, we obtain

sup
k

sup
z∈Γk∩B1/2

sup
r>0

r−β ‖uk − φk,z,r‖L∞(Br(z))
=∞, (6.14)

where
φk,z,r(x) = Qk,z(r)

(
(x− z) · νk(z)

)sk
+

(6.15)

and

Qk,z(r) := arg minQ∈R

∫
Br(z)

∣∣∣uk(x)−Q
(
(x− z) · νk(z)

)sk
+

∣∣∣2 dx
=

∫
Br(z)

uk(x)
(
(x− z) · νk(z)

)sk
+
dx∫

Br(z)

(
(x− z) · νk(z)

)2sk

+
dx

.

Next define the monotone in r quantity

θ(r) := sup
k

sup
z∈Γk∩B1/2

sup
r′>r

(r′)−β max

{∥∥uk − φk,z,r′∥∥L∞(Br′ (x0))
,

(r′)s |Qk,z(2r
′)−Qk,z(r

′)|
}
.

We have θ(r) < ∞ for r > 0 and θ(r) ↗ ∞ as r ↘ 0. Clearly, there are sequences
rm ↘ 0, km, and zm → z ∈ B1/2, for which

(rm)−β max

{
‖ukm − φkm,zm,rm‖L∞(Brm (xm)) ,

(rm)s |Qkm,zm(2rm)−Qkm,zm(rm)|
}
≥ θ(rm)/2.

(6.16)

From now on in this proof we denote φm = φkm,zm,rm , νm = νkm(zm), and sm = skm .
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In this situation we consider

vm(x) =
ukm(zm + rmx)− φm(zm + rmx)

(rm)βθ(rm)
.

Note that, for all m ≥ 1, ∫
B1

vm(x)
(
x · νm

)sm
+
dx = 0. (6.17)

This is the optimality condition for least squares.
Note also that (6.16) is equivalent to

max

{
‖vm‖L∞(B1) ,

∣∣∣∣∣
∫
B2
vm(x) (x · νm)sm+ dx∫
B2

(x · νm)2sm
+ dx

−
∫
B1
vm(x) (x · νm)sm+ dx∫
B1

(x · νm)2sm
+ dx

∣∣∣∣∣
}
≥ 1/2,

(6.18)
which holds for all m ≥ 1.

In addition, by definition of θ, for all k and z we have

(r′)s−β|Qk,z(2r
′)−Qk,z(r

′)|
θ(r)

≤ 1 for all r′ ≥ r > 0.

Thus, for R = 2N we have

rsk−β|Qk,z(rR)−Qk,z(r)|
θ(r)

≤
N−1∑
j=0

2j(β−sk) (2jr)sk−β|Qk,z(2
j+1r)−Qk,z(2

jr)|
θ(r)

≤
N−1∑
j=0

2j(β−sk) ≤ C2N(β−sk) = CRβ−sk ,

where we have used β − sk ≥ δ.
Moreover, we have

‖vm‖L∞(BR) =
1

θ(rm)(rm)β
∥∥ukm −Qkm,zm(rm)

(
(x− zm) · νm

)sm
+

∥∥
L∞(BrmR)

≤ Rβ

θ(rm)(rmR)β
∥∥ukm −Qkm,zm(rmR)

(
(x− zm) · νm

)sm
+

∥∥
L∞(BrmR)

+

+
1

θ(rm)(rm)β
|Qkm,zm(rmR)−Qkm,zm(rm)| (rmR)sm

≤ Rβθ(rmR)

θ(rm)
+ CRβ,

and hence vm satisfy the growth control

‖vm‖L∞(BR) ≤ CRβ for all R ≥ 1. (6.19)

We have used the definition θ(r) and its monotonicity.
Now, without loss of generality (taking a subsequence), we assume that

νm −→ ν ∈ Sn−1.
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Then, the rest of the proof consists mainly in showing the following Claim.

Claim. A subsequence of vm converges locally uniformly in Rn to some function v
which satisfies Ĩv = 0 in {x · ν > 0} and v = 0 in {x · ν < 0}, for some Ĩ translation
invariant and elliptic with respect to L∗.

Once we know this, a contradiction is immediately reached using the Liouville
type Theorem 1.5, as seen at the end of the proof.

To prove the Claim, given R ≥ 1 and m such that rmR < 1/2 define

Ω+
R,m =

{
x ∈ BR : (zm + rmx) ∈ Ω+

km
and x · νm(zm) > 0

}
.

Notice that for all R and k, the origin 0 belongs to the boundary of Ω+
R,m.

We will use that vm satisfies an elliptic equation in Ω+
R,m. Namely,

Ĩmvm(x) =
(rm)2sm

(rm)βθ(rm)
fkm(zm + rmx) in Ω+

R,m. (6.20)

where Ĩm is defined by

Ĩm

(
w(zm + r · )− φm(zm + r · )

(rm)βθ(rm)

)
(x) =

(rm)2sm

(rm)βθ(rm)

(
Ikmw

)
(zm + rx),

for all test function w. Equivalently, for all test function v,

Ĩmv(x) :
(∗)
=

(rm)2sm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm) v

(
· − zm
r

)
+ φm( · )

)
(zm + rmx)

(∗∗)
=

(rm)2sm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm) v

(
· − zm
rm

))
(zm + rmx),

the last identity being valid only in {x · νm > 0} since M+φm = M−φm = 0 in
{(x− z) · νm > 0}.

Note that the right hand side of (6.20) converges uniformly to 0 as rm ↘ 0, since
β = 2s0 − δ < 2sm and θ(rm)↗∞.

Using that Ikm is translation invariant and elliptic with respect to L∗(sm) and
that Ikm0 = 0 we readily show that Ĩm is also elliptic with respect to L∗(sm) (i.e.,
with the same ellipticity constants Λ and λ, which are always fixed). Also, since the
domains Ω+

R,m are always contained in {(x−zm) ·νm > 0} we may define Ĩm by (∗∗),
and hence it is a translation invariant operator.

In order to prove the convergence of a subsequence of vm we first obtain, for every
fixed R ≥ 1, a uniform in m bound for ‖vm‖Cδ(BR), for some small δ > 0. Then
the local uniform convergence of a subsequence of vm follows from the Arzelà-Ascoli
theorem. Let us fix R ≥ 1 and consider that m is always large enough so that
rmR < 1/4.

Let Σ−m be the half space which is “tangent” to Ω−km at zm, namely,

Σ−m :=
{

(x− zm) · ν(zm) < 0
}
.
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The first step is showing that, for all m and for all r < 1/4,∥∥ukm − φm∥∥L∞(Br(zm)∩(Ω−km∪Σ−m)) ≤ Cr2sm ≤ Cr2s0 (6.21)

for some constant C depending only on s0, ρ0, ellipticity constants, and dimension.
Indeed, we may rescale and slide the supersolution ϕ1 from Lemma 3.3 and use

the fact that all points of Γkm ∩B3/4 can be touched by balls of radius ρ0 contained
in Ω−km . We obtain that

|ukm| ≤ C
(
dist (x,Ω−km)

)sm
,

with C depending only on n, s0, ρ0, and ellipticity constants. On the other hand,
by definition of φm we have

|φm| ≤ C
(
dist (x,Σ−m)

)sm
.

But by assumption, points on Γk ∩ B3/4 can be also touched by balls of radius
ρ0 from the Ω+

km
side, and hence we have a quadratic control (depending only on

ρ0) on on how Γkm separates from the hyperplane ∂Σ−m. As a consequence, in
Br(zm) ∩ (Ω−km ∪ Σ−m) we have

C
(
dist (x,Ω−km)

)sm ≤ Cr2sm and C
(
dist (x,Σ−m)

)sm ≤ Cr2sm .

Hence, (6.21) holds.
We use now Lemma 6.4 to obtain that, for some small γ ∈ (0, s0),

‖ukm‖Cγ(B1/8(zm)) ≤ C for all m.

On the other hand, clearly

‖φm‖Cγ(B1/8(zm)) ≤ C for all m.

Hence, ∥∥ukm − φm∥∥Cγ(Br(zm)∩(Ω−km∪Σ−m)) ≤ C. (6.22)

Next, interpolating (6.21) and (6.22) we obtain, for some positive δ < γ small
enough (depending on γ, s0, and δ),∥∥ukm − φm∥∥Cδ(Br(zm)∩(Ω−km∪Σ−m)) ≤ Cr2s0−δ = Crβ. (6.23)

Therefore, scaling (6.23) we find that∥∥vm∥∥Cδ(BR\Ω+
R,m) ≤ C for all m with rmR < 1/4. (6.24)

Next we observe that the boundary points on ∂Ω+
R,m ∩ B3R/4 can be touched by

balls of radius (ρ0/rm) ≥ ρ0 contained in BR \ Ω+
R,m. We then apply Lemma 6.4

(rescaled) to vm. Indeed, we have that vm solves (6.20) and satisfies (6.24). Thus,
we obtain, for some δ′ ∈ (0, δ),∥∥vm∥∥Cδ′ (BR/2)

≤ C(R), for all m with rmR < 1/4, (6.25)

where we write C(R) to emphasize the dependence on R of the constant, which also
depends on s0, ρ0, ellipticity constants, and dimension, but not on m.



212 BOUNDARY REGULARITY FOR INTEGRO-DIFFERENTIAL EQUATIONS

As said above, the Arzelà-Ascoli theorem and the previous uniform (in m) Cδ′

estimate (6.25) yield the local uniform convergence in Rn of a subsequence of vm to
some function v.

Next, since all the vm’s satisfy the growth control (6.19), and 2s0 > β, by the
dominated convergence theorem we have vm −→ v in L1(Rn, ωs0).

In addition, by Lemma 6.3 there is a subsequence of sm converging to some
s ∈ [s0,min{1, s0 + δ}] and a subsequence of Ĩm which converges weakly to some
translation invariant operator Ĩ, which is elliptic with respect to L∗(s). Hence, it
follows from the stability result in [15, Lemma 5] that Ĩv = 0 in all of Rn. Thus, the
Claim is proved.

Finally, passing to the limit the growth control (6.19) on vm we find ‖v‖L∞(BR) ≤
Rβ for all R ≥ 1. Hence, by Theorem 1.5, it must be

v(x) = K
(
x · ν(z)

)s
+
.

Passing (6.17) to the limit, we find∫
B1

v(x)
(
x · ν(z)

)s
+
dx = 0.

But passing (6.18) to the limit, we reach the contradiction. �

Before giving the proof of Theorem 1.3, we prove the following.

Lemma 6.5. Let Γ be a C1,1 surface of radius ρ0 > 0 splitting B1 into Ω+ and Ω−;
see Definition 1.2. Let d(x) = dist (x,Ω−). Let x0 ∈ B1/2 and z ∈ Γ be such that

dist (x0,Γ) = dist (x0, z) =: 2r.

Then, ∥∥∥((x− z) · ν(z)
)s

+
− ds(x)

∥∥∥
L∞(Br(x0))

≤ Cr2s, (6.26)[
ds −

(
(x− z) · ν(z)

)s
+

]
Cs−ε(Br(x0))

≤ Crs, (6.27)

and [
d−s
]
Cs−ε(Br(x0))

≤ Cr−2s+ε. (6.28)

The constant C depends only on ρ0.

Proof. Let us denote

d̄(x) =
(
(x− z) · ν(z)

)
+
.

First, since Γ is C1,1 with curvature radius bounded below by ρ0, we have that
|d̄− d| ≤ Cr2 in Br(x0), and thus (6.26) follows.

To prove (6.27) we use on the one hand that∥∥∇d−∇d̄∥∥
L∞(Br(x0))

≤ Cr, (6.29)
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which also follows from the fact that Γ is C1,1. On the other hand, using the
inequality |as−1 − bs−1| ≤ |a− b|max{as−2, bs−2} for a, b > 0, we find∥∥ds−1 − d̄s−1

∥∥
L∞(Br(x0))

≤ Cr2 max
{∥∥ds−2

∥∥
L∞(Br(x0))

,
∥∥d̄s−2

∥∥
L∞(Br(x0))

}
≤ Crs.

(6.30)
Thus, using (6.29) and (6.30), we deduce[

ds − d̄s
]
C0,1(Br(x0))

=
∥∥ds−1∇d− d̄s−1∇d̄

∥∥
L∞(Br(x0))

≤ Crs.

Therefore, (6.27) follows.
Finally, interpolating the inequalities[
d−s
]
C0,1(Br(x0))

= ‖d−s−1∇d‖L∞(Br(x0)) ≤ Cr−s−1 and ‖d−s‖L∞(Br(x0)) ≤ Cr−s,

(6.28) follows. �

We can finally give the

Proof of Theorem 1.3. As usual, we may assume that

‖u‖L∞(Rn) + ‖f‖L∞(Ω+) ≤ 1.

