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Figure 5.3: Display of −u+ v|y=0 for (v, u) solution to (5.3.1) with α = 1 and D = 10,
at successives times t = 5, 15, ..., 35, with a colour graduation from blue to red.

It turns out that this is related to the fact that there is no reaction on the road in
(5.3.1). In fact, the term −u+v|y=0 may be thought of as a nonnegative reaction term
for the second equation, as shown by Figure 5.3. This is only a heuristic explanation
of the fact that propagation is actually driven by the road. Notice the analogy with a
positive reaction term, as, for instance, flame propagation theory (see [15, 84]). Also
note the dissymmetry of the level sets of −u+v|y=0. Thus, the third equation of (5.3.1)
gives ∂yv(x, 0, t) > 0, for all x ∈ R and t > 0.

To confirm the hypothesis that −u + v|y=0 acts as a source term, we allow repro-
duction on the road and we take the same rate as in the field :


∂tv −∆v = v − v2, x ∈ R, y > 0, t > 0,

∂tu+D(−∂xx)u = −u+ v|y=0 + (u− u2), x ∈ R, y = 0, t > 0,

−∂yv|y=0 = u− v|y=0, x ∈ R, y = 0, t > 0.

(5.3.2)

We see, on Figure 5.4 that the exchange term is damped by that of the source term
added on the road.

Figure 5.4 shows that the shape of the level sets of v, solution to (5.3.2) is exactly
the one described in [19]. Figure 5.5 highlights the cone, around the normal to the
road, outside which the speed of propagation is enhanced by the road. This figure also
underlines the effect of a reaction term on the road, on the tangent lines to the level
set of v at y = 0 and t = 35.

The good quantitative agreement between the results of [18, 17, 19], and the nu-
merical simulations is an indication of the validity of the numerical procedure.
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Figure 5.4: Results for α = 1 and D = 10 in (5.3.2): the shape of the level sets of
value 0, 5 of the density v, solution to (5.3.2), at successives times t = 10, 15, ..., 35 (at
the top), and the density v at time t = 35 (at the bottom).

Figure 5.5: Level sets of value 0, 5, at successive times t = 10, 15, ..., 35, of the density
v solution to (5.3.1) at the top, and to (5.3.2) at the bottom. In red : the critical cone
in which the level sets are spherical, in blue : the tangent lines of the level set at y = 0
and at time t = 35.

5.4 Fractional diffusion on the road (α ∈ (0, 1)) : level
sets in the field

In this section, we focus on the following Cauchy problem
∂tv −∆v = v − v2, x ∈ R, y > 0, t > 0,

∂tu+ (−∂xx)αu = −u+ v|y=0, x ∈ R, y = 0, t > 0,

−∂yv|y=0 = u− v|y=0, x ∈ R, y = 0, t > 0,

(5.4.1)
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for α ∈ (0, 1), starting from the initial conditions v(·, ·, 0) = 0 and u(·, 0) = 1{|·|61} to
illustrate Theorems 4.1.2 and 4.1.3.

In our numerical computations, we fix α = 0, 5, Xmax = 200 and Ymax = 100, which
means that we work in the domain [−200, 200] × [0, 100]. From Theorem 4.1.2, the
speed of propagation is expected to be exponential in time, with an exponent equal to

1
1+2α

= 1
2
.

Figure 5.6: Results for α = 0, 5. Shape of the level sets of value 0, 5 of the density v,
solution to (5.4.1), at successives times t = 10, 15, ..., 35 (at the top), and display of v
at time t = 35 (at the bottom).

Figure 5.6 gives the shape of the level sets of value 0, 5 of v, solution to (5.4.1), at
successives times t = 5, 10, ..., 35. The level sets displayed on this figure are even and
decreasing in |x| functions gn : R→ R, satisfying, for all x ∈ R and for all n ∈ J1, 7K,

u(x, gn(x), tn) =
1

2
,

where tn = 5n, for n ∈ J1, 7K.
Using the values given by Figure 5.6, we can check that the speed of propagation

in the direction normal to the road corresponds to the standard KPP velocity. Indeed,
similarly to the case α = 1, for n ∈ J1, 6K, the quantity gn+1(0)− gn(0), corresponding
to the expected speed of propagation multiplied by the time elapsed between two
successive level sets, is equal to 2×5 = 10, which is the value we obtain when analysing
Figure 5.6. Similarly, we can verify that the speed on the road is exponential in time
with exponent equal to 1

1+2α
. Indeed, if, for any n ∈ J1, 7K, xn satifies gn(xn) = 0,

then, for n ∈ J1, 6K, the quotient xn+1

xn
is close to e

tn+1−tn
1+2α , as expected.

