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specially suited for high temperature and high integration density. A novel device isolation 
technique never used on SiC before is approached. A fabrication process flow with three 
metal levels fully compatible with the CMOS technology is defined. An exhaustive 
experimental characterization at room and high temperature (300ºC) and SPICE parameter 
extractions for both structures are performed.  

In order to design digital ICs on SiC with the previously developed devices, the current 
available topologies for normally-on transistors are discussed. Furthermore, the circuits 
design using SPICE modeling, the process technology, the fabrication and the testing of the 
4H-SiC MESFET elementary logic gates library at high temperature and high frequencies 
are performed. The MESFET logic basic behavior up to 300ºC is analyzed. Finally, this 
library has allowed us implementing complex multi-stage logic circuits with three metal 
levels and a process flow fully compatible with a CMOS technology.  

This study demonstrates that the development of important SiC digital building blocks by 
transferring CMOS topologies (such as Master Slave Data Flip-Flop and Data-Reset Flip-
Flop) is successfully achieved. Hence, demonstrating that our 4H-SiC MESFET technology 
enables the fabrication of mixed signal ICs capable to operate at high temperature (300ºC) 
and high frequencies (300kHz). We consider this study an important step ahead regarding 
the future ICs developments on SiC.  

Finally, several experimental irradiations were performed on Tungsten-Schotthy diodes and 
mesa-MESFET devices (with the same Schottky gate than the planar SiC MESFET) in 
order to study their radiation hardness stability. The good radiation endurance of SiC 
Schottky-gate devices is proven.  Hence, it is expected that the new developed devices with 
the same Tungsten-Schottky gate, to have a similar behavior in radiation rich environments.  
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Silicon Carbide (SiC) is one of the WBG that has been highly studied and investigated for 
the past 25-30 years, demonstrating that can overcome most of the current industrial needs. 
Great improvements regarding the SiC material quality have been recently reached leading 
to a vast majority of device developments on SiC. Although most of the typical Si devices 
have been implemented on SiC already, great efforts are still needed towards their 
performance and optimization. However, it is predicted that by introducing SiC power 
devices in the “power generation – conversion – consumption” chain the energy usage can 
be substantially decreased. Furthermore, great benefits related to many important industries 
will be earned by using SiC devices. Even though few SiC devices are currently 
commercially available, significant progresses are constantly made in this direction. 

We consider that the next mandatory step necessary to overcome the present Si applications 
and to take advantage of the outstanding SiC properties, is the integration of the actual SiC 
develop devices into complex systems. The integrated circuits (ICs) design and its 
development on SiC is still at its early stage, being reported so far very simple circuits with 
a low integration density. However, the implementation of SiC ICs is considered a 
significant necessity for the future of modern power electronics. Moreover, there are great 
expectations of SiC ICs to become a competitor of smart Si power technology, and also to 
have a remarkable effect in automobile and aerospace industries, and also in 
telecommunications equipment. 

Therefore, in order to help and to advance the research headed into this direction, following 
some important Si CMOS concepts, the design and development of SiC integrated circuits 
able to work in harsh environments and with a high integration density is the main topic of 
the present work.  
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realized in SiC devices, the need for more accurate models for the design and optimization 
of these devices, along with the development of ICs on SiC, is indispensable for the further 
success of modern power electronics.  

 

1.1. Fundamental SiC Material Properties 

 

In late 19th century SiC was an important material for sandpapers, grinding wheels and 
cutting tools. At the beginning of 20th century SiC started to become more interesting for 
industrial applications in refractory linings and heating elements for industrial furnaces, in 
wear-resistant parts for pumps and rocket engines, and in semiconducting substrates for 
light-emitting diodes. Later on, SiC has received a special attention in device research and 
development due to its highly suitable properties for high-power, high-frequency and high-
temperature applications. 

 

1.1.1.      SiC Crystallography and Polytypism 

 

SiC in natural form is exceedingly hard, being synthetically produced as crystalline 
compound of Silicon (Si) and Carbon (C). SiC can occur in different crystal structures that 
are called polytypes [3]. In nature the compound exists in more than 250 different polytypes 
[4], but only few are commonly in a reproducible form acceptable for use as an electronic 
semiconductor. The most common polytypes presently being developed for electronics are 
3C-, 4H-, 6H- and recently 15R-SiC [5].  

 
Fig.1.1. Schematic representation of (a) 4H-SiC and (b) 6H-SiC atomic crystal 
structure, showing preferential crystallographic directions and surface [6] 
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The above figure presents the atomic crystal structure of the two most common 
polytypes 4H- and 6H-SiC. These polytypes are composed from different stacking 
sequence of the hexagonally closed-packed double layers on Si and C atoms, where each 
single Si-C bilayer can simplistically be viewed as a planar sheet of Silicon atoms coupled 
with a planar sheet of Carbon atoms [3, 7].  

Depending on the nearest neighbor atom arrangement, the atomic sites in SiC crystals 
are classified to be cubic or hexagonal. The polytypes are named according to Ramsdell’s 
notations [8] showing the periodicity of the stacking sequences (represented by a number) 
and its crystalline structure (either C-cubic, H-hexagonal or R-rhombohedral). The 
sequences ABCB and ABCACB correspond to the 4H-SiC and respectively 6H-SiC 
polytypes. SiC is a polar semiconductor across the c-axis, having one surface normal to the 
c-axis terminated with Si atoms, and the opposite normal c-axis surface terminated with C 
atoms. As shown in Fig.1.1, these surfaces are typically referred to as Si-face and C-face 
surfaces, respectively.  

SiC substrates can be both N- and P-type doped over a wide range of concentrations, 
using Nitrogen or Phosphorus as donors (N-type), and using Boron, Aluminum or Gallium 
as acceptors (P-type).  

 

1.1.2.       Physical and Electrical Properties 

 

SiC shows excellent electrical and mechanical properties. Even though the amount of 
Si and C atoms is the same, these properties can vary significantly between different SiC 
polytypes because of the different crystal orientations, lattice sites and surface polarity. As 
Si is the semiconductor used in the vast majority of commercial electronic devices and 
circuits, in Table.1.1 some of the most important properties at room temperature of the 3C-, 
4H- and 6H-SiC in comparison with Si and other well-known semiconductor materials are 
summarized [9-11]. Generally, WBG materials, such as SiC, GaN and Diamond have good 
chemical stability and mechanical properties, which makes them promising materials for 
next generation of high power, high frequency and high temperature electronics.  

Among these WBG materials, Diamond is often cited as the ultimate semiconductor 
[11]. However, due to many uncontrolled fabrication processes, Diamond was kept away 
from electronics development for many years. Moreover, recently GaN has gained a lot of 
research and development attention, and has been proven to be a notable alternative for SiC 
[12]. However, SiC is by far the most mature in development, fabrication and commercially 
available WBG material compared with its alternatives. 
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Table.1.1. Material properties of the well-known semiconductors 

 Eg 

[eV] 
Ec 

[MV/cm] 
λ 

[W/cmºK]

ni 
[cm-3] 

vs      
[107cm/s] 

µn 
[cm2/Vs] 

µp 
[cm2/Vs] 

εr 

Si 1.12 0.3 1.5 1.5x1010 1.0 1350 450 11.8

3C-SiC 2.3 > 1.5 3-5 ~10 2.5 750 40 9.6 

4H-SiC 3.26 3.0 3-5 ~10-7 2.0 
800||c

800┴c 120 9.7 

6H-SiC 3.02 3.2 3-5 ~10-5 2.5 
60||c

400┴c 
90 9.7 

GaN 3.39 3.3 1.3 ~10-11 2.5 900 30 9.0 

GaAs 1.42 0.6 0.5 1.8x106 2.0 6500 320 12.8

Diamond 5.45 5.6 20 ~10-27 2.7 2200 1600 5.5 

 
Concerning mechanical and chemical properties SiC, is known as a very hard material 

having Young’s modulus of 424 GPa [13]. It is chemically inert showing a very poor 
reaction with any known material at room temperature and presenting a good endurance to 
radiation damage as well.  

The most beneficial inherent material superiorities of SiC over Si listed in Table.1.1 are 
its higher high critical electric field (Ec), wide energy gap (Eg), high thermal conductivity 
(λ), and high carrier saturation velocity (vs). For high power devices the main advantage 
that SiC has in front of Si, is the much wider bandgap (almost 3 times wider for 4H-SiC) 
that results in larger critical electric field and higher temperature capabilities. Due to these 
superior properties, it enables the usage of much higher doped thinner drift layers providing 
lower specific on-resistance and less leakage current at elevated temperatures for a desired 
breakdown voltage.  

 
Table.1.2. FOM for some of the previous mentioned semiconductors [14] 

  Si 4H-SiC 6H-SiC Diamond 

JFOM 
஼ଶܧ ∙ ଶߨ௦4ݒ  9 4410 2533 73856 

BFOM ܧߤߝ஼ଷ 1 34.7 16.6 128 

KFOM ߣටܿ ∙ ߝߨ௦4ݒ  13.8 229 90.3 101 

 
The Figures-of-Merit (FOM) are based on the material properties and are used to 

summarize and evaluate the device performances and semiconductor materials targeting 
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particular applications (Table.1.2). The high power and high frequency capabilities of 
devices are expressed through JFOM figure-of-merit [15]; the BFOM is suggesting the low 
frequency and the static losses of the devices [16]; while the thermal limitations and also 
the switching speed of components performance at high frequency can be deduced from 
KFOM [17].  

The recent SiC based electronics devices are typically fabricated on either 4H- or 6H-
SiC due to the poor quality of 3C-SiC. Between 4H- and 6H-SiC, 4H-SiC has substantially 
higher carrier mobility, shallower N dopant ionization energies (4H-SiC – 45MeV against 
6H-SiC – 85MeV [11]) , and low intrinsic carrier concentration (Table 1.1), thus being a 
more favorable polytype for rough environmental applications. Even more, from the 
Table.1.2 one can easily observe that 4H-SiC polytype is predicting better device 
performance than 6H-SiC, especially for high-frequency applications (JFOM) and for faster 
switching devices (KFOM). Therefore, the 4H-SiC FOMs present encouraging values for 
device and specially circuits development, hence justifying why many SiC device 
fabrication efforts have shifted towards 4H-SiC as it has become more readily available. 

Another important aspect is the necessity of using semi-insulating substrates for 
devices and circuits operating at microwave frequencies in order to achieve low dielectric 
losses and reduce device parasitics. Using semi-insulating substrate, the loss of the signal 
due to the capacitive interactions with the substrate material is minimized. Also, for high 
temperature operation the leakage current is considerably reduced, allowing better device 
performance. “High-purity” 4H-SiC semi-insulating substrates have been obtained by 
eliminating the poor reliability owing to charge-trapping effects [18], together with the low 
residual dopant level. However, it was demonstrated that the lateral SiC MESFET 
fabricated on semi-insulating substrates are less sensible to micropipes than vertical high-
power switching devices [6]. 

Therefore, in the present work the polytype that will be used in developing electronic 
devices and Integrated Circuits is the 4H-SiC due to higher carrier mobility and more 
isotropic nature, and also due to its high quality semi-insulating substrates and wafers 
commercial availability. 

 

1.2. SiC Fabrication Technology 

 

Thanks to the intense effort that SiC process technology has recently received, the SiC 
device fabrication has been greatly improved and developed. Also great progress on the 
quality of the wafers and their increasing diameter has been achieved, currently 6 inch 
wafers being commercially available [19]. 
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1.2.1.       SiC Crystal Dislocation Defects 

 

As one of the key issues in SiC process technology is to achieve a good yield, an 
immense effort has been invested in the controlled growth of the high quality epilayers.  

 

Table.1.3. Major types of extended crystal defects reported in SiC wafers and epilayers [6] 

Crystal Defect 
Density in 

Wafer  
(cm-2) 

Density in 
Epilayer  

(cm-2) 
Comments 

Miropipes     
(hollow-core axial 
screw dislocation) 

~10-100 ~10-100 
High reduction of the breakdown 

voltage in power devices and 
increase of the leakage current 

Stacking Faults 
(disruption of stacking 

sequence) 
~10-104 ~10-104 

Bipolar power devices degradation, 
reduction of carrier lifetime 

Closed-Core axial 
screw dislocation 

~103-104 ~103-104 
Reduction of the breakdown voltage 
in power devices and increase of the 

leakage current 

Basal plane 
dislocation 

~104 ~102-103 

Source of stacking faults 
propagation, leading to bipolar 

power device degradation, reduction 
of carrier lifetime 

Threading-edge 
dislocation 

~102-103 ~104 Impact not well known 

Carrot defects N/A 1-10 
High reduction of power device 

breakdown voltage and increase of 
off-state leakage current 

Low-angle grain 
boundaries 

~102-103 ~102-103 
Typically more dense near wafer’s 

edges, impact not well known 

 

Even though, a new technique of producing ultra-high-quality SiC single crystal has 
been reported [20], the growth of SiC crystal still presents defects. The initial main problem 
in producing large area SiC devices were the micropipes defects, which generally lead to 
junction breakdown at electric fields well below the critical field [21]. However, the growth 
technique – High Temperature Chemical Vapor Deposition (HTCVD) [22-24], has shown 
to reduce micropipes by 80%, thus offering the possibility for stepping to industrial 
developments. 
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Furthermore, it has been observed that the stacking faults generated from base plane 
dislocations, are mainly degrading the bipolar power device [25-28]. Moreover, the electric 
field at which most micropipes and other SiC dislocations are failing is typically higher 
than the working electric fields of digital circuits, thus affecting much less the circuits 
operation than the high-field power devices [6]. In Table.1.3 the major crystal defects that 
have been reported in SiC wafers are summarized. Although, other defects still exist in SiC 
wafers and epilayers, not much information has been reported so far.  

Eventually, we can conclude that as the possibility of achieving high quality SiC wafers 
has substantially increased, it has opened new opportunities and possibilities for a large 
range of SiC device development, and even more, for Integrated Circuits development, 
which is still a subject at its early stage on SiC.  

 

1.2.2.       SiC Ohmic and Schottky Contacts 

 

Although SiC is following similar technical steps and shares several of the Si 
technology processes, many specific processes have been developed for SiC manufacturing, 
such as etchings, selective doping and dopant activation, together with ohmic and Schottky 
contacts. Over time, contacts and interconnections on SiC have received special attention. 
In order to benefit of SiC semiconductor advantages, the contact metallization of the SiC-
based electronics needed to stand both high temperature and high current stresses.  

The manufacturing of reliable and low-resistance SiC ohmic contacts is one of the most 
studied and analyzed issues, being primarily important for SiC devices. A high energy 
Schottky barrier is formed at a metal-semiconductor interface, which results in low-current 
driving, slow switching speed, and increased power dissipation. Although the SiC specific 
ohmic contact is higher than for Silicon, it is considered acceptable for most SiC 
applications. Lower specific contact resistances are usually obtained on N-type than on P-
type 4H- and 6H-SiC. However, high temperature operation up to 600ºC [29] together with 
long term operation [30] of SiC ohmic contacts have been demonstrated.  

Thanks to the SiC wide bandgap, most of the non-annealed metal contacts on lightly 
doped 4H- and 6H-SiC are rectifying. Up to now quite a large variety of studies concerning 
rectifying metal-semiconductor Schottky barrier contacts has been reported [31-34]. These 
contacts have been proven useful for a number of devices, including MESFET transistors 
and fast-switching rectifiers [19,35]. Due to the absence of minority carrier charge storage, 
the unipolar SiC Schottky diodes turn off faster than the Si ones, thus the SiC Schottky 
rectifiers owe the advantage of faster switching with less power losses, hence being 
successfully used in higher frequency operation applications [36,37]. However, because of 
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the metal-SiC interface and the reverse bias current degradation at elevated temperature, the 
operation of rectifying SiC Schottky diodes is typically limited to not more than 400ºC. 

In the present work our interest is particularly orientated to this kind of devices. We 
have reported a comparison between Nickel (Ni) Schottky diodes and Titanium (Ti) 
Schottky diodes regarding the life test at high temperature (270ºC) [38]. It has been shown 
that the Ni Schottky barrier presents forward drift voltage at high temperatures due to the 
chemical instability of the interface, while the Ti diode was exhibiting high reverse leakage 
current due to its lower barrier height. By employing Tungsten (W) as Schottky metal, we 
have later reported that the forward voltage drift is eliminated, showing a steady metal-
semiconductor interface, therefore achieving a very stable behavior of W-Schottky diodes 
at high temperatures [39].  

Thanks to the great progresses in developing high quality SiC contacts, various 
companies (such as Cree, Infineon, RHOM, Microsemi, Semisouth, ST Miroelectronics) 
are commercializing SiC rectifiers. Therefore, the Schottky contacts have achieved a really 
good maturity fabrication level, being a great benefit for SiC MESFET manufacturing.  

A very important aspect concerning fabrication processes is that SiC is one of the very 
few WBG materials that presents a real and unique potential to be thermally oxidized in 
order to form a SiO2 film, and moreover is the only WBG semiconductor that has SiO2 as a 
native oxide. This provides the great opportunity to develop Metal Oxide Semiconductor 
(MOS) power devices, analogous to the Si based technology. Because the MOSFET is a 
very important device for a modern technology development, great efforts have been made 
for improving the SiC/SiO2 interface fabrication process [40].  

 

1.3. Applications of SiC-Based Electronics 

 

Currently SiC is mostly used for applications where Si cannot offer acceptable results. 
SiC has also shown that its physical and electrical properties make it a suitable material for 
harsh environment applications. The most beneficial advantages of SiC material are 
summarized in Fig.1.2, showing the device advantages in comparison to Si, and vast range 
of applications in which these can be implemented. The areas where SiC structures can 
achieve higher performance than Si devices are especially the high-temperature and high-
power application fields.  
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Fig.1.2. The impact of SiC material in device performance vs. Si and the vast range of 

power applications that can derive from these features 
 

Thanks to the wide energy gap and the low intrinsic carrier concentration of the SiC 
material, it allows SiC based devices to operate at much higher temperatures than Si 
devices [41] without suffering from intrinsic conduction effects. Due to the lower 
breakdown field that Si owns, during time new transistor designs were developed in order 
to improve the device breakdown voltage, hence to achieve better power devices on Si; an 
example is the vertical insulated base transistor – the MOS-bipolar Darlington power 
device [42]. However, in SiC case the high breakdown electric field is enabling the 
fabrication of very high-voltage and high-power devices such as diodes, transistors and also 
microwave devices.The high electron drift velocity explains why SiC devices are able to 
operate at high frequencies. Therefore, the palette of applications that SiC based electronics 
covers a large field.  

Nowadays there are many research groups and companies from automobile and major 
electrical equipment producers, to companies manufacturing industrial equipment, 
inverters, power supplies, and even the electric power utilities, that are involved in 
developing the next generation of SiC based power electronics. Up to now almost all types 
of SiC power devices (such as SBDs, PiN rectifiers, MOSFETs, JFETs, MESFETs, BJTs 
and IGBTs) have been reported, demonstrating their high voltage capability. The recent 
improvements of the fabrication processes leaded to the possibility of obtaining low doped, 
thick epitaxial layers that have brought great progress in terms of blocking voltage 
capabilities. The evolution of blocking voltages follows closely the constant improvements 
in epitaxial growth of low doped N-type layers and their commercial availability [19, 43] 
and a wide variety of electronic [44-46], optoelectronic [44,47] and electromechanical [47] 
devices have been successfully fabricated on SiC. 
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One of the global environmental issues is directly related to the improvement of energy 
usage. Reducing power losses in electronic devices is an important headline for all business 
sectors, where SiC devices have already earned great interest as a key material for the 
environmental-aware era. SiC technology is expected to have a significant impact on power 
electronics sector, solar cells, electric cars and traction, due to the power conversion losses 
in inverters, converters etc. that can be considerably reduced. This means that the devices 
can operate with less heating dissipation, which in turn makes smaller and lighter power 
converters possible. 

 
Fig.1.3. Specific on-resistances versus breakdown voltages for SiC power devices [48]  
 

A large amount of power is lost from power generation to consumption during its 
conversion and transmission. It has been estimated that if, in Japan alone, all conventional 
power Si devices were replaced by SiC, the energy savings would be equivalent to the 
output of 4 nuclear power plants [49]. Therefore, it is expected that the mass production of 
SiC modules contributing to motor control and power conversions efficiency to have a 
major effect on energy saving worldwide. The actual SiC device market is being driven by 
inverters in household applications and industrial equipment; hybrid, electric and other 
vehicles; and distributed power systems such as solar cells. Yole Developpement predicts 
that SiC devices will grow into an US$800 million market by 2015 [50].  

SiC is used for high-voltage switching in electric power distribution and electric 
vehicles. They can operate up to 600ºC [51], at switching frequencies in the 10Hz-100kHz 
range and at increased power densities. Fast-switching capability coupled with high power 
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density and high operating temperature make SiC high-frequency devices ideal for military 
aircrafts requiring lightweight, high-performance and powerful microwave electronics, 
radar and communications systems. Commercial communications industries such as air 
traffic control, weather radar stations and cell phone base stations, would also benefit from 
higher performance radio-frequency SiC devices. 

There are other applications that are directly interested in the benefits of SiC-based 
devices. In military projects for developing hybrid-electric armed robotic vehicles, one of 
the key components are the high-power converters and motor drives able to operate in harsh 
environments, presumably achievable with SiC devices.  

It has been estimated that the integration of solid-state “smart” power electronics into 
the power grid will reduce the required energy production by 5% and will allow carrying 
about 50% more power over the existing lines [52]. Because of the faster switching speed, 
it is not only increasing the power system conversion efficiency, but it also enables the use 
of smaller transformers and capacitors to greatly shrink the overall size and weight of the 
system. Thanks to the excellent high temperature capability of SiC devices, cooling system 
requirements, which are a substantial portion of the total size and cost of a power 
conversion and distribution system, are greatly reduced. 

NASA is one of the major researchers and developers investigating in SiC devices, 
being interested in SiC power converters for spacecraft and satellite applications to increase 
the payload capability in lightweight solar arrays.  

SiC electronics have gained a great interest in automotive industry as well.  The 
Japanese company Toyota has commented that "SiC is as crucial as gasoline for the 
engines". Nissan has already prototyped an inverter using SiC diodes. And Honda was 
prototyping a power module using a SiC device jointly with Rohm [53].  

The interest from many companies of using SiC based devices relies on the ability to 
place these devices, that require no additional cooling system, directly into hot 
environments, hence enabling important benefits to automotive, aerospace and deep-well 
drilling industries [41, 54].  
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1.5. Conclusions 

 

The purpose of this first chapter is to make a brief introduction into the exciting world 
of SiC material, presenting its outstanding properties, its current process technology and the 
wide range of areas where SiC devices can be successfully implemented. Initially, it has 
been pointed out the most important properties of SiC in comparison with the 
semiconductor employed in the majority of commercial electronic devices and circuits 
(Silicon). From the material properties was shown that 4H-SiC is a more favorable 
polytype for high-power, high-frequency, and high temperature device applications and 
moreover, the FOM evaluation emphasized that 4H-SiC polytype have more suitable values 
for integrated circuits development. The recent fabrication breakthroughs reported in the 
fields of material growth and technological processes will promote the development of 
high-power SiC devices and integrated circuits. Among the SiC polytypes, 4H-SiC is 
increasingly considered for electronic devices since 4 and 6 inch wafers have been 
demonstrated with high quality and low defects density. Regarding the SiC contacts and 
interconnections, from previous CNM studies, it was shown that Schottky contacts made 
with Tungsten present a very stable behavior at elevated temperatures.  

Therefore, the attention that SiC research has received in the last decade has resulted in 
a great industrial interest. The improvements of the epitaxial growth and their commercial 
availability have led SiC device fabrication into a vast variety of electronic applications. It 
has been shown that the SiC device interest is enlarging even in the consumer application 
field. It is predicted that with the SiC power device replacement in the “power generation – 
conversion – consumption” chain the power losses will be considerably reduced. Therefore 
one of the global environmental problems – the reduction of energy usage, can be a 
solvable problem. Great benefits are foreseen in the case of automotive and aerospace 
engines. Improved electronic telemetry and control from high-temperature engines are 
necessary to more precisely control the combustion process, thus improving fuel efficiency 
while reducing polluting emissions. High-temperature capability eliminates performance, 
reliability, and weight obstacles associated with liquid cooling, fans, thermal shielding and 
longer wire runs, typically needed to realize similar functionality in engines using 
conventional Silicon semiconductor electronics. Even though SiC devices are every day 
more commercially available, the development of Integrated Circuits on SiC is still in its 
early stage. It is predicted that SiC ICs can become a rival of the smart Si power technology 
having the aim to perform complex switching functions at high frequencies. Moreover, SiC 
ICs have shown to have a remarkable effect in automobile and aerospace industries, as well 
as in telecommunications equipment.  
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2.1 The MESFET Basic Operation 

 

The Metal Semiconductor Field Effect Transistor (MESFET) has quite a similar 
construction and terminology as the Junction Field Effect Transistor (JFET). The JFET, 
first analyzed by Shockley in 1952 [1], is basically a voltage-controlled resistor and its 
resistance can be changed by varying the width of the depletion layer extended into the 
channel region. The MESFET was proposed by Mead in 1966 and subsequently fabricated 
by Hooper and Lehrer using GaAs epitaxial layer on a semi-insulating GaAs substrate [2, 
3]. It shows an identical operation to that of a JFET. 

The main difference between the JFET and MESFET is that the latter is using a 
Schottky junction (metal-semiconductor junction) instead of a pn junction for the gate 
terminal. The MESFETs are usually constructed in compound semiconductor technologies 
lacking high quality surface passivation, such as SiC, GaAs or InP, and are faster than 
silicon-based JFETs or MOSFETs. MESFETs are operating up to approximately 45 GHz 
[4] and are commonly used for microwave frequency communications and radar.  

A MESFET transistor can be designed using different topologies: lateral MESFET, 
which is the most widely used structure; vertical MESFET which is achieved by placing the 
gate fingers at the bottom of etched trenches, and is typically used in power applications; or 
the V-groove gate FET that can exhibit a higher transconductance and a lower turn-on 
resistance than the conventional planar FETs [5]. The device topology that will be further 
discussed is the lateral one, being the most common used MESFET design, where the 
channel is aligned in a moderately doped conducting layer at the surface.  