First, note that by Proposition 6.1 we have that, for all z ∈ Γ ∩ B1/2, there is
Q = Q(z) such that

|Q(z)| ≤ C and ‖u−Q
(
(x− z) · ν(z)

)s
+
‖L∞(BR(z)) ≤ CR2s−ε (6.31)

for all R > 0, where C depends only on n, s0, ρ0, ε, and ellipticity constants.
Indeed, let δ = min{ε/2, s0/4} and take a partition s0 < s1 < · · · < sN = 1 of

[s0, 1] satisfying |sj+1− sj| ≤ δ. Then, using Proposition 6.1 with s0 replaced by sj,
(6.31) holds for all s ∈ [sj, sj+1] with a constant Cj depending only on n, sj, ρ0, and
ellipticity constants. Taking C = maxj Cj, (6.31) holds for all s ∈ [s0, 1].

Now, to prove the Cs−ε estimate up to the boundary for u/ds we must combine the
Cs interior estimate for u in Theorem 2.6 with (6.31). To do it, we will use a similar
argument for “glueing estimates” as in the proof of Proposition 1.1. However, here
we need to be more precise in the argument because we want to obtain the best
possible Hölder exponent.

Let x0 be a point in Ω+ ∩B1/4, and let z ∈ Γ be such that

2r := dist (x0,Γ) = dist (x0, z) < ρ0.

Note that Br(x0) ⊂ B2r(x0) ⊂ Ω+ and that z ∈ Γ ∩B1/2 (since 0 ∈ Γ).
We claim now that there is Q = Q(x0) such that |Q(x0)| ≤ C,

‖u−Qds‖L∞(Br(x0)) ≤ Cr2s−ε, (6.32)

and
[u−Qds]Cs−ε(Br(x0)) ≤ Crs, (6.33)

where the constant C depends only on n, s0, ε, ρ0, and ellipticity constants.
Indeed, (6.32) follows immediately combining (6.31) and (6.26).
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To prove (6.33), let

vr(x) = r−su(z + rx)−Q (x · ν(z))s+.

Then, (6.31) implies

‖vr‖L∞(B4) ≤ Crs−ε

and

‖vr‖L1(Rn, ωs) ≤ Crs−ε.

Moreover, vr solves the equation

Ĩvr = rsf(z + rx) in B2(x̃0),

where x̃0 = (x0− z)/r satisfies |x̃0− z| = 2 and Ĩ is translation invariant and elliptic
with respect to L∗. Hence, using the interior estimate in Theorem 2.6 we obtain
[vr]Cs−ε(B1(x̃0)) ≤ Crs−ε. This yields that

rs−ε
[
u−Q

(
(x− z) · ν(z)

)s
+

]
Cs−ε(Br(x0))

= rs[v]Cs−ε(B1(x̃0)) ≤ Crsrs−ε.

Therefore, using (6.27), (6.33) follows.
Let us finally show that (6.32)-(6.33) yield the desired result. Indeed, note that,

for all x1 and x2 in Br(x0),

u

ds
(x1)− u

ds
(x2) =

(
u−Qds

)
(x1)−

(
u−Qds

)
(x2)

ds(x1)
+
(
u−Qds

)
(x2)

(
d−s(x1)−d−s(x2)

)
.

By (6.33), and using that d is comparable to r in Br(x0), we have∣∣(u−Qds)(x1)−
(
u−Qds

)
(x2)

∣∣
ds(x1)

≤ C|x1 − x2|s−ε.

Also, by (6.32) and (6.28),∣∣u−Qds∣∣(x2)
∣∣d−s(x1)− d−s(x2)

∣∣ ≤ C|x1 − x2|s−ε.
Therefore,

[u/ds]Cs−ε(Br(x0)) ≤ C.

From this, we obtain the desired estimate for ‖u/ds‖Cs−ε(Ω+∩B1/2) by summing a

geometric series, as in the proof of Proposition 1.1 in [45]. �

7. Non translation invariant versions of the results

Proposition 7.1. Let s0 ∈ (0, 1), δ ∈ (0, s0/4), ρ0 > 0, and β = 2s0 − δ be given
constants.

Let Γ be a C1,1 hypersurface with radius ρ0 > 0 splitting B1 into Ω+ and Ω−; see
Definition 1.2.

Let s ∈ [s0,max{1, s0 + δ}], and f ∈ C(Ω+). Assume that u ∈ C(B1)∩L∞(Rn) is
a viscosity solution of I(u, x) = f(x) in Ω+ and u = 0 in Ω−, where I is an operator
of the form (1.12)-(1.16).
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Then, for all z ∈ Γ ∩B1/2 there exists Q(z) ∈ R with |Q(z)| ≤ C for which∣∣∣u(x)−Q(z)
(
(x− z) · ν(z)

)s
+

∣∣∣ ≤ C|x− z|β for all x ∈ B1,

where ν(z) is the unit normal vector to Γ at x pointing towards Ω+. The constant
C depends only on n, ρ0, s0, δ, ‖u‖L∞(Rn), ‖f‖L∞(Ω+), the modulus of continuity µ,
and ellipticity constants.

Proof. It is a variation of the Proof of Proposition 6.1. Hence, it is again by contra-
diction. Assume that there are sequences Γk, Ω+

k , Ω−k , sk, Ik, fk, and uk that satisfy
the assumptions of the proposition. That is, for all k ≥ 1:

• Γk is a C1,1 hyper surface with radius ρ0 splitting B1 into Ω+
k and Ω−k .

• sk ∈ [s0,max{1, s0 + δ}].
• Ik is elliptic with respect to L∗(sk) and satisfies (1.12)-(1.16) (with I and s

replaced by Ik and sk, respectively).
• ‖uk‖L∞(Rn) + ‖fk‖L∞(Ω+

k ) = 1.

• uk is a solution of Ik(uk, x) = fk(x) in Ω+
k and uk = 0 in Ω−k .

But suppose that the conclusion of the proposition does not hold. That is, for all
C > 0, there are k and z ∈ Γk ∩B1/2 for which no constant Q ∈ R satisfies∣∣∣uk(x)−Q

(
(x− z) · νk(z)

)sk
+

∣∣∣ ≤ C|x− z|β for all x ∈ B1. (7.1)

Above, νk(z) denotes the unit normal vector to Γk at z, pointing towards Ω+
k .

As in the proof of Proposition 6.1, using Lemma 6.2, we have that

sup
k

sup
z∈Γk∩B1/2

sup
r>0

r−β ‖uk − φk,z,r‖L∞(Br(z))
=∞. (7.2)

where φk,z,r is given by (6.15).
We next define θ(r) and the sequences rm ↘ 0, km, φm, νm, and zm → z ∈ B1/2

as in the proof of Proposition 6.1.
Again, we also define

vm(x) =
ukm(zm + rmx)− φm(zm + rmx)

(rm)βθ(rm)
,

which satisfies (6.17), (6.18), and the growth control (6.19).
Note that, up to a subsequence, we may assume that νm → ν ∈ Sn−1.
The rest of the proof consists in showing

Claim. A subsequence of vm converges locally uniformly in Rn to some function v
which satisfies Ĩv = 0 in {x · ν > 0} and v = 0 in {x · ν < 0}, for some Ĩ translation
invariant and elliptic with respect to L∗.

Once we know this, a contradiction is immediately reached using the Liouville
type Theorem 1.5, as seen at the end of the proof.
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To prove the Claim, given R ≥ 1 and m such that rmR < 1/2 define

Ω+
R,m =

{
x ∈ BR : (zm + rmx) ∈ Ω+

km
and x · νm(zm) > 0

}
.

Notice that for all R and k, the origin 0 belongs to the boundary of Ω+
R,m.

We will use that vm satisfies an elliptic equation in Ω+
R,m. Namely,

Ĩm(vm, x) =
(rm)2skm

(rm)βθ(rm)
f(zm + rmx) in Ω+

R,m. (7.3)

where Ĩm is defined by

Ĩm

(
w(zm + r · )− φm(zm + r · )

(rm)βθ(rm)
, x

)
=

(rm)2skm

(rm)βθ(rm)
Ikm(w , zm + rx),

for all test function w. Equivalently, for all test function v,

Ĩm(v, x)
(∗)
=

(rm)2skm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm)v

(
· − zm
rm

)
+ φm( · ) , zm + rmx

)
(∗∗)
=

(rm)2skm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm)v

(
· − zm
rm

))
(zm + rmx)

(∗∗∗)
= inf

β
sup
α

(∫
Rn

{
v(x+ y) + v(x− y)− 2v(x)

}
K

(m)
αβ (zm+ rmx, y) dy+

+
(rm)2skmc

(m)
αβ (zm+ rx)

(rm)βθ(rm)

)
.

The last two identities hold only in {x · νm > 0} since M+φm = M−φm = 0 in
{(x− z) · νm > 0}.

Note that the right hand side of (7.3) converges uniformly to 0 as rm ↘ 0 since
β = 2s0 − δ < 2skm and θ(rm)↗∞.

Using that Ikm is elliptic with respect to L∗(skm) and that Ikm(0, x) = 0, we

readily show that Ĩm is also elliptic with respect to L∗(skm).
Note that, since Im is elliptic with respect to L∗(skm), and ‖fkm‖L∞ ≤ 1, then

M+
skm

ukm ≥ −1 and M−
skm

ukm ≤ 1 in Ω+,

and the same inequalities hold for vm. Hence, by the same argument as in the proof
of Proposition 6.1, we find that∥∥vm∥∥Cδ′ (BR/2)

≤ C(R), for all m with rmR < 1/4,

where C(R) depends only on R, n, s0, ρ0, and ellipticity constants, but not on m.
Then, the Arzelà-Ascoli theorem yields the local uniform convergence in Rn of a

subsequence of vm to some function v. Thus, the Claim is proved.
Next, since all the vm’s satisfy the growth control (6.19), and 2s0 > β, by the

dominated convergence theorem vm → v in L1(Rn, ωs0).
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Let now Ĩm be the sequence of translation invariant operators defined by

Ĩmw = inf
β

sup
α

(∫
Rn

{
w(x+ y) + w(x− y)− 2w(x)

}
K

(m)
αβ (zm, y) dy

)
.

Note that, for all test functions w,

Ĩm(w, x)− Ĩm(w) −→ 0 uniformly in compact sets of {(x− z) · ν > 0}. (7.4)

Indeed, by (1.16),∣∣∣K(m)
αβ (zm + rmx, y)−K(m)

αβ (zm, y)
∣∣∣ ≤ (1− skm) µ(Crm)

|y|n+2skm
−→ 0

and ∣∣∣∣∣(rm)2skmc
(m)
αβ (zm+ rx)

(rm)βθ(rm)

∣∣∣∣∣ ≤ Λ(rm)2skm−β −→ 0,

where µ is the modulus of continuity of the kernels Kαβ(x, y) with respect to x.
On the other hand, by Lemma 6.3 there is a subsequence of skm converging to

some s ∈ [s0,min{1, 2s0 − δ}] and a subsequence of Ĩm which converges weakly to
some translation invariant operator Ĩ, which is elliptic with respect to L∗(s). Hence,

by (7.4), it follows that Ĩm → Ĩ weakly in compact subsets of {x ·ν > 0}. Therefore,
using the stability result in [15, Lemma 5], Ĩv = 0 in {x · ν > 0}.

Finally, passing to the limit the growth control (6.19) on vm, we find ‖v‖L∞(BR) ≤
CRβ for all R ≥ 1. Hence, by Theorem 1.5, it must be

v(x) = K
(
x · ν(z)

)s
+
.

But passing (6.17) and (6.18) to the limit we find a contradiction. �

We next prove Theorem 1.6.

Proof of Theorem 1.6. In case that g ≡ 0, the result follows from Proposition 7.1
by using the same argument as is the proof of Theorem 1.3 (partition of [s0, 1] into
intervals of length smaller than ε/2).

When g is not zero, we consider ū = u− gχB1 . Then ū satisfies ū ≡ 0 in Ω− and

Ī(ū, x) = f̄(x) in Ω+ ∩B3/4,

where

Ī(w, x) = I(w + gχB1 , x)− I(gχB1 , x)

and

f̄(x) = I(gχB1 , x) + f(x).

Then, applying the result for g ≡ 0 to the function ũ, the theorem follows. �
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8. Final comments and remarks

Here we would like to make a few remarks and talk about some open problems
and future research directions.

Higher regularity of u/ds. In the proof of the Liouville-type Theorem 1.5,
one starts with a solution satisfying |u(x)| ≤ C(1 + |x|β). Then, one proves that
the tangential derivatives satisfy |∂τu(x)| ≤ C(1 + |x|β−1). Hence, if β − 1 < s,
Proposition 5.1 implies that ∂τu ≡ 0, and thus u is 1D.

The fact that we only use β < 1 + s seems to indicate that the quotient u/ds

could belong to C1−ε, and not only to Cs−ε. However, for functions with growth at
infinity 2s ≤ β < 1 + s, the integro-differential operators cannot be evaluated.

In fact, only having β − 1 < s + α would suffice to obtain ∂τu = c(xn)s+, and
this seems enough to classify solutions in the half space. However, as before, such
approach would require to give sense to the equation for functions that grow “too
much” at infinity.

Therefore, the following question remains open. Is it possible to prove that u/ds

belongs to C1+α when considering more regular kernels and right hand sides?