As in the case α = 1, it seems that, in a neighbourhood of the road, the quantity
∂yv is positive, as explained in section 5.3. Figure 5.6 also displays the density v in
the field at time t = 35 (at the bottom). This figure illustrates the proof of Theorem
4.1.3, where we use the fact that the invasion in the field is given by known results on
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Fisher-KPP type equations, in the half plane {(x, y), x ∈ R, y > 0}, with the initial
condition 1{y=0}. This figure reveals that, at time t = 35, the level set seems not to
be a straight line in the compact [−Xmax, Xmax]× [0, Ymax].

Figure 5.7: Level sets of value 0, 5 of the density v solution to (5.4.1), with α = 0, 5, at
successive times t = 10 and t = 20, 40, 60, ..., 200 in black. The red straight lines make
it easy to see the decreasing difference between the value of the level set at points
(150, y) and (0, y), for values of y corresponding to the times t = 20, t = 100 and
t = 200.

To investigate this phenomenon, we solve the same problem (5.4.1), with α = 0, 5,
but stopping the procedure at time t = 200 instead of t = 35. Figure 5.7 shows the
result. We can see that, for any y > 0, the difference between the level set at point
(0, y) and the value of the level set at point (150, y) decreases in time. Thus, this
distance seems to be a small perturbation of order o(t), as t goes to infinity, in the
expression of the location of the level sets, which is consistent with Theorem 4.1.3. An
explicit expression of this perturbation is not given in this theorem, in which we focus
on propagation in sets of the form {|x| < ct, y ∈ [0, Ymax]} with c < cKPP = 2, and
{|x| > ct, y ∈ [0, Ymax]} with c > cKPP = 2.

5.5 Numerical determination of the asymptotic loca-
tion of the level sets, on the road, in the fractional
case

The problem under study in this section is the same as in section 5.4 :
∂tv −∆v = v − v2, x ∈ R, y > 0, t > 0,

∂tu+ (−∂xx)αu = −u+ v|y=0, x ∈ R, y = 0, t > 0,

−∂yv|y=0 = u− v|y=0, x ∈ R, y = 0, t > 0,

(5.5.1)
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for α ∈ (0, 1), starting from the initial conditions v(·, ·, 0) = 0 and u(·, 0) = 1{|·|61}.
From Theorem 4.1.2, we know that the propagation on the road is exponential in

time. However, this theorem does not give a sharp asymptotics of the location of the
level sets. The aim of this section is to investigate numerically a more precise result.
Our intuition is driven by the estimate of the solution to the linearised problem at 0
associated to (5.5.1), given in Theorem 4.3.1, and recalled here, in the case k = 0.

Theorem 5.5.1. Let α ∈ (1
4
, 1), and r0 > 1 be the solution to r2

0 = r2α
0 + 1. There

exist c ∈
(

1

r0

, 1

)
and a constant C̃1 > 0 such that for |x| > 1, the solution u to (5.5.1)

satisfies

u(x, t) 6 C̃1

(
et

|x|1+2α t3/2
+R(x, t)

)
,

with

R(x, t) 6 e(1−c2r2
0 cos(2ε))t + ete−

√
|x| sin(ε) +

et

|x|3
+ e(1−r2

0)t,

where ε > 0 satisfies c2r2
0 cos(2ε) > 1.

Thus, the dynamics of the level sets of u is given, for large values of |x| and t,

by
et

|x|1+2α t3/2
. This proves rigorously that the level sets can not move faster than

t−
3

2(1+2α) e
t

1+2α . This raises the following question : would, by any chance, the solution
to the linearised problem at 0 related to (5.5.1) give the correct asymptotic expression
of the location of the level sets?

To see this, we rescale problem (5.5.1) in the x-variable, defining the functions ṽ
and ũ, on R× R+ × R+, by

ṽ(x̃, y, t) = v(eltt−mx̃, y, t) and ũ(x̃, t) = u(eltt−mx̃, t),

where l = 1
1+2α

, and m > 0 is the constant that we want to investigate. The couple
(ṽ, ũ) solves for x̃ ∈ R

∂tṽ − (l − m
t
)x̃∂x̃ṽ − e−2ltt2m∂x̃x̃ṽ − ∂yyṽ = ṽ − ṽ2, y > 0, t > 0,

∂tũ− (l − m
t
)x̃∂x̃ũ+ e−2αltt2αm(−∂x̃x̃)αũ = −ũ+ ṽ|y=0, y = 0, t > 0,

−∂yṽ|y=0 = ũ− ṽ|y=0, y = 0, t > 0.