 

           (a)     (b)     (c) 
Fig.2.1. Basic operation of the MESFET transistor 

 

The basic operation of a MESFET consists of a conducting channel positioned between 
the source and drain contact regions as shown in the previous figure. They are depletion 
mode type, being normally-on devices, thus requiring negative gate-source potential to 
deplete the carriers through the channel region and to turn the device off. The carrier flow 
from source to drain is controlled by the gate. The channel is depleted by applying a 
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negative voltage to the gate contact, which is in fact a Schottky junction. The control of the 
channel is obtained by varying the depletion layer width underneath the metal contact, 
which modulates the deepness of the conducting channel and thereby, reducing the current 
until it depletes at a certain gate voltage.  

 
Fig.2.2. Ideal current – voltage characteristics of a FET 

 

The MESFET is biased by applying two voltages, VGS and VDS. These voltages are 
used to control the IDS current which is present between the drain and the source of the 
device by varying the electric field across the channel. The electric filed changes by 
varying the applied potential, giving rise to three distinct regions in the I-V characteristics 
of the device: Linear Region; Saturation Region and Pinch-Off Region.  

At very low drain voltage, the drain current increases linearly with increasing drain 
voltage. In this linear region the FET exhibits a resistive characteristic with the resistance 
as a function of the gate voltage. As shown in Fig.2.2 the drain current increases with the 
drain voltage and becomes saturated at the pinch-off point. The “gradual channel 
approximation” can be considered in order to analyze the MESFET characteristics. This 
approximation, first done by William Schokley, essentially assumes that the gate width is 
much larger than its length (ZG>>LG).  

 
Fig.2.3. Cross-section of a typical MESFET with main geometrical parameters 
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By changing the geometrical parameters and technological processes, the saturation 
current can be adjusted and so the device can be optimized. In every case, this current 
mainly depends on the geometric parameters of the device: LG-gate length, Wepi-epilayer 
depth, ZG-Schottky gate width (see Fig.2.3); the ND donor doping of the N epitaxial layer 
and the gate voltage VGS.   ܫ஽௦௔௧ ൌ ௤మఓேವమଷఌೄ ∙ ௐ೐೛೔య௓ಸ௅ಸ ∙ ൤1 െ 3 ቀ௏ಸೄା௏ಳ೔௏ು ቁ ൅ 2 ቀ௏ಸೄା௏ಳ೔௏ು ቁଷ ଶ⁄ ൨  (2.1) 

When the gate depletion region depth WG equals the depth of the conducting epitaxial 
layer Wepi (see Fig.2.1b,c and Fig.2.3) the channel is pinched-off. The negative voltage at 
which no current flows from drain to source is called the pinch-off voltage (VP) and it is a 
function of N-epilayer depth (Wepi) and its doping concentration (ND). In the current-
voltage characteristic (Fig.2.2), this behavior corresponds to the saturation region where the 
gate is pinched-off, and where the saturation drain current is described as in the eq. (2.1) 
[5].  

The VP expression is: 

௉ܸ ൌ ஽ܸௌ ൅ ܸீ ௌ ൅ ஻ܸ௜ ൌ െ ௤	ேವ	ௐ೐೛೔మଶ	ఌೞ     (2.2) 

where VBi is the built-in voltage of the Schottky gate. When the gate bias is 0V, the 
saturation drain current is maximum: ܫ஽௦௔௧ெ஺௑ ൌ ௐ೐೛೔య௤	ఓ	௓ಸଷ	ఌೄ	௅ಸ ∙ ஽ܰଶ     (2.3) 

The channel resistance (RON) is a function of the doping and determines the losses in 
the transistor. Therefore, RON is preferably as low as possible.  

ܴைே ൌ ଵଶ	௤	ఓ	ேವ	௓ಸ ∙ ൬ ீܹ െ ටଶ	ఌೄ௤	ேವ ∙ ஻ܸ௜൰ିଵ ଶ⁄
   (2.4) 

As shown in Fig.2.2, the drain current ID increases with the drain voltage VD and 
becomes saturated at the pinch-off point.  

Finally, the gain of the device, called transconductance (gm), represents the change of 
the drain current upon a change in gate voltage at a given drain voltage (eq. 2.5). A large 
transconductance is desirable to minimize the gate drive and provide a high power gain. ݃௠ ൌ డூವడ௏ಸቚ௏ವೄୀ௖௢௡௦௧    (2.5) 
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2.2 The Mesa-MESFET Design and Fabrication 

 

The MESFET structure is conventionally implemented on either semi-insulating 
substrates or p-type buffer epitaxial layers. In addition, the structure includes a thin highly 
doped p-type layer implanted at high energy, having the role of a second buried gate.  

The mesa-devices were fabricated on 4H-SiC wafer supplied by CREE Research Inc. 

The P-layer grown on a semi-insulating substrate has a 5μm thickness with 5 ∙ 10ଵହ	cmିଷ 

doping concentration, and the N-layer has 0,5μm thickness with 10ଵ଻	cmିଷ doping 
concentration. The fabricated mesa-MESFET has a single gate with the p-buried layer 
shorted to the source behaving as a buried gate. The schematic cross section of the 
fabricated device is presented in Fig.2.4. Employing the p-buried layer as a second gate 
allows the transconductance to increase [6].  

 
Fig.2.4. Schematic cross-section of the 4H-SiC mesa-MESFET 

 

The technology developed in SPACESiC project is a multi-device process, 
demonstrating the fabrication compatibility between unipolar devices [7]. This technology 
has allows the integration of lateral MESFETs, LJFETs, Schottky, JBS, PiN diodes and 
small signal NPN bipolar transistor as well. It was also possible to integrate large value 
resistors with a reasonably small footprint thanks to the lightly doped P-epilayer. Varying 
the gate length (6, 8 or 12 μm) with a width of the devices varying from 400μm to 808μm, 
various MESFET structures were fabricated. However, due to our particular interest in 
investigating lateral MESFETs, the experimental analyses on a single mesa-MESFET type 
is satisfactory. Therefore, the experimental results presented in the following part are 
extracted from the transistors having 12μm of gate length with two different distances 
between the Source and Gate regions: 5μm and 7μm (see Fig.2.5).   
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Fig.2.5. Distances between electrodes of the analyzed MESFETs  

 

The geometrical approach used for the layout design is a close-loop geometry (Fig.2.6). 
This layout design has been proven to be suitable for the entire fabrication process, being 
perfectly suitable for mesa etching isolating technique. Moreover, this geometry layout is 
considered to be the best configuration for sustaining high voltages, as these devices have 
been specially designed for high power applications. 

 
 

(a) (b) 
Fig.2.6.(a) Layout design of the 4H-SiC Mesa-MESFET and                            

(b) the fabricated MESFET transistors 
 

The fabrication process consists of 7 levels of photolithography masks, including mesa 
etching as the isolation technique, ion-implantation and impurity activation, field oxide 
formation, electrodes definition, ohmic contact formation, gate contact definition and pad 
metallization, and passivation. The mesa etching isolation was achieved in a standard 
reactive-ion etching (RIE) through a patterned deposited SiO2 layer. Fig.2.6b shows a 
picture of the fabricated mesa-MESFET.  

As our main interest is to develop a model for designing a new structure, to simplify 
the further analysis, in the next sections of the present chapter, the experimental results on 
mesa-MESFET M12-7 devices are presented.  
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2.3 The Mesa-MESFET Electrical Characterization 

 

The normally-on lateral M12-7 MESFETs were characterized at room and at 
temperatures up to 300ºC. The aim of the present electrical characterization is to determine 
the entire set of electrical and geometrical parameters necessary for an accurate model 
development and after for designing a new MESFET structure. 

 

2.3.1 Room Temperature Measurements 

 

The DC characterization at room temperature was performed using the Keithley 251 IV 
SMU system, the Probe Station Wentworth A1050 and the ICS Metrics software. For the 
ID-VD forward characterization a gate potential was applied from 0V to –16V with –2V per 
step and with a drain bias ramping from 0V to +30V. The transconductance characteristics 
ID-VG were performed by keeping the drain bias constant at +30V and applying a gate bias 
ramping from 0V to –20V.  
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Fig.2.7. (a) The output ID-VD characteristic and (b) the transconductance                              

of M12-7 mesa-MESFET at room temperature 
 
From the output characteristic (Fig.2.7a) we can see that the saturation drain current for 

M12-7 is higher than 25mA at VG=0V. From the transconductance curve can be roughly 
estimated that the pinch-off voltage is around VP = -14.8V. The gain of the device (gm) is 
calculated using eq. (2.6):  
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g୫ ൌ ଶ∙୍ీ౏౏|୚ౌ| ቀ1 െ ୚ృ౏୚ౌ ቁ     (2.6) 

The extracted transconductance value for the device at VG=0V is gm=3.901mS.  

An important parameter for digital applications is the on-off current ratio (ION/IOFF) 
which estimates the standby power consumption and the corruption of dynamic node 
voltages in logic and memory [8]. For the present mesa-MESFET the on-off current ratio is ~2	 ൈ 10ହ. For the Si CMOS logic products technology the general admitted values are 

between ~5 ൈ 10ଷ and ~2 ൈ 10଺. Hence, this transistor is presenting acceptable values for 
future ICs development. 

 

2.3.2  High Temperature Measurements 

 

For the DC characterization at high temperature the Probe Station Wentworth s200 
300ºC heating chuck system and two Keithley 2410 Source Meters, together with the 
LabVIEW software have been used. The measurement setup used was the same as for room 
temperature measurements, applying VG from 0V to –16V with VD ramping from 0V up to 
+30V, and keeping VD constant at +30V while ramping VG from 0V to –20V, for the ID-VD 
and ID-VG characteristics, respectively.  

μ୬,୮ ൌ μ୫୧୬ ቀ ୘ଷ଴଴ቁஒ ൅ ஜౣ౗౮ቀ ౐యబబቁಋିஜౣ౟౤ቀ ౐యబబቁಊଵାቀొఽశొీి౨ ቁಉ     (2.7) 

The detailed drain current expression was presented in eq. (2.1). Since the μ୬ electron 
mobility eq. (2.7) varies as a function of temperature, the MESFET electrical parameters 
show a significant temperature dependency (Fig.2.8 and Fig.2.9).  

In Fig.2.8 the drain current evolution for 6 different temperatures at 0V gate bias is 
presented. One can easily see that the drain current is strongly temperature dependent, 
decreasing approximately 3 times with the temperature increasing in the 25ºC-300ºC range. 
In accordance with literature [9, 10] the 4H-SiC electron mobility is decreasing with 
temperature, thus ID follows the same trend. Due to this, the transconductance is decreasing 
at a proportional rate of approximately 80% at 300ºC. 
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Fig.2.8. The mesa-MESFT ID-VD characteristics for VG=0V at 6 different temperatures 

 
From the transfer plot (Fig.2.9) it can be seen that the subthreshold leakage current 

shows a strong dependency with temperature as well, increasing nearly two orders of 
magnitude at 300ºC. 
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Fig.2.9. The ID-VG at VDS=0V characteristics of the mesa-MESFET in temperature                                   

(a) linear scale and (b) logarithmic scale 
 
From Fig.2.9 we can observe that the VP is preserving a constant value in the whole 

temperature range, being in good agreement with theory (see eq. (2.2)). It is worth 
mentioning that for both MOSFET and Bipolar transistors, the threshold voltage shows an 
increasing dependence with temperature. Therefore, this is an important aspect that makes 
the MESFET and JFET much easier to model for high temperature operation. 
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2.4 The 4H-SiC Mesa-MESFET SPICE Model Definition 

 

In order to be able to perform an electrical behavior forecast analysis of a prototype 
device, a proper simulation model is highly required. After almost three decades of running 
on various platforms around the world, SPICE [11] can be regarded as a standard in 
circuit’s simulation. In the fast-advancing field of VLSI design, a sound knowledge of 
physical models used to describe the behavior of transistors and knowledge of various 
device parameters are essential for performing detailed circuit simulations and for an 
optimized design. 

Although there is an increasing demand for intelligent power applications and 
intelligent sensors, there is a lack of high temperature SPICE models for SiC devices, 
which limits the design of embedded circuitry. However, several SiC devices are 
commercially available or have been demonstrated as prototypes. Thus, compact device 
models that are adequate for the simulations of power electronics circuits and systems are 
highly desirable. As one of the few commercial SiC switches, JFETs are now used in the 
build-up of power systems. As a MESFET has a similar structure and operation as the 
JFET, we have considered the SPICE model reported in [12] as a starting base in predicting 
the behavior of the 4H-SiC mesa-MESFET.  

In order to develop an accurate SPICE model for the analyzed 4H-SiC mesa-
MESFETs, the first step is to provide a correct extraction procedure for the electrical 
parameters employed in the model description, and later to include them in the model and 
verify if the simulated results are in good agreement with the experimental ones.   

 

2.4.1 Parameters Extraction 

 

In Table.2.1 the key parameters of the SiC MESFET that will be used for circuit 
simulation are summarized, including also the high temperature parameters. Beside 
intrinsic model parameters, extrinsic components are also considered for an accurate 
modeling. 

Some of the parameters are extracted from the static characteristics of the device at 
room and at high temperature. The threshold voltage (VTO), the transconductance 
modulation parameter (BETA), the channel length modulation parameter (LAMBDA), the 
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drain ohmic resistance (RD), the source ohmic resistance (RS), and the gate junction 
saturation current (IS) are extracted from the room temperature characteristics.  

 

Table.2.1. MESFET Key SPICE Parameters 

Name  Parameter Units 

VT0  Threshold voltage V 

BETA  Transconductance parameter A/V2

LAMBDA  Channel length modulation parameter V-1

RD  Drain ohmic resistance Ohm 

RS  Source ohmic resistance Ohm 

IS  Gate junction saturation current A 

CGS  Zero-bias G-S junction capacitance F 

CGD  Zero-bias G-D junction capacitance F 

PB  Gate junction potential V 

M  Junction grading coefficient - 

KF  Flicker-noise coefficient - 

AF  Flicker-noise exponent - 

FC  Coefficient for forward-bias depletion capacitance - Formula - 

TNOM  Parameter measurement temperature ºC 

XTI  IS temperature coefficient - 

VT0TC  Threshold voltage temperature coefficient V/ºC

BETATCE  Transconductance exponential temperature coefficient 1/ºC

 

As shown in Fig.2.10a, the device transconductance parameter β and the threshold 
voltage VT0 are obtained from the transfer characteristics. After a linear fitting was 
performed, the results were:  Slope ൌ ඥβ ൌ 0.012 ⇒ 	β ൌ 0.144	mA Vଶ⁄    (2.8) 

And the threshold voltage obtained at the intersection of the fitting with the x-axis, is 
resulting in: V୘଴ ൌ െ14.202	V    (2.9) 
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The channel-length modulation parameter λ is gained out from the output 
characteristics of the device. In Fig.2.10b the drain current is plotted only for gate potential 
VG=0V and the value for the channel-length modulation parameter is: Slope ൌ λ ∙ Iୈ ൌ 5.823 ∙ 10ିହ 	⇒ 	λ ൌ 2 ∙ 10ିଷ 	1 V⁄    (2.10) 

Since the devices are designed to operate at high temperature, the temperature 
coefficients are especially important in the circuitry design. The key temperature 
parameters are: the IS temperature coefficient (XTI), the threshold voltage temperature 
coefficient (VTOTC), and the transconductance exponential temperature coefficient 
(BETATCE).  
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Fig.2.10. The close-loop MESFET (a) transfer characteristic and                                              
(b) output characteristic at VG=0V 

 

The threshold voltage temperature coefficient (VTOTC) can be extracted if the VT0 is 
plotted as a function of temperature (Fig.2.10a). The threshold voltage VT0 varies with 
temperature according to the following equation: V୘଴ሺTଶሻ ൌ V୘଴ሺTଵሻ ൅ VTO୘େሺTଶ െ Tଵሻ    (2.11) 

As expected, the threshold voltage varies with temperature (Fig.2.11a) due to the 
higher subthreshold leakage current observed at elevated temperatures.  
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Fig.2.11.The extraction method and values for (a) the threshold voltage coefficient (VTOTC) 

and (b) the transconductance exponential temperature coefficient (BETATCE) 
 

The transconductance exponential temperature coefficient BETATCE can be expressed 
in terms of the equation (2.12) below and determines the limit of saturation current level at 
elevated temperature: βሺTଶሻ ൌ βሺTଵሻ ∙ 1.01୆୉୘୅౐ిుሺ୘మି୘భሻ   (2.12) 

Moreover, due to the higher on-resistance which limits the current level, the device 
transconductance correspondingly drops as temperature increases (Fig.2.11b).  
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Fig.2.12.Temperature dependence of the on-state resistance at VG=0V for mesa-MESFET 
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The on-state resistance (RON) contributes to the conduction losses of the device. As 
shown in Fig.2.12 the RON increases with temperature, following a parabolic law. 
Therefore, the conduction losses will become more important and not negligible when the 
device is operating at high temperatures. Equation (2.4) shows the RON dependence on 
mobility, thus its increment with temperature can be straight forward explained.  

As the main difference between the JFET and MESFET devices lies on the gate 
architecture, some of the SPICE parameters have to be modified. For instance, the junction 
grading coefficient M and the gate junction potential PB are parameters dependent on the 
gate Schottky junction and they are considered 1 and 1.3V, respectively. However, other 
parameters will be considered as default from the SiC-JFET SPICE model because of the 
similarity.  

Finally, all the extracted parameters from the experimental measurements will be 
introduced in the SPICE model in order to customize it for the mesa-MESFET transistor. 
Table.2.2 shows the extracted MESFET parameters, together with the default ones from 
JFET SPICE model. The complete mesa-SPICE model is described in Annex.A1 – Mesa-
MESFET Extracted SPICE Model.  

 

Table.2.2. The extracted key parameters for the 4H-SiC mesa-MESFET SPICE model: 

 

 

 

 

 

 

 

 

 

An important specification should be made concerning the threshold voltage VT0 
mentioned in the SPICE model parameter extraction procedure. In our case, the threshold 
voltage is considered to have the same meaning and value as the MESFET pinch-off 
voltage.  

 

 

Parameter Value Units 

VTO -14.2 V 

BETA 0.144 mAV-1

LAMBDA 2E-3 V-1

RD 0 Ohm 

RS 0 Ohm 

IS 0 A 

PB 1.3 V 

Parameter Value Units 

M 1 - 

KF 0 - 

AF 1 - 

FC 0.5 - 

XTI 3 - 

VTOTC -0.053 mVºC-1

BETATCE -0.441 ºC-1



CHAPTER II. The 4H-SiC Mesa-MESFET 
 

 
 

37 

 

2.4.2 Simulated vs. Experimental Results 

 

Using the customized SPICE model of our mesa-MESFET, typical electrical 
simulations were performed, being able to obtain a first comparison between the 
experimental and simulated characteristics of the device.  
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Fig.2.13. The ID-VG simulated and experimental characteristics of a mesa-MESFET                                  
in temperature in (a) linear scale and (b) logarithmic scale 

 

Fig.2.13 shows with solid lines the SPICE simulations and with symbols the 
experimental measurements of the transconductance characteristic of the 4H-SiC mesa-
MESFET for all measured temperatures. One can easily see that a good agreement between 
the extracted SPICE model and the experimental results is obtained in both linear and 
saturation regions, for both room and high temperature behavior. This indicates that the 
customized SPICE model of 4H-SiC mesa-MESFET can be considered a cogent starting 
point in the design and modeling of a new structure for high temperature operation. 

Therefore, the proposed SPICE model for the mesa-MESFET is a key input parameter in 
future development of the new MESFET structure. This model can easily be modified and 
furthermore used in the new structure design and simulation.  
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2.5 Theoretical vs. Experimental Analysis Comparison  

 

In order to see if the previous experimental analysis of the mesa-MESFET is 
corresponding to the theoretical one, this section deals with brief remarks concerning key 
electrical and geometrical parameters.  

For the sake of simplicity, we remind that the 4H-SiC wafer consists of a semi-
insulating substrate, with 5μm thickness P-type epilayer and a Wepi=0.5μm N-type epilayer 
thickness. The doping concentration are NA=5·1015 cm-3 and ND=1017 cm-3, respectively.   

 

2.5.1 Theoretical Analysis 

 

We have previously shown that the required voltage to fully deplete the doped channel 
layer of the MESFET is the threshold voltage:  V୘ ൌ V୆୧ െ ୯∙୒ీ∙୛మଶ∙க౏ ൌ V୆୧ ൅ V୔    (2.13) 

where V୆୧ is the build-in potential (1.3V) and V୔ is the pinch-off voltage of the device. 
Considering the pinch-off voltage eq. (2.2), we can easily calculate its theoretical value: V୔ ൌ െ୯∙୒ీ∙୛౛౦౟మଶ∙க౏ ൌ െ18.95	V    (2.14) 

From the equation (2.14), we can see that q and εS are known fixed constants, while the 
parameters that can vary are the N-layer doping and its thickness Wepi. However, the actual 
value of the ND doping is provided by the wafer supplier. Since no additional implantation 
in the gate region was performed, the N-layer concentration remains constant along the 
entire manufacturing processes. Therefore, the only parameter able to be modified due to 
the extra cleaning procedures and etching steps during the device fabrication process is the 
Wepi thickness of the epilayer.  

As can be seen from the device cross-section (Fig.2.14), the device contains two 
junctions: the metal-semiconductor junction – the Schottky junction, formed between the 
gate metal and N-type layer; and the pn-junction, formed between the N- and P-type layers. 
In order to evaluate them, we will analyze each separately.  
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Fig.2.14. The schematic cross-section of the 4H-SiC mesa-MESFET with the                    
depletion-regions (DR) 

 

a) PN junction 

Giving that the P-layer doping concentration is considerably lower than the N-layer 
one, the pn-junction depletion region (DR) expands more in the P substrate. In the neutral 
regions of the semiconductor the electric field has to be null; therefore, the total charges 
must be equal at both sides of the junction: W୒ ∙ Nୈ ൌ W୔ ∙ N୅     (2.15) 

The theoretical expression of the total thickness of the depletion region is: Wୈୖ ൌ W୒ ൅W୔ ൌ ටଶ∙க౨୯∙୒౟ ∙ Φ଴    (2.16) 

where Φ଴ is the internal potential of the pn-junction:  Φ଴ ൌ V୲୦ ∙ ln ቀ୒ఽ∙୒ీ୬౟మ ቁ ൌ 2.92	V  and   N୧ ൌ ୒ఽ∙୒ీ୒ఽା୒ీ 

with the thermal voltage: V୲୦ ൌ 	k ∙ T q⁄ ൌ 26mV at T=25ºC. The intrinsic carrier 

concentration n௜ and the relative permittivity	ε௥ are taken from Table.1.1.  

Combining the above equations, the depletion region thicknesses for each of the two 
doped layers can easily be calculated:  

o for the N-type layer: WN=0.038 µm and  
o for the P-type layer: WP=0.774 µm. 

Therefore, the pn-junction DR is extending 0.038μm inside the N-type layer.  
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b) Schottky junction 

In the Schottky junction case, the depletion region is expanded only in the N epilayer 
under the gate metal:  Wୗେୌ ൌ ට ଶ∙க౨୯∙୒ీ ሺ	V୆୧െVୖሻ     (2.17)   

where the typical internal potential for a Schottky junction is V୆୧ ൌ 1.28V.  

When the polarization voltage has reached the pinch-off voltage VR=VP=-18.95V the 
channel is completely depleted. From eq. (2.17) we yield the Schottky junction depletion 

region width: Wୗେୌ ൌ 0.467	μm.  

Therefore, in order to confirm if the theoretical analysis is reliable, we can verify if the 
calculated value of the N-type layer thickness corresponds to the initial one: Wୣ୮୧ ൌ W୒ି୪ୟ୷ୣ୰ ൌ Wୗେୌ ൅W୒ ൌ 0.5	μm   (2.18) 

Using the theoretical analysis, electrical and geometrical parameters were determined. 
We have shown that the analytical approach was correct. In the following part, the same 
parameters will be extracted from the experimental results.  

 

2.5.2 Experimental Analysis 

 

If we have a closer look at the experimental extracted parameters (Section 2.4.1) and 
the previous theoretical analysis, we can easily observe that between some theoretical and 
experimental electrical parameters there is a visible variation. 

The extracted value from the experimental measurements of the pinch-off voltage 
resulted to be VP=-14.2V (see eq. (2.9)). If we replace this value into the Schottky depletion 
region width equation (2.17), it will result that the actual Schottky-DR is in fact       Wୗେୌ ൌ 0.408	μm.  

Therefore, in order to estimate the actual thickness of the N-type epilayer, we sum the 
actual Schottky-DR with the pn-junction DR (which maintains the same value): Wୣ୮୧ ൌ W୒ି୪ୟ୷ୣ୰ ൌ Wୗେୌ ൅W୒ ൌ 0.446	μm    (2.19) 

From the upper values we can observe that at the end of the manufacturing processes of 
the device, the experimental thickness of the epitaxial layer has resulted smaller than its 
initial value. 
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The variation between the theoretical and experimental values of different mesa-
MESFETs geometrical and electrical parameters is a consequence of the various fabrication 
process steps, such as deep cleanings, surface oxidation or over-etchings of the oxides, and 
associated manufacturing tolerances. 

Consequently, this analysis presents an important aspect – the fabrication processes’ 
impact on the wafer and device parameters. This aspect will be taken into consideration for 
the future devices and circuits design, modeling and fabrication. In Fig.2.15 is shown the 
theoretical dependence of the VP versus the N-substrate thickness pointing out the effects of 
the fabrication process steps.   
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Fig.2.15. The 4H-SiC N-substrate thickness versus MESFET pinch-off voltage 

 

Therefore, an important conclusion can be stated: the geometrical parameter Wୣ୮୧ – the 

N-type layer thickness can be varied in order to obtain the desired device parameters, such 
as VP – one of the important electrical parameter on which the device electrical operation 
scaling is reflected on. 
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2.6 Conclusions 

 

After presenting the basic MESFET transistor operation, pointing out the structural and 
functionality similarities with the JFET, the complete characterization of the existing mesa-
MESFET device was reported. This device was isolated using mesa technique and has 
required 7 levels of photolithography for its fabrication. 

From experimental measurements at room and high temperature, it was shown that the 
mesa-MESFET presents a good behavior in the 25ºC to 300ºC temperature range, showing 
again the 4H-SiC Tungsten-Schottky gate fabrication maturity. 