More general linear equations. In a future work we are planning to obtain
Cs−ε regularity up to the boundary of u/ds for linear equations involving general
operators L of the form (1.3), where a is any measure (not supported in an hyper-
plane) which does not necessarily satisfy (1.4). We will also obtain higher order
regularity of u/ds for linear equations when a ∈ Ck(Sn−1), f ∈ Ck(Ω), and Ω is
Ck+2.

Equations with lower order terms. We could have included lower order terms
in the equations. Indeed, the compactness methods in Section 6 involve a blow up
procedure. We have seen in Section 7 that non translation invariant equations with
continuous dependence on x become translation invariant after blow up, and hence
our methods still apply. Similarly, we could have considered equations with certain
lower order terms, which disappear after blow up.

Second order fully nonlinear equations. As said in the introduction, with
the methods developed in this paper one can prove the C1,α and C2,α boundary
estimates for fully nonlinear equations F (D2u,Du, x) = f(x).

Obstacle and free boundary problems. The regularity theory for the obstacle
problem (or other free boundary problems) is related to the boundary regularity of
solutions to fully nonlinear elliptic equations. In this paper we have shown that L∗
is the appropriate class to obtain fine regularity properties up to the boundary. We
therefore wonder if one could obtain regularity results for free boundary problems
involving operators in L∗ similar to those for the fractional Laplacian [50].
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9. Appendix

In this appendix we give the

Proof of Lemma 5.3. Let us show first the statement (a). Denote

a = 1− 2s.

We first note that the Caffarelli-Silvestre extension equation ∆u + a
y
∂yu = 0 is

written in polar coordinates x = r cos θ, y = r sin θ, r > 0, θ ∈ (0, π) as

urr +
1

r
ur +

1

r2
uθθ +

a

r sin θ

(
sin θ ur + cos θ

uθ
r

)
= 0.

Note the homogeneity of the equation in the variable r. If we seek for (bounded at
0) solutions of the form u = rs+νΘν(θ), then it must be ν > −s and

Θ′′ν + a cotg θΘ′ν + (s+ ν)(s+ ν + a)Θν = 0.

If we want u to satisfy the boundary conditions

u(x, 0) = 0 for x < 0 and |y|a∂yu(x, y)→ 0 as y → 0,

then Θν must satisfy{
Θν(θ) = Θν(0) + o

(
(sin θ)2s

)
→ 0 as θ ↘ 0

Θν(π) = 0.
(9.1)

We have used that, for x > 0

lim
y↘0

ya∂yu(x, y) = 0 ⇒ u(x, y) = u(x, 0) + o(y2s),

since a = 1− 2s.
To solve this ODE, consider

Θν(θ) = (sin θ)sh(cos θ).

After some computations and the change of variable z = cos θ one obtains the
following ODE for h(z):

(1− z2)h′′(z)− 2zh′(z) +

(
ν + ν2 − s2

1− z2

)
h(z) = 0.

This is the so called “associated Legendre differential equation”. All solutions to
this second order ODE solutions are given by

h(z) = C1P
s
ν (z) + C2Q

s
ν(z),

where P s
ν and Qs

ν are the “associated Legendre functions” of first and second kind,
respectively.

Translating (9.1) to the function h, using that sin θ ∼ (1− cos θ)1/2 as θ ↘ 0 and
sin θ ∼ (1 + cos θ)1/2 as θ ↗ π, we obtain{

(1− z)s/2h(z) = c+ o
(
(1− z)s

)
as z ↗ 1

limz↘−1(1 + z)s/2h(z) = 0.
(9.2)
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Let us prove that P s
ν fulfill all these requirements only for ν = 0, 1, 2, 3, . . . , while

Qs
ν have to be discarded. To have a good description of the singularities of P s

ν (z) at
z = ±1 we use its expression as an hypergeometric function

P s
ν (z) =

1

Γ(1− s)
(1 + z)s/2

(1− z)s/2
2F1

(
−ν, ν + 1; 1− s; 1− z

2

)
.

Using this and the definition of 2F1 as a power series we obtain

P s
ν (z) =

1

Γ(1− s)
2s/2

(1− z)s/2

{
1− ν(ν + 1)

1− s
1− z

2
+ o
(
(1− z)2

)}
as z ↗ 1.

Hence, (1− z)s/2P s
ν (z) = c+O

(
1− z

)
= c+ o

(
(1− z)s

)
as desired.

For the analysis as z ↘ −1 we need to use Euler’s transformation

2F1(a, b; c;x) = (1− x)c−b−a 2F1(c− a, c− b; c;x),

obtaining

P s
ν (z) =

1

Γ(1− s)
(1 + z)s/2

2s/2

(
1 + z

2

)−s {
2F1(1− s− ν,−s− ν; 1− s; 1) + o(1)

}
as z ↘ −1. It follows that the zero boundary condition is satisfied if and only if

2F1(1− s− ν,−s− ν; 1− s; 1) =
Γ(1− s)Γ(s)

Γ(−ν)Γ(1 + ν)
= 0.

This implies ν = 0, 1, 2, 3, . . . , so that Γ(−ν) =∞.
With a similar analysis one easily finds that the functions Qs

ν(x) do not satisfy
(9.2) for any ν ≥ −s.

The statement (b) of the Lemma could be proved for example by using singular
Sturm-Liouville theory after observing that the ODE

Θ′′ν + a cotg θΘ′ν − λΘν = 0

can be written as (
| sin θ|a Θ′ν

)′
= λ| sin θ|aΘν .

However, it is not necessary to do it because we have already computed the eigen-
functions to this ODE, and they are given by

Θk(θ) = (sin θ)sP s
k (cos θ),

where P s
ν are the associated Legendre functions of first kind. The functions {P s

k (x)}k≥0

have been well studied, and they are known to be a complete orthogonal system in
L2
(
(0, 1), dx

)
; see [32, 57]. Therefore, it immediately follows (after a change of vari-

ables) that {Θk(θ)}k≥0 are a complete orthogonal system in L2
(
(0, π), (sin θ)adθ

)
.

Thus, the Lemma is proved. �
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[10] L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society

Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995.
[11] L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations:

The Abel Symposium 2010. Series: Abel Symposia (H. Holden, K.H. Karlsen, Eds.) 7 Springer-
Verlag, Berlin Heidelberg (2012) 37-52.

[12] L. Caffarelli, F. Charro, On a fractional Monge Ampère operator, preprint arXiv (Feb. 2014).
[13] L. Caffarelli, J. M. Roquejoffre, Y. Sire, Variational problems in free boundaries for the frac-

tional Laplacian, J. Eur. Math. Soc. 12 (2010), 1151-1179.
[14] L. Cafarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,

Comm. Pure Appl. Math. 62 (2009), 597-638.
[15] L. Cafarelli, L. Silvestre, Regularity results for nonlocal equations by approximation, Arch.

Rat. Mech. Anal. 200 (2011), 59-88.
[16] L. Cafarelli, L. Silvestre, The Evans-Krylov theorem for nonlocal fully nonlinear equations,

Ann. of Math. 174 (2011), 1163-1187.
[17] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm.

Partial Differential Equations 32 (2007), 1245-1260.
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THE EXTREMAL SOLUTION FOR THE FRACTIONAL
LAPLACIAN

XAVIER ROS-OTON AND JOAQUIM SERRA

Abstract. We study the extremal solution for the problem (−∆)su = λf(u) in
Ω, u ≡ 0 in Rn \ Ω, where λ > 0 is a parameter and s ∈ (0, 1). We extend some
well known results for the extremal solution when the operator is the Laplacian to
this nonlocal case. For general convex nonlinearities we prove that the extremal
solution is bounded in dimensions n < 4s. We also show that, for exponential and
power-like nonlinearities, the extremal solution is bounded whenever n < 10s. In
the limit s ↑ 1, n < 10 is optimal. In addition, we show that the extremal solution
is Hs(Rn) in any dimension whenever the domain is convex.

To obtain some of these results we need Lq estimates for solutions to the linear
Dirichlet problem for the fractional Laplacian with Lp data. We prove optimal
Lq and Cβ estimates, depending on the value of p. These estimates follow from
classical embedding results for the Riesz potential in Rn.

Finally, to prove the Hs regularity of the extremal solution we need an L∞

estimate near the boundary of convex domains, which we obtain via the moving
planes method. For it, we use a maximum principle in small domains for integro-
differential operators with decreasing kernels.
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1. Introduction and results

Let Ω ⊂ Rn be a bounded smooth domain and s ∈ (0, 1), and consider the problem{
(−∆)su = λf(u) in Ω

u = 0 in Rn\Ω, (1.1)

where λ is a positive parameter and f : [0,∞) −→ R satisfies

f is C1 and nondecreasing, f(0) > 0, and lim
t→+∞

f(t)

t
= +∞. (1.2)

Here, (−∆)s is the fractional Laplacian, defined for s ∈ (0, 1) by

(−∆)su(x) = cn,sPV

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1.3)

where cn,s is a constant.
It is well known —see [4] or the excellent monograph [16] and references therein—

that in the classical case s = 1 there exists a finite extremal parameter λ∗ such that
if 0 < λ < λ∗ then problem (1.1) admits a minimal classical solution uλ, while for
λ > λ∗ it has no solution, even in the weak sense. Moreover, the family of functions
{uλ : 0 < λ < λ∗} is increasing in λ, and its pointwise limit u∗ = limλ↑λ∗ uλ is a
weak solution of problem (1.1) with λ = λ∗. It is called the extremal solution of
(1.1).

When f(u) = eu, we have that u∗ ∈ L∞(Ω) if n ≤ 9 [12], while u∗(x) = log 1
|x|2

if n ≥ 10 and Ω = B1 [23]. An analogous result holds for other nonlinearities such
as powers f(u) = (1 + u)p and also for functions f satisfying a limit condition at
infinity; see [30]. In the nineties H. Brezis and J.L. Vázquez [4] raised the ques-
tion of determining the regularity of u∗, depending on the dimension n, for general
nonlinearities f satisfying (1.2). The first result in this direction was proved by G.
Nedev [26], who obtained that the extremal solution is bounded in dimensions n ≤ 3
whenever f is convex. Some years later, X. Cabré and A. Capella [7] studied the
radial case. They showed that when Ω = B1 the extremal solution is bounded for all
nonlinearities f whenever n ≤ 9. For general nonlinearities, the best known result
at the moment is due to X. Cabré [6], and states that in dimensions n ≤ 4 then the
extremal solution is bounded for any convex domain Ω. Recently, S. Villegas [36]
have proved, using the results in [6], the boundedness of the extremal solution in
dimension n = 4 for all domains, not necessarily convex. The problem is still open
in dimensions 5 ≤ n ≤ 9.

The aim of this paper is to study the extremal solution for the fractional Laplacian,
that is, to study problem (1.1) for s ∈ (0, 1).

The closest result to ours was obtained by Capella-Dávila-Dupaigne-Sire [10].
They studied the extremal solution in Ω = B1 for the spectral fractional Laplacian
As. The operator As, defined via the Dirichlet eigenvalues of the Laplacian in Ω,
is related to (but different from) the fractional Laplacian (1.3). We will state their
result later on in this introduction.
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Let us start defining weak solutions to problem (1.1).

Definition 1.1. We say that u ∈ L1(Ω) is a weak solution of (1.1) if

f(u)δs ∈ L1(Ω), (1.4)

where δ(x) = dist(x, ∂Ω), and∫
Ω

u(−∆)sζdx =

∫
Ω

λf(u)ζdx (1.5)

for all ζ such that ζ and (−∆)sζ are bounded in Ω and ζ ≡ 0 on ∂Ω.
Any bounded weak solution is a classical solution, in the sense that it is regular

in the interior of Ω, continuous up to the boundary, and (1.1) holds pointwise; see
Remark 2.1.

Note that for s = 1 the above notion of weak solution is exactly the one used in
[5, 4].

In the classical case (that is, when s = 1), the analysis of singular extremal
solutions involves an intermediate class of solutions, those belonging to H1(Ω); see
[4, 25]. These solutions are called [4] energy solutions. As proved by Nedev [27],
when the domain Ω is convex the extremal solution belongs to H1(Ω), and hence it
is an energy solution; see [8] for the statement and proofs of the results in [27].

Similarly, here we say that a weak solution u is an energy solution of (1.1) when
u ∈ Hs(Rn). This is equivalent to saying that u is a critical point of the energy
functional

E(u) =
1

2
‖u‖2

◦
Hs
−
∫

Ω

λF (u)dx, F ′ = f, (1.6)

where

‖u‖2
◦
Hs

=

∫
Rn

∣∣(−∆)s/2u
∣∣2 dx =

cn,s
2

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy = (u, u) ◦

Hs
(1.7)

and

(u, v) ◦
Hs

=

∫
Rn

(−∆)s/2u(−∆)s/2v dx =
cn,s
2

∫
Rn

∫
Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dxdy.

(1.8)
Our first result, stated next, concerns the existence of a minimal branch of so-

lutions, {uλ, 0 < λ < λ∗}, with the same properties as in the case s = 1. These
solutions are proved to be positive, bounded, increasing in λ, and semistable. Recall
that a weak solution u of (1.1) is said to be semistable if∫

Ω

λf ′(u)η2dx ≤ ‖η‖2
◦
Hs

(1.9)

for all η ∈ Hs(Rn) with η ≡ 0 in Rn \ Ω. When u is an energy solution this is
equivalent to saying that the second variation of energy E at u is nonnegative.