(5.5.2)

Instead of solving (5.5.2) from t = 0, we choose to solve the initial problem (5.4.1)
up to a time t̃ > 0, and then to solve the rescaled problem (5.5.2) starting at t = t̃.
This technique avoids restrictive CFL conditions, due to the coefficient m

t
, and ensures

the solution to be close to its stationary state in a non empty compact set. The time
t̃ is numerically defined as the first time for which the density u, solution to (5.4.1),
reaches its stationary state 1.
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The numerical procedure used to solve (5.5.2) is the same as in section 5.2 : the
first and third equation of (5.5.2) are treated with a finite difference method, whereas
a Strang splitting method solves the second equation of (5.5.2). Let us describe this
splitting that have to include a transport term. Let t0 be a positive constant and ũt0
be any piecewise continuous function, 6= 0, decaying faster than |x̃|−(1+2α) at infinity.

1. The first step of the splitting includes the diffusive term of (5.5.2), which is{
∂tũ+ e−2αltt2αm(−∂x̃x̃)αũ = 0, x̃ ∈ R, t > t0,

ũ(x̃, t0) = ũt0(x̃), x̃ ∈ R.
(5.5.3)

The solution to (5.5.3), denoted by X̃ tut0 , is explicitely given, for x̃ ∈ R and
t > t0, by

X̃ tũt0(x̃, t) = F−1
(
ξ 7→ e

−|ξ|2α
∫ t
t0
e−2αlss2αmdsF(ũt0)(ξ)

)
(x̃),

where F and F−1 are respectively the Fourier transform and the inverse Fourier
transform in the space variable. The solution X̃ tũt0 is computed for small values
of (t− t0) using the following first order approximation∫ t

t0

e−2αlss2αmds = (t− t0)e−2αlt0t2αm0 + o(t− t0),

and using Fast Fourier Transform (FFT) techniques. Note that FFT solvers
require a small step size of discretisation in the x̃-variable.

2. The reaction and transport terms of (5.5.2) appear in the second step of the
splitting, which is given by the transport equation :{

∂tũ(x̃, t)− (l − m
t
)x̃∂x̃ũ(x̃, t) = −ũ(x̃, t) + ṽ(x̃, 0, t), x̃ ∈ R, t > 0,

u(x̃, t0) = ũt0(x̃), x̃ ∈ R.
(5.5.4)

The solution, denoted by Ỹ tut0 , has the explicit expression

Ỹ tũt0(x̃, t) = e−(t−t0)ũt0(eltt−mx̃) +

∫ t

t0

e−(t−s)v(eltt−mx̃, 0, s)ds.

We fix constants X̃max > 0 and T > 0, and solve (5.5.4) in the bounded domain
[−X̃max, X̃max] for t ∈ [t0, t0 +T ]. The transport term is treated with a backward
difference method if x̃ > 0, and a forward difference method if x̃ 6 0. More
precisely, given any large constants J ∈ N∗ and N ∈ N∗, the numerical procedure
used to solve (5.5.4) consists in constructing, for j ∈ J0, JK and n ∈ J0, NK, a
sequence ũnj that is supposed to approximate ũ(x̃j, tn), with dx = 2 X̃max

J
, dt = T

N
,

x̃j = −X̃max + jdx and tn = ndt. The sequence ũnj is defined by
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− for all j ∈ J0, JK : ũ0
j = ũt0(xj),

− for all n ∈ J0, N − 1K and j ∈ J1, J − 1K :

ũn+1
j = ũnj +

dt

dx

(
l − m

tn

)
x̃j(ũ

n
j+1 − ũnj ) + dt(−ũnj + ṽ (x̃j, 0, tn)), if x̃j > 0,

and

ũn+1
j = ũnj +

dt

dx

(
l − m

tn

)
x̃j(ũ

n
j − ũnj−1) + dt(−ũnj + ṽ (x̃j, 0, tn)), if x̃j 6 0.