It has been shown that starting from a SiC JFET SPICE model specially created for 
circuitry simulations, a new SPICE model for MESFET devices can be defined. Based on 
the experimental characterization, a first SPICE parameter extraction was performed at 
room and high temperatures. Introducing all the extracted parameters into the SPICE 
model, first simulations were carried out. A good agreement between the simulated results 
and the experimental ones for the whole temperature range (25ºC-300ºC) was obtained, 
demonstrating the effectiveness of the customized mesa-MESFET SPICE model.  

It has been also pointed out that the fabrication process can induce variation from the 
theoretical values of different geometrical and electrical parameters of the device. It has 
been observed that a lower pinch-off voltage is obtained experimentally, due to the final 
lower thickness of the N-epilayer. This fact will be taken into consideration in the 
development of the future structure. 

The study reported in this chapter has a significant importance as it will be used as an 
input base for the future developed devices. 
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The groundwork of the present MESFET transistor mainly relies on the electrical and 
geometrical analysis performed in the previous chapter for the already fabricated mesa-
MESFET.  

 

3.1 The Planar-MESFET Design and Modeling 

 

As already mentioned, the design and device modeling plays a crucial role in 
developing a new structure. Due to the changes that occur in the semiconductor device and 
also the difficulty encountered in performing measurements on these devices, a great 
emphasis has to be put on the theoretical results. At this stage, the new device structure is 
rigorously investigated prior fabrication.  

Since the physical model of the device is already known thanks to its previous 
fabrication analysis (Chapter II), the design and modeling of the new structure will mainly 
refer to the equivalent circuit model approach, changing only few electrical and geometrical 
parameters. The key parameters which will be taken into consideration while designing a 
digital circuit at transistor level are: the saturated current (IDsat), the pinch-off voltage (VP) 
and the leakage current (when the device is off). Furthermore, the most important changes 
for the new developed structures are described.  

 

3.1.1 The P+-Implanted Walls Isolation Technique 

 

A significant aspect that we have considered in developing the new structure is the 
isolation technique of the devices. As we showed in the previous chapter, the isolation 
method used for the SPACESiC developed devices was the mesa etching isolation. Using 
mesa isolation technique, the 4H-SiC MESFETs have shown a proper behavior up to 300ºC 
(Section 2.3.2). This method has proven to assure a good isolation between devices and it is 
widely used for individual device definition due to its simplicity [1].  However, as the 
planarity is an important standpoint in developing ICs, using mesa isolation brings 
inappropriate differences between the necessary metal levels for circuit’s device 
interconnections.  

The isolation method widely used for the design and fabrication of Si ICs is the junction 
isolation technique. This technique was formerly used for the early design and fabrication 
technology of Si ICs based on bipolar transistors by P type diffusion. We have adapted the 
junction isolation technique, using fully implanted isolation walls, as the impurities 
diffusion in SiC is not possible. 



CHAPTER III. The Novel 4H-SiC Planar-MESFET  
 

 
 

47 

The P+-type impurities are deeply implanted into the N-type epitaxial layer so that it 
reaches the P-type substrate, creating N-type islands. This method generates N-type wells 
surrounded by P-type moats in which individual components are implemented. A 
comparison between the mesa and junction isolation techniques on SiC is reported in [2]. 
The schematic cross-section of the new proposed 4H-SiC MESFET structure using the P+-
implant technique as a device isolation method is showed in Fig.3.1. 

 

Fig.3.1. Schematic cross-section of the 4H-SiC MESFET with P+ implant isolation 
 

The benefits of using the P+-implanted isolation process are the improvement of the 
device density per unit area and the wafer surface. Since a number of devices are to be 
fabricated on the same IC chip, it becomes necessary to ensure good isolation between 
various components and also good interconnections. Moreover, this method offers not only 
a good isolation between devices, but it also provides a better planarization of the wafer 
surface, and also reliable interconnection between various devices or circuits. Therefore, 
this isolation technique adapted from Si-CMOS technology is our choice for 4H-SiC 
individual device definition.  More details about this technique will be provided in the 
device fabrication Section 3.2. 

 

3.1.2 Device Scalability 

 

One of the most important aspects in developing ICs is the necessity of having scalable 
devices. The technique widely used in CMOS ICs for achieving this aspect is the finger-
gate technique [3]. Device scalability brings important advantages, such as the 
improvement of both circuit speed and density increase [4]: a) the circuit operational 
frequency increases with a reduction in gate length, allowing faster circuits; b) the chip area 
decreases while using finger-gate devices instead of close-loop gate structures, enabling 
higher integration density; c) the switching power density remains constant allowing lower 
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power per function or more circuit complexity for the same power; d) using finger-gated 
transistors, the drain-sharing technique becomes applicable.  

The MESFETs are endowed with a higher degree of freedom in scaling, unlike 
MOSFETs in which the scaling requirements for various device parameters are highly 
interrelated [5]. The absence of the gate-oxide in the MESFETs enables the flexibility in 
the choice of the channel thickness and also of the channel doping.  Moreover, the ion 
implantation enhances this flexibility [6].  

Reference [4] shows several scaling schematics for the Si-MESFET varying either the 
channel thickness, the channel doping, or even both. These schemes are compatible with 
the techniques used for the VP reduction in the depletion mode GaAs devices [7] and also 
for controlling the VP in enhancement Si and GaAs MESFETs [8-11]. Depending on the 
required applications, different combinations concerning parameters scaling can be chosen.  

The MESFET basic operation is presented in Section 2.1. As shown in [4] one of the 
most important electrical parameter concerning scaling is the VP due to its dependency with 
geometrical and physical parameters of the structure.  

 

3.1.3 The SiC Planar Transistor Layout 

 

The device layout is another important matter in designing a new structure, mainly 
depending on its final application. The geometry adopted for the new SiC device is 
completely different than the one previously presented.  

 
Fig.3.2. The finger geometry layout for MESFET m=1                                                           

using P+-implant isolation wall (a) general view and (b) geometry trick 
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The embraced finger-gate technique allows applying the concept of transistor 
multiplicity, which accomplishes the scalability requirement. The proposed transistor layout 
is showed in Fig.3.2a where the P+-implanted isolation ring can be observed (the light red 
ring).  

In order to have an appropriate comparison with the closed-loop MESFET, the gate 
electrode ratio ZG/LG (see Fig.2.3) for the novel single gate device is considered to be 
roughly 10 times smaller than the mesa-MESFET’s, hence having the effective gate contact 
dimensions of 48μm x 8μm. However, due to the special fabrication processes on SiC, the 
embraced geometry presents a built-in drain-source residual current at the terminals of the 
gate metal (Fig.3.2a). In order to minimize it, a geometry trick was adopted on the lateral 
edges of the gates (Fig.3.2b). An extra oxide gated MESFET, 25 times smaller than the 

main MESFET, was implemented under the prolonged gate metallization (0.5μm), in order 

to block any residual drain-source leakage current. This oxide gated MESFET shows a 
slightly higher VP than the main one. In order to have a more accurate and realistic 
simulation setup, it was taken into consideration in the SPICE model (Fig.3.4).  

 
Fig.3.3. The layout of different multiplicity MESFETs isolated                                         

with deep P+-ring implantation  
 

Fig.3.3 shows the layout for the proposed multiplicity MESFETs isolated by implanted 
pn-junctions. As observed from the MESFET with multiplicity 2 (m=2) the drain-sharing 
technique was adopted [12], a method that brings great improvements in device area 
reduction, and also decreases the parasite source resistance with the increasing of the 
finger-gate number. Details concerning device dimensions and its design rules checking 
(DRC) can be found in Annex.B – The Planar-MESFET Dimensions and DRC rules. 
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3.1.4 The New MESFET Proposed SPICE Model  

 

Section 2.4 reports the first extracted SPICE model customized and optimized for the 
4H-SiC mesa-MESFET in order to accurately describe its static and switching 
performances. For designing a new and scalable MESFET device with the above proposed 
geometry layout, several geometrical and electrical aspects have to be considered in the 
SPICE simulation. As mentioned before, one of the most important electrical parameter is 
the device VP.  

As previously mentioned, the geometrical parameters which have to be changed for the 
novel MESFET are related with the width and length of the gate electrode. In addition, the 
gate trick adopted in order to block the residual drain-source leakage current, corresponds 
to a 25 times smaller (MESFET m=0.04) transistor, placed in parallel with the main 
MESFET.  

 

Fig.3.4. SPICE equivalent circuit of the 4H-SiC MESFET 

 

Hence, the new planar MESFET structure requires a more complex SPICE model. As 
one can observe from Fig.3.4 the extrapolated SPICE model for a single IC transistor 
involves two devices in parallel. However, the difference between the two devices is only 
the ZG/LG ratio and the VP. The equivalent MESFET is thus described by a sub circuit.   

Table.3.1 is summarizing the key SPICE model parameters used for circuit simulations 
of the new 4H-SiC MESFET. We have previously shown that the device VP is directly 
dependent on the N-type layer thickness. For the new structure we have targeted a smaller 
value for VP, which implies to use a smaller thickness of the N-epitaxial layer. The 

corresponding value for the N-type epitaxial layer thickness for VP=-8V is 0.35μm (see 
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Fig.2.15). The oxide gated transistor has a slightly higher pinch-off voltage than the main 
one (VP=-12.5V) due to the oxide contribution.  

The main reason why VP has been considered lower was for lowering the power 
consumption and the logic levels of the digital circuits. For a proper functionality, the 
voltage level of the power supplies should be roughly 30% higher than 2 times the VP of 
the SiC MESFETs. Thus, for a lower VP the power supply voltage could decrease 
significantly. More explanations can be found in the circuitry section – Chapter V.  

 

Table.3.1. The key parameters for the main 4H-SiC planar-MESFET SPICE model: 

 

 

 

 

 

 

 

 

 

The complete extrapolated SPICE model for the main new MESFET, corresponding to 
the equivalent circuit from Fig.3.4, can be found in Annex.A2 – SPICE Model for the 
Planar-MESFET – The Design Model. This model was further used in designing and 
simulating all digital SiC ICs. 

 

 

 

 

 

 

 

 

 

Parameter Value Units 

VTO -8 V 

BETA 0.3125 AV-1

LAMBDA 2E-3 V-1

RD 0 Ohm 

RS 0 Ohm 

IS 0 A 

PB 1.3 V 

Parameter Value Units 

M 1 - 

KF 0 - 

AF 1 - 

FC 0.5 - 

XTI 3 - 

VTOTC -0.053 mVºC-1

BETATCE -0.441 ºC-1
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3.2 The Planar-MESFET Process Flow 

 

The schematic cross-section of the proposed structure is shown on Fig.3.1. The devices 
are fabricated on 4H-SiC wafer supplied by CREE Research Inc. with similar material 
proprieties as for the mesa-MESFETs (Section 2.2). The major fabrication steps of the new 
MESFET are summarized in Table.3.2: 

 

Table.3.2. The main steps in the 4H-SiC integrated MESFETs fabrication process 

   

a. Align patterns  b. N+ Nitrogen implant c. P+ Aluminum implant 

   

d. Field oxide deposition 
e. Partial contact openings for 

the 3 terminals 
f. Source and Drain – Ohmic 

contact etch 

   

g. Source and Drain contacts 
metallization 

h. Gate contact etch 
i. Gate contact metallization – 

Basic MESFET Transistor 
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j. Inter-level oxide k. Contact oxide opening l. Second metallization level 

  

m. Inter-level thick oxide n. Via oxide opening 

 

o. Third-level metallization – Integrated MESFET circuits connections 

 

1. The first step is the definition of the alignment pattern on the wafer surface. Within this 
step the N-type epitaxial layer thickness was 1000Ǻ lowered on the active area through a 
dry etching step (Table.3.2a).  

2. Next, the areas for high dose Nitrogen implantation (N+ implanted areas) were patterned 
to define the Source and Drain regions. Multiply Nitrogen implants with high energies and 
doses up to 3·1014 at/cm2 were used to achieve a box doping profile (Table.3.2b).  



The 4H-SiC Device Library 
 

 
 

54 

 3. The P+-implant areas were patterned to define the isolation walls and obtained after 
several accumulated Aluminum implantations at energies around 160keV and doses up to 
3.3·1014 at/cm2. The Aluminum implanted moats have a P+ concentration higher than 
1019cm-3, so that the penetration depth is higher than the N epilayer thickness in order to 
reach the buried P-type layer (Table.3.2c).  

4. After the N+ and P+-implantations were performed, the wafer was annealed up to 1600ºC 
for 30min in N2 atmosphere in order to electrically activate the impurities. A post oxidation 
process was performed to passivate the SiC wafer surface. 

5. Next, a 3μm thick field oxide was deposited on the SiC surface. Through the CONT mask 

the oxide was not completely etched, and so the contacts windows for the electrodes were 
formed (Table.3.2d,e). 

6. The Source and Drain electrodes were formed through the OHMIC mask. After etching 
the left field oxide, the source and drain ohmic contacts were formed with 100nm of Nickel 
patterned by lift-off and after annealed to 950ºC for 2 min to form a silicide (Table.3.2f,g). 
At this step, the drain overlap was realized. 

7. The Gate terminal was formed by etching the left oxide through the Gate mask, thus 
realizing the gate overlap. A Tungsten layer of 100nm was deposited as the gate Schottky 
metal, patterned by lift-off and then annealed at 500ºC for 2min (Table.3.2h).  

8. Furthermore, an inter-level thick oxide was deposited. Through the first VIA mask the 
oxide layer was opened at the source, drain and gate contact areas. It was patterned by a 
reactive ion etching (RIE), which allows well controlled etch rates with nearly vertical 
sidewalls (Table.3.2j,k).  

9. On the terminal contacts, a thick metal was sputtered consisting of a stack of Ti and W, 
which was patterned by wet-etch. This contact metal alloy is the second metal level on the 
wafer and is used for further interconnections between devices (Table.3.2l).  

10. Next, one more inter-level thick oxide, 1μm thick, was deposited. Using a second VIA 

mask the oxide layer was etched by RIE on different pre-selected areas defined in the 
layout, in order to make openings that reach the underneath metal level (Table.3.2m,n) 

11. Finally, a last thick metallization level consisting of a stack of Ti and Al was patterned 
by wet-etch through the last METAL mask (Table.5.2o). This is the last photolithography 
necessary to complete the fabrication process of the SiC planar MESFET.  

Then, the wafer was metalized on its back side with a thick stack of Ti, Ni and Au.  
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It is worthy to mention some observations concerning the previous process flow. An 
oxide overlap was used as a field plate for the Gate terminal (Table.3.2e,h). The gate 
overlapping between the gate and the source/drain regions is required to ensure that the 
depletion layer provides a conducting path between the source and drain areas. This overlap 
is made as small as possible in order to minimize its parasitic capacitance. The field plate 
was achieved after performing the contact openings, while the oxide, left on the gate 
contact, was etched.  

The drain contact overlap was made in order to increase the device breakdown voltage 
by adding the additional depletion region created around the drain periphery, to the 
Schottky depletion region (Table.3.2e,f).  

During the device fabrication, a special attention was paid to the lift-off technique. This 
method is applied in cases in which a direct etch of structural material would have 
undesirable effects on the layer below. However, the issues that may appear during this 
process can be overtaken by special cleaning techniques along the fabrication processes. 
This is why, in the next part, verification measurements after the contact metal deposition 
have been performed. 

Therefore, the basic MESFET was isolated using an Aluminum implant process that 
forms a pn-junction. Once the P+-impurities are deeply implanted into the N epilayer, they 
reach at the bottom the P layer forming N-wells surrounded by a P+-ring. If the P-substrate 
is held at the most negative potential, the pn-junction will become reverse-biased, thus 
providing isolation between these islands.  

Even though one of the challenges in designing a new device lies in the reduction of the 
fabrication step number, to achieve the final fabrication of the IC MESFET, 10 levels of 
photolithography masks were needed, three more than for mesa-MESFET. One was 
especially needed for the N-type tubs, whereas the last four were required for forming the 
interconnection metal strips between devices and circuits.  

In the next part, the electrical characterization of fabricated devices is presented, 
pointing out the successful achievement of the novel isolation on SiC, the multiplicity 
device realization and the proper high temperature operation. 
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3.3 Electrical characterization 

 

The electrical characterization of the fabricated devices is made out of three steps. 
First, electrical measurements were carried out in-line during the manufacturing process in 
order to verify the most critical fabrication steps. The second step consisted in performing 
electrical measurements at room temperature. And finally, high temperature measurements 
were carried out on the new IC MESFETs. 

 

3.3.1 Electrical Verification In-Line during Device Manufacturing  

 

In order to have an overview on the fabrication process evolution, several electrical 
measurements were necessary to be performed after key process steps. Several test pads 
and test devices were included from the very beginning on the mask set, having the purpose 
to be used for these electrical verification measurements. 

First electrical measurements were carried out after the Nitrogen and Aluminum 
implantations were performed, in order to verify if P+-walls are properly isolating the N-
type islands. The measurements to examine the device isolation technique were performed 
between two different devices separated by a P+-implanted wall. From Fig.3.5a we can see 
that pn-junction is isolating the N-islands up to at least 300V. From this measurement we 
can estimate that the breakdown voltage of the 4H-SiC pn junction is higher than 300V.  
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After depositing the Gate metal, the structure has all the necessary terminals, becoming 
basic MESFET transistor (Table.3.2i). Fig.3.6 shows a photo of a test structure after 
depositing and annealing the gate metal. At this step in the process flow (Table.3.2i), it has 
been proven that all critical fabrication steps were successfully achieved (Fig.3.7).  
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Fig.3.7. The ID-VD characteristic of the basic IC MESFET  

 

The novel isolation technique on SiC has presented optimal results and, thus, the IC 
planar MESFET basic device fabrication was successfully realized (Fig.3.7). Furthermore, 
the last 2 metal levels and 2 via photolithography steps were performed as shown in 
Table.3.2. Afterwards, the detailed electrical characterization of the new fabricated 
MESFETs is completed. 

 

3.3.2 The Planar-MESFET – Electrical Characterization  

 

Fig.3.8 shows two photos of the new MESFETs after completing the fabrication 
process flow. In order to show the device scalability, the number of finger-gates is 
multiplying. The left photo shows the MESFET with a single gate (m=1), whereas on the 
right side is one with m=4 fingers-gate.  

We remind that the new fabricated planar-MESFETs (Fig.3.8) are normally-on devices 
controlled by a negative gate potential. The electrical characterization was first carried out 
at room temperature and later at high temperatures up to 300ºC.  
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Fig.3.9 shows the I-V characteristics of the MESFET with a single finger-gate. From 
the output characteristics we can estimate that the saturation drain current for one finger-
gate transistor is fairly close to 2mA at VG=0V, and from the transfer plot (Fig.3.9b) the 
pinch-off voltage can be roughly estimated to be around -8V. g୫ ൌ ଶ∙୍ీ౏౏|୚ౌ| ቀ1 െ ୚ృ୚ౌቁ     (3.1) 

The transconductance g୫ depends on the ∂Iୈ ∂Vୋ⁄  variation. Being dependent on 
another scalable parameter (IDSS), the gm supposes to show also its dependency with the 
new geometry. According to eq. (3.1) at VG=0V and VP=-8V, the transconductance values 
for the three scalable transistors are summarized in Table.3.3. In order to have a cogent 
comparison, we remind that for the new MESFET the ratio ZG/LG was considered roughly 
10 times smaller than the one for the mesa-MESFET, maintaining the same gate length LG.  

In order to prove that the device scalability was achieved, Fig.3.10 shows the drain 
current evolution at VG=0V and the transfer characteristics Table.3.3 summarizes the 
graphical estimated values for the maximum drain current at VD=30V, the average leakage 
current (ILK) - the on-off current ratio (ION/IOFF) and the gm transconductance calculated at 
VG=0V. 
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Fig.3.10. The I-V characteristics of the 4H-SiC IC MESFETs with different number of 

finger-gates at room temperature 
 

Therefore, the experimental measurements demonstrate that the electrical scalability has 
been successfully achieved. From Table.3.3 it can be observed that the maximum drain 
current for the transistor with 2 finger-gates is approximately double than for the one with 1 
finger-gate, and nearly half of the one with m=4. From the gm values it can be seen that this 
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parameter is also scalable, showing the same ratios with respect to IDSS. It can be also 
considered that the presented values are roughly 1/10 than those from the mesa-MESFETs.  

 

Table.3.3. Graphical estimated values on the MESFET m=1, m=2 and m=4: 

 
IDSS (mA) 

@VG=0V 

gm (mS) 

@VG=0V, VP=-8V 

ILK (nA) 

VG = -16VൊVP 

ION/IOFF 

(x106) 

m=1 1.96 0.49 1.3 1.5 

m=2 3.64 0.91 3.4 1.07 

m=4 7.18 1.795 7.7 0.93 

 

Although the leakage current is not scalable, it is however proportional to the device 
area. Its value does not exceed 10nA for the transistor with 4 finger-gates. This leads to the 
conclusion that the additional oxide gated MESFET is accomplishing its purpose, blocking 
most of the residual drain-source leakage current, providing proper device functionality. As 
the multiplicity number of the transistor is higher, the leakage current increases, having 
larger oxide gated MESFETs. However, ILK for the m=2 MESFET increases its value 60% 
than that of m=1, while the MESFET with 4 finger-gates increases its value 55% than that 
of m=2, showing a decreasing trend with respect to the increment of the finger-gates 
number.  

The on-off current ratio shows really high values for the three devices. We remind that 
the ION/IOFF current ratio is an important parameter for digital applications accounting for 
the standby power consumption and the corruption of dynamic node voltages in logic and 
memory [13]. For both static and dynamic ICs a large ratio between saturation current and 
off-current is required to achieve small signal propagation delay and therefore fast circuits. 
Moreover, [14] reports the ION/IOFF ratio values required for Si high-speed transistors in 

20nm CMOS logic technology (between ~5 ൈ 10ଷ and ~2 ൈ 10଺). Therefore, the values 
showed in Table.3.3 for the three devices, make them perfectly suitable for logic ICs 
integration.  

 

3.3.2.2 High Temperature Measurements 

 

The high temperature characterization of the novel MESFETs is similar to the mesa-
MESFET, using the Probe Station s200 300ºC heating chuck. The measurement setup is the 
same for room temperature measurements (Section 2.3.1).  
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 Fig.3.11. The I-V characteristics of the 4H-SiC MESFET m=1 vs. temperature                                       
 

The high temperature measurements were performed at 7 different temperatures, from 
room temperature to 300ºC on the three scalable test MESFETs (m=1, m=2 and m=4). 
However, for simplicity reasons, Fig.3.11 and Fig.3.12 show the temperature behavior for 
m=1 and m=4 MESFETs, presenting the drain and leakage current temperature evolution, 
and also VP evolution with temperature. The drain current evolution with temperature 
shows a decreasing trend for the three devices. The maximum IDSS current at VG=0V is 
decreasing 66% from 25ºC to 300ºC, nearly 3 times, fairly the same percent for the three 
devices. As expected, the VP maintains constant in the whole temperature range for the 
three transistors, keeping its value close to -8V.  
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Fig.3.12. The I-V characteristics of the 4H-SiC MESFET m=4 vs. temperature                                       
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Fig.3.13. (a) The transconductance and (b) the drain leakage current evolution with 
temperature for the three new scalable 4H-SiC MESFETs 

 

The gm is proportional to the maximum saturation drain current, thus it shows a similar 
behavior as IDSS in temperature for all devices (Fig.3.13a). Fig.3.13b shows the 
subthreshold drain leakage current evolution with temperature. For all devices at every 
measured temperature, the ILK shows a linear behavior in the voltage range starting from VP 
up to -16V.  Its average value increases 3 orders of magnitude at 300ºC with respect to 
25ºC, showing the same variation as the mesa-MESFET leakage current with temperature 
(see Fig.2.9).  
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As expected, due to the decreasing of drain current and the increasing of the leakage 
current, the on-off current ratio is strongly decreasing with temperature (Fig.3.14). 
Comparing with Si maximum working temperature (125ºC), the SiC MESFET ION/IOFF 
ratio maintains a value above 104 at 150ºC, and 5·103 at 200ºC approximately, which still is 
in the Si CMOS logic range at 25ºC. For higher temperature operation, this ratio can be 
increased either by replacing the Schottky metal by another one with a higher barrier 
height, or by using JFETs instead of MESFETs. However, no relevant results concerning 
ION/IOFF temperature evolution at 300ºC have been found so far in literature. 

 

3.3.3 Simulated vs. Experimental Results  

 

In order to verify the accuracy of the proposed SPICE model presented in Section 
3.1.4, this section reports a comparison between the simulated I-V characteristics and the 
experimental measurements of the device. As the experimental scalability of the new 
fabricated devices is already demonstrated, the followings show the simulated vs. 
experimental characteristics only for the MESFET with multiplicity 1, in order to simplify 
the presentation. Therefore, Fig.3.15 and Fig.3.16 plot the output ID-VD and the transfer ID-
VG experimental and simulated characteristics of the device at room and high temperature, 
respectively.  
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Fig.3.15. Simulated vs. experimental I-V characteristics                                                       

of the 4H-SiC MESFET m=1 at room temperature 
 

From the room temperature comparison one can notice that the experimental transfer 
characteristic of the fabricated device is in good agreement with the simulated one 



CHAPTER III. The Novel 4H-SiC Planar-MESFET  
 

 
 

65 

(Fig.3.15b). From the output characteristics (Fig.3.15a) one can be observed that the 
experimental maximum drain current shows a small variation (5% lower) than the designed 
one. Even so, at lower gate bias, the simulated and experimental characteristics show a 
better matching. 
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Fig.3.16. Simulated vs. experimental I-V characteristics of the 4H-SiC MESFET m=1 in 

the 25ºC-300ºC temperature range 
 

From the above comparison (Fig.3.16), it can be observed that the best fitting between 
simulated and experimental characteristics is obtained at higher temperatures, while at 
lower temperatures (25ºC or 50ºC) there is a small dispersion between the two compared 
plots. In general, the on-resistance is higher in the experimental curves. This can be 
attributed to higher contact resistances than the one used in the model. 

However, taking into account that the proposed SPICE model for new MESFETs was 
extracted and customized using a device with a different fabrication process and also 
different size and geometry (the close-loop MESFET), we can conclude that between both 
simulated and experimental results from the first planar MESFET generation, has been 
obtained a quite reasonable matching.  