Proposition 1.2. Let Ω ⊂ Rn be a bounded smooth domain, s ∈ (0, 1), and f be a
function satisfying (1.2). Then, there exists a parameter λ∗ ∈ (0,∞) such that:
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(i) If 0 < λ < λ∗, problem (1.1) admits a minimal classical solution uλ.
(ii) The family of functions {uλ : 0 < λ < λ∗} is increasing in λ, and its

pointwise limit u∗ = limλ↑λ∗ uλ is a weak solution of (1.1) with λ = λ∗.
(iii) For λ > λ∗, problem (1.1) admits no classical solution.
(iv) These solutions uλ, as well as u∗, are semistable.

The weak solution u∗ is called the extremal solution of problem (1.1).
As explained above, the main question about the extremal solution u∗ is to decide

whether it is bounded or not. Once the extremal solution is bounded then it is a
classical solution, in the sense that it satisfies equation (1.1) pointwise. For example,
if f ∈ C∞ then u∗ bounded yields u∗ ∈ C∞(Ω) ∩ Cs(Ω).

Our main result, stated next, concerns the regularity of the extremal solution for
problem (1.1). To our knowledge this is the first result concerning extremal solutions
for (1.1). In particular, the following are new results even for the unit ball Ω = B1

and for the exponential nonlinearity f(u) = eu.

Theorem 1.3. Let Ω be a bounded smooth domain in Rn, s ∈ (0, 1), f be a function
satisfying (1.2), and u∗ be the extremal solution of (1.1).

(i) Assume that f is convex. Then, u∗ is bounded whenever n < 4s.
(ii) Assume that f is C2 and that the following limit exists:

τ := lim
t→+∞

f(t)f ′′(t)

f ′(t)2
. (1.10)

Then, u∗ is bounded whenever n < 10s.
(iii) Assume that Ω is convex. Then, u∗ belongs to Hs(Rn) for all n ≥ 1 and all

s ∈ (0, 1).

Note that the exponential and power nonlinearities eu and (1 + u)p, with p > 1,
satisfy the hypothesis in part (ii) whenever n < 10s. In the limit s ↑ 1, n < 10
is optimal, since the extremal solution may be singular for s = 1 and n = 10 (as
explained before in this introduction).

Note that the results in parts (i) and (ii) of Theorem 1.3 do not provide any esti-
mate when s is small (more precisely, when s ≤ 1/4 and s ≤ 1/10, respectively). The
boundedness of the extremal solution for small s seems to require different methods
from the ones that we present here. Our computations in Section 3 suggest that
the extremal solution for the fractional Laplacian should be bounded in dimensions
n ≤ 7 for all s ∈ (0, 1), at least for the exponential nonlinearity f(u) = eu. As
commented above, Capella-Dávila-Dupaigne-Sire [10] studied the extremal solution
for the spectral fractional Laplacian As in Ω = B1. They obtained an L∞ bound for
the extremal solution in a ball in dimensions n < 2

(
2 + s+

√
2s+ 2

)
, and hence

they proved the boundedness of the extremal solution in dimensions n ≤ 6 for all
s ∈ (0, 1).

To prove part (i) of Theorem 1.3 we borrow the ideas of [26], where Nedev proved
the boundedness of the extremal solution for s = 1 and n ≤ 3. To prove part (ii)



THE EXTREMAL SOLUTION FOR THE FRACTIONAL LAPLACIAN 231

we follow the approach of M. Sanchón in [30]. When we try to repeat the same
arguments for the fractional Laplacian, we find that some identities that in the
case s = 1 come from local integration by parts are no longer available for s < 1.
Instead, we succeed to replace them by appropriate inequalities. These inequalities
are sharp as s ↑ 1, but not for small s. Finally, part (iii) is proved by an argument
of Nedev [27], which for s < 1 requires the Pohozaev identity for the fractional
Laplacian, recently established by the authors in [29]. This argument requires also
some boundary estimates, which we prove using the moving planes method; see
Proposition 1.8 at the end of this introduction.

An important tool in the proofs of the results of Nedev [26] and Sanchón [30]
is the classical Lp to W 2,p estimate for the Laplace equation. Namely, if u is the
solution of −∆u = g in Ω, u = 0 in ∂Ω, with g ∈ Lp(Ω), 1 < p <∞, then

‖u‖W 2,p(Ω) ≤ C‖g‖Lp(Ω).

This estimate and the Sobolev embeddings lead to Lq(Ω) or Cα(Ω) estimates for the
solution u, depending on whether 1 < p < n

2
or p > n

2
, respectively.

Here, to prove Theorem 1.3 we need similar estimates but for the fractional Lapla-
cian, in the sense that from (−∆)su ∈ Lp(Ω) we want to deduce u ∈ Lq(Ω) or
u ∈ Cα(Ω). However, Lp to W 2s,p estimates for the fractional Laplace equation, in
which −∆ is replaced by the fractional Laplacian (−∆)s, are not available for all p,
even when Ω = Rn; see Remarks 7.1 and 7.2.

Although the Lp to W 2s,p estimate does not hold for all p in this fractional frame-
work, what will be indeed true is the following result. This is a crucial ingredient in
the proof of Theorem 1.3.

Proposition 1.4. Let Ω ⊂ Rn be a bounded C1,1 domain, s ∈ (0, 1), n > 2s,
g ∈ C(Ω), and u be the solution of{

(−∆)su = g in Ω
u = 0 in Rn\Ω. (1.11)

(i) For each 1 ≤ r < n
n−2s

there exists a constant C, depending only on n, s, r,
and |Ω|, such that

‖u‖Lr(Ω) ≤ C‖g‖L1(Ω), r <
n

n− 2s
.

(ii) Let 1 < p < n
2s

. Then there exists a constant C, depending only on n, s, and
p, such that

‖u‖Lq(Ω) ≤ C‖g‖Lp(Ω), where q =
np

n− 2ps
.

(iii) Let n
2s
< p < ∞. Then, there exists a constant C, depending only on n, s,

p, and Ω, such that

‖u‖Cβ(Rn) ≤ C‖g‖Lp(Ω), where β = min

{
s, 2s− n

p

}
.
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We will use parts (i), (ii), and (iii) of Proposition 1.4 in the proof of Theorem 1.3.
However, we will only use part (iii) to obtain an L∞ estimate for u, we will not need
the Cβ bound. Still, for completeness we prove the Cβ estimate, with the optimal
exponent β (depending on p).

Remark 1.5. Proposition 1.4 does not provide any estimate for n ≤ 2s. Since
s ∈ (0, 1), then n ≤ 2s yields n = 1 and s ≥ 1/2. In this case, any bounded
domain is of the form Ω = (a, b), and the Green function G(x, y) for problem (1.14)
is explicit; see [2]. Then, by using this expression it is not difficult to show that
G(·, y) is L∞(Ω) in case s > 1/2 and Lp(Ω) for all p < ∞ in case s = 1/2. Hence,
in case n < 2s it follows that ‖u‖L∞(Ω) ≤ C‖g‖L1(Ω), while in case n = 2s it follows
that ‖u‖Lq(Ω) ≤ C‖g‖L1(Ω) for all q <∞ and ‖u‖L∞(Ω) ≤ C‖g‖Lp(Ω) for p > 1.

Proposition 1.4 follows from Theorem 1.6 and Proposition 1.7 below. The first
one contains some classical results concerning embeddings for the Riesz potential,
and reads as follows.

Theorem 1.6 (see [34]). Let s ∈ (0, 1), n > 2s, and g and u be such that

u = (−∆)−sg in Rn, (1.12)

in the sense that u is the Riesz potential of order 2s of g. Assume that u and g
belong to Lp(Rn), with 1 ≤ p <∞.

(i) If p = 1, then there exists a constant C, depending only on n and s, such
that

‖u‖Lqweak(Rn) ≤ C‖g‖L1(Rn), where q =
n

n− 2s
.

(ii) If 1 < p < n
2s

, then there exists a constant C, depending only on n, s, and p,
such that

‖u‖Lq(Rn) ≤ C‖g‖Lp(Rn), where q =
np

n− 2ps
.

(iii) If n
2s
< p < ∞, then there exists a constant C, depending only on n, s, and

p, such that

[u]Cα(Rn) ≤ C‖g‖Lp(Rn), where α = 2s− n

p
,

where [ · ]Cα(Rn) denotes the Cα seminorm.

Parts (i) and (ii) of Theorem 1.6 are proved in the book of Stein [34, Chapter V].
Part (iii) is also a classical result, but it seems to be more difficult to find an exact
reference for it. Although it is not explicitly stated in [34], it follows for example
from the inclusions

I2s(L
p) = I2s−n/p(In/p(L

p)) ⊂ I2s−n/p(BMO) ⊂ C2s−n
p ,

which are commented in [34, p.164]. In the more general framework of spaces with
non-doubling n-dimensional measures, a short proof of this result can also be found
in [19].
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Having Theorem 1.6 available, to prove Proposition 1.4 we will argue as follows.
Assume 1 < p < n

2s
and consider the solution v of the problem

(−∆)sv = |g| in Rn,

where g is extended by zero outside Ω. On the one hand, the maximum principle
yields −v ≤ u ≤ v in Rn, and by Theorem 1.6 we have that v ∈ Lq(Rn). From this,
parts (i) and (ii) of the proposition follow. On the other hand, if p > n

2s
we write

u = ṽ + w, where ṽ solves (−∆)sṽ = g in Rn and w is the solution of{
(−∆)sw = 0 in Ω

w = ṽ in Rn\Ω.

As before, by Theorem 1.6 we will have that ṽ ∈ Cα(Rn), where α = 2s− n
p
. Then,

the Cβ regularity of u will follow from the following new result.

Proposition 1.7. Let Ω be a bounded C1,1 domain, s ∈ (0, 1), h ∈ Cα(Rn \ Ω) for
some α > 0, and u be the solution of{

(−∆)su = 0 in Ω
u = h in Rn\Ω. (1.13)

Then, u ∈ Cβ(Rn), with β = min{s, α}, and

‖u‖Cβ(Rn) ≤ C‖h‖Cα(Rn\Ω),

where C is a constant depending only on Ω, α, and s.

To prove Proposition 1.7 we use similar ideas as in [28]. Namely, since u is
harmonic then it is smooth inside Ω. Hence, we only have to prove Cβ estimates
near the boundary. To do it, we use an appropriate barrier to show that

|u(x)− u(x0)| ≤ C‖h‖Cαδ(x)β in Ω,

where x0 is the nearest point to x on ∂Ω, δ(x) = dist(x, ∂Ω), and β = min{s, α}.
Combining this with the interior estimates, we obtain Cβ estimates up to the bound-
ary of Ω.

Finally, as explained before, to show that when the domain is convex the extremal
solution belongs to the energy class Hs(Rn) —which is part (iii) of Theorem 1.3—
we need the following boundary estimates.

Proposition 1.8. Let Ω ⊂ Rn be a bounded convex domain, s ∈ (0, 1), f be a locally
Lipschitz function, and u be a bounded positive solution of{

(−∆)su = f(u) in Ω
u = 0 in Rn\Ω. (1.14)

Then, there exists constants δ > 0 and C, depending only on Ω, such that

‖u‖L∞(Ωδ) ≤ C‖u‖L1(Ω),

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.
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This estimate follows, as in the classical result of de Figueiredo-Lions-Nussbaum
[14], from the moving planes method. There are different versions of the moving
planes method for the fractional Laplacian (using the Caffarelli-Silvestre extension,
the Riesz potential, the Hopf lemma, etc.). A particularly clean version uses the
maximum principle in small domains for the fractional Laplacian, recently proved
by Jarohs and Weth in [22]. Here, we follow their approach and we show that
this maximum principle holds also for integro-differential operators with decreasing
kernels.

The paper is organized as follows. In Section 2 we prove Proposition 1.2. In
Section 3 we study the regularity of the extremal solution in the case f(u) = eu. In
Section 4 we prove Theorem 1.3 (i)-(ii). In Section 5 we show the maximum principle
in small domains and use the moving planes method to establish Proposition 1.8.
In Section 6 we prove Theorem 1.3 (iii). Finally, in Section 7 we prove Proposition
1.4.

2. Existence of the extremal solution

In this section we prove Proposition 1.2. For it, we follow the argument from
Proposition 5.1 in [7]; see also [16].

Proof of Proposition 1.2. Step 1. We first prove that there is no weak solution for
large λ.

Let λ1 > 0 be the first eigenvalue of (−∆)s in Ω and ϕ1 > 0 the corresponding
eigenfunction, that is,  (−∆)sϕ1 = λ1ϕ1 in Ω

ϕ1 > 0 in Ω
ϕ1 = 0 in Rn \ Ω.