− for all n ∈ J0, NK, the boundary conditions ũn1 and ũnJ have to be imposed. A
first guess would consist in Dirichlet or Neumann boundary conditions. To
check if one of these choices is relevant, we solve numerically the transport
equation

∂tw(x, t)− c∂xw(x, t) = w(x, t)− w(x, t)2, x ∈ R, t > 0, (5.5.5)

for a constant c > 0, completed with an initial condition w0 at time 0. The
explicit solution is

w(x, t) =
w0(xect)

w0(xect) + (1− w0(xect))e−t
. (5.5.6)

Three cases are possible regarding the long time behaviour of w :

– if w0(x) = o
(
|x|−

1
c

)
as |x| → +∞, then

w(x, t) −→
t→+∞

0, uniformly in x,

– if |x|
1
c = o (w0(x)−1) as |x| → +∞, then

w(x, t) −→
t→+∞

1, uniformly in x,

– if the function x 7→ w0(x) |x|
1
c is bounded for large values of |x|, then

x 7→ w(x, t) |x|
1
c is bounded as time t goes to +∞, uniformly in x.

In our case, due to the Strang splitting, we know that the initial condition
considered in (5.5.4) comes from the solution to (5.5.3) at time tn + dt

2
,

where dt is the time scale of the splitting. Consequently, it behaves like
|x|−(1+2α) at infinity. Let us take

w0(x) =
1

1 + |x|1+2α .
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Figure 5.8: Problem (5.5.5) with c = 2 at time t = 5 : comparaison between the exact
solution and the numerical solutions with Dirichlet or Neumann boundary conditions.

With this choice and using the explicit expression (5.5.6) of the solution to
the transport equation (5.5.5), with c = 1

1+2α
, we know that, at any time,

this solution decays like |x|−(1+2α) at infinity.
Figure 5.8 shows that Dirichlet or Neumann boundary conditions are not
precise enough to study long time behaviour of such a transport equation.
Thus, natural boundary conditions are, for all n ∈ J0, NK

ũn1 =
|x1|1+2α

|x2|1+2α ũn2 and ũnJ =
|xJ |1+2α

|xJ−1|1+2α ũnJ−1. (5.5.7)

Figure 5.9 suggests that this choice is relevant.

Figure 5.9: Problem (5.5.5) with c = 2 at time t = 5 : comparaison between the exact
solution and the numerical solution imposing the boundary conditions given in (5.5.7).
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We refer to section 5.2 for a description of the numerical procedure used to solve
the first and third equation of (5.5.2). Note that, as explained when analysing the
behaviour of the solution to the transport equation (5.5.5), the boundary conditions
of ṽ on {−X̃max}× [0, Ỹmax] and {X̃max}× [0, Ỹmax] have to be carefully imposed. We
use that this function should decay like |x̃|−(1+2α) at infinity. This result is not proved
in the thesis. However, since ṽ has the same decay as v at infinity, the result proved in
section 4.2.2 is useful. Indeed, we have bounded from below a subsolution to (5.4.1)
at time 2. The result obtained in Lemma 4.2.2 is valid at any time t > 0. An upper
bound of the function v could be computed using the linearised problem at 0 and the
same computations as the one in section 4.3, where we have proved that the function
u decays faster than |x|−(1+2α) at infinity.

Let us describe the numerical results obtained for α = 0, 5, X̃max = 2000 and
Ỹmax = 500. Recall that we are investigating the rescaled problem (5.5.2) for ṽ and ũ
defined on R× R+ × R+, by

ṽ(x̃, y, t) = v(eltt−mx̃, y, t) and ũ(x̃, t) = u(eltt−mx̃, t),

with l = 1
1+2α

and m > 0 the constant that we want to study.

Figure 5.10: Evolution of the density ũ solution to (5.5.2), with α = 0, 5, for m = 0
(on the left) and m = 3

1+2α
(on the right), at successive times t = 30, 40, 50, ..., 200

with a colour graduation from blue to red.

The left side of Figure 5.10, that concerns m = 0, shows that the level sets move
faster than e

t
1+2α , which illustrates Theorem 5.5.1. The right side of Figure 5.10, that

concerns m = 3
1+2α

, shows that the level sets move slower than t−
3

1+2α e
t

1+2α . Indeed, it
seems that, in this case, the rescaled density ũ tends to δ0 as t goes to infinity.
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Figure 5.11: Evolution of the density ũ solution to (5.5.2), with α = 0, 5, for m =
3

2(1+2α)
, at successive times t = 30, 40, 50, ..., 200 with a colour graduation from blue

to red.

Figure 5.11 concerns the particular choice m = 3
2(1+2α)

, suggested by the upper
bound of Theorem 5.5.1. On compact sets, the rescaled density ũ seems to converge
to a function that does not move in time. This investigation hints that the asymptotic
expression of the location of the level sets should by like t−

3
2(1+2α) e

t
1+2α .