The presented comparison shows a good starting point for the future design of digital 
integrated circuits on 4H-SiC. Nevertheless, in the next section, in order to optimize the 
SPICE model, the key parameters will be extracted directly from the experimental 
measurements of the new MESFETs, followed by a new comparison between the optimized 
SPICE model simulations and the experimental results. 
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3.4 The 4H-SiC Planar-MESFET SPICE Model Definition 

 

In order to optimize the proposed SPICE model extracted and extrapolated from the 
mesa-MESFET model (Section 2.4), we have performed a second parameter extraction on 
the new fabricated structures. It is important to mention that this new parameter extraction 
is in fact generating the real SPICE model of the novel MESFET. The proposed SPICE 
model was used only for the theoretically prediction and analysis of new structures prior its 
fabrication. However, it is important to remind that the new MESFET is a complete 
different device than the mesa-MESFET. Therefore, differences between various SPICE 
parameters are expected, as already observed in the previous comparison. Finally, a new 
comparison between the extracted MESFET SPICE model and its experimental results is 
exhibited. 

 

3.4.1 Parameters Extraction 

 

Following the same procedure used in Section 2.4.1, a new set of SPICE parameters is 
extracted from the experimental characteristics of the new fabricated MESFET. In order to 
point out the scalability aspect, the key SPICE parameters are extracted from the three 
transistors.  
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Fig.3.17. (a) The 4H-SiC ICs MESFET (a) transfer characteristic and                               

(b) The output characteristic at VG=0V 
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From the transfer characteristics of the device at room temperature (Fig.3.17a) one can 
extract the transconductance modulation parameter β and the threshold voltage VTO, in our 
case the pinch-off voltage. Furthermore, from the output characteristic at VG=0V 
(Fig.3.17b) the channel-length modulation parameter λ is also extracted (see Table.3.4). 

 

Table.3.4. Room temperature extracted parameters for the planar-MESFET SPICE model 

 BETA  
(mA/V2) 

VTO          
(V) 

LAMBDA     
(E-4/V) 

m=1 0.025 -8.26 4.64 

m=2 0.051 -8.36 2.46 

m=4 0.103 -8.41 1.34 

 

One can easily notice that the extracted values of the VP on the new devices present 
quite a constant value for the three structures. The VP value in the proposed SPICE design 
model was established at -8V. Therefore, the extracted VP shows to be in quite good 
agreement with the proposed value, evidencing the effectiveness of lowering the thickness 
of the N-epitaxial layer.  

As the channel-length modulation parameter λ is inversely dependent with the drain 
current, the extracted value for MESFET m=1 presents a doubled value than for m=2, and 
almost 4 times higher than the m=4 structure. From the extracted values of the 
transconductance modulation parameter β, the scalability between the three devices can be 
also observed. If we compare these values with the ones from the proposed SPICE model 
(Table.3.1), one can see that the latterly extracted λ is almost one order of magnitude 
smaller and the transconductance modulation parameter is 6 times lower approximately.  

The new MESFET SPICE temperature coefficients are also extracted in order to 
compare them with the initial extracted ones from the mesa-MESFET. The pinch-off 
voltage temperature coefficients (VTOTC) that vary with temperature, according to eq. 
(2.11), are extracted from the VTO plotted as a function of temperature (Fig.3.18a). The 
limit of maximum current level at elevated temperatures is determined by the 
transconductance exponential temperature coefficient BETATCE. These coefficients are 
extracted from Fig.3.18b.  
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Fig.3.18. (a) The pinch-off voltage coefficient (VTOTC) and  (b) the transconductance 

exponential temperature coefficient (BETATCE) extraction for ICs MESFET 
 
One can observe that the newly extracted valued for VTOTC and BETATCE coefficients 

for the three devices are in fairly good agreement with the previously extracted from the 
mesa device (see Section 2.4.1), showing fairly close values.  

From the upper extractions one can see that the VP of the new MESFETs presents a 
minor variation with temperature. In reality, the device depletion region is not temperature 
dependent, thus the VP it supposed to have no variation with temperature, as it can also be 
seen from its theoretical expression (2.2). Going into details, the VTOTC was considered in 
the SPICE model since the leakage current increases with temperature (Fig.3.11b, 
Fig3.12b), which in fact results in a slight moving of the VP value with temperature. 

 

Table.3.5. High temperature extracted parameters for the planar-MESFET SPICE model 

 VTOTC        
(mV/ºC) 

BETATCE  
(1/ºC) 

m=1 -0.053 -0.423 

m=2 -0.053 -0.384 

m=4 -0.051 -0.405 

 

The transconductance exponential temperature coefficient BETATCE is expressed by eq. 
(2.12). The transconductance of device correspondingly drops as the temperature increases 
due to the higher on-resistance, which limits the current level.  



CHAPTER III. The Novel 4H-SiC Planar-MESFET  
 

 
 

69 

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

 

 m=1
 m=2
 m=4

R
O

N
 (

kΩ
)

Temperature (ºC)

V
G
=0V

 
Fig.3.19.Temperature dependence of the on-state resistance at VG=0V for MESFET 
 
As expected, the on-state resistance RON shows a strong dependency with the 

temperature increment. From the above figure can be seen that for transistors with higher 
multiplicity order, the RON has a smaller variation in temperature, hence having a lower 
contribution to the device forward losses. The RON plot is represented at VG=0V. Its 
variation with temperature for the new MESFET shows a parabolic dependency. 

From the new parameter extraction it can be noticed that the experimental extracted 
values at room temperature differ from the ones previously proposed, while for the high 
temperature are in a quite good agreement with the ones extracted for the close-loop 
MESFET. The SPICE model for the new fabricated MESFETs can be found in Annex.A3 – 
SPICE Model Planar-MESFET – Extracted Model. As some of the extracted parameters 
have shown a small variation, the following section reports a brief comparison between the 
extracted planar-MESFET SPICE model and its experimental results, in order to see their 
effect. 

 

3.4.2 Simulated vs. Experimental Results 

 

After updating the SPICE model with the previous extracted parameters, a new 
simulation vs. experimental comparison was performed at room and high temperature for 
the MESFET m=1, as can be seen in Fig.3.20 and Fig.3.21. 
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Fig.3.20. SPICE results with the updated parameters vs. experimental I-V characteristics                               

of the 4H-SiC MESFET m=1, at room temperature 
 
One can observe that the new extracted SPICE model provides a much better fitting 

with the experimental result (Fig.3.15 and Fig.3.16). This proves the necessity of extracting 
and defining a new SPICE model for the new planar devices. However, it should be 
mentioned that due to manufacturing processes, across the wafer exists a small dispersion 
between all experimental results. Therefore, the small variation that is observed, can as well 
owe to this reason.  
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Fig.3.21. SPICE results with the updated parameters vs. experimental I-V characteristics                              

of the 4H-SiC MESFET m=1, for all temperatures 
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3.6 Conclusions 

 

The MESFET operation is commented in the present chapter, which also reported all 
necessary steps for the development of the planar-MESFET structure suitable for high 
device integration.  

It has been shown that the layout for the new planar structure is similar to the ICs 
CMOS approach. The adopted finger-gate geometry was specially used to fulfill the ICs 
scalability requirement. Before establishing the fabrication process flow, a new set of 
SPICE key parameters has been defined. The proposed planar-MESFET SPICE model 
complexity was emphasized due to the geometry trick designed to block any residual 
source-drain current. The VP of the new device was considered -8V, the thickness of the N-

type epitaxial layer 0.35μm and the ZG/LG 10 times smaller than the mesa-MESFET in 

order to have a coherent comparison. In the fabrication flow section, the complexity and 
maturity of device manufacturing has been highlighted, showing that 10 levels of 
photolithography masks were necessary in order to achieve the device fabrication. It has 
been demonstrated as well that the current CNM SiC MESFET technology has allowed us 
to adopt an isolation technique widely used in Si CMOS ICs, yet not used in SiC. 
Moreover, our present technology has allowed the fabrication of MESFET devices with 3 
metal levels, from which 2 levels were used for device interconnections.  

After performing the electrical characterization on three test devices (m= 1, 2 and 4), it 
has been demonstrated that the device isolation is successfully accomplished with deep P+ 
implanted walls, holding isolation voltages higher than 300V. The device fabrication 
includes 3 metal levels and 2 via masks. 

Therefore, it has been proven that some of the most important ICs requirements are 
successfully achieved by the new designed and fabricated planar-MESFET structure: the 
scalability for various electrical parameters for all three test devices at room and also high 
temperature; a better wafer planarity is ensuring reliable interconnections between devices 
and circuits. Final comparisons have shown the good agreement between the proposed 
SPICE model and the experimental results. A new set of SPICE parameters was extracted 
in order to optimize the initial model.  

Finally, the FIB investigation has shown the cross-section of the new developed 
MESFET, pointing out the device isolation, where the P+-impurities are reaching the P-
layer.  
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4H-SiC epitaxial resistors, the temperature matching between the various components is 
accomplished. Thus, because the epitaxial resistor uses the bulk resistance of the same N-
layer as the planar-MESFET, its value can be modeled by either modifying the effective 
cross-section area of the resistor structure or by using a particular doping concentration that 
forms the resistor body [7]. The values of the resistors are chosen as a function of the 
transistor's DC parameters. Furthermore, the modeling and electrical characterization of the 
fabricated 4H-SiC epitaxial resistors on the same N-type epitaxial layer are presented. 

 

4.2 4H-SiC Resistor Modeling 

 

To design the ICs epitaxial resistances it is necessary to know the sheet resistance of 
the semiconductor and its ohmic contact resistance. Even more, in order to use these 
epitaxial resistors in designing ICs it is also required to owe the scalability aspect. Thus, the 
theoretical calculation of the sheet resistance together with the resistors layout, and the 
ohmic contact formation are presented next.  

 

4.2.1 The 4H-SiC Sheet Resistance 

 

From the well-known resistor expression we see its dependency with the ࣋ resistivity 
of the semiconductor, the length (L) and the cross-section area (A) of the resistor: R ൌ ρ ୐୅      (4.1) 

The ICs designers need to know the sheet resistances of the layers in order to model the 
desired resistors. The sheet resistance is controlled by the process designer depending on 
the substrate properties. The sheet resistance (RS) results from (4.1): R ൌ ρ ୐୅ ൌ ρ ୐ୟ∙୛ ൌ Rୗ ୐୛ 	⟹				 Rୗ ൌ ஡ୟ    (4.2) 

where a is the epitaxial layer thickness without the N-layer depletion region (Fig.4.3) (see 
Chapter II – Section 2.5). 

From eq. (4.2) we can see that the RS is a property of the particular layer resistivity and 
its thickness. It is well known that a material resistivity is the inverse of the conductivity:  ρ ൌ ଵ஢ ൌ ଵ୯ሺஜ౤୒ీశஜ౦୒ఽሻ				    (4.3) 

where for the 4H-SiC N-type epi-layer the resistivity can be expressed as:  
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ρ ൌ ଵ஢ ൌ ଵ୯ஜ౤୒ీ     (4.4) 

Therefore, the sheet resistance is: Rୗ ൌ ଵ୯ஜ౤୒ీୟ      (4.5) 

 

Fig.4.2. The 4H-SiC Epitaxial resistance layout design 
 

The proposed 4H-SiC resistor layout is shown on Fig.4.2. As it can be seen from the 
layout design and its cross-section (Fig.4.3), the 4H-SiC epitaxial resistors are implemented 
on the same N-type epitaxial layer as the N-channel MESFET transistors, isolated by the 
same P+-implanted walls. Thus, for an N-type layer uniformly doped with Nୈ ൌ 10ଵ଻cmିଷ 
and ܽ ൌ 0.3114μm thick, the theoretical sheet resistance value at room temperature is Rୗ ൌ 3.4	kΩ/square. 

 

Fig.4.3. The 4H-SiC Epitaxial resistance cross-section  
(*DR-N – The N-Layer Depletion Region – see Fig.2.14) 

 

In order to achieve the scalability aspect for the proposed epitaxial resistors, we rewrite 
the resistance eq. (4.2) by separating the L/W ratio, which is the so called number of square 
units (NSq):  R ൌ Rୗ ∙ Nୗ୯	  where  Nୗ୯ ൌ 	 ୐୛    (4.6) 

The number of square units is established depending on the desired resistance value. 
From technological limitations we have chosen the minimum width for the resistor         	W ൌ 18	μm. To obtain resistors with different values, the parameter that will be varied is 
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the length L. In addition, in order to achieve a good scalability for these resistors, their 
contact resistance needs to have a negligible value compared to the sheet resistance value.  

 

4.2.2 The Ohmic Contact Resistance - TLM 

 

The ohmic contacts for planar devices are of great importance concerning the quality 
and reliability of monolithic circuits. This contact is a non-rectifying junction, has a linear 
and symmetric current-voltage characteristic and has to support a required current density 
with the minimum voltage drop compared with the one across the active area of the resistor. 

The minimization of the metal /SiC contact resistance and the corresponding specific 
contact resistance is an issue in order not to compromise the device performance.  

 

Fig.4.4. Schematic layout of the 4H-SiC N-type TLM structure  
 

The ability to accurately measure the contact resistance is essential for the contact 
process development. For this purpose, a set of test structures have been fabricated 
(Fig.4.4) and their specific contact resistances derived using the Scott model of TLM [8] 
and a correction for the current distribution. The well-known – transmission line model 
(TLM) measurements is an accurate technique to measure the ohmic contact resistance and 
also the sheet resistance of a single epitaxial layer [9-11].  

Furthermore, the ohmic contact regions first needed to be N+ doped, as shown in 
Table.3.2b. After, the contact is formed by covering the 4H-SiC epitaxial layer with 100nm 
Nickel, patterned with lift-off, and thereafter annealed at 950ºC for 2 min to form Ni-
silicide onto the SiC surface.  
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Table.4.2. Distances between each TLM contact: 

 d1 d2 d3 d4 d5 

Distance 5	μm 10 μm 20 μm 40 μm 80	μm 
 

Fig.4.4 shows the schematic of the TLM structure and Table.4.2 contains the detailed 
distances. The resistance of the ohmic contact is characterized by two important 
parameters: the specific contact resistance (ߩ஼) and the contact resistance (ܴ஼ሻ [12-16]. 
Electrical measurements up to 300ºC have been performed on these structures and the 
experimental results are later presented in Section 4.4. Using the TLM electrical 
measurements the values of the epitaxial layer sheet resistance and the contact resistance 
are determined. 

 

4.3 SPICE Model Definition - Temperature Coefficients 

 

In the preset work, the developed epitaxial resistors are used instead of the habitual 
current sources, push pull stages or dropping diodes, in the future configurations of the SiC 
ICs logic gates. Thereby, a SPICE model definition is also required for these passive 
devices. As previously mentioned, in order to assure a proper operation of the ICs in 
temperature, we have overtaken a crucial issue in designing the optimal MESFET-resistor 
pair by considering the same N-type epitaxial layer for implementing them. The theoretical 
resistance dependence with temperature is plotted in Fig.4.5. 
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Therefore, in order to obtain accurate simulation results of the ICs on 4H-SiC, a SPICE 
model has been defined for the epitaxial resistors. The effect of temperature on resistors is 
modeled by: RሺTሻ ൌ RሺT଴ሻሾ1 ൅ TCଵሺT െ T଴ሻ ൅ TCଶሺT െ T଴ሻଶሿ   (4.7) 

where T is the circuit temperature, T଴ is the nominal temperature, being considered 25ºC 
for SPICE modeling, and TCଵ and TCଶ are the first and the second order temperature 
coefficients, parameters required for the SPICE model. 

The extracted values of the temperature coefficients after performing a polynomial 
fitting of Fig.4.5 are TCଵ ൌ 7.4798 ∙ 10ିଷK and TCଶ ൌ 1.8011 ∙ 10ିହK. These values are 
considered in the resistance model, thus defining the epitaxial resistance SPICE model for 
high temperature operation.  

 

4.4 Electrical Measurements  

 

Electrical measurements on the fabricated samples were performed on differently 
valued resistors at room and high temperature. In order to demonstrate the scalability, four 
resistors with different Nୗ୯ = 2, 4, 8, and 16 squares have been measured.  

 

4.4.1 Room Temperature Measurements 

 

The room temperature characterization has been performed with a Keithley 251 IV 
SMU, together with the Wentworth Probe Station A1050 and the ICS Metrics software.  

 

a) Epitaxial Resistors Measurements 

In order to demonstrate the resistors scalability, Fig.4.6a shows the linear 
characteristics of the 4 resistors and Fig.4.6b shows their experimental values extracted 
from a linear fitting of the I-V curves.  

From Table.4.3 it can be easily observed the experimental scalability of the fabricating 
epitaxial resistors. The electrical measurements have been performed across the wafer. 
Giving that Rୗ ൌ 3.4	kΩ/square, the theoretical values of the resistors can be easily 
calculated. Table.4.3 shows the theoretical calculated values together with the experimental 
extracted values for different lengths of the 4H-SiC epitaxial resistors (square numbers).  
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Fig.4.6. (a) Voltage vs. current characteristic and (b) Resistance vs. Square Numbers 
for the 4 different epitaxial resistors 

 
One can notice that there are differences between theoretical and extracted values. 

However, the ratio between the experimental and theoretical values is approximately the 
same for the 4 different resistors. It can also be observed that the experimental sheet 
resistance Rୗ varies between 6.6kΩ and 5.7kΩ per square, decreasing for larger length 
resistances. The almost double value of the experimental sheet resistance explains the 
difference between the designed and fabricated epitaxial resistors.  

 
Table.4.3. Theoretical and experimental values of the 4H-SiC epitaxial resistors. 

 Theoretical 

Value [kΩ] 

Experimental 

Value [kΩ] 

Experimental ܁܀ ሾܓΩ/ܙ܁ሿ ܙ܁ۼ ൌ ૛ 6.81 13.2 6.6 ܙ܁ۼ ൌ ૝ 13.62 25.6 6.4 ܙ܁ۼ ൌ ૡ 27.25 47.7 5.96 ܙ܁ۼ ൌ ૚૟ 54.50 91.7 5.73 

 

Several causes may determine this variation, such as the non-uniformity doping 
concentration of the epitaxial layer, or the incomplete ionization of the N dopants at room 
temperature, or even the non-uniformity of the SiC etch rate. It was shown that the 
ionization degree decreases with increasing the doping concentration and decreasing the 
temperature, which finally leads to the freeze-out of N dopants at low temperatures [17]. 
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Therefore, it can be expected that the N dopants are not completely ionized at lower 
temperatures, hence leading to a higher epilayer resistivity. 

However, an important advantage in designing the ICs is that the resistance ratio is 
more important than the absolute resistance values. Therefore, the ratio between the 
experimental and theoretical values, which is approximately the same for all the four length 
resistors, will ensure a proper functionality of the voltage dividers and level shifters. 

 

b) Contact Resistance Measurements – TLM measurements 

The ohmic contact resistance has been measured by performing dedicated 4 points 
electrical characterization on the TLM structures (Fig.4.4). The Rେ, the ρେ together with the Rୗ outside the ohmic contact have been extracted from the experimental TLM 
measurements [12-16].  

 

Table.4.4. Extracted experimental values from TLM measurements at room temperature 

 Rେ	ሺΩሻ ρେ (Ω ∙ cmଶሻ Rୗ ሺkΩሻ  Rେ	ሺΩ ∙ mmሻ 
Value 73.378 6.85E-4 5.182 18.844 
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Fig.4.7. Electrical characterization of the 4H-SiC TLM structure  
 

From the extracted values from the TLM structures it can be noticed that the sheet 
resistance RS	 shows a different value than the theoretical one. However, one can observe 
that the ohmic contact resistance has a very small value compared with the sheet resistance 
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value of the SiC epi-layer. Therefore, its impact on the epitaxial resistance value, the ohmic 
contact resistance, can be neglected. The good scalability of these devices has also been 
achieved due to the small value of the ohmic contact resistance (Fig.4.7). 

 

4.4.2 High Temperature Measurements 

 

a) Epitaxial Resistors Measurements 

Fig.4.8 shows the epitaxial resistor plots measured up to 300ºC. Fig.4.8a shows that the 
resistors dependency with temperature follows a similar parabolic trend as in Fig.4.5.  From 
Fig.4.8b it can be noticed that the scalability criterion of the epitaxial resistors is well 
accomplished even at elevated temperatures. Therefore, the experimental epitaxial resistors 
evolution with temperature is consistent with theory.  
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Fig.4.8. (a) Resistance vs. Square Numbers for the 4 different epitaxial resistors and 
(b) the temperature dependence of the epitaxial resistors 

 

 

b) Contact Resistance Measurements – TLM measurements 

From Fig.4.9 we can see that the TLM structure has a similar temperature dependency 
than the epitaxial resistors of Fig.4.8b. The temperature behavior is showing a linearly 
dependence up to 300ºC, thus demonstrating the quality of the Ni ohmic contacts.  
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Fig.4.9. Temperature dependence of the TLM structures 

 
 

4.5 Simulated vs. Experimental Results  

 

In Section 4.3 we defined the theoretical SPICE temperature coefficients for the 
epitaxial resistance. As observed from the experimental results, the extracted values are 
quite different than the theoretical ones. Although the ratio between the experimental and 
theoretical values is fairly the same for the 4 different epitaxial resistors, this aspect will be 
taken into consideration in the circuits section.  

 

Table.4.5. The extracted epitaxial resistors temperature coefficients 

ܙ܁ۼ  ൌ ૛ ܙ܁ۼ ൌ ૝ ܙ܁ۼ ൌ ૡ ܙ܁ۼ ൌ ૚૟ 

TC1 1.3402 ∙ 10ିଷK 2.7802 ∙ 10ିଷK 4.9230 ∙ 10ିଷK 4.9956 ∙ 10ିଷK 
TC2 3.0989 ∙ 10ିହK 2.0889 ∙ 10ିହK 1.4481 ∙ 10ିହK 1.2871 ∙ 10ିହK 

 

 
From eq. (4.7), and by performing a polynomial fitting on the temperature vs. 

resistance curves for each resistor (Fig.4.8a), a new set of SPICE temperature coefficients 
are extracted (Table.4.5). The variation between all the extracted coefficients TC1 and TC2 
for the different resistances is quite small. The order of magnitude is the same for all of 
them.  However, this variation can be explained considering the RC resistance as negligible 
for large distances, or high square numbers.  
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A last extraction of the temperature coefficients was performed on the sheet resistance 
dependency with temperature. The RS was extracted from the TLM measurements in 
temperature (Fig.4.9). Applying the same polynomial fitting on the measurements of 
Fig.4.10, the extracted temperature coefficients were TCଵ ൌ 2.118 ∙ 10ିଷK and TCଶ ൌ5.367 ∙ 10ିହK .  

If a comparison is made between the theoretical and the experimental extraction, from 
both the epitaxial resistors and the TLM measurements, it can be concluded that the 
experimental temperature coefficients have a very low deviation, being of the same order of 
magnitude, thereby presenting a good agreement with the theoretical results.  
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Fig.4.10. Temperature dependence of the 4H-SiC sheet resistance 

 

With the extracted SPICE model for the epitaxial resistor, together with the extracted 
planar-MESFET SPICE model, the next generation of ICs on 4H-SiC will be modeled and 
simulated more accurately.  
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4.6 Conclusions 

 

In this chapter we have presented the design and development of scalable epitaxial 
resistors on 4H-SiC. These resistors are, among the few resistors available to be fabricated 
on SiC, those that offer the best temperature matching with the 4H-SiC MESFETs. 
Therefore, the implementation of epitaxial resistors in the ICs development accomplishes 
one of the most important ICs functionality at high temperature requirements: temperature 
matching between the various IC devices.  

We have also demonstrated the effectiveness of the P+-implanted isolation technique 
through the resistors fabrication. The scalability of these devices has been proven at room 
and high temperature operations.  

From the electrical measurements it has been shown that the sheet resistance presents 
quite a double value than the theoretical one, being verified through the double extractions 
that were preformed: from the epitaxial resistors measurements; and from the TLM 
structures measurements. However, in ICs functionality the resistance ratio is more 
important than the absolute resistances value, therefore no important implications are 
expected due to this.  

From the TLM measurements it has been proven that the Ni-silicide contact offers a 
very good ohmic contact, having a very small value compared with SiC epilayer RS. 
Therefore, the ohmic contact resistance can be neglected in the final resistance value. 

Finally, the SPICE temperature coefficients were proven to be in good agreement with 
the theoretical ones.  
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5.1 Digital ICs Logic Families 

 

A logic family is a group of logic gates made with the same technology, having a 
similar circuit structure and exhibiting the same basic features. The logic gates, constructed 
using one of the several different designs, having compatible logic levels and power supply 
characteristics, are defining the logic family for a digital monolithic circuit. Depending on 
the network interconnection between the circuit components, the electronic circuits have a 
particular topology. Therefore, a way of classifying digital ICs is according to the design of 
the electronic logic gates. However, a more general classification is presented in the 
following subsection. 

 

5.1.1 General Classification 

 

Combining the semiconductor technology with the digital logic families, a more wide 
classification can be done. The chart below shows the major IC technologies and logic-
circuit families that are currently in use [1]:  

 
Fig.5.1. Digital IC technology and Digital logic families – general classification 

 

The selection of the logic family is based on the final circuit requirements. Each logic 
family offers a unique set of parameters and characteristics. Four different digital ICs 
technologies are presented in the previous diagram. 
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The transistor-transistor logic (TTL) standard chips were introduced in 1965 [2] and 
for many years it was the most widely used logic family in designing digital circuitry. Once 
the VLSI (Very Large Scale Integration) era came in the 1970s, the TTL lost its power and 
latterly is no longer a significant used logic family. 

The Complementary Metal-Oxide-Semiconductor (CMOS) is the most dominant of all 
the ICs technology available for designing digital ICs on Silicon nowadays. CMOS logic 
was first described by Wanlass and Sah in 1963 [3]. The CMOS circuitry requires both 
NMOS and PMOS transistors built on the same substrate.  

The evolved semiconductor technology has made possible to integrate two formerly 
separate semiconductor technologies in a single process.  The BiCMOS is combining the 
CMOS and the bipolar devices on the same substrate, which enables to combine the 
advantages of both technologies. Like CMOS, the BiCMOS allows implementing both 
analog and digital circuits on the same chip. This technology is successfully used in 
applications where high-density integration, low-power, high-input impedance and/or wide 
noise margins of MOS logic need to be combined with the current-driving capabilities of 
bipolar transistors.  

The last three decades of microelectronics have been covered in a major percentage by 
the Silicon devices and ICs. Another semiconductor that has reached a mature technology is 
Gallium Arsenide (GaAs). The active devices available on this semiconductor are the 
MESFET transistor and the Schottky barrier diode (SBD) because of their simplicity. This 
technology is successfully used in digital and analog applications that require extremely 
high operation speed [4], due to its electron mobility which is 5-10 times higher than Si. 
However, taking into account that the present work active device is the MESFET, a special 
attention will be paid for the already existent MESFET logic gates.  