The existence, simplicity, and boundedness of the first eigenfunction is proved in
[31, Proposition 5] and [32, Proposition 4]. Assume that u is a weak solution of
(1.1). Then, using ϕ1 as a test function for problem (1.1) (see Definition 1.1), we
obtain ∫

Ω

λ1uϕ1dx =

∫
Ω

u(−∆)sϕ1dx =

∫
Ω

λf(u)ϕ1dx. (2.1)

But since f is superlinear at infinity and positive in [0,∞), it follows that λf(u) >
λ1u if λ is large enough, a contradiction with (2.1).

Step 2. Next we prove the existence of a classical solution to (1.1) for small λ.
Since f(0) > 0, u ≡ 0 is a strict subsolution of (1.1) for every λ > 0. The solution
u of {

(−∆)su = 1 in Ω
u = 0 on Rn\Ω (2.2)

is a bounded supersolution of (1.1) for small λ, more precisely whenever λf(maxu) <
1. For such values of λ, a classical solution uλ is obtained by monotone iteration
starting from zero; see for example [16].
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Step 3. We next prove that there exists a finite parameter λ∗ such that for λ < λ∗

there is a classical solution while for λ > λ∗ there does not exist classical solution.
Define λ∗ as the supremum of all λ > 0 for which (1.1) admits a classical solution.

By Steps 1 and 2, it follows that 0 < λ∗ <∞. Now, for each λ < λ∗ there exists µ ∈
(λ, λ∗) such that (1.1) admits a classical solution uµ. Since f > 0, uµ is a bounded
supersolution of (1.1), and hence the monotone iteration procedure shows that (1.1)
admits a classical solution uλ with uλ ≤ uµ. Note that the iteration procedure, and
hence the solution that it produces, are independent of the supersolution uµ. In
addition, by the same reason uλ is smaller than any bounded supersolution of (1.1).
It follows that uλ is minimal (i.e., the smallest solution) and that uλ < uµ.

Step 4. We show now that these minimal solutions uλ, 0 < λ < λ∗, are semistable.
Note that the energy functional (1.6) for problem (1.1) in the set {u ∈ Hs(Rn) :

u ≡ 0 in Rn \Ω, 0 ≤ u ≤ uλ} admits an absolute minimizer umin. Then, using that
uλ is the minimal solution and that f is positive and increasing, it is not difficult
to see that umin must coincide with uλ. Considering the second variation of energy
(with respect to nonpositive perturbations) we see that umin is a semistable solution
of (1.1). But since umin agrees with uλ, then uλ is semistable. Thus uλ is semistable.

Step 5. We now prove that the pointwise limit u∗ = limλ↑λ∗ uλ is a weak solution
of (1.1) for λ = λ∗ and that this solution u∗ is semistable.

As above, let λ1 > 0 the first eigenvalue of (−∆)s, and ϕ1 > 0 be the corresponding
eigenfunction. Since f is superlinear at infinity, there exists a constant C > 0 such
that

2λ1

λ∗
t ≤ f(t) + C for all t ≥ 0. (2.3)

Using ϕ1 as a test function in (1.5) for uλ, we find∫
Ω

λf(uλ)ϕ1dx =

∫
Ω

λ1uλϕ1dx ≤
λ∗

2

∫
Ω

(f(uλ) + C)ϕ1dx.

In the last inequality we have used (2.3). Taking λ ≥ 3
4
λ∗, we see that f(uλ)ϕ1 is

uniformly bounded in L1(Ω). In addition, it follows from the results in [28] that

c1δ
s ≤ ϕ1 ≤ C2δ

s in Ω

for some positive constants c1 and C2, where δ(x) = dist(x, ∂Ω). Hence, we have
that

λ

∫
Ω

f(uλ)δ
sdx ≤ C

for some constant C that does not depend on λ. Use now u, the solution of (2.2),
as a test function. We obtain that∫

Ω

uλdx = λ

∫
Ω

f(uλ)udx ≤ C3λ

∫
Ω

f(uλ)δ
sdx ≤ C

for some constant C depending only on f and Ω. Here we have used that u ≤ C3δ
s

in Ω for some constant C3 > 0, which also follows from [28].
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Thus, both sequences, uλ and λf(uλ)δ
s are increasing in λ and uniformly bounded

in L1(Ω) for λ < λ∗. By monotone convergence, we conclude that u∗ ∈ L1(Ω) is a
weak solution of (1.1) for λ = λ∗.

Finally, for λ < λ∗ we have
∫

Ω
λf ′(uλ)|η|2dx ≤ ‖η‖2

◦
Hs

, where ‖η‖2
◦
Hs

is defined by

(1.7), for all η ∈ Hs(Rn) with η ≡ 0 in Rn \Ω. Since f ′ ≥ 0, Fatou’s lemma leads to∫
Ω

λ∗f ′(u∗)|η|2dx ≤ ‖η‖2
◦
Hs
,

and hence u∗ is semistable. �

Remark 2.1. As said in the introduction, the study of extremal solutions involves
three classes of solutions: classical, energy, and weak solutions; see Definition 1.1.
It follows from their definitions that any classical solution is an energy solution, and
that any energy solution is a weak solution.

Moreover, any weak solution u which is bounded is a classical solution. This can
be seen as follows. First, by considering u ∗ ηε and f(u) ∗ ηε, where ηε is a standard
mollifier, it is not difficult to see that u is regular in the interior of Ω. Moreover,
by scaling, we find that |(−∆)s/2u| ≤ Cδ−s, where δ(x) = dist(x, ∂Ω). Then, if
ζ ∈ C∞c (Ω), we can integrate by parts in (1.5) to obtain

(u, ζ) ◦
Hs

=

∫
Rn

∫
Rn

(
u(x)− u(y)

)(
ζ(x)− ζ(y)

)
|x− y|n+2s

dx dy =

∫
Ω

λf(u)ζdx (2.4)

for all ζ ∈ C∞c (Ω). Hence, since f(u) ∈ L∞, by density (2.4) holds for all ζ ∈ Hs(Rn)
such that ζ ≡ 0 in Rn \ Ω, and therefore u is an energy solution. Finally, bounded
energy solutions are classical solutions; see Remark 2.11 in [28] and [33].

3. An example case: the exponential nonlinearity

In this section we study the regularity of the extremal solution for the nonlinearity
f(u) = eu. Although the results of this section follow from Theorem 1.3 (ii), we
exhibit this case separately because the proofs are much simpler. Furthermore, this
exponential case has the advantage that we have an explicit unbounded solution to
the equation in the whole Rn, and we can compute the values of n and s for which
this singular solution is semistable.

The main result of this section is the following.

Proposition 3.1. Let Ω be a smooth and bounded domain in Rn, and let u∗ the
extremal solution of (1.1). Assume that f(u) = eu and n < 10s. Then, u∗ is
bounded.

Proof. Let α be a positive number to be chosen later. Setting η = eαuλ − 1 in the
stability condition (1.9) (note that η ≡ 0 in Rn \ Ω), we obtain that∫

Ω

λeuλ(eαuλ − 1)2dx ≤ ‖eαuλ − 1‖2
◦
Hs
. (3.1)
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Next we use that (
eb − ea

)2 ≤ 1

2

(
e2b − e2a

)
(b− a) (3.2)

for all real numbers a and b. This inequality can be deduced easily from the Cauchy-
Schwarz inequality, as follows(

eb − ea
)2

=

(∫ b

a

etdt

)2

≤ (b− a)

∫ b

a

e2tdt =
1

2

(
e2b − e2a

)
(b− a).

Using (3.2), (1.8), and integrating by parts, we deduce

‖eαuλ − 1‖2
◦
Hs

=
cn,s
2

∫
Rn

∫
Rn

(
eαuλ(x) − eαuλ(y)

)2

|x− y|n+2s
dxdy

≤ cn,s
2

∫
Rn

∫
Rn

1
2

(
e2αuλ(x) − e2αuλ(y)

)
(αuλ(x)− αuλ(y))

|x− y|n+2s
dxdy

=
α

2

∫
Ω

e2αuλ(−∆)suλdx.

Thus, using that (−∆)suλ = λeuλ , we find

‖eαuλ − 1‖2
◦
Hs
≤ α

2

∫
Ω

e2αuλ(−∆)suλdx =
α

2

∫
Ω

λe(2α+1)uλdx. (3.3)

Therefore, combining (3.1) and (3.3), and rearranging terms, we get(
1− α

2

)∫
Ω

e(2α+1)uλ − 2

∫
Ω

e(α+1)uλ +

∫
Ω

eαuλ ≤ 0.

From this, it follows from Hölder’s inequality that for each α < 2

‖euλ‖L2α+1 ≤ C (3.4)

for some constant C which depends only on α and |Ω|.
Finally, given n < 10s we can choose α < 2 such that n

2s
< 2α + 1 < 5. Then,

taking p = 2α + 1 in Proposition 1.4 (iii) (see also Remark 1.5) and using (3.4) we
obtain

‖uλ‖L∞(Ω) ≤ C1‖(−∆)suλ‖Lp(Ω) = C1λ‖euλ‖Lp(Ω) ≤ C

for some constant C that depends only on n, s, and Ω. Letting λ ↑ λ∗ we find that
the extremal solution u∗ is bounded, as desired. �

The following result concerns the stability of the explicit singular solution log 1
|x|2s

to equation (−∆)su = λeu in the whole Rn.

Proposition 3.2. Let s ∈ (0, 1), and let

u0(x) = log
1

|x|2s
.
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Then, u0 is a solution of (−∆)su = λ0e
u in all of Rn for some λ0 > 0. Moreover,

u0 is semistable if and only if

Γ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) ≤
Γ2
(
n+2s

4

)
Γ2
(
n−2s

4

) . (3.5)

As a consequence:

• If n ≤ 7, then u is unstable for all s ∈ (0, 1).
• If n = 8, then u is semistable if and only if s . 0′28206....
• If n = 9, then u is semistable if and only if s . 0′63237....
• If n ≥ 10, then u is semistable for all s ∈ (0, 1).

Proposition 3.2 suggests that the extremal solution for the fractional Laplacian
should be bounded whenever

Γ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) >
Γ2
(
n+2s

4

)
Γ2
(
n−2s

4

) , (3.6)

at least for the exponential nonlinearity f(u) = eu. In particular, u∗ should be
bounded for all s ∈ (0, 1) whenever n ≤ 7. This is an open problem.

Remark 3.3. When s = 1 and when s = 2, inequality (3.6) coincides with the
expected optimal dimensions for which the extremal solution is bounded for the
Laplacian ∆ and for the bilaplacian ∆2, respectively. In the unit ball Ω = B1, it is
well known that the extremal solution for s = 1 is bounded whenever n ≤ 9 and may
be singular if n ≥ 10 [7], while the extremal solution for s = 2 is bounded whenever
n ≤ 12 and may be singular if n ≥ 13 [13]. Taking s = 1 and s = 2 in (3.6), one can
see that the inequality is equivalent to n < 10 and n . 12.5653..., respectively.

We next give the

Proof of Proposition 3.2. First, using the Fourier transform, it is not difficult to
compute

(−∆)su0 = (−∆)s log
1

|x|2s
=

λ0

|x|2s
,

where

λ0 = 22sΓ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) .

Thus, u0 is a solution of (−∆)su0 = λ0e
u0 .

Now, since f(u) = eu, by (1.9) we have that u0 is semistable in Ω = Rn if and
only if

λ0

∫
Rn

η2

|x|2s
dx ≤

∫
Rn

∣∣(−∆)s/2η
∣∣2 dx

for all η ∈ Hs(Rn).
The inequality ∫

Ω

η2

|x|2s
dx ≤ H−1

n,s

∫
Rn

∣∣(−∆)s/2η
∣∣2 dx
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is known as the fractional Hardy inequality, and the best constant

Hn,s = 22sΓ2
(
n+2s

4

)
Γ2
(
n−2s

4

)
was obtained by Herbst [24] in 1977; see also [18]. Therefore, it follows that u0 is
semistable if and only if

λ0 ≤ Hn,s,

which is the same as (3.5). �

4. Boundedness of the extremal solution in low dimensions

In this section we prove Theorem 1.3 (i)-(ii).
We start with a lemma, which is the generalization of inequality (3.2). It will be

used in the proof of both parts (i) and (ii) of Theorem 1.3.

Lemma 4.1. Let f be a C1([0,∞)) function, f̃(t) = f(t)− f(0), γ > 0, and

g(t) =

∫ t

0

f̃(s)2γ−2f ′(s)2ds. (4.1)

Then, (
f̃(a)γ − f̃(b)γ

)2

≤ γ2
(
g(a)− g(b)

)
(a− b)

for all nonnegative numbers a and b.

Proof. We can assume a ≤ b. Then, since d
dt

{
f̃(t)γ

}
= γf̃(t)γ−1f ′(t), the inequality

can be written as(∫ b

a

γf̃(t)γ−1f ′(t)dt

)2

≤ γ2(b− a)

∫ b

a

f̃(t)2γ−2f ′(t)2dt,

which follows from the Cauchy-Schwarz inequality. �

The proof of part (ii) of Theorem 1.3 will be split in two cases. Namely, τ ≥ 1 and
τ < 1, where τ is given by (1.10). For the case τ ≥ 1, Lemma 4.2 below will be an
important tool. Instead, for the case τ < 1 we will use Lemma 4.3. Both lemmas are
proved by Sanchón in [30], where the extremal solution for the p-Laplacian operator
is studied.