Conclusion and Perspectives

In this thesis, we have set up a new method to study the long time behaviour of so-
lutions to reaction problems involving integral diffusion. The starting point was to
sharpen estimates of Cabré and Roquejoffre in [26]. This has enabled us to treat prob-
lems that would have been difficult to attack with the previously known arguments.

Part I of the thesis has been devoted to a rigorous analysis of the asymptotic
location of the level sets of the solution to two different problems.

In Chapter 1, we have applied our method on a Fisher-KPP model in periodic media
with fractional diffusion. We have been able to construct precise explicit subsolutions
and supersolutions. Thus, we have proved that the transition between the unstable
state and the stable one occurs exponentially fast in time, and we have obtained the
precise exponent that appears in this exponential speed of propagation. This has led to
the proof of the convergence of the solution to its stationary state on a set that expands
with an exponential in time speed. Numerical simulations have been carried out to
understand the dependence of the speed of propagation on the initial condition at lower
order in time. Although the different numerical results, done for the homogeneous
model in dimension two, have given a precise idea of what is happening, a mathematical
proof should be undertaken. Indeed, it seems that there is a symmetrisation of the
solution, in the sense of Jones in [57]. Proving this observation requires an estimate
of the gradient of the solution, which is not done in this thesis. This geometric result
of symmetrisation could also be studied in periodic media. Moreover, as suggested
by numerical investigations, it seems that the diffusive term of the reaction-diffusion
equation only plays a role for small times. It would be interesting to show it rigorously.
Finally, one could think of further perspectives. A first one consists in getting similar
results for integro-differential equations, and thus obtaining more precise asymptotics
as the ones proved in [47]. More general heterogeneous media might also be analysed,
media for which the notion of generalised eigenvalues is needed.

In Chapter 2, we have treated a cooperative reaction-diffusion system including
fractional diffusion. Once again, the method given in the introduction of the thesis
leads to the construction of explicit subsolutions and supersolutions to the system.
This enables us to prove that the solution spreads exponentially fast in time, and we
find the precise exponent of propagation depending, among others, on the smallest
order of the diffusive terms involved in the system. The transition between standard
reaction-diffusion systems and fractional reaction-diffusion systems remains to be in-
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vestigated.
Part II of the thesis deals with a two dimensional environment, where reproduction

of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which
fractional diffusion takes place. The plane is referred to as "the field" and the line
to "the road", as a reference to the biological situations we have in mind. Indeed,
it has long been known that fast diffusion on roads can have a driving effect on the
spread of epidemics. This new model shows the limits of the method described in the
introduction of the thesis.

In Chapter 3, we have described the framework, using Hilbert spaces and the
theory of sectorial operators. These choices have several advantages. The main one
is to allow the computation of the fundamental solution through a Laplace integral.
Also a comparison principle has been easily obtained. This framework is especially
relevant as it has led to the existence, uniqueness and regularity of the solutions, for
particular orders of the fractional diffusive term (α ∈ (1/4, 1)).

In Chapter 4, we have studied the long time behaviour of the solution, composed
of the densities on the road and in the field, to this two dimensional environment. We
have proved that the speed of propagation is exponential in time on the road, whereas
it depends linearly on time in the field. Contrary to the precise asymptotics obtained
in Part I of the thesis, for this model, we are not able to give a sharp location of
the level sets on the road and in the field, at least up to an O(1) error. This lack of
precision is due to the explicit subsolution, that we have constructed in a strip of large
width. It would be of interest to find a subsolution in the whole half plane. Moreover,
the study in the field could be improved, in order to get a more precise expansion
shape. A Bramson type shift may occur, which would be interesting to understand.

In Chapter 5, we have carried out numerical simulations, that have outlined quite
interesting perspectives. First, we have illustrated the theorems proved in [18, 17, 19],
which has given an indication of the validity of the numerical procedure. The results
have shown a surprising phenomenon close to the road. Indeed, the tangent lines to
the level sets of the density in the field, at points touching the road, make an angle in
[0, π

2
) with the road. Moreover, this angle seems to decrease as the diffusion coefficient

tends to infinity. It looks as if this phenomenon comes from the exchange term, that
might play the role of a source term. It would be of interest to prove it rigorously.
Then, we have illustrated the results of Chapter 4. This has shown a more precise
shape of the expansion set in the field. Once again, this is something which needs to be
mathematically investigated. Finally, we have carried out the numerical determination
of the asymptotic location of the level sets on the road. Again to our surprise, our
results have shown that the upper bound of this location, given by the supersolution
that we have computed in Chapter 4, seems to give the precise expression of the speed
of propagation. To understand this, perhaps with probabilistic tools, is a fascinating
open problem.
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