Depending of the MESFETs operational state, two main approaches can be used for 
designing logic gates on GaAs. The normally-on logic gates consist of depletion-
MESFETs. This was the first developed generation for GaAs digital circuits. The normally-
off logic gates were introduced later and consist of both enhancement and depletion 
MESFETs [5].  

In order to understand the logic gates operation, the most common element of the logic 
gates – the Inverter – is next introduced.  
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5.1.2 Digital Basic Element – The Inverter  

 

The most basic element in logic circuitry is the Inverter, being the core of all digital 
designs. The analysis of Inverters can be extended to explain the behavior of more complex 
gates such as NAND, NOR, or XOR, which in turn form the building blocks for modules 
such as multipliers and processors. The electrical behaviors of all the other complex circuits 
can be derived by extrapolating the results obtained for the Inverter. 

 
Fig.5.2. The simplest configuration for a logic Inverter using a voltage-controlled 

switch 
 

The above figure shows the simplest implementation for an Inverter. The Inverter 
function is given by an ideal switch operation controlled by the input voltage ࢜[6] ࢏. The 
Inverters are implemented with transistors operating as voltage-controlled switches. As 
previously presented (Fig.5.1), depending on the logic family there are many types of 
circuit configurations. For the sake of understanding, the switch from Fig.5.2 is replaced by 
a depletion MESFET, as it is the active device in the preset work.  

Fig.5.3a shows the current-voltage characteristics of the Inverter circuit composed by 
the MESFET output ID-VD characteristics together with the load resistors R୐ characteristic. 
This plot is used in order to obtain the voltage transfer characteristic (VTC) of the Inverter, 
which helps us to quantify easily its operation. 
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                                  (a)               (b) 
Fig.5.3. (a) The current-voltage characteristics and (b) the voltage transfer 

characteristic (VTC) of the basic MESFET Inverter 
 

Since the VP of the depletion MESFET is negative, we need a negative voltage to turn 
the device off. Thus, for an input voltage ݒ௜<	V୔, the transistor is cut-off, similar state with 
the open switch (Fig.5.2b). Therefore, the Vୈୈ potential is pulled up to the output through 
the	R୐ resistor.  

Once the input voltage ݒ௜  increases over the VP, the MESFET starts operating in the 
saturation region, and so the voltage dropped on the device is increasing. When ݒ௜ is 
increased over the MESFET saturation voltage, the device enters the linear region acting 
like a resistor; similar situation with the closed switch (Fig.5.2c). Assuming that the ݒ௜ and R୐ values are chosen depending on the MESFET electrical characteristics, the Vୈୈ supply 
voltage drops on the resistors such that the output voltage ݒ௢ is pulled down to the ground 
level.  

It is important to mention that this approach can be used for any N-channel FETs, 
including SiC devices. In order to have a better perspective on the existing MESFET logic 
families, a brief overview of few important GaAs MESFET logic families is commented in 
the next section. 
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5.1.3 MESFET Logic Families 

 

Most of the current digital ICs logic families are designed especially for Silicon 
applications. Even though the dominance of Silicon as the most widely used semiconductor 
is expected to continue for many years to come, new semiconductor materials have been 
making inroads into digital applications that require extremely high operation speeds, high 
temperature operation and also radiation hardness stability.  

Gallium Arsenide (GaAs) technology has received a lot of interest in the 80s-90s 
mostly developing the N-channel MESFETs and the Schottky diode as main active devices. 
The two main approaches of the existing logic families on GaAs account for the operation 
mode of the devices. One family uses only normally-on devices, while the second contains 
both enhancement and depletion mode devices. For a general overview, two of the most 
representative logic families from these two main approaches are next presented. 

 

5.1.3.1  Buffered FET Logic (BFL)  

 

The Buffered FET Logic (BFL) on GaAs was first reported in [7, 8]. This circuit 
topology employs only depletion-mode MESFETs. The circuit configuration of the basic 
Inverter is shown in Fig.5.4. The core of the logic section is formed by the switching and 
the load transistors. Both transistors are depletion mode, being controlled with a negative 
voltage. On the other hand, the drain voltage is positive; therefore, the logic level at the 
drain of the switch is not compatible with the level required at the gate input. Thus, a 
voltage level shifter is necessary at some point so that the output logic levels match with the 
input ones. 

In the BFL circuit, the level shifter is formed by two Schottky diodes always forward 
biased by the source follower transistor. To ensure that the current source transistor is 
always operating in the saturation region, it has its source connected to the negative supply 
voltage. It is necessary to mention that between circuit power supplies and DC devices 
parameters exists the following dependence:  Vୈୈ ൌ െVୗୗ ൌ 2 ൈmax	ሺ|V୔|ሻ    (5.1) 

As the load and the follower transistors are wired so that they are always working in 
saturation region supplying a constant current to the diodes, the operation of the circuit is 
given by the switching transistor.  
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Fig.5.4. Circuit configuration for a BFL of a basic Inverter circuit [8] 

  

Once the input voltage at the switching gate transistor is lower than its VP, the device is 
turned off. Thus, the source of the follower transistor is pulled up to VDD. As the current 
source transistor is pulling down to its drain the voltage VSS, at the output of the circuits the 
voltage will be approximately 0V. When a voltage higher than the VP is applied to the 
input, the switching transistor is working in the triode region and the follower’s source is 
pulled down the ground level (0V). Thus the voltage output of the circuit is approximately 
half of VSS (or close to VP).  

 
(a)      (b) 

Fig.5.5. Circuit implementation of a BFL a) NAND and b) NOR logic gates 
 

Starting from the Inverter circuit configuration, other basic logic gates can be obtained, 
as shown in Fig.5.5. The NAND and the NOR logic gates are obtained by adding more 
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transistors to the logic selection level. The NAND gate is realized by stacking two 
MESFETs in series, while the NOR is formed with two transistors in parallel.  

 

5.1.3.2  Direct-Coupled FET Logic (DCFL) 

 

The Direct-Coupled FET Logic (DCFL) is the first, simplest and most widely used 
enhancement/depletion mode GaAs logic family. This circuit topology employs both 
enhancement and depletion-mode MESFET devices, being very similar to the E/D NMOS 
logic circuit configuration.  

 
Fig.5.6. Circuit configuration for a DCFL basic Inverter 

 

The Inverter gate utilizes only two devices: an enhancement MESFET for the input 
switching transistor, and a depletion MESFET for the load transistor. Because the switching 
transistor starts conducting at gate voltages higher than 0V, no level shifter is needed. The 
saturation voltage of an enhancement MESFET is lower than that of the depletion 
MESFET. Therefore, the power supply voltage can be lower than in the BFL case. The 
elementary logic gates NAND and NOR can be obtained using the same approach as for the 
BFL, adding an enhancement MESFET in series or in parallel for the NAND and the NOR 
gates, respectively.  

The DCFL digital logic family uses both normally-on and -off devices, not being quite 
appropriate for our future approach in the present development. Thus, a novel circuit 
topology combining normally-on JFET with epitaxial resistors on 6H-SiC is proposed in 
the following section. 
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5.1.4 Normally-on 6H-SiC JFETs and Epitaxial Resistors Topology  

 

Unlike CMOS or bipolar logic families on Silicon, on SiC there is a lack of standard 
logic families. Most digital circuits require a mixed use of complementary N- and P-
channel devices, or mixed depletion and enhancement mode devices. Nevertheless, 
combining these kinds of structures the resulting logic circuit cannot work at extreme 
temperatures. However,  [9] shows  that the basic current-voltage characteristics of the 6H-
SiC JEFT at 600ºC are quite similar to those of GaAs MESFET  at room temperature 
employed in digital ICs. Recently, the NASA-Glenn Research Center has developed a 
circuit topology for a small number of devices able to build digital logic gates using 
normally-on 6H-SiC JFETs and epitaxial resistors [10] based on the BFL and DCFL GaAs 
digital logic families.  

 
Fig.5.7. Circuit configuration for a basic 6H-SiC JFET Inverter 

 

The circuit configuration of the Inverter (Fig.5.7) combines a normally-on JFET 
(switch) and an epitaxial load resistor (RLOAD) in the front stage of the circuit. Like in the 
BFL case, a voltage level shifter (or buffer) is needed in order to match the output and input 
logic levels. In the present topology, the voltage level shifter is made up of  a source 
follower transistor wired so it works always in saturation, together with two epitaxial 
resistors (R1 and R2) acting like a voltage divider.  

If in the BFL case, a load transistor, a current source transistors and dropping diodes 
were used, here are used instead the epitaxial resistors performing the buffer operation. The 
values for the resistors are related to the characteristics of the transistors, as well as the 
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power rails VSS and VDD. Although the general operation of the circuit is very similar to the 
BFL, the resistor divider for the level shifter stage presents a disadvantage. This main 
drawback is that the gain on the whole gate is decreased because the resistor-voltage 
divider – the voltage drops across R1 and R2 are higher than the RON of the current source 
transistor and the dropping diodes. Following the same approach as for BFL and DCFL, 
when the switching transistor from Fig.5.7 is replaced by a series or parallel string of         
n-FETs, the circuit becomes an n-input NAND (Fig.5.8a) or an n-input NOR logic gate, 
respectively (Fig.5.8b).  

(a) (b) 
Fig.5.8. Circuit configuration for a SiC-JFET (a) NAND and (b) NOR basic logic gates 
 

One can obtain any desired logic function with different combinations of transistors in 
series and/or parallel in first logic level of the circuit. Any common digital building block 
can be configured using elementary logic gates and/or defined logic functions, which 
enables the synthesis of other complex combinational, pulse or edge devices.  

The NASA-Glenn Research Center has shown that its current state-of-art in component 
production technology allows the fabrication of N-channel JFETs and epitaxial resistors on 
a substrate only for a small number of components. However, in our approach we have 
used the 4H-SiC MESFET, due to the technological maturity and simplicity [11-13]. In the 
following chapters the modeling of basic logic gates realized with normally-on 4H-SiC 
MESFETs and 4H-SiC epitaxial resistors are presented. The design of complex multi-stage 
digital circuits realized with a large number of devices is also tackled.  
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5.2 4H-SiC MESFET Basic Logic Gates 

 

The design and development of SiC integrated circuits (ICs) is nowadays a necessity 
due to the increasing demand for high temperature intelligent power applications and 
intelligent sensors. There are current reasons for placing intelligent ICs near or within high 
temperature sources (300°C and higher) [14, 15]. Electronic components for use at these 
temperatures are typically made of SiC, which can operate successfully at temperatures as 
high as 500° C [16, 17]. However, processing either in an analog or digital domain requires 
components whose parameters are closely matched and, as a consequence, on the same die, 
as an IC case. Therefore, this section concerns the basic logic gates circuits design and 
simulations, together with the proposed layout design. The elementary logic gates library 
contains the Inverter, NAND and NOR gates, created with 4H-SiC MESFET and epitaxial 
resistors.  

Our preference for MESFETs versus nMOSFET/JFET is due to the already proved 
stability of the Tungsten-Schottky barrier technology that was successfully used in the 
fabrication of stable SiC Schottky diodes for the European Space Mission BepiColombo 
[11]. Moreover, the MESFET shows a very stable pinch-off voltage behavior with 
temperature. 

 

5.2.1 Design, Modeling and Simulation: INV, NAND, NOR 

 

A very important step in achieving the desired ICs is the design, modeling and 
simulation of both used devices and circuits. In Chapter III the design, modeling, 
simulation and fabrication of the 4H-SiC MESFET was already presented. The ICs 
topology developed by NASA using normally-on 6H-SiC JFETs and epitaxial resistors 
based on the GaAs digital logic families BFL and DCF is presented in the previous section 
(5.1.4). This is the topology that will be adopted in the present design for the 4H-SiC 
MESFET elementary logic gates.  

The design of the basic logic gates is constrained by the MESFET area, the load 
resistance, the influence of the pinch-off voltage on the logic gates levels and the 
recommended DC power supply voltage to obtain proper circuit functionality in the 25°C-
300°C temperature range. These elementary logic gate designs will provide the basis for 
more complex integrated digital circuits on 4H-SiC. 
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5.2.1.1  Logic Gates Circuits Configuration 

 

As stated in previous section, starting from the Inverter structure, which is the most 
basic element in digital circuitry, other elementary logic gates can be easily built up. As in 
the case of GaAs BFL and the SiC NASA’s topology, a load resistor and a level shifter are 
necessary in order to match the output and input logic levels of the gates. The Inverter 
architecture using scalable 4H-SiC MESFETs and epitaxial resistors is shown in Fig.5.9.  

The level shifter is made out of a voltage follower and a two-resistor divider. The Low 
(L) output logic level has negative value, close to the pinch-off voltage value VP of the 
MESFET, while the High (H) voltage level is the ground value. The negative voltage 
control of the MESFET requires two voltage power supplies, a positive one VDD, and a 
negative one VSS, both referred to ground. The values of the voltage divider resistors are 
chosen as a function of the IDSS(min) of the device and the supply voltage. 

 

Fig.5.9. The 4H-SiC MESFET Inverter circuit configuration  
 

The main operation of the 4H-SiC MESFET Inverter (Fig.5.9) is given by the logic 
level section; i.e., by the MESFET transistor (NFETSiC1), whose source is tied to ground 
and its drain to VDD through the RL resistor (load resistor). The second MESFET transistor 
(NFETSiC2) is configured as a voltage follower, always working in saturation, and has its 
source tied to the two-resistor divider (R1 and R2). Even though that there is a small voltage 
drop across the RL and follower transistor, this is not affecting the circuit logic levels. V୓୙୘ ൌ ୖమୖభାୖమ ∙ 	 ሺV୆ ൅ Vୗୗሻ    (5.2) 
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The Inverter function is controlled by the input voltage (IN A) applied to the front end 
MESFET’s gate.  

If the input voltage is at the High Logic Level (IN A=0V), NFETSiC1 turns on, thus 
acting like a closed switch (Fig.5.10a). The supply voltage VDD drops across the load 
resistor. Therefore, the NFETSiC2 gate (point A) is pulled down to the ground level. As 
NFETSiC2 is wired so it always works in the saturation region, it pulls the ground to its 
source, in point B. Using the voltage-resistor divider eq. (5.2), we can then estimate that the 
output voltage has a value close to the MESFETs pinch-off voltage (eq. (5.1)), which is 
considered the Low Logic Level.  

(a) (b) 
Fig.5.10. The 4H-SiC MESFET Inverter circuit configuration equivalent to                               

a) High-to-Low and b) Low-to-High Levels 
 

If the input voltage is at the Low Logic Level, the NFETSiC1 MESFET’s gate is tied to 
a lower voltage than its pinch-off, and the device is turned-off acting like an open switch 
(Fig.5.10b). Thus, the gate of the follower (point A) is pulled up at VDD thought RL. The 
source of the NFETSiC2 follower transistor (point B) will be at a potential approximately 
equal to the supply voltage VDD. Therefore, the Inverter output will reach a value close to 
0V, which is the High Logic Level. 

If in the Inverter circuit from Fig.5.9 we replace NFETSiC1 by a string of two 
MESFETs in series, we get the NAND basic logic gate (Fig.5.11a). Furthermore, if we 
replace it by two MESFETs in parallel, we have the NOR logic gate (Fig.5.11b). Following 
the same approach presented in the previous chapter, and employing a string of transistors 
either in series or/and in parallel at the input logic level section, more complex logic 
functions can be derived. 
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(a) (b) 
Fig.5.11. The 4H-SiC (a) NAND and (b) NOR circuits configuration 

 
The Fan-In of a gate is the number of its inputs. The Fan-Out is the maximum number 

of similar gates that a gate can drive while performing a proper operation.  Therefore, the 
simplest way to get a high fan-out of the logic gates is to use a higher multiplicity of the 
follower transistor (NFETSiC3) and a proportional reduction of the corresponding resistors 
of the voltage-divider.  

 

5.2.1.2  Logic Gates Simulation 

 

High temperature applications have been continuously increased in the last decades 
even though Silicon-based ICs have reached their physical limitations. Thereby, the SPICE 
analysis for high temperature operation is a part of the complete design cycle for 
experimental high temperature logic gates. In this sense, SPICE simulations were 
performed up to 300ºC. The SPICE model used for the circuit’s simulations was the planar-
MESFET initially proposed in Annex.A2. Fig.5.12 shows the simulated waveforms for 
each elementary logic gate (Inverter, NAND and NOR) together with its symbol and truth 
table. For a proper functionality, the voltage level of the power supplies should be roughly 
30% higher than ×2VP of the SiC MESFETs. In the initially proposed planar-MESFET 
SPICE model, the pinch-off voltage was established at –8V. Thus, we have used 
VDD=+25V and VSS=-30V power supplies in our simulations. However, the Low and High 
logic levels can be easily tuned by adjusting properly the supply voltages. Although these 
values might seem to be unusual, they are quite normal for this kind of logic and the 
specific high VP value of the device. For a lower VP, the power supply voltage could be 
decreased significantly.  
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A Out 
0 1 
1 0 

 

(a) INV Simulated waveforms (b) INV Symbol and Truth table 

 
A B Out 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

 

(a) NAND Simulated waveforms (b) NAND Symbol and Truth table

 
A B Out 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

 

(a) NOR Simulated waveforms (b) NOR Symbol and Truth table 

Fig.5.12. The 4H-SiC MESFET basic logic gates (a) simulated waveforms for three 
different temperatures and (b) their Gate Symbol together with the corresponding Truth 

Table 
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The simulated output response diagram plotted on Fig.5.12a shows very similar 
waveforms for the whole temperature range and for every elementary logic gate at three 
different temperatures: 25ºC, 150ºC and 300ºC. From the MESFET’s high temperature 
operation we have seen that its pinch-off voltage is keeping quite a constant value (around -
8.5V – see Fig.3.11 and Fig.3.12) for the whole temperature range. Hence, the switching 
transistor (NFETSiC1) turns from on to off at around VP, independently of the operation 
temperature. The slight variations observed in the simulated temperature waveforms are 
mainly explained in terms of the level shifter behavior in temperature. The R1 and R2 
resistors show the same temperature coefficients; thus, the resistor-divider will show the 
same ratio within the entire temperature range. Therefore, the very small changes observed 
at higher temperatures are mainly caused by the follower transistor as it is biased so it 
always works in saturation. Due to the specific higher reverse leakage of the Schottky gate 
contact, the working temperature should be limited around 300ºC for a proper function of 
the MESFETs.  

 

5.2.1.3  The 4H-SiC MESFET Inverter Performance 

 

For the sake of a deeper analysis of the 4H-SiC MESFET digital logic family 
performance, its most basic digital element – the Inverter, is evaluated. The typical 
parameters that are generally used to characterize the operation and performance of a logic-
circuit family are the noise margins, the power dissipation and the propagation delay of the 
gate [18]. 

The Noise Margins (NMs) – are important figures-of-merit for digital circuits, 
accounting for the robustness of a circuit, and showing its ability to provide a proper 
operation in noise presence. This parameter is extracted from the Inverter’s VTC (voltage 
transfer characteristic):  NMୌ ൌ V୓ୌ,୫୧୬ െ V୍ୌ,୫୧୬    (5.3) NM୐ ൌ V୍୐,୫ୟ୶ െ V୓୐,୫ୟ୶     (5.4) 

where V୓ୌ,୫୧୬ and V୍ୌ,୫୧୬ are the minimum high output and the input voltage levels, 

respectively; and V୓୐,୫ୟ୶ and V୍୐,୫ୟ୶ are the maximum low output and the input voltage 

levels, respectively.  

The Power Dissipation (PD) – is also a key issue in digital circuits. As in modern 
digital systems a large number of gates are involved, it is mandatory to keep the total power 
requirements within reasonable boundaries. The static power consumption is the product of 
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the device leakage current and the supply voltage, causing static power dissipation in the 
devices. It refers to the power the gate dissipates when it is not on. 

The Propagation Delay (TP) – characterizes the dynamic performance of a logic 
family. It is defined as the switching time between the input and the output signals of the 
logic Inverter. As shorter the propagation delay as higher the speed at which the digital 
circuit can operate. T୔ ൌ ଵଶ ሺT୔୐ୌ ൅ T୔ୌ୐ሻ     (5.5) 

 

Table.5.1. The switching threshold voltage and the noise margins of the 4H-SiC MESFET 
Inverter gate 

 ΔVM [V] NML [V] NMH [V] 

Temp = 25ºC-150ºC 0.15 -0.2 +0.25 

Temp = 150ºC-300ºC 0.04 -0.1 +0.11 

 
Fig.5.13 shows the simulated Inverter’s VTC characteristics (similar to those of 

Fig.5.3b). For each temperature the input-output characteristic has been plotted together 
with its inverse in order to graphically estimate the gate NMs. Increasing the temperature 
from 25ºC to 300ºC, the output high and low voltage levels (VOH and VOL) show a very 
small positive voltage shift.  
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Fig.5.13. The 4H-SiC MESFET Inverter simulated VTC at 25ºC, 150ºC and 300ºC 

 
The switching threshold voltage (VM), defined as the central intersection point in the 

VTC, experiences a very small negative voltage shift as well (Table.5.1). This behavior can 
be explained in terms of the increase of the leakage current with temperature. However, this 
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small variation of the switching threshold voltage is not affecting the functionality of the 
gate in temperature. Moreover, the noise margins defined in eqs. (5.3) and (5.4) show quite 
a stable behavior in temperature. However, we have observed that VM and the noise 
margins shift are lower at high temperatures. Thus, confirming that the circuit robustness 
ensures the functionality of the gate at high temperature.   

 

Table.5.2. Output static power dissipation and propagation delay of the 4H-SiC MESFET 
Inverter gate 

 POUT(LOW) 

[mW] 
POUT(HIGH) 

[mW] 
TPLH       
[ns] 

TPHL       
[ns] 

Temp = 25ºC 115 159 9.2 3 

Temp = 300ºC 28.1 38.6 35 5.5 

 

Table.5.2 summarizes the gate static power dissipation at the Low and High output 
levels. One can observe that the logic gate dissipation power decreases approximately 4 
times at 300ºC; therefore, presenting quite a significant static power loss at high 
temperatures. Although the simulated waveforms of the Inverter (Fig.5.12a) show a good 
behavior at elevated temperatures, the resistance temperature coefficient is positive 
(Chapter IV). Therefore, the currents significantly decrease at elevated temperatures, which 
results in an important decrease of the gate power at high operation temperatures. However, 
the main static power losses in the circuit at high temperatures come from the voltage 
follower transistor since it is always working in saturation mode.  

 
Fig.5.14. Definition of propagation delay and switching time of a logic Inverter  

 

The average propagation delay (eq. (5.4)) at 25ºC is 6.15ns and 20.25ns at 300ºC. The 
estimated low-to-high TPLH and high-to-low TPHL propagation delays show a fairly small 
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variation in temperature, being comparable with a single high performance CMOS Inverter 
[19]. The input signal rise time has the same value as the fall time, which is 10ns. It can be 
observed that the average propagation time presents a short delay, hence ensuring a high 
speed of the gate and, therefore of the 4H-SiC logic family.  

After analyzing the basic Inverter gate performance we can assert that the 4H-SiC 
MESFET logic family is predicting a good circuit performance. Moreover, since all the 
other elementary logic gates are designed starting from the basic configuration of the 
Inverter (Fig.5.11) they are expected to have a similar performance.  

 

5.2.1.4  Layout Design  

 

The ICs complexity has been highly increasing along the time, leading to several levels 
of metal interconnections to ensure that enough wires can be made to create all necessary 
connections between the components. The integration of wires with components (invention 
of Robert Noyce), which prevents the need to mechanically wire together components on 
the substrate, was one of the key inventions that made the integrated circuit feasible. 

 

Fig.5.15. The 4H-SiC MESFET Inverter circuit layout with the input and output signals 
connections 

 

In the presented SiC ICs layout design, due to the complexity of the circuits, three 
metal levels are used, from which two of them are used for component interconnections. In 
this way, a great freedom is achieved in placing the devices in the layout design of the 
circuits. The design rules are the same as those for designing the layout for the new 
MESFET devices, which are presented in Annex.B.  
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5.3 4H-SiC MESFET Multi-Stage Digital ICs 

 

In the previous section we have presented the design, modeling and simulation of the 
elementary logic gates library built from normally-on 4H-SiC MESFET devices and 
epitaxial resistors using the topology developed for 6H-SiC JFET [20]. However, it has 
been shown that due to the current JFET SiC fabrication processing limitation, the ability of 
ICs production capabilities was limited to a reduced number of devices, leading to small 
logic gates and simple basic logic functions [9].  

In this chapter, we present the design and modeling of multi-stage dynamic building 
blocks on SiC using the previously developed 4H-SiC MESFET basic logic gates library. 
The aim is to demonstrate the functionality of more complex digital SiC ICs and to provide 
a greater flexibility for integrating SiC MESFET logic gates in typical CMOS topologies. 
Standard CMOS topologies have been successfully transferred and embraced using the 4H-
SiC MESFET elementary logic gates (Inverter, NAND and NOR).  

 

5.3.1 Common Dynamic Building Blocks 

 

The ability to produce embedded logic gates makes it possible to produce different 
complex circuits, such as pulse or edge triggered latches and Flip-Flops. The basic logic 
gates can be used to build other dynamic blocks like ring oscillators, voltage controlled 
oscillators, phase detectors, digital counters, phase locked loop circuits (PLL) and other 
typical digital logic schematics able to operate at high temperature. 

In digital electronics systems Flip-Flops (FF) and latches are fundamental building 
blocks used in computers, communications and many other systems. Even though FF and 
latches are many times used interchangeably, a latch is mainly used for storage elements, 
being transparent during the entire time when the enabled signal is asserted, whereas the FF 
is a synchronous or edge-triggered device, being transparent only for a brief interval during 
the Clock edge [21, 22]. 