Lemma 4.2 ([30]). Let f be a function satisfying (1.2), and assume that the limit
in (1.10) exists. Assume in addition that

τ = lim
t→∞

f(t)f ′′(t)

f ′(t)2
≥ 1.

Then, any γ ∈ (1, 1 +
√
τ) satisfies

lim sup
t→+∞

γ2g(t)

f(t)2γ−1f ′(t)
< 1, (4.2)
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where g is given by (4.1).

Lemma 4.3 ([30]). Let f be a function satisfying (1.2), and assume that the limit
in (1.10) exists. Assume in addition that

τ = lim
t→∞

f(t)f ′′(t)

f ′(t)2
< 1.

Then, for every ε ∈ (0, 1− τ) there exists a positive constant C such that

f(t) ≤ C(1 + t)
1

1−(τ+ε) , for all t > 0.

The constant C depends only on τ and ε.

The first step in the proof of Theorem 1.3 (ii) in case τ ≥ 1 is the following result.

Lemma 4.4. Let f be a function satisfying (1.2). Assume that γ ≥ 1 satisfies
(4.2), where g is given by (4.1). Let uλ be the solution of (1.1) given by Proposition
1.2 (i), where λ < λ∗. Then,

‖f(uλ)
2γf ′(uλ)‖L1(Ω) ≤ C

for some constant C which does not depend on λ.

Proof. Recall that the seminorm ‖ · ‖ ◦
Hs

is defined by (1.7). Using Lemma 4.1, (1.8),
and integrating by parts,

∥∥∥f̃(uλ)
γ
∥∥∥2

◦
Hs

=
cn,s
2

∫
Rn

∫
Rn

(
f̃(uλ(x))γ − f̃(uλ(y))γ

)2

|x− y|n+2s
dxdy

≤ γ2 cn,s
2

∫
Rn

∫
Rn

(
g(uλ(x))− g(uλ(y))

)
(uλ(x)− uλ(y))

|x− y|n+2s
dxdy

= γ2

∫
Rn

(−∆)s/2g(uλ)(−∆)s/2uλ dx

= γ2

∫
Ω

g(uλ)(−∆)suλ dx

= γ2

∫
Ω

f(uλ)g(uλ)dx.

(4.3)

Moreover, the stability condition (1.9) applied with η = f̃(uλ)
γ yields∫

Ω

f ′(uλ)f̃(uλ)
2γ ≤

∥∥∥f̃(uλ)
γ
∥∥∥2

◦
Hs
.

This, combined with (4.3), gives∫
Ω

f ′(uλ)f̃(uλ)
2γ ≤ γ2

∫
Ω

f(uλ)g(uλ). (4.4)
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Finally, by (4.2) and since f̃(t)/f(t)→ 1 as t→ +∞, it follows from (4.4) that∫
Ω

f(uλ)
2γf ′(uλ) ≤ C (4.5)

for some constant C that does not depend on λ, and thus the proposition is proved.
�

We next give the proof of Theorem 1.3 (ii).

Proof of Theorem 1.3 (ii). Assume first that τ ≥ 1, where

τ = lim
t→∞

f(t)f ′′(t)

f ′(t)2
.

By Lemma 4.4 and Lemma 4.2, we have that∫
Ω

f(uλ)
2γf ′(uλ)dx ≤ C (4.6)

for each γ ∈ (1, 1 +
√
τ).

Now, for any such γ, we have that f̃ 2γ is increasing and convex (since 2γ ≥ 1),
and thus

f̃(a)2γ − f̃(b)2γ ≤ 2γf ′(a)f̃(a)2γ−1(a− b).
Therefore, we have that

(−∆)sf̃(uλ)
2γ(x) = cn,s

∫
Rn

f̃(uλ(x))2γ − f̃(uλ(y))2γ

|x− y|n+2s
dy

≤ 2γf ′(uλ(x))f̃(uλ(x))2γ−1cn,s

∫
Rn

uλ(x)− uλ(y)

|x− y|n+2s
dy

= 2γf ′(uλ(x))f̃(uλ(x))2γ−1(−∆)suλ(x)

≤ 2γλf ′(uλ(x))f(uλ(x))2γ,

and thus,

(−∆)sf̃(uλ)
2γ ≤ 2γλf ′(uλ)f(uλ)

2γ := v(x). (4.7)

Let now w be the solution of the problem{
(−∆)sw = v in Ω

w = 0 in Rn\Ω, (4.8)

where v is given by (4.7). Then, by (4.6) and Proposition 1.4 (i) (see also Remark
1.5),

‖w‖Lp(Ω) ≤ ‖v‖L1(Ω) ≤ C for each p <
n

n− 2s
.

Since f̃(uλ)
2γ is a subsolution of (4.8) —by (4.7)—, it follows that

0 ≤ f̃(uλ)
2γ ≤ w.
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Therefore, ‖f(uλ)‖Lp ≤ C for all p < 2γ n
n−2s

, where C is a constant that does not

depend on λ. This can be done for any γ ∈ (1, 1 +
√
τ), and thus we find

‖f(uλ)‖Lp ≤ C for each p <
2n(1 +

√
τ)

n− 2s
. (4.9)

Hence, using Proposition 1.4 (iii) and letting λ ↑ λ∗ it follows that

u∗ ∈ L∞(Ω) whenever n < 6s+ 4s
√
τ .

Hence, the extremal solution is bounded whenever n < 10s.
Assume now τ < 1. In this case, Lemma 4.3 ensures that for each ε ∈ (0, 1 − τ)

there exist a constant C such that

f(t) ≤ C(1 + t)m, m =
1

1− (τ + ε)
. (4.10)

Then, by (4.9) we have that ‖f(uλ)‖Lp ≤ C for each p < p0 := 2n(1+
√
τ)

n−2s
.

Next we show that if n < 10s by a bootstrap argument we obtain u∗ ∈ L∞(Ω).
Indeed, by Proposition 1.4 (ii) and (4.10) we have

f(u∗) ∈ Lp ⇐⇒ (−∆)su∗ ∈ Lp =⇒ u∗ ∈ Lq =⇒ f(u∗) ∈ Lq/m,

where q = np
n−2sp

. Now, we define recursively

pk+1 :=
npk

m(n− 2spk)
, p0 =

2n(1 +
√
τ)

n− 2s
.

Now, since

pk+1 − pk =
pk

n− 2spk

(
2spk −

m− 1

m
n

)
,

then the bootstrap argument yields u∗ ∈ L∞(Ω) in a finite number of steps provided

that (m− 1)n/m < 2sp0. This condition is equivalent to n < 2s+ 4s1+
√
τ

τ+ε
, which is

satisfied for ε small enough whenever n ≤ 10s, since 1+
√
τ

τ
> 2 for τ < 1. Thus, the

result is proved. �

Before proving Theorem 1.3 (i), we need the following lemma, proved by Nedev
in [26].

Lemma 4.5 ([26]). Let f be a convex function satisfying (1.2), and let

g(t) =

∫ t

0

f ′(τ)2dτ. (4.11)

Then,

lim
t→+∞

f ′(t)f̃(t)2 − f̃(t)g(t)

f(t)f ′(t)
= +∞,

where f̃(t) = f(t)− f(0).
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As said above, this lemma is proved in [26]. More precisely, see equation (6) in

the proof of Theorem 1 in [26] and recall that f̃/f → 1 at infinity.
We can now give the

Proof of Theorem 1.3 (i). Let g be given by (4.11). Using Lemma 4.1 with γ = 1
and integrating by parts, we find

‖f(uλ)‖2
◦
Hs

=
cn,s
2

∫
Rn

∫
Rn

(f(uλ(x))− f(uλ(y)))2

|x− y|n+2s
dxdy

≤ cn,s
2

∫
Rn

∫
Rn

(g(uλ(x))− g(uλ(y))) (uλ(x)− uλ(y))

|x− y|n+2s
dxdy

=

∫
Rn

(−∆)s/2g(uλ)(−∆)s/2uλdx

=

∫
Rn
g(uλ)(−∆)suλdx

=

∫
Ω

f(uλ)g(uλ).

(4.12)

The stability condition (1.9) applied with η = f̃(uλ) yields∫
Ω

f ′(uλ)f̃(uλ)
2 ≤ ‖f̃(uλ)‖2

◦
Hs
,

which combined with (4.12) gives∫
Ω

f ′(uλ)f̃(uλ)
2 ≤

∫
Ω

f(uλ)g(uλ). (4.13)

This inequality can be written as∫
Ω

{
f ′(uλ)f̃(uλ)

2 − f̃(uλ)g(uλ)
}
≤ f(0)

∫
Ω

g(uλ).

In addition, since f is convex we have

g(t) =

∫ t

0

f ′(s)2ds ≤ f ′(t)

∫ t

0

f ′(s)ds ≤ f ′(t)f(t),

and thus, ∫
Ω

{
f ′(uλ)f̃(uλ)

2 − f̃(uλ)g(uλ)
}
≤ f(0)

∫
Ω

f ′(uλ)f(uλ).

Hence, by Lemma 4.5 we obtain∫
Ω

f(uλ)f
′(uλ) ≤ C. (4.14)

Now, on the one hand we have that

f(a)− f(b) ≤ f ′(a)(a− b),
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since f is increasing and convex. This yields, as in (4.7),

(−∆)sf̃(uλ) ≤ f ′(uλ)(−∆)suλ = f ′(uλ)f(uλ) := v(x).

On the other hand, let w the solution of the problem{
(−∆)sw = v in Ω

w = 0 on ∂Ω.
(4.15)

By (4.14) and Proposition 1.4 (i) (see also Remark 1.5),

‖w‖Lp(Ω) ≤ ‖v‖L1(Ω) ≤ C for each p <
n

n− 2s
.

Since f̃(uλ) is a subsolution of (4.15), then 0 ≤ f̃(uλ) ≤ w. Therefore,

‖f(u∗)‖Lp(Ω) ≤ C for each p <
n

n− 2s
,

and using Proposition 1.4 (iii), we find

u∗ ∈ L∞(Ω) whenever n < 4s,

as desired. �

5. Boundary estimates: the moving planes method

In this section we prove Proposition 1.8. This will be done with the celebrated
moving planes method [21], as in the classical boundary estimates for the Laplacian
of de Figueiredo-Lions-Nussbaum [14].

The moving planes method has been applied to problems involving the fractional
Laplacian by different authors; see for example [11, 1, 17]. However, some of these
results use the specific properties of the fractional Laplacian —such as the extension
problem of Caffarelli-Silvestre [9], or the Riesz potential expression for (−∆)−s—,
and it is not clear how to apply the method to more general integro-differential
operators. Here, we follow a different approach that allows more general nonlocal
operators.

The main tool in the proof is the following maximum principle in small domains.
Recently, Jarohs and Weth [22] obtained a parabolic version of the maximum

principle in small domains for the fractional Laplacian; see Proposition 2.4 in [22].
The proof of their result is essentially the same that we present in this section. Still,
we think that it may be of interest to write here the proof for integro-differential
operators with decreasing kernels.

Lemma 5.1. Let Ω ⊂ Rn be a domain satisfying Ω ⊂ Rn
+ = {x1 > 0}. Let K be a

nonnegative function in Rn, radially symmetric and decreasing, and satisfying

K(z) ≥ c|z|−n−ν for all z ∈ B1

for some positive constants c and ν, and let

LKu(x) =

∫
Rn

(
u(y)− u(x)

)
K(x− y)dy.
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Let V ∈ L∞(Ω) be any bounded function, and w ∈ Hs(Rn) be a bounded function
satisfying  LKw = V (x)w in Ω

w ≥ 0 in Rn
+ \ Ω

w(x) ≥ −w(x∗) in Rn
+,

(5.1)

where x∗ is the symmetric to x with respect to the hyperplane {x1 = 0}. Then, there
exists a positive constant C0 such that if(

1 + ‖V −‖L∞(Ω)

)
|Ω|

ν
n ≤ C0, (5.2)

then w ≥ 0 in Ω.

Remark 5.2. When LK is the fractional Laplacian (−∆)s, then the condition (5.2)

can be replaced by ‖V −‖L∞|Ω|
2s
n ≤ C0.

Proof of Lemma 5.1. The identity LKw = V (x)w in Ω written in weak form is

(ϕ,w)K :=

∫ ∫
R2n\(Rn\Ω)2

(ϕ(x)− ϕ(y))(w(x)− w(y))K(x− y)dx dy =

∫
Ω

V wϕ

(5.3)

for all ϕ such that ϕ ≡ 0 in Rn \Ω and
∫
Rn
(
ϕ(x)−ϕ(y)

)2
K(x− y)dx dy <∞. Note

that the left hand side of (5.3) can be written as

(ϕ,w)K =

∫
Ω

∫
Ω

(ϕ(x)− ϕ(y))(w(x)− w(y))K(x− y)dx dy

+ 2

∫
Ω

∫
Rn+\Ω

ϕ(x)(w(x)− w(y))K(x− y)dx dy

+ 2

∫
Ω

∫
Rn+
ϕ(x)(w(x)− w(y∗))K(x− y∗)dx dy,

where y∗ denotes the symmetric of y with respect to the hyperplane {x1 = 0}.
Choose ϕ = −w−χΩ, where w− is the negative part of w, i.e., w = w+ − w−.