In this chapter we present some of the most common digital building blocks used in 
digital electronic systems: Toggle FF (TFF), Master-Slave FF (DFF) and Data-Reset FF 
(DRFF). The major differences between these FF types are the number of inputs they have, 
the way they change state, and the building technology. For each type, there exist also 
different variations that enhance their operation. Next, a brief presentation of each of these 
devices is exposed: 
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(a) (b) (c) 

Fig.5.17. The general graphical symbol of: (a) TFF, (b) DFF and (c) D-Reset FF 

 

a) The Toggle FFs is a bistable device with only one input, typically the Clock signal. It 
changes its output state on each negative Clock edge, giving at the output half of the 
frequency of the Clock input signal.  

b) The DFF is the most common sequential element used in the digital design [21] not 
being transparent. It follows the input D (Data) only when the Clock is enabled. The states 
at the output change depending on the edges of the Clock signal. In CMOS technology 
these devices are implemented either at transistor level or using SR latches [23].  The TFF 
can be easily made from a DFF by connecting the Data to the negative output (Qb). 

c) The main structure of the D-Reset FFs is similar to that of the DFF with an additional 
asynchronous Reset signal [24]. This signal has the purpose to set the circuit’s proper state, 
this way avoiding undesired states of the device.  

As Set-Reset Latch and Data Latch are included in the realization of two of the above 
mentioned digital blocks (D-Reset FF and DFF), these latches can be considered as the 
most basic sequential logic circuits [25].  

 

5.3.2 Design, Modeling and Simulation 

 

In the previous section we reported the complete high temperature design library for 
4H-SiC MESFET basic logic gates. This elementary library allows us to implement multi-
stage logic embedded in power management circuitry. In the following sections the design, 
modeling and simulation of previously mentioned complex digital building blocks are 
presented (Fig.5.17). They are realized at transistor level or adopting standard Si-CMOS 
topologies. This is an important aspect since the technology transfer from a logic family to 
another is not always straight forward. 

The design and functionality of the present dynamic building blocks is constrained by 
the elementary logic gates operation. The SPICE model used in simulations is the same one 
used for modeling the basic logic gates (Annex.A2). 
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5.3.2.1 The XOR Gate  

 

Although the Exclusive OR (XOR) is considered a single digital logic gate with two or 
more inputs and one output that performs an exclusive disjunction, we have considered it as 
complex ICs since its implementation requires more elementary logic gates. The output of 
an XOR gate is High exclusively when only one of its inputs is High. If all the inputs are 
Low, then the output of the XOR gate is Low: OUT	XOR ൌ ABഥ ൅ AഥB ൌ ሺA ൅ BሻሺABതതതതሻ   (5.6) 

In order to design the XOR gate, eq. (5.6) shows the logic expression of a XOR with 
two inputs (A and B). In CMOS technology the XOR gate can be implemented at transistor 
level, but also with different gates combinations. If a limited number of specific gates are 
available in a topology, the XOR gate circuit can be constructed using these gates.  

The NAND and NOR are so-called “universal gates” because any logical function can 
be constructed with them. Therefore, a XOR circuit can be easily configured from NAND 
or NOR gates. Fig.5.18 shows the XOR circuit configuration with a NAND, an Inverter and 
two NOR basic gates. This XOR circuit topology is the one presented in [20] that was 
realized with SiC JFETs.  

 

Fig.5.18. XOR circuit architecture based on 4H-SiC MESFET universal gates 
 

Fig.5.19 shows the simulated diagrams of the XOR circuit together with its typical 
symbol and truth table. The output response presents a very similar waveform for the entire 
temperature range, being in a good agreement with the basic logic gates temperature 
behavior. 
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A B Out 

0 0 0 
0 1 1 
1 0 1 

1 1 0 
 

Fig.5.19. XOR (a) Simulated diagram and (b) its Gate symbol with Truth Table 
 

The XOR circuit layout design was created using instances of the previous basic logic 
gates layouts. Therefore, at design and simulation level, it has been proven that using the 
previous elementary logic gates one can easily derive different logic functions. The XOR 
gates are particularly useful in arithmetic operations as well as in error-detection and 
correction circuits.  

 

5.3.2.2  The Toggle Flip-Flop 

 

The Toggle Flip Flop is the first designed digital building block. It is a single input 
device – trigger or clock, which changes its output on each Clock edge, giving at the output 
half of the frequency of the Clock input signal. The TFFs are useful digital blocks in 
constructing binary counters, frequency dividers and general binary addition devices. As 
previously mentioned, in CMOS technology the TFF is in fact a Data Flip-Flop that is 
obtained by connecting the D input to the negative output (Qb) of the device.  

As already mentioned, there are more ways of realizing digital building blocks. In order 
to first verify the functionality of digital logic functions formed with normally-on 4H-SiC 
MESFETs, Fig.5.20a shows the TFF circuit configuration developed for normally-on 6H-
SiC JFETs [1]. This TTF configuration was realized using 4 digital gates performing the 
logic function: OUT	B ൌ NOTሺA1 ∙ A2തതതതതതതതത ൅ Cሻ (Fig.5.20b).  
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(a)               (b) 

Fig.5.20. (a) The 4H-SiC MESFET Toggle FF circuit configuration and 
(b) ܱܷܶ	ܤ ൌ ܱܰܶሺ1ܣ ∙ 2തതതതതതതതതܣ ൅  ሻ additional logic functionܥ

 

Although the above configuration utilizes special digital functions, this construction 
was optimized at transistor level. One can observe that the TFF implemented in Fig.5.20 is 
much smaller than the one implemented with the CMOS technology (Fig.5.22). We need a 
total of 33 individual devices, 18 of them are 4H-SiC MESFET transistors and                  
15 epi-resistors. As it will be presented in the DFF section, the CMOS design needs almost 
twice the number of devices. 

 

From the simulated time diagrams one can observe that the circuits operate properly in 
the whole temperature range (25ºC – 300ºC) changing its output signal at each negative 
Clock edge. Although the 300ºC simulated waveform seems different, it should be noticed 
that the output response reading was done at the next negative Clock edge than for the other 
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Fig.5.21. Toggle FF (a) Simulated diagram and (b) Truth table 
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temperatures. These changes can occur due to the delays that might appear while reading 
the input signal. The test circuit used for simulating the TFF can be found in Annex.C. 

 

5.3.2.3 The Master-Slave Data Flip-Flop 

 

In order to demonstrate the technological transfer for some important multi-stage 
digital building blocks from the CMOS technology to the 4H-SiC MESFET technology, we 
have designed the Master-Slave Data Flip-Flop (DFF) using 4H-SiC MESFET elementary 
logic gates library. The present DFF circuit is the most complex built multi-stage SiC 
circuit realized in the present work. It is built with two D gated latches in series, inverting 
the enable input (usually the Clock) to one of them. 

 

 
Fig.5.22. Circuit configuration 4H-SiC MESFET Master-Slave DFF  

 

The present configuration of the Master-Slave DFF (Fig.5.22) contains two D latches. 
The Master stage is active during the half of Clock cycle (when Clock signal is at High) 
and the Slave stage is active during the other half (when Clock signal is at Low). It is called 
Master–Slave because the second latch in series only changes in response to a change in the 
first one. When the Clock is High, the Master D latch follows the Data input at the output 
on the trailing (final) edge of the Clock pulse, disabling the Master until the Clock goes 
High again. When the Clock goes Low the inverted Clock signal at the Clock input of the 
Slave enables it, taking the Master output at its output. The Slave gets enable every time the 
Clock goes Low. Connecting the negative output (Qb) of the DFF to the Data input, the 
circuit acts like a binary counter, or like a TFF.  
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Clk IN D Q Qn+1 

0 × 0 0 
0 × 1 1 
1 × 0 0 
1 × 1 1 

↑ 0 × 0 

↑ 1 × 1 

                         (a)                        (b) 
Fig.5.23. Master-Slave DFF (a) Simulated diagram and (b) Truth table 

 

Fig.5.23 shows the simulated waveforms of the DFF block together with its truth table. 
One can easily see that the simulated DFF output responses show a similar electrical 
behavior for the whole temperature range. The Mater-Slave DFF is made up of 8-NANDs 
and 3-Inverters 4H-SiC logic gates, with a total of 30 MESFETs devices and 33 epitaxial 
resistors, hence summing an amount of 63 4H-SiC devices in total. The simulation test 
schematics of the DFF can be found in Annex.C. 

 

5.3.2.4  The D-Reset Flip-Flop 

 

The D-Reset Flip-Flop is the second most complex digital block implemented on           
4H-SiC. It is designed using three SR-Latches, each one made of two 4H-SiC MESFET - 
NAND gates with three inputs (Fig.5.24). The SR-Latch digital circuit is implemented 
using two elementary MESFET-NAND gates, similarly as for the CMOS topology. This 
latch can be considered one of the most basic asynchronous sequential logic circuits. 
Concerning its design complexity, it is the simplest ICs on SiC using MESFET logic gates. 
In general, latches are put together to form much more complex elements like flip-flops, as 
in this case.  
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Fig.5.24. Circuit configuration of the 4H-SiC MESFET D-Reset FF  
 

Fig.5.25a shows the simulated time diagrams of the D-Reset FF in the whole 
temperature range. One can observe that Data state is at the output only on positive Clock 
edge, and storing it when the Reset signal is at its Low level. The D-Reset FF shows a 
proper behavior for all simulated temperatures. 
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                               (a)                        (b) 
Fig.5.25. D-Reset FF (a) Simulated diagram and (b) Truth table 

 

The D-Reset FF is made up of 6-NANDs with 3 inputs and 1-Inverter logic gates, with 
20 transistors and 21 resistors, summing an overall of 41 4H-SiC devices. The test 
schematic used for the D-Reset FF simulation can be seen in Annex.C. 
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Concerning the simulations, we can state that the functionality of the previously multi-
stage SiC circuits is ensured by the room and high temperature operation of the elementary 
logic gates they are made of.  

 

5.3.3 Layout Design vs. Fabricated Circuits 

 

In order to emphasize the complexity of the first fully integrated multi-stage complex 
digital blocks fabricated on 4H-SiC, Fig.5.26 shows the similarity between the layout 
design and the picture of the fabricated Master-Slave DFF.  

 

 

(a) (b) 
Fig.5.26. The similarity of the 4H-SiC Mater Slave Data Flip-Flop between the 

(a) circuit layout and (b) fabricated circuit 
 

This is the most complicated and largest ICs developed on 4H-SiC in the present work, 
which is made of 63 devices. One can easily observe the fabrication complexity of the ICs. 
The device scalability, wafer planarity and the novel implantation technique have brought a 
great improvement concerning device integration density, hence enabling the development 
of more complex ICs on SiC. 

To our knowledge, up to now integrated circuits on SiC of such complexity and owing 
such a high integration density have not been designed before. The SiC ICs so far reported 
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were limited to the usage of a small number of devices and to a low device integration 
density. 

 

The next section deals with the experimental results of these SiC ICs demonstrating the 
functionality of the complex circuits is ensured by the functionality of the elementary logic 
gates and limited by the defects of the SiC starting material. 
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5.4 Experimental Results of 4H-SiC MESFET Logic Gates 
and Multi-Stage Digital ICs 

 

In the previous sections we first presented the design, modeling and simulations, of 
elementary logic gates able to operate in the 25ºC-300ºC temperature range. Furthermore, 
these logic gates were needed for developing multi-stage complex digital integrated 
circuits. We remind that the main devices used in these ICs developments are the 4H-SiC 
MESFET transistor (Chapter III) together with epitaxial resistors (Chapter IV). In order to 
demonstrate the functionality of the previously designed circuits, electrical 
characterizations of the fabricated ICs were performed. In this section, the experimental 
results are analyzed, presenting also the additional necessary steps for a proper electrical 
characterization of the circuits.  

 

5.4.1 Input-Output Compatibility 

 

An important aspect that needs to be considered in a first stage is the Input-Output 
compatibility between the external input signals and the fabricated SiC circuits. As 
MESFETs are normally-on devices, the SiC circuits need to be controlled with negative 
input logic levels. Therefore, the necessity of matching the input-output controlling signals 
comes along again. Generally, the incompatibility between input and output levels for logic 
families in a system gets solved with the use of logic shifters. 

 

Fig.5.27. The level shifter transforming the positive level signal IN I1 into                      
negative level signal IN A1 
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The increasing complexity of modern electronic systems made that most of the current 
digital circuits use consistent logic levels for all internal signals. We remind that a logic 
shifter is in fact connecting one digital circuit that uses a certain logic level to another 
digital circuit that uses another logic level. Therefore, an external logic shifter circuit has 
been built in order to match the input-output between the external signals necessary to 
supply the SiC logic circuits and the input logic levels. Fig.5.27 shows the general 
schematic for one of the levels shifters externally built for the SiC ICs characterization.  

 
Fig.5.28. External board circuit configuration of the Logic Test Interface 

 

Fig.5.28 shows the general schematic configuration of the external board circuit used as 
a Logic Test Interface for the future measurements. The input signals for biasing the SiC 
circuits are provided from a Function Generator. A Test Signal Generator 5V Logic digital 
block at 4 kHz is further used to generate three different delayed logic signals: O1 - 250µs, 
O2 - 500µs and O3 - 1000µs period, respectively. In order to provide the DC bias to the ICs 
on the SiC wafer, we have used the DC coupling (direct coupling) method [26] to 
interconnect the signals from the 5V Logic block to the SiC circuits.  

The voltage level from the 5V Logic block is above ground potential. Therefore, three 
level shifter blocks (as shown in Fig.5.27) are used to shift the DC level at the output down 
to zero with respect to ground, thus releasing the IN_A1, IN_A2 and IN_A3 negative logic 
signals.  

 
Fig.5.29. Level shifting main operation 
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The general operation of the level shifters is shown on Fig.5.29. One can easily see that 
each of them transforms the positive logic signals (I1, I2 and I2) into negative logic input 
levels (IN_A1, IN_A2 and IN_A3) suited to the input signals of our SiC digital circuits.  

 

5.4.2 Packaging and High Temperature Setup 

 

The wafer was diced (3700μm x 3700μm) as described in Annex.D – Wafer-Dice - 

Circuits Configuration, and then the dice encapsulated. For the packaging we have used a 
typical Dual In-Line case (DIL). DILs are commonly used in ICs industry, but also for 
device development and testing. The DIL has a ceramic housing with 40 leads of gold 
plated copper (leadframe) (Fig.5.30). 

 
Fig.5.30. Side view of a DIL case 

 

The back metallization of the dice is a thick Ti, Ni and Au metal stack. The die 
attachments have been realized with PbSnAg solder, alloy widely used for high temperature 
operation, of which the melting point is ~300ºC. A 75μm thick PbSnAg preform has been 
cut with the same die dimensions. The initial preform thickness gets thinner to around 
50μm after the soldering process. 

 
Fig.5.31. DIL40 Case showing the SiC circuits bonding 
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Fig.5.32. High temperature setup specially made for DIL40 cases 
 

In order to perform accurate electrical measurements at high temperatures, a 
measurement setup has been built specially customized for the DIL40 case (Fig.5.32). It is 
made out of three main components. The first one (Fig.5.32–A) is the Logic Test Interface 
(Fig.5.28). The second one (Fig.5.32–B) is made out of two pin sockets; each one 
corresponds to the 40 leads of the DIL40 case. The last component (Fig.5.32–C) is the 
copper rail heater, which is directly connected to the electric heater (heater resistor), on 
which the DIL case (Fig.5.31) is placed for high temperature measurements. Furthermore, 
the electric instruments are connected to the Test Interface (right side–A) in order to supply 
the necessary voltages and the input signals to the SiC ICs.  

 

5.4.3 Experimental Results on 4H-SiC MESFET Basic Logic Gates 

 

Initially, the wafer is characterized at room temperature in order to have a general 
overview concerning the ICs functionality across the wafer. Then, measurements up to 
300ºC and finally high frequency measurements are performed. The electrical 
measurements are carried out using three Keithley SMUs. Two SMUs are dedicated to 
supply the external level shifters from the Logic Interface and also to bias the SiC ICs. One 
SMU provides the 5V potential to the 5V Test Signal Generator Logic block. A Keithley 
Function Generator is necessary to generate the input signal of the Logic Interface. A 
Tektronix Oscilloscope is used for the visualization of the input/output waveforms of the 
SiC circuits. The voltage supplies used in the experimental measurements are tuned in order 
to set the proper High and Low levels to elementary gates, as will be further discussed. 
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5.4.3.1       Room and High Temperature Measurements 

 

A. The Inverter Basic Gate 

Fig.5.33 shows the Input and Output signals of the Inverter at room temperature. 
Initially, the voltage supplies used in the experimental measurements are ±25V. One can 
observe that the Input signal level is swept between 0V and -12.5V, ensuring the turn-off of 
the device. From the experimental Inverter waveforms, one can easily see that Output 
signal shows opposite logic levels with respect to the Input level, hence performing the 
proper Inverter operation at room temperature. It should be noticed that the Output response 
has amplitude of approximately 8V although the logic level has been negatively shifted at 
around -2.5V.  

-1,0m -500,0µ 0,0 500,0µ 1,0m

-12

-8

-4

0

IN
 IN

V
 (

V
)

 IN

-1,0m -500,0µ 0,0 500,0µ 1,0m

-10

-8

-6

-4

-2

OUT INV
    

O
U

T
 I

N
V

 (
V

)

Time (s)  

Fig.5.33. The 4H-SiC Inverter’s experimental waveforms at room temperature  
(VDD=VSS=±25V) 

 

In Chapter IV the experimental results of the fabricated epitaxial resistors were 
presented, showing that the 4H-SiC sheet resistance exhibits quite a double value than the 
theoretical one. Therefore, the -2.5V voltage shift that can be observed in the above output 
response diagram is due to an additional voltage drop on the follower transistor (Fig.5.9 – 
NFETSiC2), which is higher than the voltage drop initially considered in simulations. 
However, this voltage drift of the Output level can be easily manipulated by adjusting the 
voltage supplies (like VDD=+25V and VSS=-21.5V); thus, dragging the High level to 0V 
(Fig.5.34) and keeping the Output amplitude close to 8V. Although the resistors exhibit 
quite a double value, it is important to mention that the resistor divider ratio (Fig.5.9 – R1 
and R2) is maintained to the same value since the individual resistors have the same 
increasing rate; hence, not affecting the Inverter output logic levels.  
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Fig.5.34. The 4H-SiC Inverter’s experimental waveforms at room temperature after the 
voltage tuning (VDD=+25V; VSS=-21.5V) 

 

Section 5.2.1.2 dealt with the logic gates simulation up to 300ºC. Therefore, Fig.5.35 
shows the experimental waveforms of the Inverter up to 300ºC. The Output responses 
shows quite a similar behavior in the whole temperature range (25ºC-300ºC), performing its 
proper logic function. 
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Fig.5.35. The Inverter experimental waveforms vs. temperature (25ºC-300ºC) 

 
One can notice that up to 200ºC no voltage level changes of the Output waveform are 

observed with respect to the room temperature measurement. However, for the two highest 
temperatures (250ºC and 300ºC), the High and the Low levels negatively drift. This 
temperature evolution of the gates is mainly explained by the level shifter temperature 
behavior. The two-resistor divider show the same temperature coefficients, thus the voltage 
divider will maintain the same ratio in the whole temperature range, not affecting the 
Output response. Then, the observed changes are mainly caused by the follower transistor 
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temperature behavior. As the voltage follower transistor works in saturation, and because of 
the difference between the theoretical and experimental values of the epitaxial sheet 
resistance, the voltage drop across it significantly increases at high temperatures. The 
follower drain-gate leakage current also increases at high temperatures, adding a 
supplementary voltage drop, thus pushing down the Output logic levels of the gate.  
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Fig.5.36. The switching measurements of the Inverter                                                      

in the 25ºC-300ºC temperature range 
 

The switching waveforms of the Inverter at room and high temperatures are shown in 
Fig.5.36. The Inverter Output signal exhibits quite a symmetric Low-to-High (TPHL) and 
High-to-Low (TPLH) propagation delay in the whole temperature range. The average 
propagation delay at 25ºC can be estimated around 270ns. The propagation delays together 
with the rise and fall times at 25ºC are shown in Fig.5.36. The difference between the 
experimental and the simulated values of these parameters is mainly caused due to the 
parasitic capacitances, linked to the measurement setup, which load the output of the 
Inverter gate. A new simulation was performed taking into account these external parasitic 
and oscilloscope input capacitances, which confirms the experimental results.  

From the experimental switching waveforms at high temperatures we have observed that 
at 300ºC the Inverter Output signal exhibits approximately 4 times higher propagation 
delays (TPHL and TPLH).The rise and fall times (tR and tF), show quite symmetric values for 
the entire temperature range. The temperature evolution of these parameters is in a good 
agreement with the sheet resistance temperature behavior. In this sense, we have to 
comment that the experimental 4H-SiC epitaxial sheet resistance is approximately 4 times 
higher at 300ºC that at room temperature (see Table.4.3 and Fig.4.10), thus affecting the 
RC switching time constants (τi). 
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B. The Universal Gates: NAND and NOR 

Section 5.2 reports the NAND and NOR circuits design, showing also their simulated 
waveforms together with their truth tables (Fig.5.12). From the experimental waveforms 
shown in Fig.5.37, one can observe that the NAND and the NOR basic logic gates properly 
perform their respective logic functions in the whole temperature range (25ºC-300ºC). In 
order to keep the proper High and Low levels, the circuits voltage supplies were the same 
as for the Inverter; i.e., VDD=+25V and VSS=-21.5V. The NAND and NOR Output 
amplitudes are close to 8V as well. However, by modifying the gates supply voltages, the 
Input and Output amplitudes can be easily adjusted. 
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Fig.5.37. The NAND and NOR experimental waveforms vs. temperature (25ºC-300ºC) 
 
The high temperature behavior of the universal logic gates shows similar evolution as 

the Inverter’s (Fig.5.35). The difference between the experimental and simulated results is 
hence explained by the additional increasing potential across the MESFET follower at 
elevated temperatures. Nevertheless, the 4H-SiC MESFET logic gates output negative drift 
at higher temperatures can be minimized using a higher Schottky barrier for the MESFET 
gate contact. However, it is important to mention that the 4H-SiC MESFET logic gates 
exhibit their respective logic functions acceptably in the whole temperature range. Due to 
the imbedded high reverse leakage of the Schottky gate at high temperatures, we have 
limited the temperature measurements at 300ºC. 
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5.4.3.2       High Frequency Measurements 

 

As our main interest is to confirm the functionality of the digital SiC ICs, the previous 
measurements were performed with a 4 kHz Input signal. Generally, low frequency and 
high frequency inverters perform the same function. In order to check the SiC MESFET 
logic family behavior in frequency, the Inverter’s Output evolution up to 300 kHz was 
investigated. 
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Fig.5.38. The Input and Output Inverter experimental waveforms in                                      

the 10kHz - 300kHz frequency range  
 

These measurements were performed using the Test Interface circuit described 
previously. It should be mentioned that the Test Interface was initially built only for 
verifying the logic functions of the fabricated circuits, not being optimized for high 
frequency measurements. Therefore, the generated Input signals will deteriorate at high 
frequencies and will impact the output signal of the gates. However, our results still provide 
a good overview regarding the SiC circuit’s performance in frequency. 
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Fig.5.38 shows the Output response of the circuit in relation to its Input signal. As one 
can observe the SiC ICs Inverter shows at its Output the inverted Input signal, showing a 
proper commutation from High-to-Low and from Low-to-High even at 300 kHz, although 
the Input signal gets deteriorated from 200 kHz. The additional noise observed on the 
Output responses is mainly caused by the parasitic environment. Anyway, the SiC Inverter 
performs the commutation properly even at high frequencies.  

Depending on the final application, there are either low or high frequency commercial 
inverters. As the low frequency inverters have a larger surge capability, they are far better 
suited for applications which require high surge currents, such as motors, fridges, power 
tools, microwaves, pumps, etc. 

 

5.4.4     Experimental Results on 4H-SiC Multi-Stage Digital Circuits  

 

The DC electrical characterizations of the multi-stage digital ICs have been performed 
using the measurement setup as previously presented (Fig.5.32). We have limited the 
measurements up to 250ºC due to the solder alloy melting point (300ºC).  

Previously we presented the design and modeling of complex digital ICs on SiC, 
demonstrating that, at simulation level, different digital topologies can be transferred to 
SiC, such as the CMOS standard topology for the Data and Data-Reset Flip-Flops (DFF 
and DRFF), as well as the NASA topology for Toggle Flip-Flop (TFF). Therefore, in order 
to demonstrate the functionality of the fabricated ICs, experimental characterization at 
room and high temperature, together with high frequency measurements are next presented.  

 

5.4.4.1       Room and High Temperature Measurements 

 

A. The XOR 

The design and modeling of the XOR logic gate is made up of four digital gates: an 
Inverter, one NAND and two NOR gates. The supply voltages used for the electrical 
characterization were the same as for the basic logic gates characterization (VDD=25V and 
VSS=-21.5V). The Output amplitude is around 8V.  

From the experimental waveforms of the XOR gate (Fig.5.39a), we can see that the 
Output is at High level whenever one of the Inputs is High, and is at Low level when both 
Inputs are Low.  
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Fig.5.39. (a) The XOR experimental waveforms vs. temperature (25ºC-250ºC) and          
(b) the XOR and TFF encapsulated die 

 
For the whole temperature range the complex SiC ICs perform their proper 

functionalities. However, at 250ºC the High and the Low levels start to negatively shift. A 
similar behavior has been observed for the elementary logic gates temperature evolution. 
Accordingly, the negative voltage drift of the logic levels is caused by the additional 
voltage drop on the follower transistor due to the gate-drain leakage current increment. 

In order to show the fabrication complexity, Fig.5.39b shows the XOR and the TFF 
packaged circuits. From the comparison between the experimental and the simulated 
waveforms and its truth table (Fig.5.19), we can confirm that the SiC XOR logic gate 
properly performs its natural logic function. 

 

 

B. The Toggle Flip-Flop 

It was previously mentioned that the logic functions implementation at transistor level 
can bring important benefits, such as decreasing the circuit area, thus decreasing the risk of 
failure from the defects from the starting SiC material, and also increasing of the circuits 
speed operation. Therefore, the TFF digital block was realized at transistor level according 
to the NASA’s topology [20].  
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Fig.5.40. The TFF experimental waveforms vs. temperature (25ºC-250ºC) 

 
Fig.5.40 shows the experimental TFF waveforms. It can be noticed that the Output 

OUT Q changes at each negative clock edge; hence, behaving as a frequency divider. The 
second Output OUT Qb performs the reverse function of the OUT Q.  Comparing these 
experimental waveforms with the simulated ones (Fig.5.21a), we confirm that the 
fabricated SiC-TFF (Fig.5.39b) is properly exhibiting its digital logic function for the 
whole temperature range. The TFF temperature evolution is explained as for previously 
digital SiC ICs. 

 
 

C. The Master Slave DFF 

The most complex IC on 4H-SiC in the present work is the Master-Slave Data Flip-
Flop (DFF), designed following the standard CMOS digital topology (Fig.5.22). It contains 
a total of 11 basic logic gates, with a total of 63 devices – 30 MESFETs and 33 epitaxial 
resistors (Fig.5.41b).  

Fig.5.41a shows the measured Output signals of the Master D Flip-Flop and also the 
separately loaded Clock and In D Input signals. As one can see on the positive Clock edge 
of the logic level front, the Data input (IN D) is loaded and stored up till the next positive 
Clock edge, when the IN D logic level present in that moment is loaded. The loaded levels 
are transferred to the FF Output (OUT Q). The second Output OUT Qb is perfectly 
realizing the reverse function of OUT Q as expected.  By comparing these waveforms with 
the simulated ones (Fig.5.23a) we confirm that the most complex digital circuit fabricated 
on SiC is successfully performing its appropriate logic function.  
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Fig.5.41. The DFF (a) experimental waveforms vs. temperature (25ºC-250ºC) and          

(b) the encapsulated die 
 

 

D. The D-Reset FF 

D-Reset Flip-Flop (D-Reset FF) is the last digital block built by embracing the CMOS 
standard topology (Fig.5.24). This digital building block is the second largest ICs 
implemented on SiC containing a total of 7 logic gates. From the DRFF experimental 
waveforms (Fig.5.42a) we can see that Output signal is transferring the input Data signal 
only at the High Clock front when the Reset signal is at the negative (Low) level. The 
experimental waveforms are in good agreement with the simulated ones (Fig.5.25a); hence, 
confirming the DRFF appropriate operation. Fig.5.42b shows a photo of the encapsulated 
circuit.  
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Fig.5.42. The DRFF (a) experimental waveforms vs. temperature (25ºC-250ºC) and         

(b) the encapsulated die 
 

 

In conclusion, from our experimental results it has been proven that the multi-stage 
digital ICs fabricated with 4H-SiC MESFET logic gates preform their proper logic 
functionality, operation that has been ensured by the functionality of the individual basic 
logic gates and limited by the defects density of the starting material or process technology. 
Concerning the Output responses in temperature, the complex SiC ICs also perform their 
proper functionalities for the whole temperature range. However, at 250ºC the High and the 
Low levels start to negatively shift. As already mentioned, this negative voltage drift of the 
logic levels is caused by the additional increasing voltage drop on the follower transistor 
due to the gate-drain leakage current increment at 250ºC. 
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5.4.4.2       High Frequency Measurements 

 

The high frequency operation of the multi-stage digital circuits is ensured by the basic 
logic gates evolution in frequency. Fig.5.43 and Fig.5.44 show the Toggle and Data Flip-
Flop frequency behavior in the 10-300 kHz range. Similarly to the Inverter evolution 
(Fig.5.38), the TFF and DFF Output responses show a similar behavior with respect to their 
Inputs for the whole frequency range. One can observe that both flip-flops perform their 
correspondent natural logic function. The Output waveforms for the two FFs show a similar 
shape as of the Input waveforms, exhibiting a proper commutation from High-to-Low and 
Low-to-High, respectively, in the whole frequency range.  
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Fig.5.43. The Toggle FF – Input and Q Output experimental waveforms in                            
the 10kHz - 300kHz frequency rage  
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Fig.5.44. The Data FF – Input and Q Output experimental waveforms in                         
the 10kHz - 300kHz frequency rage  

 

The frequency measurement of the Data FF was performed by connecting the input 
signal IN D to the negative output Qb; hence, having the binary counter configuration.  

In conclusion, it is demonstrated that the complex ICs on SiC are able to operate at 
high frequency. For a better Output response a new Test Interface circuit has to be built in 
order to have more accurate and not-deteriorated Input signals at higher frequencies.  
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5.4.5  Externally Wired 4H-SiC Circuits  

 

Furthermore, in order to demonstrate that these SiC circuits are the basis for other 
digital functions, additional experimental measurements have been carried out by externally 
wiring different circuits; hence, creating new logic functions. 
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Fig.5.45. Experimental integrated NAND, NOR and AND, OR waveforms  
 

Connecting a NAND or a NOR gates in series with an Inverter, we obtain some of the 
easiest basic logic gates;i.e., an AND gate and an OR gate, respectively. Fig.5.45 shows the 
experimental results using these external connections. This approach can be easily extended 
to various numbers of logic gates or complex multi-stage digital blocks, connected and/or 
in series and/or parallel.  
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5.5 Conclusions  

 

The first section of this chapter is aimed at a brief introduction of the basics of digital 
circuits, presenting a general classification of ICs technologies and pointing out the lack of 
logic families on other semiconductor than Si, such as SiC.  In order to understand the main 
operation of all digital designs, the most common element that stays at as the nucleus of 
every digital building block, the Inverter, has been presented and analyzed.  

Having as our main device the SiC MESFET, two of the most representative GaAs 
logic families have been commented, showing the possibility of creating elementary logic 
gates using only normally-on MESFETs together with Schottky diodes. Furthermore, we 
presented the only existing logic family topology on SiC recently developed by NASA. 
This topology was specially designed for depletion mode 6H-SiC JFETs and epitaxial 
resistors. However, this topology was demonstrated for only a small number of 
components; therefore, for simple and small digital circuits. As our main active device is 
also a depletion mode transistor (4H-SiC N-channel MESFET), this topology approach is 
our choice for the digital SiC ICs developments. 

 

Next, the design and modeling of elementary 4H-SiC logic gates library implemented 
with normally-on 4H-SiC MESFETs and epitaxial resistors is described. The main 
operation of the elementary logic gate – the Inverter, is presented emphasizing that the 
MESFET device from the logic selection level is the one that provides the behavior of the 
entire circuit. The necessity of using a load resistor and a level shifter due to the negative 
voltage control of the devices has been also highlighted. The NAND and NOR logic gates 
are also tackled. They were realized by replacing the device from the logic selection level 
with a string of two or more devices in series and in parallel, respectively, hence enabling 
the integration of other logic gates and even different logic functions.  

From the circuits simulation we have observed that the output response of all 
elementary logic gates are quite similar for the whole temperature range, being limited at 
300ºC due to the increase of the reverse leakage current of the Schottky gate electrode. The 
very slight changes were mainly caused by follower transistor operation in temperature. 

From the Inverter performance analysis, we showed that the circuit noise margins show 
quite a small variation in temperature, thus, ensuring the robustness of the circuit. From the 
propagation time delay, it has been observed that 4H-SiC MESFET logic family presents a 
good switching speed for the entire temperature range. The power dissipation was 
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significantly reduced with temperature due to the currents increment with temperature. The 
Inverter’s power loss was also increased due to the positive temperature coefficient of the 
resistors and of the follower transistor.  

 

Furthermore, after presenting some of the most common dynamic building blocks, the 
design and simulation of the XOR, Toggle FF, Master-Slave DFF and D-Reset FF are 
carried out. At simulation level we have demonstrated that it is possible to successfully 
transfer some of the most common CMOS standard topologies on SiC technology. The 
Master-Slave DFF and the D-Reset CMOS digital building blocks are made using 
elementary logic gates with normally-on MESFETs and epitaxial resistors. We have also 
demonstrated that other types of topologies, like the one developed by NASA for XOR and 
Toggle FF using normally-on JFETs, can be also transferred and realized with MESFETs 
technology. It has been also proven that using the INV, NAND and NOR basic logic gates 
one can implement different logic functions; thus, showing that complex multi-stage digital 
ICs design with a large number of devices is possible on 4H-SiC using normally-on 
MESFETs logic gates. The logic building blocks shown on Fig.5.18, Fig.5.20, Fig.5.22 and 
Fig.5.24 can be further used for other logic application, for the implementation of 
memories, frequency dividers, counters, and latches among others. It has been also shown 
that the designed multi-stage digital blocks are able to operate at high temperature. The 
operation of these complex circuits is ensured by the high temperature functionality of the 
elementary logic gates they are made of. 

 

In the characterization section, we have experimentally demonstrated the functionality 
of the 4H-SiC MESFET elementary logic gates library: Inverter, NAND and NOR gates. 
Due of the difference between the designed and experimental epitaxial resistors, at room 
temperature, the High and Low logic levels of the gates show a negative voltage shift 
mainly caused by the voltage follower transistor. This drop is easily eliminated by adjusting 
properly the circuits supply voltages. The gates functionality is also demonstrated up to 
300ºC. It has been observed that for temperatures higher than 200ºC the gate-drain leakage 
current of the follower considerably increases; hence, affecting the Output response of the 
gates by drifting negatively their logic levels. However, this drift can be reduced for a 
better high temperature operation by using a different metal for the MESFET gate contact. 
From the characterization at frequencies up to 300 kHz, we have seen that the Inverter’s 
output is fairly reproducing the reversed Input slopes, performing a proper commutation on 
each High-to-Low and Low-to-High front. 

We have experimentally demonstrated that the standard CMOS topologies can be 
transferred to the Data and Data-Reset Flip-Flops and the NASA topology to the Toggle 
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Flip-Flop based on 4H-SiC MESFET basic logic gates. The multi-stage SiC ICs show a 
similar behavior at room and high temperature, and high frequency as the basic logic gates. 
We have also proved that the functionality of multi-stage ICs on SiC is provided by the 
elementary logic gates library operation. Moreover, we have shown that other logic 
function can be obtained with the fabricated circuits by connecting them externally.  

From the complete on wafer characterization at room temperature, we have also 
observed that the circuit’s functionality percentage decreases in relation with their areas. 
However, some important factors need to be pointed out:  

i) This is the first attempt of using P+-implant isolation technique for device and SiC 
circuits’ fabrication; 

ii) Three metal levels have been used in the circuits manufacturing, two of them dedicated 
to the interconnection levels;  

iii) The SiC fabrication processes have to be established in order to fully control it without 
affecting the device/circuits functionality.  

iv) There is also a starting material quality issue since the circuit area increases; the failure 
risk of the circuits due to the defects density of the starting SiC, eventually leads to the 
circuits non-functionality.  

We consider that the current ICs fabrication and operation has been a successfully 
demonstrated. Hence, the ICs fabrication on SiC containing a large device number with a 
high integration density has been proven. 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER V. The 4H-SiC Digital Integrated Circuits 
 

 
 

139 

 

5.6 References  

 

[1] A.S. Sedra, K.C. Smith, “Microelectronic Circuits - 5th Edition”, p.1086 (2004) 

[2] Couse EE3082, “Basic Digital Circuit Elements”, Department of Electrical 
Engineering Columbia University, Digital Electronics Laboratory (2009) 

[3] F.M. Wanlass, C.T. Sah, “Nanowatt logic using field-effect metal-oxide-semiconductor 
triodes”, IEEE International Solid-State Circ. Conference Digest, Vol.VI, p.32–33 (1963) 

[4] O. Berger, “GaAs MESFET, HEMT and HBT Competition with Advanced Si RF 
Technologies”, Siemens Semiconductor Group, GaAs Mantech (1999) 

[5] E. Busheri,“Critical Design Issues for Gallium Arsenide VLSI Circuits”, Ph.D. Thesis – 
Microelectronics Centre, Middlesex Polytechnic (1992) 

[6] A.S. Sedra and K.C. Smith, “Microelectronics Circuits - 4th Edition”, p.42 (1998) 

[7] R.L. Van Tuyl and C.A. Liechti, “High Speed Integrated Logic with GaAs MESFETs”, 
IEEE Journal of Solid-State Circuits, Vol. 9, No.5 (1974) 

[8] R.L. Van Tuyl, et al., “GaAs MESFET Logic with 4-GHz Clock Rate”, IEEE Journal of 
Solid-State Circuits, Vol.12, No.5, p.485 – 496 (1977) 

[9] P. Neudeck and G. Beheim, “600ºC Logic Gates Using Silicon Carbide JFET”, 
NASA/TM-2000-209928 (2000) 

[10] US Patent 7,688,117 B1, “N Channel JEFT Based Digital Logic Gate Structure”, filed 
April 2008, issued March 2010 

[11] P. Godignon, et al., “Long term stability of packaged SiC Schottky diodes in the -
170ºC/+280ºC temperature range”, 22nd ISPSD, p.9-4 (2010) 

[12] D. Tournier, et al., “Compatibility of VJFET technology to MESFET fabrication and 

its interest to system integration: fabrication of 6H and 4H-SiC 110V lateral MESFET”, 
Mater. Sci. Forum Vol. 389, p.1403–1407 (2002) 

[13] A. Devie, et al., “Fabrication and Testing of 4H-SiC MESFETs for Analog Functions 
Circuits”, Mater. Sci. Forum Vol. 645-648, p.1159–1162 (2010) 

[14] P. Neudeck, et al., “Extreme temperature 6H-SiC JFET integrated circuit 
technology”, Phys. Status Solidi A 206, No. 10, 2329–2345 (2009)  

[15] S. Long, et al. “High Speed GaAs Integrated Circuits”, IEEE, Vol. 70, No.1 (1982) 



The 4H-SiC Digital Integrated Circuits 
 

 
 

140 

[16] P. G. Neudeck, et al., "SiC Field Effect Transistor Technology Demonstrating 
Prolonged Stable Operation at 500 °C", Materials Science Forum, Vol. 556-557, p.831-834 
(2007) 

[17] D. J. Spry, et al., "Fabrication and Testing of 6H-SiC JFETs for Prolonged 500 °C 
Operation in Air Ambient", Materials Science Forum, Vol. 600-603, p. 1079-1082 (2008) 

[18] A.S. Sedra, K.C. Smith, “Microelectronic Circuits - 4th Edition”, p.1045 (1998) 

[19] Datasheet “NC7S04 – TinyLogic® HS Inverter”, Fairchild Semiconductor (2004) 

[20] Michael J. Krasowski, “Logic Gates Made of N-Channel JFETs and Epitaxial 
Resistors”, NASA Tech Briefs LEW-18256-1  

[21] V.A Pedroni, “Digital Electronics and Design with VHDL” Morgan Kaufmann, p.329 
(2008)  

[22] Ali M. Niknejad, “Latches and Flip Flops” EE 42/100 Lecture 24, University of 
California, Berkeley (2010) 

[23] John Knight, “Digital Circuits II”, Presentation, Carleton University (2009) 

[24] E.O. Hwang, “Digital Logic and Microprocessor Design with VHDL” La Sierra 
University, Riverside, CA, Ch6, p.4 (2006) 

[25] S.M. Kang, Y. Leblebici, "CMOS Digital Integrated Circuits” 3rd Ed. Tata McGraw-
Hill, Ch.8 (2003) 

[26] http://en.wikipedia.org/wiki/Direct_coupling 

 

 

 

 

 

 

 



C
comp
mater
viabl

B
param
gener
failur

T
radiat

based
(Chap
circu
study
envir

 

 

Currently th
ponents due
rial properti
e solution fo

Because of r
meters and/o
rally leadin
re.  

Therefore, i
tion resistan

d devices, s
pter II), aft
its in the p

y as an inp
ronments.  

here is a gr
e to the larg
ies and also 

for harsh env

radiation ex
or crystal da
g to the de

n order to
nt, in this c

such as en
fter high en
present wor
put statemen

4H-S

reat interest
ge variety o
 to its large 
vironment a

xposure, ele
amage in th
vice electri

 demonstra
chapter we 

ncapsulated
nergy proto
rk are based
nt concerni

 

R
SiC Sch

t and a hig
of terrestria
extend of s

applications 

ectronic dev
he semicond
c performan

ate that the
present the

d Schottky 
on and elec
d on Schott
ing MESFE

CHA
Radiat
hottky

gh demand 
al and spatia
study and de

as well.  

vices can s
ductor, depe
nce alteratio

e present i
e experimen
diodes and

ctron irradia
tky-gate str
ETs’ ICs fu

APT
tion Im
y-Gate

for radiati
al applicati
evelopment,

suffer chang
ending on th
on, or even

investigated
ntal results
d mesa-ME
ation. As th
ructures, we
unctionality

TER V
Impact
e Devi

on-hard ele
ons. Thank
, SiC has be

ges in the 
he irradiatio
n to its irrev

d ICs devic
s on Schottk
ESFET tran
he develop
e will assum
y in radiatio

 

141 

 

 

VI
t on    

vices 
 

 

 

 

 

 

 

ectronic 
ks to its 
ecome a 

electric 
on type, 
versible 

ces are 
ky-gate 
nsistors 
ed SiC 
me this 
on rich 

           



The 4H-SiC Schottky-Gate – Radiation Hardness 
 

 
 

142 

 

6.1 Radiation Environments 

 

The form that radiation interacts with material depends on the type, energy, mass and 
charge of the incident particle and target material. In general, there are two groups of 
radiation particles: charged and neutral particles. The charged particles are mainly protons, 
electrons and heavy ions; while the neutral particles are neutrons and photons. The manner 
that these particles react on the targeted material or electronic components is completely 
different. The effects that both charged and neutral particles have on the targeted matter are 
either related to ionization effects or to nuclear displacement. The neutrons, which are 
massive neutral particles, produce mainly nuclear displacements, whereas protons and 
electrons are responsible for ionization effects.  

Typically, the radiation environments are characterized by its own spectrum of particles 
and energy distribution. It can be classified as [1]: 

 Space  
 High-energy physics experiments 
 Nuclear 
 Natural environments 
 Processing-induced radiation 

 

Table.6.1. Earth’s Space radiation environment summary  

Environment Composition Energy 

Inner Van-Allen Belt 
Protons (99%) 
Electrons 
Oxygen 

10-50 MeV 
1-100 keV 

 

Outer Van-Allen Belt 

Protons 
Electrons (99%) 
Alpha-Particles 
Oxygen 

 
1MeV 

 
 

Solar Cosmic Ray 
Protons (96%) 
Alpha-Particles 
Heavy Ions 

10-103 keV 
 
 

Galactic Cosmic Rays 
Protons (85%) 

Alp-Particles (145) 
Heavy Ions 

105 MeV 
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Between the main sources of energetic particles in a space environment, protons and 
electrons trapped in the Van Allen belts are more usual [2]. The device radiation hardness 
for these two particles has received a great interest in investigation especially for space 
applications. Outside the Earth’s atmosphere the intensity of the cosmic rays is much larger 
and consists in a large percentage of protons [3] (Table.6.1). Therefore, the radiation effects 
need to be considered in the design of electronics dedicated to space applications.   

 

Due to our interest in developing devices for space applications, several radiation 
experimental tests have been carried out on 4H-SiC Schottky diodes and MESFET devices 
in the framework of this dissertation. The irradiations have been performed at different 
fluences/doses and energies with charged particles (proton and electron particles).  

 

6.2  Radiation Effects in Microelectronics 

 

The effects of radiation exposure play an important role in limiting the lifetime and 
reliability of microelectronic devices or circuits; hence, leading to the device/circuit failure. 
In general, the radiation effects in electronic components can be classified as [4]:  

 Cumulative effects – that are the results of the accumulation of radiation energy 
in the electronic structures and especially in the isolation layers such as SiO2; 

 Single Event Effects (SSE) – they result from a single energetic particle 
interaction with the device.  

The common materials used in semiconductor device fabrication are the 
dielectrics/insulators, various metallization layers, the semiconductor material and the 
packaging materials. Although insulators are those that generate most of the defects in 
electronic devices [5], the influence of radiation on insulating and conductive parts of the 
device is very different.  

The most sensitive devices to ionization are the MOS transistors due to the Silicon 
Dioxide (SiO2) sensitivity to ionizing radiation [6], typically creating holes-electrons pairs. 
After the electron-hole pair generation, a fraction of them will immediately recombine, 
whereas the rest can be displaced by a local electric field. Then, the holes can be trapped in 
the oxide or migrate to SiO2 interface where they occupy undesired interface states, while 
the electrons drift to the gate. Both trapped holes and accumulated interface states affect the 
semiconductor’s characteristics. Moreover, these can lead to malfunctioning of electronic 
devices and eventually of the circuits and applications in which they are implemented. 
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6.3 Radiation Hardness of SiC-Based Electronic Devices 

 

As mentioned in Chapter I, up to date almost all kind of power devices have been 
developed on SiC. Although several companies (such as Cree, Infineon, RHOM, 
Microsemi, Semisouth, ST Miroelectronics, etc) are currently commercializing SiC devices 
(such as SiC rectifiers, MESFETs, JFETs and since 2012 power MOSFETs by Cree), the 
most mature commercial SiC devices so far are the power Schottky diodes and the vertical 
power JFETs [7]. Due to the excellent radiation hardness of SiC material [8], several 
studies have been lately performed on many of the developed SiC devices. 

 Radiation investigations such as irradiation with neutrons, protons, electrons, light 
ions, gamma and x-ray at different energies and fluences have been performed on 
MESFETs [9-14]. Additionally, studies on MESFETs have been carried out based on 
energetic electron irradiation [15] and high dose irradiation of gamma rays [16]. 
Concerning SiC Schottky diodes there is a large number of references in recent literature on 
proton, neutron, heavy ions and gamma irradiations [17, 18]. The general conclusion of 
these investigations is that these SiC-based devices show better radiation stability than the 
Si devices.  

Recently, we have designed and fabricated 300V-5A 4H-SiC Schottky diodes for 
operating in the solar panel array for the Bepi-Colombo European Space Mission [19]. This 
mission is scheduled for 2015 and consists out two separate spacecraft’s that will orbit 
around Mercury. The wide temperature range that the diodes are expected to work (from -
170ºC up to +270ºC) and the radiation rich environment are significant aspects as the 
spacecraft will operate in the Inner Solar System. Therefore, [20] reports a first important 
study concerning radiation tests on the SiC diodes. Gamma rays irradiations with a dose up 
to 570 Krad and a rate of 3.6 Krad/hour were initially performed on the packed diodes. It 
has been shown that the effect of gamma rays on the SiC diodes is a reversible effect after 
quite a short time. Proton irradiations have been also carried out at 100MeV, 60MeV and 

15MeV energy at same fluences (1.6 ∙ 10ଵଵ	p/cmଶ). For the two highest energies no 
significant impact was detected on the forward characteristics, whereas for 15MeV a 2% 
increase of the forward voltage was observed. The slight increase of the barrier height was 
due to the Schottky interface modification. In the reverse mode, no significant 
modifications were noted. Also no SEE or catastrophic failures have been observed for 
these energies and fluences, hence concluding that the CNM high temperature SiC Schottky 
diodes present a high level of radiation hardness for high energy proton and gamma 
irradiation environments.  
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4H-SiC MOSFET devices have been recently designed and fabricated at CNM, and are 
in continuous development, progress and optimization [21]. So far not many studies have 
been either performed or published concerning SiC MOSFET ionization effects. Therefore, 
recently we have carried out a complex set of radiation experimental tests. Significant 
irradiation studies showing important and revolutionary results concerning device electrical 
behavior at high and low radiation energies have been published [22-24]. However, this 
topic is still at a very early stage; therefore, important results will be published in a near 
future.  

 

6.4 Experimental Results on 4H-SiC Schottky-Based 
Devices 

 

In our previous work [20] we reported that only for the lowest proton energy 
experiment (15MeV) slight Schottky interface modifications were observed. Therefore, in 
order to complete the previous study, complementary experimental studies were carried out 
on Tungsten-Schottky Diodes. Moreover, as in the present dissertation, the analyzed and 
developed devices are made with Tungsten-Schottky gate contacts, the mesa-MESFETs 
were irradiated with protons and electrons at different energies and fluences. We consider 
that this study can offer important information concerning Tungsten-Schottky contact 
radiation behavior, which can furthermore be extrapolated to the currently developed SiC 
planar-MESFETs and also to make initial hypothesis concerning SiC ICs response with 
radiation. 

 

Fig.6.1. Cross-section scheme of the packaged diodes showing the main parts 
 

The SiC Schottky diodes have been processed on 4H-SiC wafers supplied by CREE. 

The N-epilayer is 5μm thick and 10ଵ଺	cmିଷdoped. The processing steps are similar to those 

used for standard temperature range diodes [25]. The device package of these diodes was a 
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challenge as they supposed to endure high temperature operation. The schematic cross-
section of the encapsulated diode shown in Fig.6.1 is a modified TO-257 metallic package 
from Kyocera. More details concerning device processing and packaging are described in 
[20, 25]. 

 

Fig.6.2. Schematic cross-section of the 4H-SiC mesa-MESFET 
 

In Chapter II we show in detail the design and fabrication of the 4H-SiC mesa-
MESFETs. These transistors have been fabricated as well on a 4H-SiC wafers supplied by 

CREE with a 5μm thick, 5 ∙ 10ଵହcmିଷ doped P-epilayer grown on a semi-insulating 

substrate. The N-epilayer is 0.5μm thick with a doping concentration of 10ଵ଻cmିଷ 
(Fig.6.2). These transistors have been used for the radiation experiments. 

 

6.4.1 Proton Radiation 

 

The proton irradiation experiments were carried out at HZDR – The  Institute of Ion 
Beam Physics and Material Research using the 6MV Tandetron (High Voltage Engineering 

HVEE) with 10MeV ion energy at four different fluences: 5 ∙ 10ଵଵ	p/cmଶ, 5 ∙ 10ଵଶp/cmଶ, 5 ∙ 10ଵଷ	p/cmଶ and 5 ∙ 10ଵସ	p/cmଶ. After the irradiation, the devices were electrically 

characterized. Due to security reasons, two of the diodes submitted at the highest fluences 

(5 ∙ 10ଵଷ	p/cmଶ and 5 ∙ 10ଵସ	p/cmଶ) have not been measured because the radiation 
activation limit of the cases was above the permitted level.  
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Fig.6.3. Packaged 4H-SiC Schottky Diodes forward characteristics before/after proton 

irradiation in (a) linear and (b) logarithmic scale 
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Fig.6.4. Encapsulated 4H-SiC Schottky Diodes reverse characteristics before/after proton 

irradiation  
 

Fig.6.3 and Fig.6.4 show the forward and reverse characteristics of the diodes before 
(solid line) and after (symbols) irradiation. As one can see, in the forward mode no changes 
have been observed neither in the voltage or current evolution. From the reverse 
characteristics one can observe that the diodes reverse current decreases for both fluences. 
However, this decrease of the leakage current does not affect the device. On the contrary, it 
enhances the reverse mode device electric behavior. Comparing with the GaAs Schottky 
barrier evolution after irradiation [26], we may assume that the decrease of the reverse 
current can be attributed to the reduction of the net doping level. This behavior could be 
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explained as follows. The irradiation could produce donor compensation in the diode 
channel, which in turn reduces the tunneling contribution across the Schottky barrier, hence 
decreasing the tunneling current in the diode. 