Then, we claim that∫ ∫
R2n\(Rn\Ω)2

(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy ≤ (−w−χΩ, w)K . (5.4)

Indeed, first, we have

(−w−χΩ, w)K =

∫
Ω

∫
Ω

{(w−(x)−w−(y))2+w−(x)w+(y)+w+(x)w−(y)}K(x−y)dxdy+

+ 2

∫
Ω

∫
Rn+\Ω
{w−(x)(w−(x)− w−(y)) + w−(x)w+(y)}K(x− y)dx dy

+ 2

∫
Ω

∫
Rn+
{w−(x)(w−(x)− w−(y∗)) + w−(x)w+(y∗)}K(x− y∗)dx dy,

where we have used that w+(x)w−(x) = 0 for all x ∈ Rn.
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Thus, rearranging terms and using that w− ≡ 0 in Rn
+ \ Ω,

(−w−χΩ, w)K =

∫ ∫
R2n\(Rn\Ω)2

(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy

+

∫
Ω

∫
Ω

2w−(x)w+(y)K(x− y)dx dy+

+ 2

∫
Ω

∫
Rn+\Ω
{w−(x)w+(y)− w−(x)w−(y)}K(x− y)dx dy

+ 2

∫
Ω

∫
Rn+
{w−(x)w+(y∗)− w−(x)w−(y∗)}K(x− y∗)dx dy

≥
∫ ∫

R2n\(Rn\Ω)2
(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy+

+ 2

∫
Ω

∫
Rn+
w−(x)w+(y)K(x− y)dx dy+

+ 2

∫
Ω

∫
Rn+
−w−(x)w−(y∗)K(x− y∗)dx dy.

We next use that, sinceK is radially symmetric and decreasing, K(x−y∗) ≤ K(x−y)
for all x and y in Rn

+. We deduce

(−w−χΩ, w)K ≥
∫ ∫

R2n\(Rn\Ω)2
(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy+

+ 2

∫
Ω

∫
Rn+
w−(x)w+(y)− w−(x)w−(y∗)K(x− y)dx dy,

and since w−(y∗) ≤ w+(y) for all y in Rn
+ by assumption, we obtain (5.4).

Now, on the one hand note that from (5.4) we find∫
Ω

∫
Ω

(w−(x)− w−(y))2K(x− y)dx dy ≤ (−w−χΩ, w)K .

Moreover, since K(z) ≥ c|z|−n−νχB1(z), then

‖w−‖2
◦
Hν/2(Ω)

:=
cn,s
2

∫
Ω

∫
Ω

(w−(x)− w−(y))2

|x− y|−n−ν
dx dy

≤ C‖w−‖L2(Ω) + C

∫
Ω

∫
Ω

(
w−(x)− w−(y)

)2
K(x− y)dx dy,

and therefore
‖w−‖2

◦
Hν/2(Ω)

≤ C1‖w−‖L2(Ω) + C1(−w−χΩ, w)K . (5.5)

On the other hand, it is clear that∫
Ω

V ww− =

∫
Ω

V (w−)2 ≤ ‖V −‖L∞(Ω)‖w−‖L2(Ω). (5.6)
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Thus, it follows from (5.3), (5.5), and (5.6) that

‖w−‖2
◦
Hν/2(Ω)

≤ C1

(
1 + ‖V −‖L∞

)
‖w−‖L2(Ω).

Finally, by the Hölder and the fractional Sobolev inequalities, we have

‖w−‖2
L2(Ω) ≤ |Ω|

ν
n‖w−‖2

Lq(Ω) ≤ C2|Ω|
ν
n‖w−‖2

◦
Hν/2(Ω)

,

where q = 2n
n−ν . Thus, taking C0 such that C0 < (C1C2)−1 the lemma follows. �

Now, once we have the nonlocal version of the maximum principle in small do-
mains, the moving planes method can be applied exactly as in the classical case.

Proof of Proposition 1.8. Replacing the classical maximum principle in small do-
mains by Lemma 5.1, we can apply the moving planes method to deduce ‖u‖L∞(Ωδ) ≤
C‖u‖L1(Ω) for some constants C and δ > 0 that depend only on Ω, as in de
Figueiredo-Lions-Nussbaum [14]; see also [3].

Let us recall this argument. Assume first that all curvatures of ∂Ω are positive.
Let ν(y) be the unit outward normal to Ω at y. Then, there exist positive constants
s0 and α depending only on the convex domain Ω such that, for every y ∈ ∂Ω and
every e ∈ Rn with |e| = 1 and e · ν(y) ≥ α, u(y − se) is nondecreasing in s ∈ [0, s0].
This fact follows from the moving planes method applied to planes close to those
tangent to Ω at ∂Ω. By the convexity of Ω, the reflected caps will be contained in Ω.
The previous monotonicity fact leads to the existence of a set Ix, for each x ∈ Ωδ,
and a constant γ > 0 that depend only on Ω, such that

|Ix| ≥ γ, u(x) ≤ u(y) for all y ∈ Ix.
The set Ix is a truncated open cone with vertex at x.

As mentioned in page 45 of de Figuereido-Lions-Nussbaum [14], the same can also
be proved for general convex domains with a little more of care. �

Remark 5.3. When Ω = B1, Proposition 1.8 follows from the results in [1], where
Birkner, López-Mimbela, and Wakolbinger used the moving planes method to show
that any nonnegative bounded solution of{

(−∆)su = f(u) in B1

u = 0 in Rn \B1
(5.7)

is radially symmetric and decreasing.
When u is a bounded semistable solution of (5.7), there is an alternative way to

show that u is radially symmetric. This alternative proof applies to all solutions
(not necessarily positive), but does not give monotonicity. Indeed, one can easily
show that, for any i 6= j, the function w = xiuxj−xjuxi is a solution of the linearized
problem {

(−∆)sw = f ′(u)w in B1

w = 0 in Rn \B1.
(5.8)

Then, since λ1 ((−∆)s − f ′(u);B1) ≥ 0 by assumption, it follows that either w ≡ 0
or λ1 = 0 and w is a multiple of the first eigenfunction, which is positive —see the
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proof of Proposition 9 in [31, Appendix A]. But since w is a tangential derivative
then it can not have constant sign along a circumference {|x| = r}, r ∈ (0, 1), and
thus it has to be w ≡ 0. Therefore, all the tangential derivatives ∂tu = xiuxj −xjuxi
equal zero, and thus u is radially symmetric.

6. Hs regularity of the extremal solution in convex domains

In this section we prove Theorem 1.3 (iii). A key tool in this proof is the Pohozaev
identity for the fractional Laplacian, recently obtained by the authors in [29]. This
identity allows us to compare the interior Hs norm of the extremal solution u∗ with a
boundary term involving u∗/δs, where δ is the distance to ∂Ω. Then, this boundary
term can be bounded by using the results of the previous section by the L1 norm of
u∗, which is finite.

We first prove the boundedness of u∗/δs near the boundary.

Lemma 6.1. Let Ω be a convex domain, u be a bounded solution of (1.14), and
δ(x) = dist(x, ∂Ω). Assume that

‖u‖L1(Ω) ≤ c1

for some c1 > 0. Then, there exists constants δ > 0, c2, and C such that

‖u/δs‖L∞(Ωδ) ≤ C
(
c2 + ‖f‖L∞([0,c2])

)
,

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Moreover, the constants δ, c2, and C depend
only on Ω and c1.

Proof. The result can be deduced from the boundary regularity results in [28] and
Proposition 1.8, as follows.

Let δ > 0 be given by Proposition 1.8, and let η be a smooth cutoff function
satisfying η ≡ 0 in Ω \ Ω2δ/3 and η ≡ 1 in Ωδ/3. Then, uη ∈ L∞(Ω) and uη ≡ 0 in
Rn \ Ω. Moreover, we claim that

(−∆)s(uη) = f(u)χΩδ/4 + g in Ω (6.1)

for some function g ∈ L∞(Ω), with the estimate

‖g‖L∞(Ω) ≤ C
(
‖u‖C1+s(Ω4δ/5\Ωδ/5) + ‖u‖L1(Ω)

)
. (6.2)

To prove that (6.1) holds pointwise we argue separately in Ωδ/4, in Ω3δ/4 \ Ωδ/4,
and in Ω \ Ω3δ/4, as follows:

• In Ωδ/4, g = (−∆)s(uη) − (−∆)su. Since uη − u vanishes in Ωδ/3 and also
outside Ω, g is bounded and satisfies (6.2).
• In Ω3δ/4 \ Ωδ/4, g = (−∆)s(uη). Then, using

‖(−∆)s(uη)‖L∞(Ω3δ/4\Ωδ/4) ≤ C
(
‖uη‖C1+s(Ω4δ/5\Ωδ/5) + ‖uη‖L1(Rn)

)
and that η is smooth, we find that g is bounded and satisfies (6.2).
• In Ω \ Ω3δ/4, g = (−∆)s(uη). Since uη vanishes in Ω \ Ω2δ/3, g is bounded

and satisfies (6.2).
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Now, since u is a solution of (1.14), by classical interior estimates we have

‖u‖C1+s(Ω4δ/5\Ωδ/5) ≤ C
(
‖u‖L∞(Ωδ) + ‖u‖L1(Ω)

)
; (6.3)

see for instance [28]. Hence, by (6.1) and Theorem 1.2 in [28], uη/δs ∈ Cα(Ω) for
some α > 0 and

‖uη/δs‖Cα(Ω) ≤ C‖f(u)χΩδ/4 + g‖L∞(Ω).

Thus,

‖u/δs‖L∞(Ωδ/3) ≤ ‖uη/δs‖Cα(Ω) ≤ C
(
‖g‖L∞(Ω) + ‖f(u)‖L∞(Ωδ/4)

)
≤ C

(
‖u‖L1(Ω) + ‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ/4)

)
.

In the last inequality we have used (6.2) and (6.3). Then, the result follows from
Proposition 1.8. �

We can now give the

Proof of Theorem 1.3 (iii). Recall that uλ minimizes the energy E in the set {u ∈
Hs(Rn) : 0 ≤ u ≤ uλ} (see Step 4 in the proof of Proposition 1.2 in Section 2).
Hence,

‖uλ‖2
◦
Hs
−
∫

Ω

λF (uλ) = E(uλ) ≤ E(0) = 0. (6.4)

Now, the Pohozaev identity for the fractional Laplacian can be written as

s‖uλ‖2
◦
Hs
− nE(uλ) =

Γ(1 + s)2

2

∫
∂Ω

(uλ
δs

)2

(x · ν)dσ, (6.5)

see [29, page 2]. Therefore, it follows from (6.4) and (6.5) that

‖uλ‖2
◦
Hs
≤ Γ(1 + s)2

2s

∫
∂Ω

(uλ
δs

)2

(x · ν)dσ.

Now, by Proposition 6.1, we have that∫
∂Ω

(uλ
δs

)2

(x · ν)dσ ≤ C

for some constant C that depends only on Ω and ‖uλ‖L1(Ω). Thus, ‖uλ‖ ◦Hs
≤ C, and

since u∗ ∈ L1(Ω), letting λ ↑ λ∗ we find

‖u∗‖ ◦
Hs

<∞,

as desired. �
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7. Lp and Cβ estimates for the linear Dirichlet problem

The aim of this section is to prove Propositions 1.4 and 1.7. We prove first
Proposition 1.4.

Proof of Proposition 1.4. (i) It is clear that we can assume ‖g‖L1(Ω) = 1.
Consider the solution v of

(−∆)sv = |g| in Rn

given by the Riesz potential v = (−∆)−s|g|. Here, g is extended by 0 outside Ω.
Since v ≥ 0 in Rn \ Ω, by the maximum principle we have that |u| ≤ v in Ω.

Then, it follows from Theorem 1.6 that

‖u‖Lqweak(Ω) ≤ C, where q =
n

n− 2s
,

and hence we find that

‖u‖Lr(Ω) ≤ C for all r <
n

n− 2s

for some constant that depends only on n, s, and |Ω|.
(ii) The proof is analogous to the one of part (i). In this case, the constant does

not depend on the domain Ω.
(iii) As before, we assume ‖g‖Lp(Ω) = 1. Write u = ṽ + w, where ṽ and w are

given by

ṽ = (−∆)−sg in Rn, (7.1)

and {
(−∆)sw = 0 in Ω

w = ṽ in Rn\Ω. (7.2)

Then, from (7.1) and Theorem 1.6 we deduce that

[ṽ]Cα(Rn) ≤ C, where α = 2s− n

p
. (7.3)

Moreover, since the domain Ω is bounded, then g has compact support and hence ṽ
decays at infinity. Thus, we find

‖ṽ‖Cα(Rn) ≤ C (7.4)

for some constant C that depends only on n, s, p, and Ω.
Now, we apply Proposition 1.7 to equation (7.2). We find

‖w‖Cβ(Rn) ≤ C‖ṽ‖Cα(Rn), (7.5)

where β = min{α, s}. Thus, combining (7.4), and (7.5) the result follows. �

Note that we have only used Proposition 1.7 to obtain the Cβ estimate in part
(iii). If one only needs an L∞ estimate instead of the Cβ one, Proposition 1.7 is not
needed, since the L∞ bound follows from the maximum principle.
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As said in the introduction, the Lp to W 2s,p estimates for the fractional Laplace
equation, in which −∆ is replaced by the fractional Laplacian (−∆)s, are not true
for all p, even when Ω = Rn. This is illustrated in the following two remarks.