A first conclusion that can be drawn is that after 10MeV proton energy at                         5 ∙ 10ଵଵ	p/cmଶ and 5 ∙ 10ଵଶp/cmଶ	fluence, the Schottky diodes show a stable and slightly 
improved electrical behavior. Together with the previous studies, we can now confirm that 
the SiC Schottky diodes are unaffected by high energy proton irradiation. 

The mesa-MESFET devices were also irradiated at three different fluences, as shown in 
Fig.6.5. One can observe that the irradiation impact on these devices is more visible than in 
comparison with the Schottky diodes. The most notable effects are seen for the lowest 

irradiation fluence (5 ∙ 10ଵଵ	p/cmଶ). We have observed that for this fluence, the pinch-off 
voltage of the device is slightly decreasing with 0.7V and the leakage current decreases 
with more than one order of magnitude. Also the maximum drain current is presenting a 
decrease with approximately 5mA with relation to the non-radiated device.  
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Fig.6.5. The output characteristic of the 4H-SiC mesa-MESFETs                                 

irradiated with protons at 10MeV 
 

Increasing the fluence to 5 ∙ 10ଵଶ	p/cmଶ, the VP shows no variation, having the nearly 
same value as before radiation; the subthreshold current shows a slight increment with 
relation to its initial value; and the maximum drain current shows a 3mA drop. For the 
highest fluence, VP also decreases (around 1V); the subthreshold current is in the same 
range as for the previous fluence, being close to its initial value; and the maximum drain 
current experiments a 2mA reduction with respect to the non-radiated value. The decrease 
of the VP can be mainly attributed to the radiation-induced decrease of the Schottky barrier 
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height at the gate contact, whereas the increase of the VP is typically induced by the 
expansion of the depletion region [10]. The decrease of the drain current could be caused 
by the increase of the resistance in the bulk of the crystal [27]. However, some of these 
variations could be eventually caused by the lack of uniformity across the wafer introduced 
by the fabrication processes. 

In order to have a better overview of the MESFET results, we have performed 
simulations with the SRIM simulator [28]. These simulations help us to forecast the protons 
track though the structure, and also different types of damages that can produced in the 
semiconductor devices. The 10MeV protons energy penetration depth in the SiC material is 
estimated to be around 483.11μm. The MESFET cross-section thickness, including all the 
metal layers, is approximately 356μm. The SRIM simulations predict that the 10MeV 
protons are completely cross the device (Fig.6.6a). From the SRIM simulation concerning 
the ion distribution in the devices after irradiation (Fig.6.6b), can be observed that even if 
the protons get completely through the device, several picks of damage are most likely to 
appear in the substrate; hence, affecting the device performances.  

 (a)       (b) 
Fig.6.6. (a) Protons trajectory and (b) ion distribution in the mesa-MESFET at 10MeV  

 
The radiation source dependence of the device performance degradation after proton 

irradiation can be mainly attributed to the difference of mass and the possibility of nuclear 
collision during the formation of SiC lattice damage [26]. However, although small changes 
have been observed on different parameters of the MESFET, we can still assume that these 
structures withstand important radiation levels.  
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Therefore, from both Schottky diodes and mesa-MESFETs experimental results, we can 
conclude that the Tungsten-Schottky junction shows a good endurance at high energy 
proton radiation; hence promoting these devices as suitable for harsh radiation environment 
applications. 

 

6.4.2 Electron Radiation 

 

The electron irradiation of the Schottky based devices was carried out at the HZDR – 
Rossendorf Electron Accelerator (ELBE Facility) at 15MeV energy, which provides a wide 
variety of doses. First, a total of 6 encapsulated Bepi-Schottky Diodes were irradiated with 
electrons at 15MeV with doses from 0.5kGy to 30kGy. 
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Fig.6.7. Packaged Schottky Diodes irradiated with electrons – Forward Mode 
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Fig.6.7 shows the forward characteristics of the Schottky diodes before and after 
irradiation. It can be observed that after irradiation, two out of the six diodes presented 
slight changes of their forward voltage. As one can see, changes in the forward mode have 
appeared only for the lowest doses: 0.5kGy and 1kGy (Fig.6.7a,b), whereas for the highest 
doses, the forward characteristic show no alteration (Fig.6.7c,d). However, the changes at 
0.5kGy and 1kGy are in fact improving the forward voltage characteristic of the device 
with 0.06V and 0.218V respectively, measured at 2A.  
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Fig.6.8. Encapsulated Schottky Diodes irradiated with electrons – Reverse Mode 

 

From the reverse characteristics of the diodes (Fig.6.8) one can observe an 
improvement of the leakage current, decreasing for all doses. The reverse current is reduced 
by almost two orders of magnitude with respect to the non-irradiated case, showing a 
similar behavior as with the proton irradiation.  

Therefore, we can assume that the Tungsten-SiC semiconductor interface improves 
after electron irradiation as well; hence, demonstrating that the Schottky diodes also show a 
good endurance in electron rich environments.  

 

Two mesa-MESFETs were also submitted to electron irradiation at15MeV with doses 
of 5kGy and 10kGy. From the comparison between the before and after irradiation 
experimental results, no significant modifications have been observed for the main 
electrical parameters of the device. From Fig.6.9 one can see that no important changes 
have appeared in transconductance characteristic of the devices; hence, the Schottky gate 
being mainly unaffected by electron irradiation.  
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Therefore, we can now conclude that the mesa-MESFET transistor shows a good 
resistance against high energy electron radiation; hence, promoting these devices as suitable 
for high radiation environments, and even more for space applications.  
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Fig.6.9. The output characteristic of the mesa-MESFETs electron irradiated at 15MeV 
 

In conclusion, this Schottky interface (Tungsten-SiC) shows a positive behavior after 
high energy proton and electron irradiations for both Schottky diodes and mesa-MESFETs. 
Therefore, we expect that the new fabricated planar-MESFET together with the digital ICs 
block to show a similar behavior. However, as a part of the future work, a dedicated study 
concerning radiation hardness stability of the new structures (planar-MESFET and epitaxial 
resistors) together with the fabricated ICs is going to be performed. 
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6.5 Conclusions 

 

Under different types of radiations, electronic semiconductor devices can be damaged, 
which can lead to different failures. As the main active device in the present work is the 
4H-SiC MESFET device, we have focused our interest in analyzing the electrical behavior 
after high energy proton and electron irradiations of two Schottky-junction based devices: 
the Schottky diode and MESFET transistor. 

It has been shown that after 10MeV proton irradiation, the packaged Schottky diodes 
show no changes on the forward current and voltage drop, whereas in the inverse mode an 
improvement of the SiC-Schottky interface has been observed, decreasing the reverse 
current and showing a stable reverse voltage. Although the protons completely cross the 
mesa-MESFET transistor at this energy, it appears the possibility of nuclear collision in the 
SiC lattice, thus creating crystal damage in the semiconductor by elastic scattering. 
Therefore, slight modifications have appeared in the electrical parameters of the mesa-
MESFETs, but no critical SSE events have been noticed. However, these modifications did 
not lead to the irreversible device failure. 

After 15MeV electron irradiation the Schottky diodes showed no failure in their 
electrical behavior. Moreover, in the forward mode at the lowest doses we observed an 
improvement of the forward voltage, while the reverse current experiments a decrease. 
Concerning the irradiated mesa-MESFETs no significant changes have been observed on 
any of the most relevant electrical parameters.  

Therefore, the main conclusion of this chapter is that Schottky-junction devices show 
no variations on their electrical behaviors after proton and electron irradiations, proving 
their radiation hardness stability; hence, demonstrating that these components are perfectly 
suitable for harsh radiation applications.  

Although a dedicated study will be performed in a near future, we are expecting that 
the new fabricated MESFET structures together with the multi-stage digital building blocks 
will show a similar behavior concerning radiation hardness.  
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equipment, among others, this work is orientated to developing high density integrated 
multi-stage digital ICs on 4H-SiC. 
 

2. The work continues with the description of the SiC device library that has been used in 
developing the SiC ICs.  

The main active device that has been used in this development is the MESFET transistors 
(Chapter II). The state-of-art review of this topic is completed with the theoretical and 
experimental analyses of the already fabricated normally-on 4H-SiC MESFETs with a 
mesa-etch isolation and a close-loop layout, specially suitable for high voltage operation. 
An initial 4H-SiC MESFET SPICE model was extracted for high temperature operation 
from experimental results on this MESFET.  

A new normally-on 4H-SiC MESFET structure based on the CMOS technology 
approaches and accounting for the typical ICs requirements has been successfully 
developed (Chapter III). One of the novelties in developing the new SiC device is the 
isolation technique that has been used. It was demonstrated for the first time on SiC that 
using the P+-implanted walls the device isolation is successfully achieved, holding isolation 
voltages higher than 300V. It was also proved that this isolation technique provides a better 
wafer planarity, which ensures reliable interconnections between individual cells and 
circuits. The complexity and maturity of the device process technology is highlighted, 
showing that 10 levels of photolithography masks were necessary to fabricate the device. 
Another important achievement of the present work is the usage of three metal levels for 
the MESFET development, two of which are for device and circuits interconnections. We 
have also demonstrated that the finger-gate layout geometry successfully fulfills the device 
scalability requirement. A new set of parameters were extracted in order to optimize the 
initial SPICE model for the new fabricated structures. 

Concerning the best temperature matching between devices, 4H-SiC epitaxial resistors 
have been as well fabricated (Chapter IV). From the experimental measurements it was 
shown that the sheet epitaxial resistance shows quite a double value than the theoretical 
expected value. Several causes are involved, such as the non-uniformity doping 
concentration of the epitaxial layer or even the non-uniformity of the SiC etch rate. It can 
be also expected that the N dopants are not completely ionized at low working 
temperatures, hence leading to a higher epitaxial resistivity. The scalability of these devices 
has been also proved at room and high temperature operation. 
 

3. After defining and fabricating the device library and extracting their adequate SPICE 
models, the dissertation describes the ICs development (Chapter V). As there are not many 
logic families on different materials than Si and from normally-on devices, the NASA 
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topology on 6H-SiC using JFETs and epitaxial resistors, for a very small number of 
components or simple and small digital circuits is commented. This topology approach has 
been selected in the present digital circuits’ development.  

The extracted SPICE model from the fabricated MESFETs and epitaxial resistors allows 
designing the 4H-SiC MESFET elementary logic gate library. Multi-stage SiC ICs have 
been designed using this library. The transfer on SiC of some of the most common Si 
CMOS standard topologies has been proved at simulation level. In this sense, the Master-
Slave Data Flip-Flop and the Data-Reset Flip-Flop topologies have been implemented. 
The Toggle Flip-Flop has been developed following NASA’s topology.  

From the experimental results it has been demonstrated that the development and 
fabrication of complex multi-stage ICs has been successfully achieved. It has been 
highlighted that the functionality of the multi-stage ICs on SiC is provided by the 
elementary logic gates library operation at room and high temperature, as well as at high 
frequency. Due to the difference obtained between the designed and experimental epitaxial 
resistors, several changes in the experimental results have been detected. We have shown 
that the tuning of the supply voltages helps to set the proper High and Low levels of the 
digital circuits at room temperature. In relation with the ICs performance in temperature, it 
was pointed out that the follower transistor causes a negative drift of the output response 
for temperatures over 200ºC. Even though, the SiC ICs show a proper operation in the 
whole temperature range. The ICs’ high frequency operation has been also demonstrated. 
Therefore, we confirm that our normally-on SiC MESFET ICs technology enables the 
fabrication of digital ICs with a large device number, with a high integration density and 
consuming low areas. 

 

4. Finally, we have demonstrated that Schottky-gated based device shows an excellent 
radiation hardness (Chapter VI). Encapsulated Schottky diodes specially design for the 
Bepi-Colombo space mission and mesa-MESFET transistors, both having the same 
Schottky metal as the previous designed MESFETs (Tungsten-Schottky metal), have been 
submitted to 10MeV proton and 15MeV electron irradiation at different fluences and doses. 
From the experimental characterization it was demonstrated that the packaged Schottky 
diodes show no alteration after both irradiation tests. Moreover, after proton irradiation the 
SiC-Schottky interface experienced an improvement by decreasing the leakage current. 
After electron irradiation both forward voltage and the reverse current improve. The mesa-
MESFETs’ electrical parameters show slight modifications after proton radiation, whereas 
after the electron irradiation they experiment no significant changes. These experiments 
confirm that these devices present good radiation hardness, hence being perfectly suitable 
for harsh radiation applications. A similar radiation hardness behavior is expected for the 
new fabricated MESFET structures together with the multi-stage digital building blocks. 
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LIST OF SYMBOLS AND ACRONYMS 
 

 

 
Symbol Name Unit
  
A The resistor cross-section area m2

a The epitaxial layer thickness m
AF Flicker-noise exponent 
BETA=β Transconductance parameter – SPICE A/V2

BETATCE Transconductance exponential temperature coefficient – SPICE 1/ºC
BFOM Baliga’s Figure-of-Merit 
σ Semiconductor conductivity S/m
CGS Zero-bias G-S junction capacitance – SPICE  F
CGD Zero-bias G-D junction capacitance – SPICE  F
Ec Critical electric field MV/cm
Eg Bandgap energy eV
εr Relative dielectric constant 
FC Coefficient for forward-bias depletion capacitance  – SPICE  
gm The device transconductance / gain S
I-V Current-Voltage characteristics 
ICs Integrated Circuits 
IDsat The saturation drain current A
IDSS The saturation drain current A
ILK Leakage current A
ION/IOFF On-Off current ratio 
IS Gate junction saturation current A
JFOM Johnsoln’s Figure-of-Merit 
KFOM Keyes’ Figure-of-Merit 
KF Flicker-noise coefficient 
λ Thermal conductivity W/cmºK
LAMBDA=λ Channel length modulation parameter – SPICE  V-1

L Resistor length m
LG Gate length m
M Junction grading coefficient 
µn Electron mobility  cm2/Vs
µp Hole mobility cm2/Vs
NA Acceptor doping concentration cm-3
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ND Donor doping concentration  cm-3

ni Intrinsic carrier concentration cm-3

NMH Noise Margins High V
NML Noise Margins Low V
NMs Noise Margins V
NSq Square numbers 
PB Gate junction potential V
PD Power Dissipation W

 Semiconductor resistivity Ω·m
 Specific contact resistance Ω·cm2

RC Contact resistance Ω
RLOAD Load resistor Ω
RON The on-state resistance Ω
RS Sheet resistance Ω
T Temperature K
TP Propagation Delay s
TPLH Propagation Delay from Low-to-High s
TPHL Propagation Delay from High-to-Low s
tF Fall time s
tR Rise time s
TNOM Parameter measurement temperature – SPICE  ºC
φ0 The internal potential of the pn-junction V

VBi The built-in voltage of the Schottky gate V
vi Input voltage V
VOH,min Minimum high output voltage level V
VOL,max Maximum low output voltage level V
VIH,min Minimum high input voltage level V
VIL,max Maximum low input voltage level V
VOUT Output voltage V
VP Pinch-off voltage V
VR Polarization voltage V
VT Threshold voltage V
Vth Thermal voltage V
VT0TC Threshold voltage temperature coefficient – SPICE  V/ºC
VM Switching threshold voltage V
XTI IS temperature coefficient – SPICE  m
W Resistor width m
Wepi N-epilayer depth m
WG Schottky junction depth m
WSCH Schottky junction depth m
WN Depletion region in the N-layer m
WP Depletion region in the P-layer m
ZG Gate width m
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ANNEXES 
 

 

 

ANNEX.A – 4H-SiC MESFET SPICE Models  

 

ANNEX.A1 – SPICE Model Mesa-MESFET – Extracted Model 

 

The heart of the SPICE model is the netlist, which is simply a list of components and the 
nets (or nodes) that connect them together. Therefore, in the following part the netlist of the 
4H-SiC mesa-MESFET extracted SPICE model is presented together with the device 
circuit SPICE test schematic: 

 

*** Netlist Description 4H-SiC mesa-MESFET *** 
 
.SUBCKT RNJFETSIC_e D G S B 
Rd D D1 rsicn 12 
Rs S S1 rsicn 10 
J1 D1 J S1 RNJFETSIC 
EJ J G B G 0.02  
 
.MODEL RNJFETSIC NJF LEVEL=1 
+Beta=0.000145 
+Betatce=-.441 
+Rd=0  
+Rs=0  
+Lambda=2e-3 
+Vto=-14.2 
+Vtotc=-0.53e-4  
+Is=1E-17 
+N=1   
+Xti=3 
*+Alpha=506.8u   
+Cgd=3p  
+M=1.00001 

av dd

0

XNFETSIC2b

RNJFETSIC_e m=1

Vg
0

+
-

Vi
0

+
-

4H-SiC MESFET - Circuit Schematic of 
SPICE Simulation 
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+Pb=1.3 
+Fc=0.5 
+Cgs=10.083p  
+Kf=1.259E-18 
+Af=1 
.ENDS RNJFETSIC_e 

 

ANNEX.A2 – SPICE Model for the Planar-MESFET – The Design 
Model 

 

The SPICE netlist for the proposed SPICE model that was used in the design chapter of the 
ICs MESFET is next presented, for both transistors. This model was derived from the 
mesa-MESFET SPICE model and has the purpose to predict the planar-MESFET operation 
prior fabrication. The SPICE circuit test schematic for the devices is also presented: 

 

*** Netlist Description 4H-SiC ICs-MESFET – Extrapolated Model *** 
 
*** Main ICs MESFET m=1 *** 
 

.SUBCKT NJFETSiC D G S B 
Rd D D1 rsicn 12 
Rs S S1 rsicn 10 
J1 D1 J S1 NJFETSiC 
EJ J G B G 0.02 $2.680e-01 
 
.MODEL NJFETSiC NJF LEVEL=1 
+Beta=0.0003125 
+Betatce=-.441 
+Rd=0  
+Rs=0  
+Lambda=2e-3 
+Vto=-8 
+Vtotc=-0.53e-4  
+Is=1E-17 
+N=1   
+Xti=3 
*+Alpha=506.8u   
+Cgd=3p  
+M=1.00001 
+Pb=1.3 
+Fc=0.5 
+Cgs=10.083p  
+Kf=1.259E-18 
+Af=1 

4H-SiC ICs MESFET  
Circuit Schematic of SPICE Simulation 

G

D

B

S

JFETSiCN 
NJFETSiC m=1

JFETSiCNp
NJFETSiC_p m=0.04

Vidp
0

+
-

Vid
0

+
-
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.ENDS NJFETSiC 
 
 
*** Oxide gated - ICs MESFET m=0.04 *** 
 

.SUBCKT NJFETSiCp D G S B 
Rd D D1 rsicn 12 
Rs S S1 rsicn 10 
J1 D1 J S1 NJFETSiCp 
EJ J G B G 0.02 $2.680e-01 
 
.MODEL NJFETSiCp NJF LEVEL=1 
+Beta=0.0003125 
+Betatce=-.441 
+Rd=0  
+Rs=0  
+Lambda=2e-3 
+Vto=-12.5 
+Vtotc=-0.53e-4  
+Is=1E-17 
+N=1   
+Xti=3 
*+Alpha=506.8u   
+Cgd=3p  
+M=1.00001 
+Pb=1.3 
+Fc=0.5 
+Cgs=10.083p  
+Kf=1.259E-18 
+Af=1 
.ENDS NJFETSiCp 
 
 

*** 4H-SiC Resistance SPICE proposed model *** 
 
.model rsicn r tc1=7.4798E-03 tc2=1.8011E-05 
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ANNEX.A3 – SPICE Model Planar-MESFET – Extracted Model 

 

Once the 4H-SiC ICs MESFETs were fabricated, a new parameter extraction was 
performed and the design SPICE model was updated with the new extracted parameters. 
Next the SPICE netlist for the fabricated ICs MESFETs is presented: 

 

*** Netlist Description 4H-SiC ICs-MESFET – Extracted Model *** 
 
*** Main ICs MESFET m=1 *** 
 
.SUBCKT NJFETSiC D G S B 
Rd D D1 rsicn 100 
Rs S S1 rsicn 30 
J1 D1 J S1 NJFETSiC 
EJ J G B G 0.021 $2.680e-01 
 
.MODEL NJFETSIC NJF LEVEL=1 
 
+Beta=0.00025 
+Betatce=-.374 
+Rd=0  
+Rs=0  
+Lambda=5e-4 
+Vto=-8.26 
+Vtotc=-5.3e-5   
+Is=1E-17 
+N=1   
+Xti=3 
*+Alpha=506.8u   
+Cgd=3p  
+M=1.00001 
+Pb=1.3 
+Fc=0.5 
+Cgs=10.083p  
+Kf=1.259E-18 
+Af=1 
 
.ENDS NJFETSiC 
 
 
 
 
 
 

4H-SiC ICs MESFET  
Circuit Schematic of SPICE Simulation 

G

D

B

S

JFETSiCN 
NJFETSiC m=1

JFETSiCNp
NJFETSiC_p m=0.04

Vidp
0

+
-

Vid
0

+
-
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*** Oxide gated - ICs MESFET m=0.04 *** 
 
.SUBCKT NJFETSiCp D G S B 
Rd D D1 rsicn 35 
Rs S S1 rsicn 18 
J1 D1 J S1 NJFETSiCp  
EJ J G B G 0.02 $2.680e-01 
 
.MODEL NJFETSiCp NJF LEVEL=1 
+Beta=0.00024 
+Betatce=-.374 
+Rd=0  
+Rs=0  
+Lambda=4e-3 
+Vto=-14 
+Vtotc=-5.3e-5   
+Is=1E-17 
+N=1   
+Xti=3 
*+Alpha=506.8u   
+Cgd=3p  
+M=1.00001 
+Pb=1.3 
+Fc=0.5 
+Cgs=10.083p  
+Kf=1.259E-18 
+Af=1 
 
.ENDS NJFETSiCp 
 
 
 
 
*** 4H-SiC Resistance SPICE extracted model *** 
 
.model rsicn r tc1=7.4798E-03 tc2=1.8011E-05 
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ANNEX.B – The Planar-MESFET Dimensions and DRC 
rules 

 

The Design Rule Checker (DRC) is an important step in developing integrated circuits. In 
this step of the design the DRC ensures that the circuit layout corresponds to the original 
electric schematic of the design. The DRC constrains may came as a requirement of the 
design itself or as a requirement of the fabrication process used to realize the devices and 
circuits. Due to the complexity of the created ICs on SiC we have defined a set of design 
rules relaying on the actual fabrication limitations. The layout of the planar-MESFET 
transistor with 4 finger-gates is next presented. This device contains all the masks that were 
used in the circuit’s realization as well. 

 

Geometric Relations 
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Dimensions (length x width) : 
GATE  Dimensions      14 μm x 66 μm 

Gate CONT Dimensions      8 μm x 60 μm 

Gate VIA2 Dimensions     12 μm x 64 μm 

Source NPLUS Dimensions     12 μm x 42 μm 

Source OHMIC Dimensions      8 μm x 38 μm 

Source CONT Dimensions      8 μm x 38 μm 

Single Drain NPLUS Dimensions     12 μm x 42 μm 

Single Drain OHMIC Dimensions     16 μm x 46 μm 

Single Drain CONT Dimensions      8 μm x 38 μm 

Shared Drain NPLUS Dimensions    18 μm x 42 μm 

Shared Drain OHMIC Dimensions    22 μm x 46 μm 

Shared Drain CONT Dimensions    14 μm x 38 μm 

Source & Drain VIA2 Dimensions    10 μm x 42 μm 

Minimum VIA3 Dimensions     10 μm x  5 μm 

 

The major structure and circuit layout design rules that we have applied are: 

Minimum PPLUS width     5 μm 

Minimum MET2 width     10 μm 

Minimum MET3 width     10 μm 

CONT without MET2      Not allowed 

MET2 without VIA2       Not allowed 

OHMIC without CONT      Not allowed 

GATE without CONT      Not allowed 

VIA3 without MET2 & MET3    Not allowed 

Overlap of NPLUS and PPLUS     Not allowed  

Minimum NPLUS spacing to NPLUS    11 μm 

Minimum PPLUS spacing to NPLUS    3 μm 

Minimum NPLUS spacing to GATE    2 μm 

Minimum PPLUS spacing of OHMIC    1 μm 

Minimum OHMIC spacing of PPLUS    1 μm 

Minimum OHMIC spacing of GATE    4 μm 

Minimum GATE spacing of NPLUS     2 μm 

Minimum GATE spacing of OHMIC    4 μm 

Minimum MET2 spacing to MET2     7 μm 
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Minimum VIA2 spacing to VIA2     7 μm 

Minimum MET3 spacing to MET3     5 μm 

Minimum OHMIC enclosure of CONT    0 μm 

Minimum GATE enclosure of CONT    3 μm 

Minimum GATE enclosure of MET2    1 μm 

Minimum GATE enclosure of VIA2     1 μm 

Minimum MET2 enclosure of VIA3     2 μm 

Minimum MET3 enclosure of VIA3     2 μm 

 

ANNEX.C –Test Circuits used for Digital ICs Simulation 
 

In order to be able simulate the multi-level digital ICs presented in Chapter V, additional 
test circuits were necessary to be realized. The simulated diagrams presented for the Flip-
Flops correspond to the next test schematics created for each of the complex logic 4H-SiC 
ICs: 

 

Toggle Flip-Flop 
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Master-Slave D Flip-Flop 

 

D-Reset Flip-Flop 
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ANNEX.D – Wafer-Dice – Circuits Configuration 
 

After all the fabrication steps have been completed the wafer looks like in Fig.AX.D.1 and 
contains 60 entire chips. One chip (Fig.AX.D.2) is composed from two parts having 3.5mm 
x 7mm. The chip was further divided into two equal parts (3.5mmx3.5mm) – dice that was 
after encapsulated. From Fig.AX.D.2 it can be observed all the fabricated SiC circuits. For 
a better electrical characterization and also due to the fabrication limitations, the pad 
dimension is 162µm x 162µm and the minimum distance in between them is 120µm. The 
distance between two different rows of pads is 1.5mm.  

 

Fig.AX.D.1. Fabricated SiC wafer – one entire chip – CNM chip 

 

 

Fig.AX.D.2. Device – circuit’s distribution on the main chip 
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