Recall the definition of the fractional Sobolev space W σ,p(Ω) which, for σ ∈ (0, 1),
consists of all functions u ∈ Lp(Ω) such that

‖u‖Wσ,p(Ω) = ‖u‖Lp(Ω) +

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+pσ
dx dy

) 1
p

is finite; see for example [15] for more information on these spaces.

Remark 7.1. Let s ∈ (0, 1). Assume that u and g belong to Lp(Rn), with 1 < p <∞,
and that

(−∆)su = g in Rn.

(i) If p ≥ 2, then u ∈ W 2s,p(Rn).
(ii) If p < 2 and 2s 6= 1 then u may not belong to W 2s,p(Rn). Instead, u ∈

B2s
p,2(Rn), where Bσ

p,q is the Besov space of order σ and parameters p and q.

For more details see the books of Stein [34] and Triebel [35].

By the preceding remark we see that the Lp to W 2s,p estimate does not hold in Rn

whenever p < 2 and s 6= 1
2
. The following remark shows that in bounded domains

Ω this estimate do not hold even for p ≥ 2.

Remark 7.2. Let us consider the solution of (−∆)su = g in Ω, u ≡ 0 in Rn \ Ω.
When Ω = B1 and g ≡ 1, the solution to this problem is

u0(x) =
(
1− |x|2

)s
χB1(x);

see [20]. For p large enough one can see that u0 does not belong to W 2s,p(B1), while
g ≡ 1 belongs to Lp(B1) for all p. For example, when s = 1

2
by computing |∇u0| we

see that u0 does not belong to W 1,p(B1) for p ≥ 2.

We next prove Proposition 1.7. For it, we will proceed similarly to the Cs esti-
mates obtained in [28, Section 2] for the Dirichlet problem for the fractional Lapla-
cian with L∞ data.

The first step is the following:

Lemma 7.3. Let Ω be a bounded domain satisfying the exterior ball condition,
s ∈ (0, 1), h be a Cα(Rn \ Ω) function for some α > 0, and u be the solution of
(1.13). Then

|u(x)− u(x0)| ≤ C‖h‖Cα(Rn\Ω)δ(x)β in Ω,

where x0 is the nearest point to x on ∂Ω, β = min{s, α}, and δ(x) = dist(x, ∂Ω).
The constant C depends only on n, s, and α.

Lemma 7.3 will be proved using the following supersolution. Next lemma (and
its proof) is very similar to Lemma 2.6 in [28].
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Lemma 7.4. Let s ∈ (0, 1). Then, there exist constants ε, c1, and C2, and a
continuous radial function ϕ satisfying

(−∆)sϕ ≥ 0 in B2 \B1

ϕ ≡ 0 in B1

c1(|x| − 1)s ≤ ϕ ≤ C2(|x| − 1)s in Rn \B1.

(7.6)

The constants c1 and C2 depend only on n, s, and β.

Proof. We follow the proof of Lemma 2.6 in [28]. Consider the function

u0(x) = (1− |x|2)s+.

It is a classical result (see [20]) that this function satisfies

(−∆)su0 = κn,s in B1

for some positive constant κn,s.
Thus, the fractional Kelvin transform of u0, that we denote by u∗0, satisfies

(−∆)su∗0(x) = |x|−2s−n(−∆)su0

(
x

|x|2

)
≥ c0 in B2 \B1.

Recall that the Kelvin transform u∗0 of u0 is defined by

u∗0(x) = |x|2s−nu0

(
x

|x|2

)
.

Then, it is clear that

a1(|x| − 1)s ≤ u∗0(x) ≤ A2(|x| − 1)s in B2 \B1,

while u∗0 is bounded at infinity.
Let us consider now a smooth function η satisfying η ≡ 0 in B3 and

A1(|x| − 1)s ≤ η ≤ A2(|x| − 1)s in Rn \B4.

Observe that (−∆)sη is bounded in B2, since η(x)(1 + |x|)−n−2s ∈ L1. Then, the
function

ϕ = Cu∗0 + η,

for some big constant C > 0, satisfies
(−∆)sϕ ≥ 1 in B2 \B1

ϕ ≡ 0 in B1

c1(|x| − 1)s ≤ ϕ ≤ C2(|x| − 1)s in Rn \B1.

Indeed, it is clear that ϕ ≡ 0 in B1. Moreover, taking C big enough it is clear that
we have that (−∆)sϕ ≥ 1. In addition, the condition c1(|x|−1)s ≤ ϕ ≤ C2(|x|−1)s

is satisfied by construction. Thus, ϕ satisfies (7.7), and the proof is finished. �

Once we have constructed the supersolution, we can give the
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Proof of Lemma 7.3. First, we can assume that ‖h‖Cα(Rn\Ω) = 1. Then, by the
maximum principle we have that ‖u‖L∞(Rn) = ‖h‖L∞(Rn) ≤ 1. We can also assume
that α ≤ s, since

‖h‖Cs(Rn) ≤ C‖h‖Cα(Rn\Ω) whenever s < α.

Let x0 ∈ ∂Ω and R > 0 be small enough. Let BR be a ball of radius R, exterior
to Ω, and touching ∂Ω at x0. Let us see that |u(x)− u(x0)| is bounded by CRβ in
Ω ∩B2R.

By Lemma 7.4, we find that there exist constants c1 and C2, and a radial contin-
uous function ϕ satisfying

(−∆)sϕ ≥ 0 in B2 \B1

ϕ ≡ 0 in B1

c1(|x| − 1)s ≤ ϕ ≤ C2(|x| − 1)s in Rn \B1.

(7.7)

Ω

BR

B2R

x0

x1

Figure 1.

Let x1 be the center of the ball BR. Since ‖h‖Cα(Rn\Ω) = 1, it is clear that the
function

ϕR(x) = h(x0) + 3Rα + C3R
sϕ

(
x− x1

R

)
,

with C3 big enough, satisfies
(−∆)sϕR ≥ 0 in B2R \BR

ϕR ≡ h(x0) + 3Rα in BR

h(x0) + |x− x0|α ≤ ϕR in Rn \B2R

ϕR ≤ h(x0) + C0R
α in B2R \BR.

(7.8)

Here we have used that α ≤ s.
Then, since

(−∆)su ≡ 0 ≤ (−∆)sϕR in Ω ∩B2R,

h ≤ h(x0) + 3Rα ≡ ϕR in B2R \ Ω,
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and
h(x) ≤ h(x0) + |x− x0|α ≤ ϕR in Rn \B2R,

it follows from the comparison principle that

u ≤ ϕR in Ω ∩B2R.

Therefore, since ϕR ≤ h(x0) + C0R
α in B2R \BR,

u(x)− h(x0) ≤ C0R
α in Ω ∩B2R. (7.9)

Moreover, since this can be done for each x0 on ∂Ω, h(x0) = u(x0), and we have
‖u‖L∞(Ω) ≤ 1, we find that

u(x)− u(x0) ≤ Cδβ in Ω, (7.10)

where x0 is the projection on ∂Ω of x.
Repeating the same argument with u and h replaced by −u and −h, we obtain

the same bound for h(x0)− u(x), and thus the lemma follows. �

The following result will be used to obtain Cβ estimates for u inside Ω. For a
proof of this lemma see for example Corollary 2.4 in [28].

Lemma 7.5 ([28]). Let s ∈ (0, 1), and let w be a solution of (−∆)sw = 0 in B2.
Then, for every γ ∈ (0, 2s)

‖w‖Cγ(B1/2) ≤ C

(
‖(1 + |x|)−n−2sw(x)‖L1(Rn) + ‖w‖L∞(B2)

)
,

where the constant C depends only on n, s, and γ.

Now, we use Lemmas 7.3 and 7.5 to obtain interior Cβ estimates for the solution
of (1.13).

Lemma 7.6. Let Ω be a bounded domain satisfying the exterior ball condition,
h ∈ Cα(Rn \Ω) for some α > 0, and u be the solution of (1.13). Then, for all x ∈ Ω
we have the following estimate in BR(x) = Bδ(x)/2(x)

‖u‖Cβ(BR(x)) ≤ C‖h‖Cα(Rn\Ω), (7.11)

where β = min{α, s} and C is a constant depending only on Ω, s, and α.

Proof. Note that BR(x) ⊂ B2R(x) ⊂ Ω. Let ũ(y) = u(x+Ry)−u(x). We have that

(−∆)sũ(y) = 0 in B1 . (7.12)

Moreover, using Lemma 7.3 we obtain

‖ũ‖L∞(B1) ≤ C‖h‖Cα(Rn\Ω)R
β. (7.13)

Furthermore, observing that |ũ(y)| ≤ C‖h‖Cα(Rn\Ω)R
β(1 + |y|β) in all of Rn, we find

‖(1 + |y|)−n−2sũ(y)‖L1(Rn) ≤ C‖h‖Cα(Rn\Ω)R
β, (7.14)

with C depending only on Ω, s, and α.
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Now, using Lemma 7.5 with γ = β, and taking into account (7.12), (7.13), and
(7.14), we deduce

‖ũ‖Cβ(B1/4) ≤ C‖h‖Cα(Rn\Ω)R
β,

where C = C(Ω, s, β).
Finally, we observe that

[u]Cβ(BR/4(x)) = R−β[ũ]Cβ(B1/4).

Hence, by an standard covering argument, we find the estimate (7.11) for the Cβ

norm of u in BR(x). �

Now, Proposition 1.7 follows immediately from Lemma 7.6, as in Proposition 1.1
in [28].

Proof of Proposition 1.7. This proof is completely analogous to the proof of Propo-
sition 1.1 in [28]. One only have to replace the s in that proof by β, and use the
estimate from the present Lemma 7.6 instead of the one from [28, Lemma 2.9]. �
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	Acknowledgments
	Summary
	Introduction
	1. Nonlocal diffusions
	1.1. From Brownian to Lévy models
	1.2. Lévy processes
	1.3. Nonlocal elliptic operators. Key differences with the second order case
	1.4. Nonlinear analysis for nonlocal operators: mathematical background
	1.5. Fully nonlinear elliptic and parabolic integro-differential equations: the Stochastic control motivation
	1.6. Results: Pohozaev identity for the fractional Laplacian
	1.7. Results: interior regularity for fully nonlinear parabolic equations
	1.8. Results: boundary regularity for fully nonlinear elliptic integro-differential equations
	1.9. Results: regularity of the fractional extremal solution
	1.10. Results: extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions

	2. Isoperimetric problems
	2.1. Isoperimetric inequalities
	2.2. The isoperimetric problem in cones and anisotropic perimeters
	2.3. Isoperimetric inequalities with densities
	2.4. Results: sharp isoperimetric inequalities in cones with densities
	2.5. Results: radial symmetry for diffusion equations with discontinuous nonlinearities

	References for the Introduction

	A. The Pohozaev identity for the fractional Laplacian
	B. The Dirichlet problem for the fractional Laplacian: regularity up to the boundary
	C. Nonexistence results for nonlocal equations with critical and supercritical nonlinearities
	D. Regularity for fully nonlinear nonlocal parabolic equation with rough kernels
	E. Boundary regularity for fully nonlinear integro-differential equations
	F. The extremal solution for the fractional Laplacian
	G. An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions
	H. Sharp isoperimetric inequalities via the ABP method
	I. Radial symmetry for diffusion equations with discontinuous nonlinearities
	pohozshort4.pdf
	
	
	
	
	
	
	
	

	regularityfraclaps4.pdf
	
	
	
	
	
	
	

	nonexistenceK_7.pdf
	
	
	
	
	
	
	
	

	parabolicrough8.pdf
	
	
	
	
	
	

	bdryregfully9 2.pdf
	
	
	
	
	
	
	
	
	
	
	

	FractionalExtremal_7.pdf
	
	
	
	
	
	
	
	
	

	cones_isop_def.pdf
	
	
	
	
	
	

	
	
	
	
	
	

	radial-symm.pdf
	
	
	
	

	pohozshort4.pdf
	
	
	
	
	
	
	
	

	sum_lap_last3.pdf
	
	
	
	
	
	
	

	sum_lap_last3.pdf
	
	
	
	
	
	
	

	cones_isop_def.pdf
	
	
	
	
	
	

	
	
	
	
	
	

	radial-symm.pdf
	
	
	
	

	radial-symm.pdf
	
	
	
	

	radial-symm.pdf
	
	
	
	

	intro_tesi.pdf
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	

	
	
	
	
	
	
	
	
	




